summaryrefslogtreecommitdiff
path: root/src/jit/codegenarmarch.cpp
blob: 60f1121cb58b2f53fffbaae6cba76240d15be7dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX                                                                           XX
XX                        ARM/ARM64 Code Generator Common Code               XX
XX                                                                           XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
#include "jitpch.h"
#ifdef _MSC_VER
#pragma hdrstop
#endif

#ifdef _TARGET_ARMARCH_ // This file is ONLY used for ARM and ARM64 architectures

#include "codegen.h"
#include "lower.h"
#include "gcinfo.h"
#include "emit.h"

//------------------------------------------------------------------------
// genCodeForTreeNode Generate code for a single node in the tree.
//
// Preconditions:
//    All operands have been evaluated.
//
void CodeGen::genCodeForTreeNode(GenTree* treeNode)
{
    regNumber targetReg  = treeNode->gtRegNum;
    var_types targetType = treeNode->TypeGet();
    emitter*  emit       = getEmitter();

#ifdef DEBUG
    // Validate that all the operands for the current node are consumed in order.
    // This is important because LSRA ensures that any necessary copies will be
    // handled correctly.
    lastConsumedNode = nullptr;
    if (compiler->verbose)
    {
        unsigned seqNum = treeNode->gtSeqNum; // Useful for setting a conditional break in Visual Studio
        compiler->gtDispLIRNode(treeNode, "Generating: ");
    }
#endif // DEBUG

#ifdef _TARGET_ARM64_ // TODO-ARM: is this applicable to ARM32?
    // Is this a node whose value is already in a register?  LSRA denotes this by
    // setting the GTF_REUSE_REG_VAL flag.
    if (treeNode->IsReuseRegVal())
    {
        // For now, this is only used for constant nodes.
        assert((treeNode->OperGet() == GT_CNS_INT) || (treeNode->OperGet() == GT_CNS_DBL));
        JITDUMP("  TreeNode is marked ReuseReg\n");
        return;
    }
#endif // _TARGET_ARM64_

    // contained nodes are part of their parents for codegen purposes
    // ex : immediates, most LEAs
    if (treeNode->isContained())
    {
        return;
    }

    switch (treeNode->gtOper)
    {
        case GT_START_NONGC:
            getEmitter()->emitDisableGC();
            break;

        case GT_PROF_HOOK:
            // We should be seeing this only if profiler hook is needed
            noway_assert(compiler->compIsProfilerHookNeeded());

#ifdef PROFILING_SUPPORTED
            // Right now this node is used only for tail calls. In future if
            // we intend to use it for Enter or Leave hooks, add a data member
            // to this node indicating the kind of profiler hook. For example,
            // helper number can be used.
            genProfilingLeaveCallback(CORINFO_HELP_PROF_FCN_TAILCALL);
#endif // PROFILING_SUPPORTED
            break;

        case GT_LCLHEAP:
            genLclHeap(treeNode);
            break;

        case GT_CNS_INT:
        case GT_CNS_DBL:
            genSetRegToConst(targetReg, targetType, treeNode);
            genProduceReg(treeNode);
            break;

        case GT_NOT:
        case GT_NEG:
            genCodeForNegNot(treeNode);
            break;

        case GT_MOD:
        case GT_UMOD:
        case GT_DIV:
        case GT_UDIV:
            genCodeForDivMod(treeNode->AsOp());
            break;

        case GT_OR:
        case GT_XOR:
        case GT_AND:
            assert(varTypeIsIntegralOrI(treeNode));

            __fallthrough;

#if !defined(_TARGET_64BIT_)
        case GT_ADD_LO:
        case GT_ADD_HI:
        case GT_SUB_LO:
        case GT_SUB_HI:
#endif // !defined(_TARGET_64BIT_)

        case GT_ADD:
        case GT_SUB:
        case GT_MUL:
            genConsumeOperands(treeNode->AsOp());
            genCodeForBinary(treeNode);
            break;

        case GT_LSH:
        case GT_RSH:
        case GT_RSZ:
        // case GT_ROL: // No ROL instruction on ARM; it has been lowered to ROR.
        case GT_ROR:
            genCodeForShift(treeNode);
            break;

#if !defined(_TARGET_64BIT_)

        case GT_LSH_HI:
        case GT_RSH_LO:
            genCodeForShiftLong(treeNode);
            break;

#endif // !defined(_TARGET_64BIT_)

        case GT_CAST:
            genCodeForCast(treeNode->AsOp());
            break;

        case GT_BITCAST:
        {
            GenTree* op1 = treeNode->gtOp.gtOp1;
            if (varTypeIsFloating(treeNode) != varTypeIsFloating(op1))
            {
#ifdef _TARGET_ARM64_
                inst_RV_RV(INS_fmov, targetReg, genConsumeReg(op1), targetType);
#else  // !_TARGET_ARM64_
                if (varTypeIsFloating(treeNode))
                {
                    // GT_BITCAST on ARM is only used to cast floating-point arguments to integer
                    // registers. Nobody generates GT_BITCAST from int to float currently.
                    NYI_ARM("GT_BITCAST from 'int' to 'float'");
                }
                else
                {
                    assert(varTypeIsFloating(op1));

                    if (op1->TypeGet() == TYP_FLOAT)
                    {
                        inst_RV_RV(INS_vmov_f2i, targetReg, genConsumeReg(op1), targetType);
                    }
                    else
                    {
                        assert(op1->TypeGet() == TYP_DOUBLE);
                        regNumber otherReg = treeNode->AsMultiRegOp()->gtOtherReg;
                        assert(otherReg != REG_NA);
                        inst_RV_RV_RV(INS_vmov_d2i, targetReg, otherReg, genConsumeReg(op1), EA_8BYTE);
                    }
                }
#endif // !_TARGET_ARM64_
            }
            else
            {
                inst_RV_RV(ins_Copy(targetType), targetReg, genConsumeReg(op1), targetType);
            }
        }
        break;

        case GT_LCL_FLD_ADDR:
        case GT_LCL_VAR_ADDR:
            genCodeForLclAddr(treeNode);
            break;

        case GT_LCL_FLD:
            genCodeForLclFld(treeNode->AsLclFld());
            break;

        case GT_LCL_VAR:
            genCodeForLclVar(treeNode->AsLclVar());
            break;

        case GT_STORE_LCL_FLD:
            genCodeForStoreLclFld(treeNode->AsLclFld());
            break;

        case GT_STORE_LCL_VAR:
            genCodeForStoreLclVar(treeNode->AsLclVar());
            break;

        case GT_RETFILT:
        case GT_RETURN:
            genReturn(treeNode);
            break;

        case GT_LEA:
            // If we are here, it is the case where there is an LEA that cannot be folded into a parent instruction.
            genLeaInstruction(treeNode->AsAddrMode());
            break;

        case GT_INDEX_ADDR:
            genCodeForIndexAddr(treeNode->AsIndexAddr());
            break;

        case GT_IND:
            genCodeForIndir(treeNode->AsIndir());
            break;

#ifdef _TARGET_ARM_
        case GT_MUL_LONG:
            genCodeForMulLong(treeNode->AsMultiRegOp());
            break;
#endif // _TARGET_ARM_

#ifdef _TARGET_ARM64_

        case GT_MULHI:
            genCodeForMulHi(treeNode->AsOp());
            break;

        case GT_SWAP:
            genCodeForSwap(treeNode->AsOp());
            break;
#endif // _TARGET_ARM64_

        case GT_JMP:
            genJmpMethod(treeNode);
            break;

        case GT_CKFINITE:
            genCkfinite(treeNode);
            break;

        case GT_INTRINSIC:
            genIntrinsic(treeNode);
            break;

#ifdef FEATURE_SIMD
        case GT_SIMD:
            genSIMDIntrinsic(treeNode->AsSIMD());
            break;
#endif // FEATURE_SIMD

#ifdef FEATURE_HW_INTRINSICS
        case GT_HWIntrinsic:
            genHWIntrinsic(treeNode->AsHWIntrinsic());
            break;
#endif // FEATURE_HW_INTRINSICS

        case GT_EQ:
        case GT_NE:
        case GT_LT:
        case GT_LE:
        case GT_GE:
        case GT_GT:
        case GT_CMP:
#ifdef _TARGET_ARM64_
        case GT_TEST_EQ:
        case GT_TEST_NE:
#endif // _TARGET_ARM64_
            genCodeForCompare(treeNode->AsOp());
            break;

        case GT_JTRUE:
            genCodeForJumpTrue(treeNode);
            break;

#ifdef _TARGET_ARM64_
        case GT_JCMP:
            genCodeForJumpCompare(treeNode->AsOp());
            break;
#endif // _TARGET_ARM64_

        case GT_JCC:
            genCodeForJcc(treeNode->AsCC());
            break;

        case GT_SETCC:
            genCodeForSetcc(treeNode->AsCC());
            break;

        case GT_RETURNTRAP:
            genCodeForReturnTrap(treeNode->AsOp());
            break;

        case GT_STOREIND:
            genCodeForStoreInd(treeNode->AsStoreInd());
            break;

        case GT_COPY:
            // This is handled at the time we call genConsumeReg() on the GT_COPY
            break;

        case GT_LIST:
        case GT_FIELD_LIST:
            // Should always be marked contained.
            assert(!"LIST, FIELD_LIST nodes should always be marked contained.");
            break;

        case GT_PUTARG_STK:
            genPutArgStk(treeNode->AsPutArgStk());
            break;

        case GT_PUTARG_REG:
            genPutArgReg(treeNode->AsOp());
            break;

#ifdef _TARGET_ARM_
        case GT_PUTARG_SPLIT:
            genPutArgSplit(treeNode->AsPutArgSplit());
            break;
#endif // _TARGET_ARM_

        case GT_CALL:
            genCallInstruction(treeNode->AsCall());
            break;

        case GT_MEMORYBARRIER:
            instGen_MemoryBarrier();
            break;

#ifdef _TARGET_ARM64_
        case GT_XCHG:
        case GT_XADD:
            genLockedInstructions(treeNode->AsOp());
            break;

        case GT_CMPXCHG:
            genCodeForCmpXchg(treeNode->AsCmpXchg());
            break;
#endif // _TARGET_ARM64_

        case GT_RELOAD:
            // do nothing - reload is just a marker.
            // The parent node will call genConsumeReg on this which will trigger the unspill of this node's child
            // into the register specified in this node.
            break;

        case GT_NOP:
            break;

        case GT_NO_OP:
            instGen(INS_nop);
            break;

        case GT_ARR_BOUNDS_CHECK:
#ifdef FEATURE_SIMD
        case GT_SIMD_CHK:
#endif // FEATURE_SIMD
            genRangeCheck(treeNode);
            break;

        case GT_PHYSREG:
            genCodeForPhysReg(treeNode->AsPhysReg());
            break;

        case GT_NULLCHECK:
            genCodeForNullCheck(treeNode->AsOp());
            break;

        case GT_CATCH_ARG:

            noway_assert(handlerGetsXcptnObj(compiler->compCurBB->bbCatchTyp));

            /* Catch arguments get passed in a register. genCodeForBBlist()
               would have marked it as holding a GC object, but not used. */

            noway_assert(gcInfo.gcRegGCrefSetCur & RBM_EXCEPTION_OBJECT);
            genConsumeReg(treeNode);
            break;

        case GT_PINVOKE_PROLOG:
            noway_assert(((gcInfo.gcRegGCrefSetCur | gcInfo.gcRegByrefSetCur) & ~fullIntArgRegMask()) == 0);

            // the runtime side requires the codegen here to be consistent
            emit->emitDisableRandomNops();
            break;

        case GT_LABEL:
            genPendingCallLabel       = genCreateTempLabel();
            treeNode->gtLabel.gtLabBB = genPendingCallLabel;
            emit->emitIns_R_L(INS_adr, EA_PTRSIZE, genPendingCallLabel, targetReg);
            break;

        case GT_STORE_OBJ:
        case GT_STORE_DYN_BLK:
        case GT_STORE_BLK:
            genCodeForStoreBlk(treeNode->AsBlk());
            break;

        case GT_JMPTABLE:
            genJumpTable(treeNode);
            break;

        case GT_SWITCH_TABLE:
            genTableBasedSwitch(treeNode);
            break;

        case GT_ARR_INDEX:
            genCodeForArrIndex(treeNode->AsArrIndex());
            break;

        case GT_ARR_OFFSET:
            genCodeForArrOffset(treeNode->AsArrOffs());
            break;

#ifdef _TARGET_ARM_

        case GT_CLS_VAR_ADDR:
            emit->emitIns_R_C(INS_lea, EA_PTRSIZE, targetReg, treeNode->gtClsVar.gtClsVarHnd, 0);
            genProduceReg(treeNode);
            break;

        case GT_LONG:
            assert(treeNode->isUsedFromReg());
            genConsumeRegs(treeNode);
            break;

#endif // _TARGET_ARM_

        case GT_IL_OFFSET:
            // Do nothing; these nodes are simply markers for debug info.
            break;

        default:
        {
#ifdef DEBUG
            char message[256];
            _snprintf_s(message, _countof(message), _TRUNCATE, "NYI: Unimplemented node type %s",
                        GenTree::OpName(treeNode->OperGet()));
            NYIRAW(message);
#else
            NYI("unimplemented node");
#endif
        }
        break;
    }
}

//------------------------------------------------------------------------
// genSetRegToIcon: Generate code that will set the given register to the integer constant.
//
void CodeGen::genSetRegToIcon(regNumber reg, ssize_t val, var_types type, insFlags flags)
{
    // Reg cannot be a FP reg
    assert(!genIsValidFloatReg(reg));

    // The only TYP_REF constant that can come this path is a managed 'null' since it is not
    // relocatable.  Other ref type constants (e.g. string objects) go through a different
    // code path.
    noway_assert(type != TYP_REF || val == 0);

    instGen_Set_Reg_To_Imm(emitActualTypeSize(type), reg, val, flags);
}

//---------------------------------------------------------------------
// genIntrinsic - generate code for a given intrinsic
//
// Arguments
//    treeNode - the GT_INTRINSIC node
//
// Return value:
//    None
//
void CodeGen::genIntrinsic(GenTree* treeNode)
{
    assert(treeNode->OperIs(GT_INTRINSIC));

    // Both operand and its result must be of the same floating point type.
    GenTree* srcNode = treeNode->gtOp.gtOp1;
    assert(varTypeIsFloating(srcNode));
    assert(srcNode->TypeGet() == treeNode->TypeGet());

    // Right now only Abs/Ceiling/Floor/Round/Sqrt are treated as math intrinsics.
    //
    switch (treeNode->gtIntrinsic.gtIntrinsicId)
    {
        case CORINFO_INTRINSIC_Abs:
            genConsumeOperands(treeNode->AsOp());
            getEmitter()->emitInsBinary(INS_ABS, emitActualTypeSize(treeNode), treeNode, srcNode);
            break;

#ifdef _TARGET_ARM64_
        case CORINFO_INTRINSIC_Ceiling:
            genConsumeOperands(treeNode->AsOp());
            getEmitter()->emitInsBinary(INS_frintp, emitActualTypeSize(treeNode), treeNode, srcNode);
            break;

        case CORINFO_INTRINSIC_Floor:
            genConsumeOperands(treeNode->AsOp());
            getEmitter()->emitInsBinary(INS_frintm, emitActualTypeSize(treeNode), treeNode, srcNode);
            break;

        case CORINFO_INTRINSIC_Round:
            genConsumeOperands(treeNode->AsOp());
            getEmitter()->emitInsBinary(INS_frintn, emitActualTypeSize(treeNode), treeNode, srcNode);
            break;
#endif // _TARGET_ARM64_

        case CORINFO_INTRINSIC_Sqrt:
            genConsumeOperands(treeNode->AsOp());
            getEmitter()->emitInsBinary(INS_SQRT, emitActualTypeSize(treeNode), treeNode, srcNode);
            break;

        default:
            assert(!"genIntrinsic: Unsupported intrinsic");
            unreached();
    }

    genProduceReg(treeNode);
}

//---------------------------------------------------------------------
// genPutArgStk - generate code for a GT_PUTARG_STK node
//
// Arguments
//    treeNode - the GT_PUTARG_STK node
//
// Return value:
//    None
//
void CodeGen::genPutArgStk(GenTreePutArgStk* treeNode)
{
    assert(treeNode->OperIs(GT_PUTARG_STK));
    GenTree*  source     = treeNode->gtOp1;
    var_types targetType = genActualType(source->TypeGet());
    emitter*  emit       = getEmitter();

    // This is the varNum for our store operations,
    // typically this is the varNum for the Outgoing arg space
    // When we are generating a tail call it will be the varNum for arg0
    unsigned varNumOut    = (unsigned)-1;
    unsigned argOffsetMax = (unsigned)-1; // Records the maximum size of this area for assert checks

    // Get argument offset to use with 'varNumOut'
    // Here we cross check that argument offset hasn't changed from lowering to codegen since
    // we are storing arg slot number in GT_PUTARG_STK node in lowering phase.
    unsigned argOffsetOut = treeNode->gtSlotNum * TARGET_POINTER_SIZE;

#ifdef DEBUG
    fgArgTabEntry* curArgTabEntry = compiler->gtArgEntryByNode(treeNode->gtCall, treeNode);
    assert(curArgTabEntry);
    assert(argOffsetOut == (curArgTabEntry->slotNum * TARGET_POINTER_SIZE));
#endif // DEBUG

    // Whether to setup stk arg in incoming or out-going arg area?
    // Fast tail calls implemented as epilog+jmp = stk arg is setup in incoming arg area.
    // All other calls - stk arg is setup in out-going arg area.
    if (treeNode->putInIncomingArgArea())
    {
        varNumOut    = getFirstArgWithStackSlot();
        argOffsetMax = compiler->compArgSize;
#if FEATURE_FASTTAILCALL
        // This must be a fast tail call.
        assert(treeNode->gtCall->IsFastTailCall());

        // Since it is a fast tail call, the existence of first incoming arg is guaranteed
        // because fast tail call requires that in-coming arg area of caller is >= out-going
        // arg area required for tail call.
        LclVarDsc* varDsc = &(compiler->lvaTable[varNumOut]);
        assert(varDsc != nullptr);
#endif // FEATURE_FASTTAILCALL
    }
    else
    {
        varNumOut    = compiler->lvaOutgoingArgSpaceVar;
        argOffsetMax = compiler->lvaOutgoingArgSpaceSize;
    }

    bool isStruct = (targetType == TYP_STRUCT) || (source->OperGet() == GT_FIELD_LIST);

    if (!isStruct) // a normal non-Struct argument
    {
        if (varTypeIsSIMD(targetType))
        {
            assert(!source->isContained());

            regNumber srcReg = genConsumeReg(source);

            emitAttr storeAttr = emitTypeSize(targetType);

            assert((srcReg != REG_NA) && (genIsValidFloatReg(srcReg)));
            emit->emitIns_S_R(INS_str, storeAttr, srcReg, varNumOut, argOffsetOut);

            argOffsetOut += EA_SIZE_IN_BYTES(storeAttr);
            assert(argOffsetOut <= argOffsetMax); // We can't write beyound the outgoing area area
            return;
        }

        instruction storeIns  = ins_Store(targetType);
        emitAttr    storeAttr = emitTypeSize(targetType);

        // If it is contained then source must be the integer constant zero
        if (source->isContained())
        {
#ifdef _TARGET_ARM64_
            assert(source->OperGet() == GT_CNS_INT);
            assert(source->AsIntConCommon()->IconValue() == 0);

            emit->emitIns_S_R(storeIns, storeAttr, REG_ZR, varNumOut, argOffsetOut);
#else  // !_TARGET_ARM64_
            // There is no zero register on ARM32
            unreached();
#endif // !_TARGET_ARM64
        }
        else
        {
            genConsumeReg(source);
            emit->emitIns_S_R(storeIns, storeAttr, source->gtRegNum, varNumOut, argOffsetOut);
#ifdef _TARGET_ARM_
            if (targetType == TYP_LONG)
            {
                // This case currently only occurs for double types that are passed as TYP_LONG;
                // actual long types would have been decomposed by now.
                assert(source->IsCopyOrReload());
                regNumber otherReg = (regNumber)source->AsCopyOrReload()->GetRegNumByIdx(1);
                assert(otherReg != REG_NA);
                argOffsetOut += EA_4BYTE;
                emit->emitIns_S_R(storeIns, storeAttr, otherReg, varNumOut, argOffsetOut);
            }
#endif // _TARGET_ARM_
        }
        argOffsetOut += EA_SIZE_IN_BYTES(storeAttr);
        assert(argOffsetOut <= argOffsetMax); // We can't write beyound the outgoing area area
    }
    else // We have some kind of a struct argument
    {
        assert(source->isContained()); // We expect that this node was marked as contained in Lower

        if (source->OperGet() == GT_FIELD_LIST)
        {
            genPutArgStkFieldList(treeNode, varNumOut);
        }
        else // We must have a GT_OBJ or a GT_LCL_VAR
        {
            noway_assert((source->OperGet() == GT_LCL_VAR) || (source->OperGet() == GT_OBJ));

            var_types targetType = source->TypeGet();
            noway_assert(varTypeIsStruct(targetType));

            // We will copy this struct to the stack, possibly using a ldp/ldr instruction
            // in ARM64/ARM
            // Setup loReg (and hiReg) from the internal registers that we reserved in lower.
            //
            regNumber loReg = treeNode->ExtractTempReg();
#ifdef _TARGET_ARM64_
            regNumber hiReg = treeNode->GetSingleTempReg();
#endif // _TARGET_ARM64_
            regNumber addrReg = REG_NA;

            GenTreeLclVarCommon* varNode  = nullptr;
            GenTree*             addrNode = nullptr;

            if (source->OperGet() == GT_LCL_VAR)
            {
                varNode = source->AsLclVarCommon();
            }
            else // we must have a GT_OBJ
            {
                assert(source->OperGet() == GT_OBJ);

                addrNode = source->gtOp.gtOp1;

                // addrNode can either be a GT_LCL_VAR_ADDR or an address expression
                //
                if (addrNode->OperGet() == GT_LCL_VAR_ADDR)
                {
                    // We have a GT_OBJ(GT_LCL_VAR_ADDR)
                    //
                    // We will treat this case the same as above
                    // (i.e if we just had this GT_LCL_VAR directly as the source)
                    // so update 'source' to point this GT_LCL_VAR_ADDR node
                    // and continue to the codegen for the LCL_VAR node below
                    //
                    varNode  = addrNode->AsLclVarCommon();
                    addrNode = nullptr;
                }
            }

            // Either varNode or addrNOde must have been setup above,
            // the xor ensures that only one of the two is setup, not both
            assert((varNode != nullptr) ^ (addrNode != nullptr));

            BYTE  gcPtrArray[MAX_ARG_REG_COUNT] = {}; // TYPE_GC_NONE = 0
            BYTE* gcPtrs                        = gcPtrArray;

            unsigned gcPtrCount; // The count of GC pointers in the struct
            int      structSize;
            bool     isHfa;

            // This is the varNum for our load operations,
            // only used when we have a multireg struct with a LclVar source
            unsigned varNumInp = BAD_VAR_NUM;

#ifdef _TARGET_ARM_
            // On ARM32, size of reference map can be larger than MAX_ARG_REG_COUNT
            gcPtrs     = treeNode->gtGcPtrs;
            gcPtrCount = treeNode->gtNumberReferenceSlots;
#endif
            // Setup the structSize, isHFa, and gcPtrCount
            if (varNode != nullptr)
            {
                varNumInp = varNode->gtLclNum;
                assert(varNumInp < compiler->lvaCount);
                LclVarDsc* varDsc = &compiler->lvaTable[varNumInp];

                // This struct also must live in the stack frame
                // And it can't live in a register (SIMD)
                assert(varDsc->lvType == TYP_STRUCT);
                assert(varDsc->lvOnFrame && !varDsc->lvRegister);

                structSize = varDsc->lvSize(); // This yields the roundUp size, but that is fine
                                               // as that is how much stack is allocated for this LclVar
                isHfa = varDsc->lvIsHfa();
#ifdef _TARGET_ARM64_
                gcPtrCount = varDsc->lvStructGcCount;
                for (unsigned i = 0; i < gcPtrCount; ++i)
                    gcPtrs[i]   = varDsc->lvGcLayout[i];
#endif // _TARGET_ARM_
            }
            else // addrNode is used
            {
                assert(addrNode != nullptr);

                // Generate code to load the address that we need into a register
                genConsumeAddress(addrNode);
                addrReg = addrNode->gtRegNum;

#ifdef _TARGET_ARM64_
                // If addrReg equal to loReg, swap(loReg, hiReg)
                // This reduces code complexity by only supporting one addrReg overwrite case
                if (loReg == addrReg)
                {
                    loReg = hiReg;
                    hiReg = addrReg;
                }
#endif // _TARGET_ARM64_

                CORINFO_CLASS_HANDLE objClass = source->gtObj.gtClass;

                structSize = compiler->info.compCompHnd->getClassSize(objClass);
                isHfa      = compiler->IsHfa(objClass);
#ifdef _TARGET_ARM64_
                gcPtrCount = compiler->info.compCompHnd->getClassGClayout(objClass, &gcPtrs[0]);
#endif
            }

            // If we have an HFA we can't have any GC pointers,
            // if not then the max size for the the struct is 16 bytes
            if (isHfa)
            {
                noway_assert(gcPtrCount == 0);
            }
#ifdef _TARGET_ARM64_
            else
            {
                noway_assert(structSize <= 2 * TARGET_POINTER_SIZE);
            }

            noway_assert(structSize <= MAX_PASS_MULTIREG_BYTES);
#endif // _TARGET_ARM64_

            int      remainingSize = structSize;
            unsigned structOffset  = 0;
            unsigned nextIndex     = 0;

#ifdef _TARGET_ARM64_
            // For a >= 16-byte structSize we will generate a ldp and stp instruction each loop
            //             ldp     x2, x3, [x0]
            //             stp     x2, x3, [sp, #16]

            while (remainingSize >= 2 * TARGET_POINTER_SIZE)
            {
                var_types type0 = compiler->getJitGCType(gcPtrs[nextIndex + 0]);
                var_types type1 = compiler->getJitGCType(gcPtrs[nextIndex + 1]);

                if (varNode != nullptr)
                {
                    // Load from our varNumImp source
                    emit->emitIns_R_R_S_S(INS_ldp, emitTypeSize(type0), emitTypeSize(type1), loReg, hiReg, varNumInp,
                                          structOffset);
                }
                else
                {
                    // check for case of destroying the addrRegister while we still need it
                    assert(loReg != addrReg);
                    noway_assert((remainingSize == 2 * TARGET_POINTER_SIZE) || (hiReg != addrReg));

                    // Load from our address expression source
                    emit->emitIns_R_R_R_I(INS_ldp, emitTypeSize(type0), loReg, hiReg, addrReg, structOffset,
                                          INS_OPTS_NONE, emitTypeSize(type0));
                }

                // Emit stp instruction to store the two registers into the outgoing argument area
                emit->emitIns_S_S_R_R(INS_stp, emitTypeSize(type0), emitTypeSize(type1), loReg, hiReg, varNumOut,
                                      argOffsetOut);
                argOffsetOut += (2 * TARGET_POINTER_SIZE); // We stored 16-bytes of the struct
                assert(argOffsetOut <= argOffsetMax);      // We can't write beyound the outgoing area area

                remainingSize -= (2 * TARGET_POINTER_SIZE); // We loaded 16-bytes of the struct
                structOffset += (2 * TARGET_POINTER_SIZE);
                nextIndex += 2;
            }
#else  // _TARGET_ARM_
            // For a >= 4 byte structSize we will generate a ldr and str instruction each loop
            //             ldr     r2, [r0]
            //             str     r2, [sp, #16]
            while (remainingSize >= TARGET_POINTER_SIZE)
            {
                var_types type = compiler->getJitGCType(gcPtrs[nextIndex]);

                if (varNode != nullptr)
                {
                    // Load from our varNumImp source
                    emit->emitIns_R_S(INS_ldr, emitTypeSize(type), loReg, varNumInp, structOffset);
                }
                else
                {
                    // check for case of destroying the addrRegister while we still need it
                    assert(loReg != addrReg || remainingSize == TARGET_POINTER_SIZE);

                    // Load from our address expression source
                    emit->emitIns_R_R_I(INS_ldr, emitTypeSize(type), loReg, addrReg, structOffset);
                }

                // Emit str instruction to store the register into the outgoing argument area
                emit->emitIns_S_R(INS_str, emitTypeSize(type), loReg, varNumOut, argOffsetOut);
                argOffsetOut += TARGET_POINTER_SIZE;  // We stored 4-bytes of the struct
                assert(argOffsetOut <= argOffsetMax); // We can't write beyound the outgoing area area

                remainingSize -= TARGET_POINTER_SIZE; // We loaded 4-bytes of the struct
                structOffset += TARGET_POINTER_SIZE;
                nextIndex += 1;
            }
#endif // _TARGET_ARM_

            // For a 12-byte structSize we will we will generate two load instructions
            //             ldr     x2, [x0]
            //             ldr     w3, [x0, #8]
            //             str     x2, [sp, #16]
            //             str     w3, [sp, #24]

            while (remainingSize > 0)
            {
                if (remainingSize >= TARGET_POINTER_SIZE)
                {
                    var_types nextType = compiler->getJitGCType(gcPtrs[nextIndex]);
                    emitAttr  nextAttr = emitTypeSize(nextType);
                    remainingSize -= TARGET_POINTER_SIZE;

                    if (varNode != nullptr)
                    {
                        // Load from our varNumImp source
                        emit->emitIns_R_S(ins_Load(nextType), nextAttr, loReg, varNumInp, structOffset);
                    }
                    else
                    {
                        assert(loReg != addrReg);

                        // Load from our address expression source
                        emit->emitIns_R_R_I(ins_Load(nextType), nextAttr, loReg, addrReg, structOffset);
                    }
                    // Emit a store instruction to store the register into the outgoing argument area
                    emit->emitIns_S_R(ins_Store(nextType), nextAttr, loReg, varNumOut, argOffsetOut);
                    argOffsetOut += EA_SIZE_IN_BYTES(nextAttr);
                    assert(argOffsetOut <= argOffsetMax); // We can't write beyound the outgoing area area

                    structOffset += TARGET_POINTER_SIZE;
                    nextIndex++;
                }
                else // (remainingSize < TARGET_POINTER_SIZE)
                {
                    int loadSize  = remainingSize;
                    remainingSize = 0;

                    // We should never have to do a non-pointer sized load when we have a LclVar source
                    assert(varNode == nullptr);

                    // the left over size is smaller than a pointer and thus can never be a GC type
                    assert(varTypeIsGC(compiler->getJitGCType(gcPtrs[nextIndex])) == false);

                    var_types loadType = TYP_UINT;
                    if (loadSize == 1)
                    {
                        loadType = TYP_UBYTE;
                    }
                    else if (loadSize == 2)
                    {
                        loadType = TYP_USHORT;
                    }
                    else
                    {
                        // Need to handle additional loadSize cases here
                        noway_assert(loadSize == 4);
                    }

                    instruction loadIns  = ins_Load(loadType);
                    emitAttr    loadAttr = emitAttr(loadSize);

                    assert(loReg != addrReg);

                    emit->emitIns_R_R_I(loadIns, loadAttr, loReg, addrReg, structOffset);

                    // Emit a store instruction to store the register into the outgoing argument area
                    emit->emitIns_S_R(ins_Store(loadType), loadAttr, loReg, varNumOut, argOffsetOut);
                    argOffsetOut += EA_SIZE_IN_BYTES(loadAttr);
                    assert(argOffsetOut <= argOffsetMax); // We can't write beyound the outgoing area area
                }
            }
        }
    }
}

//---------------------------------------------------------------------
// genPutArgReg - generate code for a GT_PUTARG_REG node
//
// Arguments
//    tree - the GT_PUTARG_REG node
//
// Return value:
//    None
//
void CodeGen::genPutArgReg(GenTreeOp* tree)
{
    assert(tree->OperIs(GT_PUTARG_REG));

    var_types targetType = tree->TypeGet();
    regNumber targetReg  = tree->gtRegNum;

    assert(targetType != TYP_STRUCT);

    GenTree* op1 = tree->gtOp1;
    genConsumeReg(op1);

    // If child node is not already in the register we need, move it
    if (targetReg != op1->gtRegNum)
    {
        inst_RV_RV(ins_Copy(targetType), targetReg, op1->gtRegNum, targetType);
    }

    genProduceReg(tree);
}

#ifdef _TARGET_ARM_
//---------------------------------------------------------------------
// genPutArgSplit - generate code for a GT_PUTARG_SPLIT node
//
// Arguments
//    tree - the GT_PUTARG_SPLIT node
//
// Return value:
//    None
//
void CodeGen::genPutArgSplit(GenTreePutArgSplit* treeNode)
{
    assert(treeNode->OperIs(GT_PUTARG_SPLIT));

    GenTree* source       = treeNode->gtOp1;
    emitter* emit         = getEmitter();
    unsigned varNumOut    = compiler->lvaOutgoingArgSpaceVar;
    unsigned argOffsetMax = compiler->lvaOutgoingArgSpaceSize;
    unsigned argOffsetOut = treeNode->gtSlotNum * TARGET_POINTER_SIZE;

    if (source->OperGet() == GT_FIELD_LIST)
    {
        // Evaluate each of the GT_FIELD_LIST items into their register
        // and store their register into the outgoing argument area
        unsigned regIndex = 0;
        for (GenTreeFieldList* fieldListPtr = source->AsFieldList(); fieldListPtr != nullptr;
             fieldListPtr                   = fieldListPtr->Rest())
        {
            GenTree*  nextArgNode = fieldListPtr->gtGetOp1();
            regNumber fieldReg    = nextArgNode->gtRegNum;
            genConsumeReg(nextArgNode);

            if (regIndex >= treeNode->gtNumRegs)
            {
                var_types type = nextArgNode->TypeGet();
                emitAttr  attr = emitTypeSize(type);

                // Emit store instructions to store the registers produced by the GT_FIELD_LIST into the outgoing
                // argument area
                emit->emitIns_S_R(ins_Store(type), attr, fieldReg, varNumOut, argOffsetOut);
                argOffsetOut += EA_SIZE_IN_BYTES(attr);
                assert(argOffsetOut <= argOffsetMax); // We can't write beyound the outgoing area area
            }
            else
            {
                var_types type   = treeNode->GetRegType(regIndex);
                regNumber argReg = treeNode->GetRegNumByIdx(regIndex);
                if (type == TYP_LONG)
                {
                    // We should only see long fields for DOUBLEs passed in 2 integer registers, via bitcast.
                    // All other LONGs should have been decomposed.
                    // Handle the first INT, and then handle the 2nd below.
                    assert(nextArgNode->OperIs(GT_BITCAST));
                    type = TYP_INT;
                    if (argReg != fieldReg)
                    {
                        inst_RV_RV(ins_Copy(type), argReg, fieldReg, type);
                    }
                    // Now set up the next register for the 2nd INT
                    argReg = REG_NEXT(argReg);
                    regIndex++;
                    assert(argReg == treeNode->GetRegNumByIdx(regIndex));
                    fieldReg = nextArgNode->AsMultiRegOp()->GetRegNumByIdx(1);
                }

                // If child node is not already in the register we need, move it
                if (argReg != fieldReg)
                {
                    inst_RV_RV(ins_Copy(type), argReg, fieldReg, type);
                }
                regIndex++;
            }
        }
    }
    else
    {
        var_types targetType = source->TypeGet();
        assert(source->OperGet() == GT_OBJ);
        assert(varTypeIsStruct(targetType));

        regNumber baseReg = treeNode->ExtractTempReg();
        regNumber addrReg = REG_NA;

        GenTreeLclVarCommon* varNode  = nullptr;
        GenTree*             addrNode = nullptr;

        addrNode = source->gtOp.gtOp1;

        // addrNode can either be a GT_LCL_VAR_ADDR or an address expression
        //
        if (addrNode->OperGet() == GT_LCL_VAR_ADDR)
        {
            // We have a GT_OBJ(GT_LCL_VAR_ADDR)
            //
            // We will treat this case the same as above
            // (i.e if we just had this GT_LCL_VAR directly as the source)
            // so update 'source' to point this GT_LCL_VAR_ADDR node
            // and continue to the codegen for the LCL_VAR node below
            //
            varNode  = addrNode->AsLclVarCommon();
            addrNode = nullptr;
        }

        // Either varNode or addrNOde must have been setup above,
        // the xor ensures that only one of the two is setup, not both
        assert((varNode != nullptr) ^ (addrNode != nullptr));

        // Setup the structSize, isHFa, and gcPtrCount
        BYTE*    gcPtrs     = treeNode->gtGcPtrs;
        unsigned gcPtrCount = treeNode->gtNumberReferenceSlots; // The count of GC pointers in the struct
        int      structSize = treeNode->getArgSize();

        // This is the varNum for our load operations,
        // only used when we have a struct with a LclVar source
        unsigned srcVarNum = BAD_VAR_NUM;

        if (varNode != nullptr)
        {
            srcVarNum = varNode->gtLclNum;
            assert(srcVarNum < compiler->lvaCount);

            // handle promote situation
            LclVarDsc* varDsc = compiler->lvaTable + srcVarNum;

            // This struct also must live in the stack frame
            // And it can't live in a register (SIMD)
            assert(varDsc->lvType == TYP_STRUCT);
            assert(varDsc->lvOnFrame && !varDsc->lvRegister);

            // We don't split HFA struct
            assert(!varDsc->lvIsHfa());
        }
        else // addrNode is used
        {
            assert(addrNode != nullptr);

            // Generate code to load the address that we need into a register
            genConsumeAddress(addrNode);
            addrReg = addrNode->gtRegNum;

            // If addrReg equal to baseReg, we use the last target register as alternative baseReg.
            // Because the candidate mask for the internal baseReg does not include any of the target register,
            // we can ensure that baseReg, addrReg, and the last target register are not all same.
            assert(baseReg != addrReg);

            // We don't split HFA struct
            assert(!compiler->IsHfa(source->gtObj.gtClass));
        }

        // Put on stack first
        unsigned nextIndex     = treeNode->gtNumRegs;
        unsigned structOffset  = nextIndex * TARGET_POINTER_SIZE;
        int      remainingSize = structSize - structOffset;

        // remainingSize is always multiple of TARGET_POINTER_SIZE
        assert(remainingSize % TARGET_POINTER_SIZE == 0);
        while (remainingSize > 0)
        {
            var_types type = compiler->getJitGCType(gcPtrs[nextIndex]);

            if (varNode != nullptr)
            {
                // Load from our varNumImp source
                emit->emitIns_R_S(INS_ldr, emitTypeSize(type), baseReg, srcVarNum, structOffset);
            }
            else
            {
                // check for case of destroying the addrRegister while we still need it
                assert(baseReg != addrReg);

                // Load from our address expression source
                emit->emitIns_R_R_I(INS_ldr, emitTypeSize(type), baseReg, addrReg, structOffset);
            }

            // Emit str instruction to store the register into the outgoing argument area
            emit->emitIns_S_R(INS_str, emitTypeSize(type), baseReg, varNumOut, argOffsetOut);
            argOffsetOut += TARGET_POINTER_SIZE;  // We stored 4-bytes of the struct
            assert(argOffsetOut <= argOffsetMax); // We can't write beyound the outgoing area area
            remainingSize -= TARGET_POINTER_SIZE; // We loaded 4-bytes of the struct
            structOffset += TARGET_POINTER_SIZE;
            nextIndex += 1;
        }

        // We set up the registers in order, so that we assign the last target register `baseReg` is no longer in use,
        // in case we had to reuse the last target register for it.
        structOffset = 0;
        for (unsigned idx = 0; idx < treeNode->gtNumRegs; idx++)
        {
            regNumber targetReg = treeNode->GetRegNumByIdx(idx);
            var_types type      = treeNode->GetRegType(idx);

            if (varNode != nullptr)
            {
                // Load from our varNumImp source
                emit->emitIns_R_S(INS_ldr, emitTypeSize(type), targetReg, srcVarNum, structOffset);
            }
            else
            {
                // check for case of destroying the addrRegister while we still need it
                if (targetReg == addrReg && idx != treeNode->gtNumRegs - 1)
                {
                    assert(targetReg != baseReg);
                    emit->emitIns_R_R(INS_mov, emitActualTypeSize(type), baseReg, addrReg);
                    addrReg = baseReg;
                }

                // Load from our address expression source
                emit->emitIns_R_R_I(INS_ldr, emitTypeSize(type), targetReg, addrReg, structOffset);
            }
            structOffset += TARGET_POINTER_SIZE;
        }
    }
    genProduceReg(treeNode);
}
#endif // _TARGET_ARM_

//----------------------------------------------------------------------------------
// genMultiRegCallStoreToLocal: store multi-reg return value of a call node to a local
//
// Arguments:
//    treeNode  -  Gentree of GT_STORE_LCL_VAR
//
// Return Value:
//    None
//
// Assumption:
//    The child of store is a multi-reg call node.
//    genProduceReg() on treeNode is made by caller of this routine.
//
void CodeGen::genMultiRegCallStoreToLocal(GenTree* treeNode)
{
    assert(treeNode->OperGet() == GT_STORE_LCL_VAR);

#if defined(_TARGET_ARM_)
    // Longs are returned in two return registers on Arm32.
    // Structs are returned in four registers on ARM32 and HFAs.
    assert(varTypeIsLong(treeNode) || varTypeIsStruct(treeNode));
#elif defined(_TARGET_ARM64_)
    // Structs of size >=9 and <=16 are returned in two return registers on ARM64 and HFAs.
    assert(varTypeIsStruct(treeNode));
#endif // _TARGET_*

    // Assumption: current implementation requires that a multi-reg
    // var in 'var = call' is flagged as lvIsMultiRegRet to prevent it from
    // being promoted.
    unsigned   lclNum = treeNode->AsLclVarCommon()->gtLclNum;
    LclVarDsc* varDsc = &(compiler->lvaTable[lclNum]);
    noway_assert(varDsc->lvIsMultiRegRet);

    GenTree*     op1       = treeNode->gtGetOp1();
    GenTree*     actualOp1 = op1->gtSkipReloadOrCopy();
    GenTreeCall* call      = actualOp1->AsCall();
    assert(call->HasMultiRegRetVal());

    genConsumeRegs(op1);

    ReturnTypeDesc* pRetTypeDesc = call->GetReturnTypeDesc();
    unsigned        regCount     = pRetTypeDesc->GetReturnRegCount();

    if (treeNode->gtRegNum != REG_NA)
    {
        // Right now the only enregistrable multi-reg return types supported are SIMD types.
        assert(varTypeIsSIMD(treeNode));
        assert(regCount != 0);

        regNumber dst = treeNode->gtRegNum;

        // Treat dst register as a homogenous vector with element size equal to the src size
        // Insert pieces in reverse order
        for (int i = regCount - 1; i >= 0; --i)
        {
            var_types type = pRetTypeDesc->GetReturnRegType(i);
            regNumber reg  = call->GetRegNumByIdx(i);
            if (op1->IsCopyOrReload())
            {
                // GT_COPY/GT_RELOAD will have valid reg for those positions
                // that need to be copied or reloaded.
                regNumber reloadReg = op1->AsCopyOrReload()->GetRegNumByIdx(i);
                if (reloadReg != REG_NA)
                {
                    reg = reloadReg;
                }
            }

            assert(reg != REG_NA);
            if (varTypeIsFloating(type))
            {
                // If the register piece was passed in a floating point register
                // Use a vector mov element instruction
                // src is not a vector, so it is in the first element reg[0]
                // mov dst[i], reg[0]
                // This effectively moves from `reg[0]` to `dst[i]`, leaving other dst bits unchanged till further
                // iterations
                // For the case where reg == dst, if we iterate so that we write dst[0] last, we eliminate the need for
                // a temporary
                getEmitter()->emitIns_R_R_I_I(INS_mov, emitTypeSize(type), dst, reg, i, 0);
            }
            else
            {
                // If the register piece was passed in an integer register
                // Use a vector mov from general purpose register instruction
                // mov dst[i], reg
                // This effectively moves from `reg` to `dst[i]`
                getEmitter()->emitIns_R_R_I(INS_mov, emitTypeSize(type), dst, reg, i);
            }
        }

        genProduceReg(treeNode);
    }
    else
    {
        // Stack store
        int offset = 0;
        for (unsigned i = 0; i < regCount; ++i)
        {
            var_types type = pRetTypeDesc->GetReturnRegType(i);
            regNumber reg  = call->GetRegNumByIdx(i);
            if (op1->IsCopyOrReload())
            {
                // GT_COPY/GT_RELOAD will have valid reg for those positions
                // that need to be copied or reloaded.
                regNumber reloadReg = op1->AsCopyOrReload()->GetRegNumByIdx(i);
                if (reloadReg != REG_NA)
                {
                    reg = reloadReg;
                }
            }

            assert(reg != REG_NA);
            getEmitter()->emitIns_S_R(ins_Store(type), emitTypeSize(type), reg, lclNum, offset);
            offset += genTypeSize(type);
        }

        varDsc->lvRegNum = REG_STK;
    }
}

//------------------------------------------------------------------------
// genRangeCheck: generate code for GT_ARR_BOUNDS_CHECK node.
//
void CodeGen::genRangeCheck(GenTree* oper)
{
#ifdef FEATURE_SIMD
    noway_assert(oper->OperGet() == GT_ARR_BOUNDS_CHECK || oper->OperGet() == GT_SIMD_CHK);
#else  // !FEATURE_SIMD
    noway_assert(oper->OperGet() == GT_ARR_BOUNDS_CHECK);
#endif // !FEATURE_SIMD

    GenTreeBoundsChk* bndsChk = oper->AsBoundsChk();

    GenTree* arrLen    = bndsChk->gtArrLen;
    GenTree* arrIndex  = bndsChk->gtIndex;
    GenTree* arrRef    = NULL;
    int      lenOffset = 0;

    GenTree*     src1;
    GenTree*     src2;
    emitJumpKind jmpKind;

    genConsumeRegs(arrIndex);
    genConsumeRegs(arrLen);

    if (arrIndex->isContainedIntOrIImmed())
    {
        // To encode using a cmp immediate, we place the
        //  constant operand in the second position
        src1    = arrLen;
        src2    = arrIndex;
        jmpKind = genJumpKindForOper(GT_LE, CK_UNSIGNED);
    }
    else
    {
        src1    = arrIndex;
        src2    = arrLen;
        jmpKind = genJumpKindForOper(GT_GE, CK_UNSIGNED);
    }

    var_types bndsChkType = genActualType(src2->TypeGet());
#if DEBUG
    // Bounds checks can only be 32 or 64 bit sized comparisons.
    assert(bndsChkType == TYP_INT || bndsChkType == TYP_LONG);

    // The type of the bounds check should always wide enough to compare against the index.
    assert(emitTypeSize(bndsChkType) >= emitActualTypeSize(src1->TypeGet()));
#endif // DEBUG

    getEmitter()->emitInsBinary(INS_cmp, emitActualTypeSize(bndsChkType), src1, src2);
    genJumpToThrowHlpBlk(jmpKind, bndsChk->gtThrowKind, bndsChk->gtIndRngFailBB);
}

//---------------------------------------------------------------------
// genCodeForPhysReg - generate code for a GT_PHYSREG node
//
// Arguments
//    tree - the GT_PHYSREG node
//
// Return value:
//    None
//
void CodeGen::genCodeForPhysReg(GenTreePhysReg* tree)
{
    assert(tree->OperIs(GT_PHYSREG));

    var_types targetType = tree->TypeGet();
    regNumber targetReg  = tree->gtRegNum;

    if (targetReg != tree->gtSrcReg)
    {
        inst_RV_RV(ins_Copy(targetType), targetReg, tree->gtSrcReg, targetType);
        genTransferRegGCState(targetReg, tree->gtSrcReg);
    }

    genProduceReg(tree);
}

//---------------------------------------------------------------------
// genCodeForNullCheck - generate code for a GT_NULLCHECK node
//
// Arguments
//    tree - the GT_NULLCHECK node
//
// Return value:
//    None
//
void CodeGen::genCodeForNullCheck(GenTreeOp* tree)
{
    assert(tree->OperIs(GT_NULLCHECK));
    assert(!tree->gtOp1->isContained());
    regNumber addrReg = genConsumeReg(tree->gtOp1);

#ifdef _TARGET_ARM64_
    regNumber targetReg = REG_ZR;
#else
    regNumber targetReg = tree->GetSingleTempReg();
#endif

    getEmitter()->emitIns_R_R_I(INS_ldr, EA_4BYTE, targetReg, addrReg, 0);
}

//------------------------------------------------------------------------
// genOffsetOfMDArrayLowerBound: Returns the offset from the Array object to the
//   lower bound for the given dimension.
//
// Arguments:
//    elemType  - the element type of the array
//    rank      - the rank of the array
//    dimension - the dimension for which the lower bound offset will be returned.
//
// Return Value:
//    The offset.
// TODO-Cleanup: move to CodeGenCommon.cpp

// static
unsigned CodeGen::genOffsetOfMDArrayLowerBound(var_types elemType, unsigned rank, unsigned dimension)
{
    // Note that the lower bound and length fields of the Array object are always TYP_INT
    return compiler->eeGetArrayDataOffset(elemType) + genTypeSize(TYP_INT) * (dimension + rank);
}

//------------------------------------------------------------------------
// genOffsetOfMDArrayLength: Returns the offset from the Array object to the
//   size for the given dimension.
//
// Arguments:
//    elemType  - the element type of the array
//    rank      - the rank of the array
//    dimension - the dimension for which the lower bound offset will be returned.
//
// Return Value:
//    The offset.
// TODO-Cleanup: move to CodeGenCommon.cpp

// static
unsigned CodeGen::genOffsetOfMDArrayDimensionSize(var_types elemType, unsigned rank, unsigned dimension)
{
    // Note that the lower bound and length fields of the Array object are always TYP_INT
    return compiler->eeGetArrayDataOffset(elemType) + genTypeSize(TYP_INT) * dimension;
}

//------------------------------------------------------------------------
// genCodeForArrIndex: Generates code to bounds check the index for one dimension of an array reference,
//                     producing the effective index by subtracting the lower bound.
//
// Arguments:
//    arrIndex - the node for which we're generating code
//
// Return Value:
//    None.
//
void CodeGen::genCodeForArrIndex(GenTreeArrIndex* arrIndex)
{
    emitter*  emit      = getEmitter();
    GenTree*  arrObj    = arrIndex->ArrObj();
    GenTree*  indexNode = arrIndex->IndexExpr();
    regNumber arrReg    = genConsumeReg(arrObj);
    regNumber indexReg  = genConsumeReg(indexNode);
    regNumber tgtReg    = arrIndex->gtRegNum;
    noway_assert(tgtReg != REG_NA);

    // We will use a temp register to load the lower bound and dimension size values.

    regNumber tmpReg = arrIndex->GetSingleTempReg();
    assert(tgtReg != tmpReg);

    unsigned  dim      = arrIndex->gtCurrDim;
    unsigned  rank     = arrIndex->gtArrRank;
    var_types elemType = arrIndex->gtArrElemType;
    unsigned  offset;

    offset = genOffsetOfMDArrayLowerBound(elemType, rank, dim);
    emit->emitIns_R_R_I(ins_Load(TYP_INT), EA_PTRSIZE, tmpReg, arrReg, offset); // a 4 BYTE sign extending load
    emit->emitIns_R_R_R(INS_sub, EA_4BYTE, tgtReg, indexReg, tmpReg);

    offset = genOffsetOfMDArrayDimensionSize(elemType, rank, dim);
    emit->emitIns_R_R_I(ins_Load(TYP_INT), EA_PTRSIZE, tmpReg, arrReg, offset); // a 4 BYTE sign extending load
    emit->emitIns_R_R(INS_cmp, EA_4BYTE, tgtReg, tmpReg);

    emitJumpKind jmpGEU = genJumpKindForOper(GT_GE, CK_UNSIGNED);
    genJumpToThrowHlpBlk(jmpGEU, SCK_RNGCHK_FAIL);

    genProduceReg(arrIndex);
}

//------------------------------------------------------------------------
// genCodeForArrOffset: Generates code to compute the flattened array offset for
//    one dimension of an array reference:
//        result = (prevDimOffset * dimSize) + effectiveIndex
//    where dimSize is obtained from the arrObj operand
//
// Arguments:
//    arrOffset - the node for which we're generating code
//
// Return Value:
//    None.
//
// Notes:
//    dimSize and effectiveIndex are always non-negative, the former by design,
//    and the latter because it has been normalized to be zero-based.

void CodeGen::genCodeForArrOffset(GenTreeArrOffs* arrOffset)
{
    GenTree*  offsetNode = arrOffset->gtOffset;
    GenTree*  indexNode  = arrOffset->gtIndex;
    regNumber tgtReg     = arrOffset->gtRegNum;

    noway_assert(tgtReg != REG_NA);

    if (!offsetNode->IsIntegralConst(0))
    {
        emitter*  emit      = getEmitter();
        regNumber offsetReg = genConsumeReg(offsetNode);
        regNumber indexReg  = genConsumeReg(indexNode);
        regNumber arrReg    = genConsumeReg(arrOffset->gtArrObj);
        noway_assert(offsetReg != REG_NA);
        noway_assert(indexReg != REG_NA);
        noway_assert(arrReg != REG_NA);

        regNumber tmpReg = arrOffset->GetSingleTempReg();

        unsigned  dim      = arrOffset->gtCurrDim;
        unsigned  rank     = arrOffset->gtArrRank;
        var_types elemType = arrOffset->gtArrElemType;
        unsigned  offset   = genOffsetOfMDArrayDimensionSize(elemType, rank, dim);

        // Load tmpReg with the dimension size and evaluate
        // tgtReg = offsetReg*tmpReg + indexReg.
        emit->emitIns_R_R_I(ins_Load(TYP_INT), EA_PTRSIZE, tmpReg, arrReg, offset);
        emit->emitIns_R_R_R_R(INS_MULADD, EA_PTRSIZE, tgtReg, tmpReg, offsetReg, indexReg);
    }
    else
    {
        regNumber indexReg = genConsumeReg(indexNode);
        if (indexReg != tgtReg)
        {
            inst_RV_RV(INS_mov, tgtReg, indexReg, TYP_INT);
        }
    }
    genProduceReg(arrOffset);
}

//------------------------------------------------------------------------
// genCodeForShift: Generates the code sequence for a GenTree node that
// represents a bit shift or rotate operation (<<, >>, >>>, rol, ror).
//
// Arguments:
//    tree - the bit shift node (that specifies the type of bit shift to perform).
//
// Assumptions:
//    a) All GenTrees are register allocated.
//
void CodeGen::genCodeForShift(GenTree* tree)
{
    var_types   targetType = tree->TypeGet();
    genTreeOps  oper       = tree->OperGet();
    instruction ins        = genGetInsForOper(oper, targetType);
    emitAttr    size       = emitActualTypeSize(tree);

    assert(tree->gtRegNum != REG_NA);

    genConsumeOperands(tree->AsOp());

    GenTree* operand = tree->gtGetOp1();
    GenTree* shiftBy = tree->gtGetOp2();
    if (!shiftBy->IsCnsIntOrI())
    {
        getEmitter()->emitIns_R_R_R(ins, size, tree->gtRegNum, operand->gtRegNum, shiftBy->gtRegNum);
    }
    else
    {
        unsigned immWidth   = emitter::getBitWidth(size); // For ARM64, immWidth will be set to 32 or 64
        ssize_t  shiftByImm = shiftBy->gtIntCon.gtIconVal & (immWidth - 1);

        getEmitter()->emitIns_R_R_I(ins, size, tree->gtRegNum, operand->gtRegNum, shiftByImm);
    }

    genProduceReg(tree);
}

//------------------------------------------------------------------------
// genCodeForLclAddr: Generates the code for GT_LCL_FLD_ADDR/GT_LCL_VAR_ADDR.
//
// Arguments:
//    tree - the node.
//
void CodeGen::genCodeForLclAddr(GenTree* tree)
{
    assert(tree->OperIs(GT_LCL_FLD_ADDR, GT_LCL_VAR_ADDR));

    var_types targetType = tree->TypeGet();
    regNumber targetReg  = tree->gtRegNum;

    // Address of a local var.
    noway_assert(targetType == TYP_BYREF);

    inst_RV_TT(INS_lea, targetReg, tree, 0, EA_BYREF);
    genProduceReg(tree);
}

//------------------------------------------------------------------------
// genCodeForLclFld: Produce code for a GT_LCL_FLD node.
//
// Arguments:
//    tree - the GT_LCL_FLD node
//
void CodeGen::genCodeForLclFld(GenTreeLclFld* tree)
{
    assert(tree->OperIs(GT_LCL_FLD));

    var_types targetType = tree->TypeGet();
    regNumber targetReg  = tree->gtRegNum;
    emitter*  emit       = getEmitter();

    NYI_IF(targetType == TYP_STRUCT, "GT_LCL_FLD: struct load local field not supported");
    assert(targetReg != REG_NA);

    emitAttr size   = emitTypeSize(targetType);
    unsigned offs   = tree->gtLclOffs;
    unsigned varNum = tree->gtLclNum;
    assert(varNum < compiler->lvaCount);

    if (varTypeIsFloating(targetType) || varTypeIsSIMD(targetType))
    {
        emit->emitIns_R_S(ins_Load(targetType), size, targetReg, varNum, offs);
    }
    else
    {
#ifdef _TARGET_ARM64_
        size = EA_SET_SIZE(size, EA_8BYTE);
#endif // _TARGET_ARM64_
        emit->emitIns_R_S(ins_Move_Extend(targetType, false), size, targetReg, varNum, offs);
    }

    genProduceReg(tree);
}

//------------------------------------------------------------------------
// genCodeForIndexAddr: Produce code for a GT_INDEX_ADDR node.
//
// Arguments:
//    tree - the GT_INDEX_ADDR node
//
void CodeGen::genCodeForIndexAddr(GenTreeIndexAddr* node)
{
    GenTree* const base  = node->Arr();
    GenTree* const index = node->Index();

    genConsumeReg(base);
    genConsumeReg(index);

    // NOTE: `genConsumeReg` marks the consumed register as not a GC pointer, as it assumes that the input registers
    // die at the first instruction generated by the node. This is not the case for `INDEX_ADDR`, however, as the
    // base register is multiply-used. As such, we need to mark the base register as containing a GC pointer until
    // we are finished generating the code for this node.

    gcInfo.gcMarkRegPtrVal(base->gtRegNum, base->TypeGet());
    assert(!varTypeIsGC(index->TypeGet()));

    const regNumber tmpReg = node->GetSingleTempReg();

    // Generate the bounds check if necessary.
    if ((node->gtFlags & GTF_INX_RNGCHK) != 0)
    {
        // Create a GT_IND(GT_LEA)) tree for the array length access and load the length into a register.
        GenTreeAddrMode arrLenAddr(base->TypeGet(), base, nullptr, 0, static_cast<unsigned>(node->gtLenOffset));
        arrLenAddr.gtRegNum = REG_NA;
        arrLenAddr.SetContained();

        GenTreeIndir arrLen = indirForm(TYP_INT, &arrLenAddr);
        arrLen.gtRegNum     = tmpReg;
        arrLen.ClearContained();

        getEmitter()->emitInsLoadStoreOp(ins_Load(TYP_INT), emitTypeSize(TYP_INT), arrLen.gtRegNum, &arrLen);

#ifdef _TARGET_64BIT_
        // The CLI Spec allows an array to be indexed by either an int32 or a native int.  In the case that the index
        // is a native int on a 64-bit platform, we will need to widen the array length and the compare.
        if (index->TypeGet() == TYP_I_IMPL)
        {
            // Extend the array length as needed.
            getEmitter()->emitIns_R_R(ins_Move_Extend(TYP_INT, true), EA_8BYTE, arrLen.gtRegNum, arrLen.gtRegNum);
        }
#endif

        // Generate the range check.
        getEmitter()->emitInsBinary(INS_cmp, emitActualTypeSize(TYP_I_IMPL), index, &arrLen);
        genJumpToThrowHlpBlk(genJumpKindForOper(GT_GE, CK_UNSIGNED), SCK_RNGCHK_FAIL, node->gtIndRngFailBB);
    }

    // Can we use a ScaledAdd instruction?
    //
    if (isPow2(node->gtElemSize) && (node->gtElemSize <= 32768))
    {
        DWORD scale;
        BitScanForward(&scale, node->gtElemSize);

        // dest = base + index * scale
        genScaledAdd(emitActualTypeSize(node), node->gtRegNum, base->gtRegNum, index->gtRegNum, scale);
    }
    else // we have to load the element size and use a MADD (multiply-add) instruction
    {
        // tmpReg = element size
        CodeGen::genSetRegToIcon(tmpReg, (ssize_t)node->gtElemSize, TYP_INT);

        // dest = index * tmpReg + base
        getEmitter()->emitIns_R_R_R_R(INS_MULADD, emitActualTypeSize(node), node->gtRegNum, index->gtRegNum, tmpReg,
                                      base->gtRegNum);
    }

    // dest = dest + elemOffs
    getEmitter()->emitIns_R_R_I(INS_add, emitActualTypeSize(node), node->gtRegNum, node->gtRegNum, node->gtElemOffset);

    gcInfo.gcMarkRegSetNpt(base->gtGetRegMask());

    genProduceReg(node);
}

//------------------------------------------------------------------------
// genCodeForIndir: Produce code for a GT_IND node.
//
// Arguments:
//    tree - the GT_IND node
//
void CodeGen::genCodeForIndir(GenTreeIndir* tree)
{
    assert(tree->OperIs(GT_IND));

    var_types   targetType = tree->TypeGet();
    regNumber   targetReg  = tree->gtRegNum;
    emitter*    emit       = getEmitter();
    emitAttr    attr       = emitTypeSize(tree);
    instruction ins        = ins_Load(targetType);

#ifdef FEATURE_SIMD
    // Handling of Vector3 type values loaded through indirection.
    if (tree->TypeGet() == TYP_SIMD12)
    {
        genLoadIndTypeSIMD12(tree);
        return;
    }
#endif // FEATURE_SIMD

    genConsumeAddress(tree->Addr());
    if ((tree->gtFlags & GTF_IND_VOLATILE) != 0)
    {
        bool isAligned = ((tree->gtFlags & GTF_IND_UNALIGNED) == 0);

        assert((attr != EA_1BYTE) || isAligned);

#ifdef _TARGET_ARM64_
        GenTree* addr           = tree->Addr();
        bool     useLoadAcquire = genIsValidIntReg(targetReg) && !addr->isContained() &&
                              (varTypeIsUnsigned(targetType) || varTypeIsI(targetType)) &&
                              !(tree->gtFlags & GTF_IND_UNALIGNED);

        if (useLoadAcquire)
        {
            switch (EA_SIZE(attr))
            {
                case EA_1BYTE:
                    assert(ins == INS_ldrb);
                    ins = INS_ldarb;
                    break;
                case EA_2BYTE:
                    assert(ins == INS_ldrh);
                    ins = INS_ldarh;
                    break;
                case EA_4BYTE:
                case EA_8BYTE:
                    assert(ins == INS_ldr);
                    ins = INS_ldar;
                    break;
                default:
                    assert(false); // We should not get here
            }
        }

        emit->emitInsLoadStoreOp(ins, attr, targetReg, tree);

        if (!useLoadAcquire) // issue a INS_BARRIER_OSHLD after a volatile LdInd operation
            instGen_MemoryBarrier(INS_BARRIER_OSHLD);
#else
        emit->emitInsLoadStoreOp(ins, attr, targetReg, tree);

        // issue a full memory barrier after a volatile LdInd operation
        instGen_MemoryBarrier();
#endif // _TARGET_ARM64_
    }
    else
    {
        emit->emitInsLoadStoreOp(ins, attr, targetReg, tree);
    }

    genProduceReg(tree);
}

// Generate code for a CpBlk node by the means of the VM memcpy helper call
// Preconditions:
// a) The size argument of the CpBlk is not an integer constant
// b) The size argument is a constant but is larger than CPBLK_MOVS_LIMIT bytes.
void CodeGen::genCodeForCpBlk(GenTreeBlk* cpBlkNode)
{
    // Make sure we got the arguments of the cpblk operation in the right registers
    unsigned blockSize = cpBlkNode->Size();
    GenTree* dstAddr   = cpBlkNode->Addr();
    assert(!dstAddr->isContained());

    genConsumeBlockOp(cpBlkNode, REG_ARG_0, REG_ARG_1, REG_ARG_2);

#ifdef _TARGET_ARM64_
    if (blockSize != 0)
    {
        assert(blockSize > CPBLK_UNROLL_LIMIT);
    }
#endif // _TARGET_ARM64_

    if (cpBlkNode->gtFlags & GTF_BLK_VOLATILE)
    {
        // issue a full memory barrier before a volatile CpBlk operation
        instGen_MemoryBarrier();
    }

    genEmitHelperCall(CORINFO_HELP_MEMCPY, 0, EA_UNKNOWN);

    if (cpBlkNode->gtFlags & GTF_BLK_VOLATILE)
    {
#ifdef _TARGET_ARM64_
        // issue a INS_BARRIER_ISHLD after a volatile CpBlk operation
        instGen_MemoryBarrier(INS_BARRIER_ISHLD);
#else
        // issue a full memory barrier after a volatile CpBlk operation
        instGen_MemoryBarrier();
#endif // _TARGET_ARM64_
    }
}

//----------------------------------------------------------------------------------
// genCodeForCpBlkUnroll: Generates CpBlk code by performing a loop unroll
//
// Arguments:
//    cpBlkNode  -  Copy block node
//
// Return Value:
//    None
//
// Assumption:
//  The size argument of the CpBlk node is a constant and <= CPBLK_UNROLL_LIMIT bytes.
//
void CodeGen::genCodeForCpBlkUnroll(GenTreeBlk* cpBlkNode)
{
    // Make sure we got the arguments of the cpblk operation in the right registers
    unsigned size    = cpBlkNode->Size();
    GenTree* dstAddr = cpBlkNode->Addr();
    GenTree* source  = cpBlkNode->Data();
    GenTree* srcAddr = nullptr;

    assert((size != 0) && (size <= CPBLK_UNROLL_LIMIT));

    emitter* emit = getEmitter();

    if (dstAddr->isUsedFromReg())
    {
        genConsumeReg(dstAddr);
    }

    if (cpBlkNode->gtFlags & GTF_BLK_VOLATILE)
    {
        // issue a full memory barrier before a volatile CpBlkUnroll operation
        instGen_MemoryBarrier();
    }

    if (source->gtOper == GT_IND)
    {
        srcAddr = source->gtGetOp1();
        if (srcAddr->isUsedFromReg())
        {
            genConsumeReg(srcAddr);
        }
    }
    else
    {
        noway_assert(source->IsLocal());
        // TODO-Cleanup: Consider making the addrForm() method in Rationalize public, e.g. in GenTree.
        // OR: transform source to GT_IND(GT_LCL_VAR_ADDR)
        if (source->OperGet() == GT_LCL_VAR)
        {
            source->SetOper(GT_LCL_VAR_ADDR);
        }
        else
        {
            assert(source->OperGet() == GT_LCL_FLD);
            source->SetOper(GT_LCL_FLD_ADDR);
        }
        srcAddr = source;
    }

    unsigned offset = 0;

    // Grab the integer temp register to emit the loads and stores.
    regNumber tmpReg = cpBlkNode->ExtractTempReg(RBM_ALLINT);

#ifdef _TARGET_ARM64_
    if (size >= 2 * REGSIZE_BYTES)
    {
        regNumber tmp2Reg = cpBlkNode->ExtractTempReg(RBM_ALLINT);

        size_t slots = size / (2 * REGSIZE_BYTES);

        while (slots-- > 0)
        {
            // Load
            genCodeForLoadPairOffset(tmpReg, tmp2Reg, srcAddr, offset);
            // Store
            genCodeForStorePairOffset(tmpReg, tmp2Reg, dstAddr, offset);
            offset += 2 * REGSIZE_BYTES;
        }
    }

    // Fill the remainder (15 bytes or less) if there's one.
    if ((size & 0xf) != 0)
    {
        if ((size & 8) != 0)
        {
            genCodeForLoadOffset(INS_ldr, EA_8BYTE, tmpReg, srcAddr, offset);
            genCodeForStoreOffset(INS_str, EA_8BYTE, tmpReg, dstAddr, offset);
            offset += 8;
        }
        if ((size & 4) != 0)
        {
            genCodeForLoadOffset(INS_ldr, EA_4BYTE, tmpReg, srcAddr, offset);
            genCodeForStoreOffset(INS_str, EA_4BYTE, tmpReg, dstAddr, offset);
            offset += 4;
        }
        if ((size & 2) != 0)
        {
            genCodeForLoadOffset(INS_ldrh, EA_2BYTE, tmpReg, srcAddr, offset);
            genCodeForStoreOffset(INS_strh, EA_2BYTE, tmpReg, dstAddr, offset);
            offset += 2;
        }
        if ((size & 1) != 0)
        {
            genCodeForLoadOffset(INS_ldrb, EA_1BYTE, tmpReg, srcAddr, offset);
            genCodeForStoreOffset(INS_strb, EA_1BYTE, tmpReg, dstAddr, offset);
        }
    }
#else  // !_TARGET_ARM64_
    size_t slots = size / REGSIZE_BYTES;
    while (slots-- > 0)
    {
        genCodeForLoadOffset(INS_ldr, EA_4BYTE, tmpReg, srcAddr, offset);
        genCodeForStoreOffset(INS_str, EA_4BYTE, tmpReg, dstAddr, offset);
        offset += REGSIZE_BYTES;
    }

    // Fill the remainder (3 bytes or less) if there's one.
    if ((size & 0x03) != 0)
    {
        if ((size & 2) != 0)
        {
            genCodeForLoadOffset(INS_ldrh, EA_2BYTE, tmpReg, srcAddr, offset);
            genCodeForStoreOffset(INS_strh, EA_2BYTE, tmpReg, dstAddr, offset);
            offset += 2;
        }
        if ((size & 1) != 0)
        {
            genCodeForLoadOffset(INS_ldrb, EA_1BYTE, tmpReg, srcAddr, offset);
            genCodeForStoreOffset(INS_strb, EA_1BYTE, tmpReg, dstAddr, offset);
        }
    }
#endif // !_TARGET_ARM64_

    if (cpBlkNode->gtFlags & GTF_BLK_VOLATILE)
    {
#ifdef _TARGET_ARM64_
        // issue a INS_BARRIER_ISHLD after a volatile CpBlkUnroll operation
        instGen_MemoryBarrier(INS_BARRIER_ISHLD);
#else
        // issue a full memory barrier after a volatile CpBlk operation
        instGen_MemoryBarrier();
#endif // !_TARGET_ARM64_
    }
}

// Generates code for InitBlk by calling the VM memset helper function.
// Preconditions:
// a) The size argument of the InitBlk is not an integer constant.
// b) The size argument of the InitBlk is >= INITBLK_STOS_LIMIT bytes.
void CodeGen::genCodeForInitBlk(GenTreeBlk* initBlkNode)
{
    unsigned size    = initBlkNode->Size();
    GenTree* dstAddr = initBlkNode->Addr();
    GenTree* initVal = initBlkNode->Data();
    if (initVal->OperIsInitVal())
    {
        initVal = initVal->gtGetOp1();
    }

    assert(!dstAddr->isContained());
    assert(!initVal->isContained());

#ifdef _TARGET_ARM64_
    if (size != 0)
    {
        assert((size > INITBLK_UNROLL_LIMIT) || !initVal->IsCnsIntOrI());
    }
#endif // _TARGET_ARM64_

    genConsumeBlockOp(initBlkNode, REG_ARG_0, REG_ARG_1, REG_ARG_2);

    if (initBlkNode->gtFlags & GTF_BLK_VOLATILE)
    {
        // issue a full memory barrier before a volatile initBlock Operation
        instGen_MemoryBarrier();
    }

    genEmitHelperCall(CORINFO_HELP_MEMSET, 0, EA_UNKNOWN);
}

// Generate code for a load from some address + offset
//   base: tree node which can be either a local address or arbitrary node
//   offset: distance from the base from which to load
void CodeGen::genCodeForLoadOffset(instruction ins, emitAttr size, regNumber dst, GenTree* base, unsigned offset)
{
    emitter* emit = getEmitter();

    if (base->OperIsLocalAddr())
    {
        if (base->gtOper == GT_LCL_FLD_ADDR)
            offset += base->gtLclFld.gtLclOffs;
        emit->emitIns_R_S(ins, size, dst, base->gtLclVarCommon.gtLclNum, offset);
    }
    else
    {
        emit->emitIns_R_R_I(ins, size, dst, base->gtRegNum, offset);
    }
}

// Generate code for a store to some address + offset
//   base: tree node which can be either a local address or arbitrary node
//   offset: distance from the base from which to load
void CodeGen::genCodeForStoreOffset(instruction ins, emitAttr size, regNumber src, GenTree* base, unsigned offset)
{
    emitter* emit = getEmitter();

    if (base->OperIsLocalAddr())
    {
        if (base->gtOper == GT_LCL_FLD_ADDR)
            offset += base->gtLclFld.gtLclOffs;
        emit->emitIns_S_R(ins, size, src, base->gtLclVarCommon.gtLclNum, offset);
    }
    else
    {
        emit->emitIns_R_R_I(ins, size, src, base->gtRegNum, offset);
    }
}

//------------------------------------------------------------------------
// genRegCopy: Generate a register copy.
//
void CodeGen::genRegCopy(GenTree* treeNode)
{
    assert(treeNode->OperGet() == GT_COPY);

    var_types targetType = treeNode->TypeGet();
    regNumber targetReg  = treeNode->gtRegNum;
    assert(targetReg != REG_NA);

    GenTree* op1 = treeNode->gtOp.gtOp1;

    // Check whether this node and the node from which we're copying the value have the same
    // register type.
    // This can happen if (currently iff) we have a SIMD vector type that fits in an integer
    // register, in which case it is passed as an argument, or returned from a call,
    // in an integer register and must be copied if it's in an xmm register.

    if (varTypeIsFloating(treeNode) != varTypeIsFloating(op1))
    {
#ifdef _TARGET_ARM64_
        inst_RV_RV(INS_fmov, targetReg, genConsumeReg(op1), targetType);
#else  // !_TARGET_ARM64_
        if (varTypeIsFloating(treeNode))
        {
            // GT_COPY from 'int' to 'float' currently can't happen. Maybe if ARM SIMD is implemented
            // it will happen, according to the comment above?
            NYI_ARM("genRegCopy from 'int' to 'float'");
        }
        else
        {
            assert(varTypeIsFloating(op1));

            if (op1->TypeGet() == TYP_FLOAT)
            {
                inst_RV_RV(INS_vmov_f2i, targetReg, genConsumeReg(op1), targetType);
            }
            else
            {
                regNumber otherReg = (regNumber)treeNode->AsCopyOrReload()->gtOtherRegs[0];
                assert(otherReg != REG_NA);
                inst_RV_RV_RV(INS_vmov_d2i, targetReg, otherReg, genConsumeReg(op1), EA_8BYTE);
            }
        }
#endif // !_TARGET_ARM64_
    }
    else
    {
        inst_RV_RV(ins_Copy(targetType), targetReg, genConsumeReg(op1), targetType);
    }

    if (op1->IsLocal())
    {
        // The lclVar will never be a def.
        // If it is a last use, the lclVar will be killed by genConsumeReg(), as usual, and genProduceReg will
        // appropriately set the gcInfo for the copied value.
        // If not, there are two cases we need to handle:
        // - If this is a TEMPORARY copy (indicated by the GTF_VAR_DEATH flag) the variable
        //   will remain live in its original register.
        //   genProduceReg() will appropriately set the gcInfo for the copied value,
        //   and genConsumeReg will reset it.
        // - Otherwise, we need to update register info for the lclVar.

        GenTreeLclVarCommon* lcl = op1->AsLclVarCommon();
        assert((lcl->gtFlags & GTF_VAR_DEF) == 0);

        if ((lcl->gtFlags & GTF_VAR_DEATH) == 0 && (treeNode->gtFlags & GTF_VAR_DEATH) == 0)
        {
            LclVarDsc* varDsc = &compiler->lvaTable[lcl->gtLclNum];

            // If we didn't just spill it (in genConsumeReg, above), then update the register info
            if (varDsc->lvRegNum != REG_STK)
            {
                // The old location is dying
                genUpdateRegLife(varDsc, /*isBorn*/ false, /*isDying*/ true DEBUGARG(op1));

                gcInfo.gcMarkRegSetNpt(genRegMask(op1->gtRegNum));

                genUpdateVarReg(varDsc, treeNode);

                // The new location is going live
                genUpdateRegLife(varDsc, /*isBorn*/ true, /*isDying*/ false DEBUGARG(treeNode));
            }
        }
    }

    genProduceReg(treeNode);
}

//------------------------------------------------------------------------
// genCallInstruction: Produce code for a GT_CALL node
//
void CodeGen::genCallInstruction(GenTreeCall* call)
{
    gtCallTypes callType = (gtCallTypes)call->gtCallType;

    IL_OFFSETX ilOffset = BAD_IL_OFFSET;

    // all virtuals should have been expanded into a control expression
    assert(!call->IsVirtual() || call->gtControlExpr || call->gtCallAddr);

    // Consume all the arg regs
    for (GenTree* list = call->gtCallLateArgs; list; list = list->MoveNext())
    {
        assert(list->OperIsList());

        GenTree* argNode = list->Current();

        fgArgTabEntry* curArgTabEntry = compiler->gtArgEntryByNode(call, argNode);
        assert(curArgTabEntry);

        // GT_RELOAD/GT_COPY use the child node
        argNode = argNode->gtSkipReloadOrCopy();

        if (curArgTabEntry->regNum == REG_STK)
            continue;

        // Deal with multi register passed struct args.
        if (argNode->OperGet() == GT_FIELD_LIST)
        {
            GenTreeArgList* argListPtr   = argNode->AsArgList();
            unsigned        iterationNum = 0;
            regNumber       argReg       = curArgTabEntry->regNum;
            for (; argListPtr != nullptr; argListPtr = argListPtr->Rest(), iterationNum++)
            {
                GenTree* putArgRegNode = argListPtr->gtOp.gtOp1;
                assert(putArgRegNode->gtOper == GT_PUTARG_REG);

                genConsumeReg(putArgRegNode);

                if (putArgRegNode->gtRegNum != argReg)
                {
                    inst_RV_RV(ins_Move_Extend(putArgRegNode->TypeGet(), true), argReg, putArgRegNode->gtRegNum);
                }

                argReg = genRegArgNext(argReg);

#if defined(_TARGET_ARM_)
                // A double register is modelled as an even-numbered single one
                if (putArgRegNode->TypeGet() == TYP_DOUBLE)
                {
                    argReg = genRegArgNext(argReg);
                }
#endif // _TARGET_ARM_
            }
        }
#ifdef _TARGET_ARM_
        else if (curArgTabEntry->isSplit)
        {
            assert(curArgTabEntry->numRegs >= 1);
            genConsumeArgSplitStruct(argNode->AsPutArgSplit());
            for (unsigned idx = 0; idx < curArgTabEntry->numRegs; idx++)
            {
                regNumber argReg   = (regNumber)((unsigned)curArgTabEntry->regNum + idx);
                regNumber allocReg = argNode->AsPutArgSplit()->GetRegNumByIdx(idx);
                if (argReg != allocReg)
                {
                    inst_RV_RV(ins_Move_Extend(argNode->TypeGet(), true), argReg, allocReg);
                }
            }
        }
#endif
        else
        {
            regNumber argReg = curArgTabEntry->regNum;
            genConsumeReg(argNode);
            if (argNode->gtRegNum != argReg)
            {
                inst_RV_RV(ins_Move_Extend(argNode->TypeGet(), true), argReg, argNode->gtRegNum);
            }
        }
    }

    // Insert a null check on "this" pointer if asked.
    if (call->NeedsNullCheck())
    {
        const regNumber regThis = genGetThisArgReg(call);

#if defined(_TARGET_ARM_)
        const regNumber tmpReg = call->ExtractTempReg();
        getEmitter()->emitIns_R_R_I(INS_ldr, EA_4BYTE, tmpReg, regThis, 0);
#elif defined(_TARGET_ARM64_)
        getEmitter()->emitIns_R_R_I(INS_ldr, EA_4BYTE, REG_ZR, regThis, 0);
#endif // _TARGET_*
    }

    // Either gtControlExpr != null or gtCallAddr != null or it is a direct non-virtual call to a user or helper method.
    CORINFO_METHOD_HANDLE methHnd;
    GenTree*              target = call->gtControlExpr;
    if (callType == CT_INDIRECT)
    {
        assert(target == nullptr);
        target  = call->gtCallAddr;
        methHnd = nullptr;
    }
    else
    {
        methHnd = call->gtCallMethHnd;
    }

    CORINFO_SIG_INFO* sigInfo = nullptr;
#ifdef DEBUG
    // Pass the call signature information down into the emitter so the emitter can associate
    // native call sites with the signatures they were generated from.
    if (callType != CT_HELPER)
    {
        sigInfo = call->callSig;
    }
#endif // DEBUG

    // If fast tail call, then we are done.  In this case we setup the args (both reg args
    // and stack args in incoming arg area) and call target.  Epilog sequence would
    // generate "br <reg>".
    if (call->IsFastTailCall())
    {
        // Don't support fast tail calling JIT helpers
        assert(callType != CT_HELPER);

        // Fast tail calls materialize call target either in gtControlExpr or in gtCallAddr.
        assert(target != nullptr);

        genConsumeReg(target);

        // Use IP0 on ARM64 and R12 on ARM32 as the call target register.
        if (target->gtRegNum != REG_FASTTAILCALL_TARGET)
        {
            inst_RV_RV(INS_mov, REG_FASTTAILCALL_TARGET, target->gtRegNum);
        }

        return;
    }

    // For a pinvoke to unmanaged code we emit a label to clear
    // the GC pointer state before the callsite.
    // We can't utilize the typical lazy killing of GC pointers
    // at (or inside) the callsite.
    if (compiler->killGCRefs(call))
    {
        genDefineTempLabel(genCreateTempLabel());
    }

    // Determine return value size(s).
    ReturnTypeDesc* pRetTypeDesc  = call->GetReturnTypeDesc();
    emitAttr        retSize       = EA_PTRSIZE;
    emitAttr        secondRetSize = EA_UNKNOWN;

    if (call->HasMultiRegRetVal())
    {
        retSize       = emitTypeSize(pRetTypeDesc->GetReturnRegType(0));
        secondRetSize = emitTypeSize(pRetTypeDesc->GetReturnRegType(1));
    }
    else
    {
        assert(!varTypeIsStruct(call));

        if (call->gtType == TYP_REF)
        {
            retSize = EA_GCREF;
        }
        else if (call->gtType == TYP_BYREF)
        {
            retSize = EA_BYREF;
        }
    }

    // We need to propagate the IL offset information to the call instruction, so we can emit
    // an IL to native mapping record for the call, to support managed return value debugging.
    // We don't want tail call helper calls that were converted from normal calls to get a record,
    // so we skip this hash table lookup logic in that case.
    if (compiler->opts.compDbgInfo && compiler->genCallSite2ILOffsetMap != nullptr && !call->IsTailCall())
    {
        (void)compiler->genCallSite2ILOffsetMap->Lookup(call, &ilOffset);
    }

    if (target != nullptr)
    {
        // A call target can not be a contained indirection
        assert(!target->isContainedIndir());

        genConsumeReg(target);

        // We have already generated code for gtControlExpr evaluating it into a register.
        // We just need to emit "call reg" in this case.
        //
        assert(genIsValidIntReg(target->gtRegNum));

        genEmitCall(emitter::EC_INDIR_R, methHnd,
                    INDEBUG_LDISASM_COMMA(sigInfo) nullptr, // addr
                    retSize MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize), ilOffset, target->gtRegNum);
    }
    else
    {
        // Generate a direct call to a non-virtual user defined or helper method
        assert(callType == CT_HELPER || callType == CT_USER_FUNC);

        void* addr = nullptr;
#ifdef FEATURE_READYTORUN_COMPILER
        if (call->gtEntryPoint.addr != NULL)
        {
            assert(call->gtEntryPoint.accessType == IAT_VALUE);
            addr = call->gtEntryPoint.addr;
        }
        else
#endif // FEATURE_READYTORUN_COMPILER
            if (callType == CT_HELPER)
        {
            CorInfoHelpFunc helperNum = compiler->eeGetHelperNum(methHnd);
            noway_assert(helperNum != CORINFO_HELP_UNDEF);

            void* pAddr = nullptr;
            addr        = compiler->compGetHelperFtn(helperNum, (void**)&pAddr);
            assert(pAddr == nullptr);
        }
        else
        {
            // Direct call to a non-virtual user function.
            addr = call->gtDirectCallAddress;
        }

        assert(addr != nullptr);

// Non-virtual direct call to known addresses
#ifdef _TARGET_ARM_
        if (!arm_Valid_Imm_For_BL((ssize_t)addr))
        {
            regNumber tmpReg = call->GetSingleTempReg();
            instGen_Set_Reg_To_Imm(EA_HANDLE_CNS_RELOC, tmpReg, (ssize_t)addr);
            genEmitCall(emitter::EC_INDIR_R, methHnd, INDEBUG_LDISASM_COMMA(sigInfo) NULL, retSize, ilOffset, tmpReg);
        }
        else
#endif // _TARGET_ARM_
        {
            genEmitCall(emitter::EC_FUNC_TOKEN, methHnd, INDEBUG_LDISASM_COMMA(sigInfo) addr,
                        retSize MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize), ilOffset);
        }

#if 0 && defined(_TARGET_ARM64_)
        // Use this path if you want to load an absolute call target using 
        //  a sequence of movs followed by an indirect call (blr instruction)

        // Load the call target address in x16
        instGen_Set_Reg_To_Imm(EA_8BYTE, REG_IP0, (ssize_t) addr);

        // indirect call to constant address in IP0
        genEmitCall(emitter::EC_INDIR_R,
                    methHnd, 
                    INDEBUG_LDISASM_COMMA(sigInfo)
                    nullptr, //addr
                    retSize,
                    secondRetSize,
                    ilOffset,
                    REG_IP0);
#endif
    }

    // if it was a pinvoke we may have needed to get the address of a label
    if (genPendingCallLabel)
    {
        assert(call->IsUnmanaged());
        genDefineTempLabel(genPendingCallLabel);
        genPendingCallLabel = nullptr;
    }

    // Update GC info:
    // All Callee arg registers are trashed and no longer contain any GC pointers.
    // TODO-Bug?: As a matter of fact shouldn't we be killing all of callee trashed regs here?
    // For now we will assert that other than arg regs gc ref/byref set doesn't contain any other
    // registers from RBM_CALLEE_TRASH
    assert((gcInfo.gcRegGCrefSetCur & (RBM_CALLEE_TRASH & ~RBM_ARG_REGS)) == 0);
    assert((gcInfo.gcRegByrefSetCur & (RBM_CALLEE_TRASH & ~RBM_ARG_REGS)) == 0);
    gcInfo.gcRegGCrefSetCur &= ~RBM_ARG_REGS;
    gcInfo.gcRegByrefSetCur &= ~RBM_ARG_REGS;

    var_types returnType = call->TypeGet();
    if (returnType != TYP_VOID)
    {
        regNumber returnReg;

        if (call->HasMultiRegRetVal())
        {
            assert(pRetTypeDesc != nullptr);
            unsigned regCount = pRetTypeDesc->GetReturnRegCount();

            // If regs allocated to call node are different from ABI return
            // regs in which the call has returned its result, move the result
            // to regs allocated to call node.
            for (unsigned i = 0; i < regCount; ++i)
            {
                var_types regType      = pRetTypeDesc->GetReturnRegType(i);
                returnReg              = pRetTypeDesc->GetABIReturnReg(i);
                regNumber allocatedReg = call->GetRegNumByIdx(i);
                if (returnReg != allocatedReg)
                {
                    inst_RV_RV(ins_Copy(regType), allocatedReg, returnReg, regType);
                }
            }
        }
        else
        {
#ifdef _TARGET_ARM_
            if (call->IsHelperCall(compiler, CORINFO_HELP_INIT_PINVOKE_FRAME))
            {
                // The CORINFO_HELP_INIT_PINVOKE_FRAME helper uses a custom calling convention that returns with
                // TCB in REG_PINVOKE_TCB. fgMorphCall() sets the correct argument registers.
                returnReg = REG_PINVOKE_TCB;
            }
            else
#endif // _TARGET_ARM_
                if (varTypeIsFloating(returnType) && !compiler->opts.compUseSoftFP)
            {
                returnReg = REG_FLOATRET;
            }
            else
            {
                returnReg = REG_INTRET;
            }

            if (call->gtRegNum != returnReg)
            {
#ifdef _TARGET_ARM_
                if (compiler->opts.compUseSoftFP && returnType == TYP_DOUBLE)
                {
                    inst_RV_RV_RV(INS_vmov_i2d, call->gtRegNum, returnReg, genRegArgNext(returnReg), EA_8BYTE);
                }
                else if (compiler->opts.compUseSoftFP && returnType == TYP_FLOAT)
                {
                    inst_RV_RV(INS_vmov_i2f, call->gtRegNum, returnReg, returnType);
                }
                else
#endif
                {
                    inst_RV_RV(ins_Copy(returnType), call->gtRegNum, returnReg, returnType);
                }
            }
        }

        genProduceReg(call);
    }

    // If there is nothing next, that means the result is thrown away, so this value is not live.
    // However, for minopts or debuggable code, we keep it live to support managed return value debugging.
    if ((call->gtNext == nullptr) && !compiler->opts.MinOpts() && !compiler->opts.compDbgCode)
    {
        gcInfo.gcMarkRegSetNpt(RBM_INTRET);
    }
}

// Produce code for a GT_JMP node.
// The arguments of the caller needs to be transferred to the callee before exiting caller.
// The actual jump to callee is generated as part of caller epilog sequence.
// Therefore the codegen of GT_JMP is to ensure that the callee arguments are correctly setup.
void CodeGen::genJmpMethod(GenTree* jmp)
{
    assert(jmp->OperGet() == GT_JMP);
    assert(compiler->compJmpOpUsed);

    // If no arguments, nothing to do
    if (compiler->info.compArgsCount == 0)
    {
        return;
    }

    // Make sure register arguments are in their initial registers
    // and stack arguments are put back as well.
    unsigned   varNum;
    LclVarDsc* varDsc;

    // First move any en-registered stack arguments back to the stack.
    // At the same time any reg arg not in correct reg is moved back to its stack location.
    //
    // We are not strictly required to spill reg args that are not in the desired reg for a jmp call
    // But that would require us to deal with circularity while moving values around.  Spilling
    // to stack makes the implementation simple, which is not a bad trade off given Jmp calls
    // are not frequent.
    for (varNum = 0; (varNum < compiler->info.compArgsCount); varNum++)
    {
        varDsc = compiler->lvaTable + varNum;

        if (varDsc->lvPromoted)
        {
            noway_assert(varDsc->lvFieldCnt == 1); // We only handle one field here

            unsigned fieldVarNum = varDsc->lvFieldLclStart;
            varDsc               = compiler->lvaTable + fieldVarNum;
        }
        noway_assert(varDsc->lvIsParam);

        if (varDsc->lvIsRegArg && (varDsc->lvRegNum != REG_STK))
        {
            // Skip reg args which are already in its right register for jmp call.
            // If not, we will spill such args to their stack locations.
            //
            // If we need to generate a tail call profiler hook, then spill all
            // arg regs to free them up for the callback.
            if (!compiler->compIsProfilerHookNeeded() && (varDsc->lvRegNum == varDsc->lvArgReg))
                continue;
        }
        else if (varDsc->lvRegNum == REG_STK)
        {
            // Skip args which are currently living in stack.
            continue;
        }

        // If we came here it means either a reg argument not in the right register or
        // a stack argument currently living in a register.  In either case the following
        // assert should hold.
        assert(varDsc->lvRegNum != REG_STK);
        assert(varDsc->TypeGet() != TYP_STRUCT);
        var_types storeType = genActualType(varDsc->TypeGet());
        emitAttr  storeSize = emitActualTypeSize(storeType);

#ifdef _TARGET_ARM_
        if (varDsc->TypeGet() == TYP_LONG)
        {
            // long - at least the low half must be enregistered
            getEmitter()->emitIns_S_R(ins_Store(TYP_INT), EA_4BYTE, varDsc->lvRegNum, varNum, 0);

            // Is the upper half also enregistered?
            if (varDsc->lvOtherReg != REG_STK)
            {
                getEmitter()->emitIns_S_R(ins_Store(TYP_INT), EA_4BYTE, varDsc->lvOtherReg, varNum, sizeof(int));
            }
        }
        else
#endif // _TARGET_ARM_
        {
            getEmitter()->emitIns_S_R(ins_Store(storeType), storeSize, varDsc->lvRegNum, varNum, 0);
        }
        // Update lvRegNum life and GC info to indicate lvRegNum is dead and varDsc stack slot is going live.
        // Note that we cannot modify varDsc->lvRegNum here because another basic block may not be expecting it.
        // Therefore manually update life of varDsc->lvRegNum.
        regMaskTP tempMask = genRegMask(varDsc->lvRegNum);
        regSet.RemoveMaskVars(tempMask);
        gcInfo.gcMarkRegSetNpt(tempMask);
        if (compiler->lvaIsGCTracked(varDsc))
        {
            VarSetOps::AddElemD(compiler, gcInfo.gcVarPtrSetCur, varNum);
        }
    }

#ifdef PROFILING_SUPPORTED
    // At this point all arg regs are free.
    // Emit tail call profiler callback.
    genProfilingLeaveCallback(CORINFO_HELP_PROF_FCN_TAILCALL);
#endif

    // Next move any un-enregistered register arguments back to their register.
    regMaskTP fixedIntArgMask = RBM_NONE;    // tracks the int arg regs occupying fixed args in case of a vararg method.
    unsigned  firstArgVarNum  = BAD_VAR_NUM; // varNum of the first argument in case of a vararg method.
    for (varNum = 0; (varNum < compiler->info.compArgsCount); varNum++)
    {
        varDsc = compiler->lvaTable + varNum;
        if (varDsc->lvPromoted)
        {
            noway_assert(varDsc->lvFieldCnt == 1); // We only handle one field here

            unsigned fieldVarNum = varDsc->lvFieldLclStart;
            varDsc               = compiler->lvaTable + fieldVarNum;
        }
        noway_assert(varDsc->lvIsParam);

        // Skip if arg not passed in a register.
        if (!varDsc->lvIsRegArg)
            continue;

        // Register argument
        noway_assert(isRegParamType(genActualType(varDsc->TypeGet())));

        // Is register argument already in the right register?
        // If not load it from its stack location.
        regNumber argReg     = varDsc->lvArgReg; // incoming arg register
        regNumber argRegNext = REG_NA;

#ifdef _TARGET_ARM64_
        if (varDsc->lvRegNum != argReg)
        {
            var_types loadType = TYP_UNDEF;
            if (varTypeIsStruct(varDsc))
            {
                // Must be <= 16 bytes or else it wouldn't be passed in registers
                noway_assert(EA_SIZE_IN_BYTES(varDsc->lvSize()) <= MAX_PASS_MULTIREG_BYTES);
                loadType = compiler->getJitGCType(varDsc->lvGcLayout[0]);
            }
            else
            {
                loadType = compiler->mangleVarArgsType(genActualType(varDsc->TypeGet()));
            }
            emitAttr loadSize = emitActualTypeSize(loadType);
            getEmitter()->emitIns_R_S(ins_Load(loadType), loadSize, argReg, varNum, 0);

            // Update argReg life and GC Info to indicate varDsc stack slot is dead and argReg is going live.
            // Note that we cannot modify varDsc->lvRegNum here because another basic block may not be expecting it.
            // Therefore manually update life of argReg.  Note that GT_JMP marks the end of the basic block
            // and after which reg life and gc info will be recomputed for the new block in genCodeForBBList().
            regSet.AddMaskVars(genRegMask(argReg));
            gcInfo.gcMarkRegPtrVal(argReg, loadType);

            if (compiler->lvaIsMultiregStruct(varDsc))
            {
                if (varDsc->lvIsHfa())
                {
                    NYI_ARM64("CodeGen::genJmpMethod with multireg HFA arg");
                }

                // Restore the second register.
                argRegNext = genRegArgNext(argReg);

                loadType = compiler->getJitGCType(varDsc->lvGcLayout[1]);
                loadSize = emitActualTypeSize(loadType);
                getEmitter()->emitIns_R_S(ins_Load(loadType), loadSize, argRegNext, varNum, TARGET_POINTER_SIZE);

                regSet.AddMaskVars(genRegMask(argRegNext));
                gcInfo.gcMarkRegPtrVal(argRegNext, loadType);
            }

            if (compiler->lvaIsGCTracked(varDsc))
            {
                VarSetOps::RemoveElemD(compiler, gcInfo.gcVarPtrSetCur, varNum);
            }
        }

        // In case of a jmp call to a vararg method ensure only integer registers are passed.
        if (compiler->info.compIsVarArgs)
        {
            assert((genRegMask(argReg) & RBM_ARG_REGS) != RBM_NONE);

            fixedIntArgMask |= genRegMask(argReg);

            if (compiler->lvaIsMultiregStruct(varDsc))
            {
                assert(argRegNext != REG_NA);
                fixedIntArgMask |= genRegMask(argRegNext);
            }

            if (argReg == REG_ARG_0)
            {
                assert(firstArgVarNum == BAD_VAR_NUM);
                firstArgVarNum = varNum;
            }
        }
#else
        bool      twoParts = false;
        var_types loadType = TYP_UNDEF;
        if (varDsc->TypeGet() == TYP_LONG)
        {
            twoParts = true;
        }
        else if (varDsc->TypeGet() == TYP_DOUBLE)
        {
            if (compiler->info.compIsVarArgs || compiler->opts.compUseSoftFP)
            {
                twoParts = true;
            }
        }

        if (twoParts)
        {
            argRegNext = genRegArgNext(argReg);

            if (varDsc->lvRegNum != argReg)
            {
                getEmitter()->emitIns_R_S(INS_ldr, EA_PTRSIZE, argReg, varNum, 0);
                getEmitter()->emitIns_R_S(INS_ldr, EA_PTRSIZE, argRegNext, varNum, REGSIZE_BYTES);
            }

            if (compiler->info.compIsVarArgs)
            {
                fixedIntArgMask |= genRegMask(argReg);
                fixedIntArgMask |= genRegMask(argRegNext);
            }
        }
        else if (varDsc->lvIsHfaRegArg())
        {
            loadType           = varDsc->GetHfaType();
            regNumber fieldReg = argReg;
            emitAttr  loadSize = emitActualTypeSize(loadType);
            unsigned  maxSize  = min(varDsc->lvSize(), (LAST_FP_ARGREG + 1 - argReg) * REGSIZE_BYTES);

            for (unsigned ofs = 0; ofs < maxSize; ofs += (unsigned)loadSize)
            {
                if (varDsc->lvRegNum != argReg)
                {
                    getEmitter()->emitIns_R_S(ins_Load(loadType), loadSize, fieldReg, varNum, ofs);
                }
                assert(genIsValidFloatReg(fieldReg)); // we don't use register tracking for FP
                fieldReg = regNextOfType(fieldReg, loadType);
            }
        }
        else if (varTypeIsStruct(varDsc))
        {
            regNumber slotReg = argReg;
            unsigned  maxSize = min(varDsc->lvSize(), (REG_ARG_LAST + 1 - argReg) * REGSIZE_BYTES);

            for (unsigned ofs = 0; ofs < maxSize; ofs += REGSIZE_BYTES)
            {
                unsigned idx = ofs / REGSIZE_BYTES;
                loadType     = compiler->getJitGCType(varDsc->lvGcLayout[idx]);

                if (varDsc->lvRegNum != argReg)
                {
                    emitAttr loadSize = emitActualTypeSize(loadType);

                    getEmitter()->emitIns_R_S(ins_Load(loadType), loadSize, slotReg, varNum, ofs);
                }

                regSet.AddMaskVars(genRegMask(slotReg));
                gcInfo.gcMarkRegPtrVal(slotReg, loadType);
                if (genIsValidIntReg(slotReg) && compiler->info.compIsVarArgs)
                {
                    fixedIntArgMask |= genRegMask(slotReg);
                }

                slotReg = genRegArgNext(slotReg);
            }
        }
        else
        {
            loadType = compiler->mangleVarArgsType(genActualType(varDsc->TypeGet()));

            if (varDsc->lvRegNum != argReg)
            {
                getEmitter()->emitIns_R_S(ins_Load(loadType), emitTypeSize(loadType), argReg, varNum, 0);
            }

            regSet.AddMaskVars(genRegMask(argReg));
            gcInfo.gcMarkRegPtrVal(argReg, loadType);

            if (genIsValidIntReg(argReg) && compiler->info.compIsVarArgs)
            {
                fixedIntArgMask |= genRegMask(argReg);
            }
        }

        if (compiler->lvaIsGCTracked(varDsc))
        {
            VarSetOps::RemoveElemD(compiler, gcInfo.gcVarPtrSetCur, varNum);
        }
#endif
    }

    // Jmp call to a vararg method - if the method has fewer than fixed arguments that can be max size of reg,
    // load the remaining integer arg registers from the corresponding
    // shadow stack slots.  This is for the reason that we don't know the number and type
    // of non-fixed params passed by the caller, therefore we have to assume the worst case
    // of caller passing all integer arg regs that can be max size of reg.
    //
    // The caller could have passed gc-ref/byref type var args.  Since these are var args
    // the callee no way of knowing their gc-ness.  Therefore, mark the region that loads
    // remaining arg registers from shadow stack slots as non-gc interruptible.
    if (fixedIntArgMask != RBM_NONE)
    {
        assert(compiler->info.compIsVarArgs);
        assert(firstArgVarNum != BAD_VAR_NUM);

        regMaskTP remainingIntArgMask = RBM_ARG_REGS & ~fixedIntArgMask;
        if (remainingIntArgMask != RBM_NONE)
        {
            getEmitter()->emitDisableGC();
            for (int argNum = 0, argOffset = 0; argNum < MAX_REG_ARG; ++argNum)
            {
                regNumber argReg     = intArgRegs[argNum];
                regMaskTP argRegMask = genRegMask(argReg);

                if ((remainingIntArgMask & argRegMask) != 0)
                {
                    remainingIntArgMask &= ~argRegMask;
                    getEmitter()->emitIns_R_S(INS_ldr, EA_PTRSIZE, argReg, firstArgVarNum, argOffset);
                }

                argOffset += REGSIZE_BYTES;
            }
            getEmitter()->emitEnableGC();
        }
    }
}

//------------------------------------------------------------------------
// genIntToIntCast: Generate code for an integer cast
//
// Arguments:
//    treeNode - The GT_CAST node
//
// Return Value:
//    None.
//
// Assumptions:
//    The treeNode must have an assigned register.
//    For a signed convert from byte, the source must be in a byte-addressable register.
//    Neither the source nor target type can be a floating point type.
//
// TODO-ARM64-CQ: Allow castOp to be a contained node without an assigned register.
//
void CodeGen::genIntToIntCast(GenTree* treeNode)
{
    assert(treeNode->OperGet() == GT_CAST);

    GenTree* castOp = treeNode->gtCast.CastOp();
    emitter* emit   = getEmitter();

    var_types dstType = treeNode->CastToType();
    var_types srcType = genActualType(castOp->TypeGet());

    assert(genTypeSize(srcType) <= genTypeSize(TYP_I_IMPL));

    regNumber targetReg = treeNode->gtRegNum;
    regNumber sourceReg = castOp->gtRegNum;

    // For Long to Int conversion we will have a reserved integer register to hold the immediate mask
    regNumber tmpReg = (treeNode->AvailableTempRegCount() == 0) ? REG_NA : treeNode->GetSingleTempReg();

    assert(genIsValidIntReg(targetReg));
    assert(genIsValidIntReg(sourceReg));

    genConsumeReg(castOp);
    Lowering::CastInfo castInfo;

    // Get information about the cast.
    Lowering::getCastDescription(treeNode, &castInfo);

    if (castInfo.requiresOverflowCheck)
    {
        bool     movRequired = (sourceReg != targetReg);
        emitAttr movSize     = emitActualTypeSize(dstType);
        emitAttr cmpSize     = EA_ATTR(genTypeSize(srcType));

        if (castInfo.signCheckOnly)
        {
            // We only need to check for a negative value in sourceReg
            emit->emitIns_R_I(INS_cmp, cmpSize, sourceReg, 0);
            emitJumpKind jmpLT = genJumpKindForOper(GT_LT, CK_SIGNED);
            genJumpToThrowHlpBlk(jmpLT, SCK_OVERFLOW);
            noway_assert(genTypeSize(srcType) == 4 || genTypeSize(srcType) == 8);
            // This is only interesting case to ensure zero-upper bits.
            if ((srcType == TYP_INT) && (dstType == TYP_ULONG))
            {
                // cast to TYP_ULONG:
                // We use a mov with size=EA_4BYTE
                // which will zero out the upper bits
                movSize     = EA_4BYTE;
                movRequired = true;
            }
        }
        else if (castInfo.unsignedSource || castInfo.unsignedDest)
        {
            // When we are converting from/to unsigned,
            // we only have to check for any bits set in 'typeMask'

            noway_assert(castInfo.typeMask != 0);
#if defined(_TARGET_ARM_)
            if (arm_Valid_Imm_For_Instr(INS_tst, castInfo.typeMask, INS_FLAGS_DONT_CARE))
            {
                emit->emitIns_R_I(INS_tst, cmpSize, sourceReg, castInfo.typeMask);
            }
            else
            {
                noway_assert(tmpReg != REG_NA);
                instGen_Set_Reg_To_Imm(cmpSize, tmpReg, castInfo.typeMask);
                emit->emitIns_R_R(INS_tst, cmpSize, sourceReg, tmpReg);
            }
#elif defined(_TARGET_ARM64_)
            emit->emitIns_R_I(INS_tst, cmpSize, sourceReg, castInfo.typeMask);
#endif // _TARGET_ARM*
            emitJumpKind jmpNotEqual = genJumpKindForOper(GT_NE, CK_SIGNED);
            genJumpToThrowHlpBlk(jmpNotEqual, SCK_OVERFLOW);
        }
        else
        {
            // For a narrowing signed cast
            //
            // We must check the value is in a signed range.

            // Compare with the MAX

            noway_assert((castInfo.typeMin != 0) && (castInfo.typeMax != 0));

#if defined(_TARGET_ARM_)
            if (emitter::emitIns_valid_imm_for_cmp(castInfo.typeMax, INS_FLAGS_DONT_CARE))
#elif defined(_TARGET_ARM64_)
            if (emitter::emitIns_valid_imm_for_cmp(castInfo.typeMax, cmpSize))
#endif // _TARGET_*
            {
                emit->emitIns_R_I(INS_cmp, cmpSize, sourceReg, castInfo.typeMax);
            }
            else
            {
                noway_assert(tmpReg != REG_NA);
                instGen_Set_Reg_To_Imm(cmpSize, tmpReg, castInfo.typeMax);
                emit->emitIns_R_R(INS_cmp, cmpSize, sourceReg, tmpReg);
            }

            emitJumpKind jmpGT = genJumpKindForOper(GT_GT, CK_SIGNED);
            genJumpToThrowHlpBlk(jmpGT, SCK_OVERFLOW);

// Compare with the MIN

#if defined(_TARGET_ARM_)
            if (emitter::emitIns_valid_imm_for_cmp(castInfo.typeMin, INS_FLAGS_DONT_CARE))
#elif defined(_TARGET_ARM64_)
            if (emitter::emitIns_valid_imm_for_cmp(castInfo.typeMin, cmpSize))
#endif // _TARGET_*
            {
                emit->emitIns_R_I(INS_cmp, cmpSize, sourceReg, castInfo.typeMin);
            }
            else
            {
                noway_assert(tmpReg != REG_NA);
                instGen_Set_Reg_To_Imm(cmpSize, tmpReg, castInfo.typeMin);
                emit->emitIns_R_R(INS_cmp, cmpSize, sourceReg, tmpReg);
            }

            emitJumpKind jmpLT = genJumpKindForOper(GT_LT, CK_SIGNED);
            genJumpToThrowHlpBlk(jmpLT, SCK_OVERFLOW);
        }

        if (movRequired)
        {
            emit->emitIns_R_R(INS_mov, movSize, targetReg, sourceReg);
        }
    }
    else // Non-overflow checking cast.
    {
        const unsigned srcSize = genTypeSize(srcType);
        const unsigned dstSize = genTypeSize(dstType);
        instruction    ins;
        emitAttr       insSize;

        if (dstSize < 4)
        {
            // Casting to a small type really means widening from that small type to INT/LONG.
            ins     = ins_Move_Extend(dstType, true);
            insSize = emitActualTypeSize(treeNode->TypeGet());
        }
#ifdef _TARGET_64BIT_
        // dstType cannot be a long type on 32 bit targets, such casts should have been decomposed.
        // srcType cannot be a small type since it's the "actual type" of the cast operand.
        // This means that widening casts do not occur on 32 bit targets.
        else if (dstSize > srcSize)
        {
            // (U)INT to (U)LONG widening cast
            assert((srcSize == 4) && (dstSize == 8));
            // Make sure the node type has the same size as the destination type.
            assert(genTypeSize(treeNode->TypeGet()) == dstSize);

            ins = treeNode->IsUnsigned() ? INS_mov : INS_sxtw;
            // SXTW requires EA_8BYTE but MOV requires EA_4BYTE in order to zero out the upper 32 bits.
            insSize = (ins == INS_sxtw) ? EA_8BYTE : EA_4BYTE;
        }
#endif
        else
        {
            // Sign changing cast or narrowing cast
            assert(dstSize <= srcSize);
            // Note that narrowing casts are possible only on 64 bit targets.
            assert(srcSize <= genTypeSize(TYP_I_IMPL));
            // Make sure the node type has the same size as the destination type.
            assert(genTypeSize(treeNode->TypeGet()) == dstSize);

            // This cast basically does nothing, even when narrowing it is the job of the
            // consumer of this node to use the appropiate register size (32 or 64 bit)
            // and not rely on the cast to set the upper 32 bits in a certain manner.
            // Still, we will need to generate a MOV instruction if the source and target
            // registers are different.
            ins     = (sourceReg != targetReg) ? INS_mov : INS_none;
            insSize = EA_SIZE(dstSize);
        }

        if (ins != INS_none)
        {
            emit->emitIns_R_R(ins, insSize, targetReg, sourceReg);
        }
    }

    genProduceReg(treeNode);
}

//------------------------------------------------------------------------
// genFloatToFloatCast: Generate code for a cast between float and double
//
// Arguments:
//    treeNode - The GT_CAST node
//
// Return Value:
//    None.
//
// Assumptions:
//    Cast is a non-overflow conversion.
//    The treeNode must have an assigned register.
//    The cast is between float and double.
//
void CodeGen::genFloatToFloatCast(GenTree* treeNode)
{
    // float <--> double conversions are always non-overflow ones
    assert(treeNode->OperGet() == GT_CAST);
    assert(!treeNode->gtOverflow());

    regNumber targetReg = treeNode->gtRegNum;
    assert(genIsValidFloatReg(targetReg));

    GenTree* op1 = treeNode->gtOp.gtOp1;
    assert(!op1->isContained());               // Cannot be contained
    assert(genIsValidFloatReg(op1->gtRegNum)); // Must be a valid float reg.

    var_types dstType = treeNode->CastToType();
    var_types srcType = op1->TypeGet();
    assert(varTypeIsFloating(srcType) && varTypeIsFloating(dstType));

    genConsumeOperands(treeNode->AsOp());

    // treeNode must be a reg
    assert(!treeNode->isContained());

#if defined(_TARGET_ARM_)

    if (srcType != dstType)
    {
        instruction insVcvt = (srcType == TYP_FLOAT) ? INS_vcvt_f2d  // convert Float to Double
                                                     : INS_vcvt_d2f; // convert Double to Float

        getEmitter()->emitIns_R_R(insVcvt, emitTypeSize(treeNode), treeNode->gtRegNum, op1->gtRegNum);
    }
    else if (treeNode->gtRegNum != op1->gtRegNum)
    {
        getEmitter()->emitIns_R_R(INS_vmov, emitTypeSize(treeNode), treeNode->gtRegNum, op1->gtRegNum);
    }

#elif defined(_TARGET_ARM64_)

    if (srcType != dstType)
    {
        insOpts cvtOption = (srcType == TYP_FLOAT) ? INS_OPTS_S_TO_D  // convert Single to Double
                                                   : INS_OPTS_D_TO_S; // convert Double to Single

        getEmitter()->emitIns_R_R(INS_fcvt, emitActualTypeSize(treeNode), treeNode->gtRegNum, op1->gtRegNum, cvtOption);
    }
    else if (treeNode->gtRegNum != op1->gtRegNum)
    {
        // If double to double cast or float to float cast. Emit a move instruction.
        getEmitter()->emitIns_R_R(INS_mov, emitActualTypeSize(treeNode), treeNode->gtRegNum, op1->gtRegNum);
    }

#endif // _TARGET_*

    genProduceReg(treeNode);
}

//------------------------------------------------------------------------
// genCreateAndStoreGCInfo: Create and record GC Info for the function.
//
void CodeGen::genCreateAndStoreGCInfo(unsigned codeSize,
                                      unsigned prologSize,
                                      unsigned epilogSize DEBUGARG(void* codePtr))
{
    IAllocator*    allowZeroAlloc = new (compiler, CMK_GC) CompIAllocator(compiler->getAllocatorGC());
    GcInfoEncoder* gcInfoEncoder  = new (compiler, CMK_GC)
        GcInfoEncoder(compiler->info.compCompHnd, compiler->info.compMethodInfo, allowZeroAlloc, NOMEM);
    assert(gcInfoEncoder != nullptr);

    // Follow the code pattern of the x86 gc info encoder (genCreateAndStoreGCInfoJIT32).
    gcInfo.gcInfoBlockHdrSave(gcInfoEncoder, codeSize, prologSize);

    // We keep the call count for the second call to gcMakeRegPtrTable() below.
    unsigned callCnt = 0;

    // First we figure out the encoder ID's for the stack slots and registers.
    gcInfo.gcMakeRegPtrTable(gcInfoEncoder, codeSize, prologSize, GCInfo::MAKE_REG_PTR_MODE_ASSIGN_SLOTS, &callCnt);

    // Now we've requested all the slots we'll need; "finalize" these (make more compact data structures for them).
    gcInfoEncoder->FinalizeSlotIds();

    // Now we can actually use those slot ID's to declare live ranges.
    gcInfo.gcMakeRegPtrTable(gcInfoEncoder, codeSize, prologSize, GCInfo::MAKE_REG_PTR_MODE_DO_WORK, &callCnt);

#ifdef _TARGET_ARM64_

    if (compiler->opts.compDbgEnC)
    {
        // what we have to preserve is called the "frame header" (see comments in VM\eetwain.cpp)
        // which is:
        //  -return address
        //  -saved off RBP
        //  -saved 'this' pointer and bool for synchronized methods

        // 4 slots for RBP + return address + RSI + RDI
        int preservedAreaSize = 4 * REGSIZE_BYTES;

        if (compiler->info.compFlags & CORINFO_FLG_SYNCH)
        {
            if (!(compiler->info.compFlags & CORINFO_FLG_STATIC))
                preservedAreaSize += REGSIZE_BYTES;

            preservedAreaSize += 1; // bool for synchronized methods
        }

        // Used to signal both that the method is compiled for EnC, and also the size of the block at the top of the
        // frame
        gcInfoEncoder->SetSizeOfEditAndContinuePreservedArea(preservedAreaSize);
    }

#endif // _TARGET_ARM64_

    gcInfoEncoder->Build();

    // GC Encoder automatically puts the GC info in the right spot using ICorJitInfo::allocGCInfo(size_t)
    // let's save the values anyway for debugging purposes
    compiler->compInfoBlkAddr = gcInfoEncoder->Emit();
    compiler->compInfoBlkSize = 0; // not exposed by the GCEncoder interface
}

//-------------------------------------------------------------------------------------------
// genJumpKindsForTree:  Determine the number and kinds of conditional branches
//                       necessary to implement the given GT_CMP node
//
// Arguments:
//   cmpTree           - (input) The GenTree node that is used to set the Condition codes
//                     - The GenTree Relop node that was used to set the Condition codes
//   jmpKind[2]        - (output) One or two conditional branch instructions
//   jmpToTrueLabel[2] - (output) On Arm64 both branches will always branch to the true label
//
// Return Value:
//    Sets the proper values into the array elements of jmpKind[] and jmpToTrueLabel[]
//
// Assumptions:
//    At least one conditional branch instruction will be returned.
//    Typically only one conditional branch is needed
//     and the second jmpKind[] value is set to EJ_NONE
//
void CodeGen::genJumpKindsForTree(GenTree* cmpTree, emitJumpKind jmpKind[2], bool jmpToTrueLabel[2])
{
    // On ARM both branches will always branch to the true label
    jmpToTrueLabel[0] = true;
    jmpToTrueLabel[1] = true;

    // For integer comparisons just use genJumpKindForOper
    if (!varTypeIsFloating(cmpTree->gtOp.gtOp1))
    {
        CompareKind compareKind = ((cmpTree->gtFlags & GTF_UNSIGNED) != 0) ? CK_UNSIGNED : CK_SIGNED;
        jmpKind[0]              = genJumpKindForOper(cmpTree->gtOper, compareKind);
        jmpKind[1]              = EJ_NONE;
    }
    else // We have a Floating Point Compare operation
    {
        assert(cmpTree->OperIsCompare());

        // For details on this mapping, see the ARM Condition Code table
        // at section A8.3   in the ARMv7 architecture manual or
        // at section C1.2.3 in the ARMV8 architecture manual.

        // We must check the GTF_RELOP_NAN_UN to find out
        // if we need to branch when we have a NaN operand.
        //
        if ((cmpTree->gtFlags & GTF_RELOP_NAN_UN) != 0)
        {
            // Must branch if we have an NaN, unordered
            switch (cmpTree->gtOper)
            {
                case GT_EQ:
                    jmpKind[0] = EJ_eq; // branch or set when equal (and no NaN's)
                    jmpKind[1] = EJ_vs; // branch or set when we have a NaN
                    break;

                case GT_NE:
                    jmpKind[0] = EJ_ne; // branch or set when not equal (or have NaN's)
                    jmpKind[1] = EJ_NONE;
                    break;

                case GT_LT:
                    jmpKind[0] = EJ_lt; // branch or set when less than (or have NaN's)
                    jmpKind[1] = EJ_NONE;
                    break;

                case GT_LE:
                    jmpKind[0] = EJ_le; // branch or set when less than or equal (or have NaN's)
                    jmpKind[1] = EJ_NONE;
                    break;

                case GT_GT:
                    jmpKind[0] = EJ_hi; // branch or set when greater than (or have NaN's)
                    jmpKind[1] = EJ_NONE;
                    break;

                case GT_GE:
                    jmpKind[0] = EJ_hs; // branch or set when greater than or equal (or have NaN's)
                    jmpKind[1] = EJ_NONE;
                    break;

                default:
                    unreached();
            }
        }
        else // ((cmpTree->gtFlags & GTF_RELOP_NAN_UN) == 0)
        {
            // Do not branch if we have an NaN, unordered
            switch (cmpTree->gtOper)
            {
                case GT_EQ:
                    jmpKind[0] = EJ_eq; // branch or set when equal (and no NaN's)
                    jmpKind[1] = EJ_NONE;
                    break;

                case GT_NE:
                    jmpKind[0] = EJ_gt; // branch or set when greater than (and no NaN's)
                    jmpKind[1] = EJ_lo; // branch or set when less than (and no NaN's)
                    break;

                case GT_LT:
                    jmpKind[0] = EJ_lo; // branch or set when less than (and no NaN's)
                    jmpKind[1] = EJ_NONE;
                    break;

                case GT_LE:
                    jmpKind[0] = EJ_ls; // branch or set when less than or equal (and no NaN's)
                    jmpKind[1] = EJ_NONE;
                    break;

                case GT_GT:
                    jmpKind[0] = EJ_gt; // branch or set when greater than (and no NaN's)
                    jmpKind[1] = EJ_NONE;
                    break;

                case GT_GE:
                    jmpKind[0] = EJ_ge; // branch or set when greater than or equal (and no NaN's)
                    jmpKind[1] = EJ_NONE;
                    break;

                default:
                    unreached();
            }
        }
    }
}

//------------------------------------------------------------------------
// genCodeForJumpTrue: Generates code for jmpTrue statement.
//
// Arguments:
//    tree - The GT_JTRUE tree node.
//
// Return Value:
//    None
//
void CodeGen::genCodeForJumpTrue(GenTree* tree)
{
    GenTree* cmp = tree->gtOp.gtOp1;
    assert(cmp->OperIsCompare());
    assert(compiler->compCurBB->bbJumpKind == BBJ_COND);

    // Get the "kind" and type of the comparison.  Note that whether it is an unsigned cmp
    // is governed by a flag NOT by the inherent type of the node
    emitJumpKind jumpKind[2];
    bool         branchToTrueLabel[2];
    genJumpKindsForTree(cmp, jumpKind, branchToTrueLabel);
    assert(jumpKind[0] != EJ_NONE);

    // On ARM the branches will always branch to the true label
    assert(branchToTrueLabel[0]);
    inst_JMP(jumpKind[0], compiler->compCurBB->bbJumpDest);

    if (jumpKind[1] != EJ_NONE)
    {
        // the second conditional branch always has to be to the true label
        assert(branchToTrueLabel[1]);
        inst_JMP(jumpKind[1], compiler->compCurBB->bbJumpDest);
    }
}

//------------------------------------------------------------------------
// genCodeForJcc: Produce code for a GT_JCC node.
//
// Arguments:
//    tree - the node
//
void CodeGen::genCodeForJcc(GenTreeCC* tree)
{
    assert(compiler->compCurBB->bbJumpKind == BBJ_COND);

    CompareKind  compareKind = ((tree->gtFlags & GTF_UNSIGNED) != 0) ? CK_UNSIGNED : CK_SIGNED;
    emitJumpKind jumpKind    = genJumpKindForOper(tree->gtCondition, compareKind);

    inst_JMP(jumpKind, compiler->compCurBB->bbJumpDest);
}

//------------------------------------------------------------------------
// genCodeForSetcc: Generates code for a GT_SETCC node.
//
// Arguments:
//    setcc - the GT_SETCC node
//
// Assumptions:
//    The condition represents an integer comparison. This code doesn't
//    have the necessary logic to deal with floating point comparisons,
//    in fact it doesn't even know if the comparison is integer or floating
//    point because SETCC nodes do not have any operands.
//

void CodeGen::genCodeForSetcc(GenTreeCC* setcc)
{
    regNumber    dstReg      = setcc->gtRegNum;
    CompareKind  compareKind = setcc->IsUnsigned() ? CK_UNSIGNED : CK_SIGNED;
    emitJumpKind jumpKind    = genJumpKindForOper(setcc->gtCondition, compareKind);

    assert(genIsValidIntReg(dstReg));
    // Make sure nobody is setting GTF_RELOP_NAN_UN on this node as it is ignored.
    assert((setcc->gtFlags & GTF_RELOP_NAN_UN) == 0);

#ifdef _TARGET_ARM64_
    inst_SET(jumpKind, dstReg);
#else
    // Emit code like that:
    //   ...
    //   bgt True
    //   movs rD, #0
    //   b Next
    // True:
    //   movs rD, #1
    // Next:
    //   ...

    BasicBlock* labelTrue = genCreateTempLabel();
    getEmitter()->emitIns_J(emitter::emitJumpKindToIns(jumpKind), labelTrue);

    getEmitter()->emitIns_R_I(INS_mov, emitActualTypeSize(setcc->TypeGet()), dstReg, 0);

    BasicBlock* labelNext = genCreateTempLabel();
    getEmitter()->emitIns_J(INS_b, labelNext);

    genDefineTempLabel(labelTrue);
    getEmitter()->emitIns_R_I(INS_mov, emitActualTypeSize(setcc->TypeGet()), dstReg, 1);
    genDefineTempLabel(labelNext);
#endif

    genProduceReg(setcc);
}

//------------------------------------------------------------------------
// genCodeForStoreBlk: Produce code for a GT_STORE_OBJ/GT_STORE_DYN_BLK/GT_STORE_BLK node.
//
// Arguments:
//    tree - the node
//
void CodeGen::genCodeForStoreBlk(GenTreeBlk* blkOp)
{
    assert(blkOp->OperIs(GT_STORE_OBJ, GT_STORE_DYN_BLK, GT_STORE_BLK));

    if (blkOp->OperIs(GT_STORE_OBJ) && blkOp->OperIsCopyBlkOp())
    {
        assert(blkOp->AsObj()->gtGcPtrCount != 0);
        genCodeForCpObj(blkOp->AsObj());
        return;
    }

    if (blkOp->gtBlkOpGcUnsafe)
    {
        getEmitter()->emitDisableGC();
    }
    bool isCopyBlk = blkOp->OperIsCopyBlkOp();

    switch (blkOp->gtBlkOpKind)
    {
        case GenTreeBlk::BlkOpKindHelper:
            if (isCopyBlk)
            {
                genCodeForCpBlk(blkOp);
            }
            else
            {
                genCodeForInitBlk(blkOp);
            }
            break;

        case GenTreeBlk::BlkOpKindUnroll:
            if (isCopyBlk)
            {
                genCodeForCpBlkUnroll(blkOp);
            }
            else
            {
                genCodeForInitBlkUnroll(blkOp);
            }
            break;

        default:
            unreached();
    }

    if (blkOp->gtBlkOpGcUnsafe)
    {
        getEmitter()->emitEnableGC();
    }
}

//------------------------------------------------------------------------
// genScaledAdd: A helper for genLeaInstruction.
//
void CodeGen::genScaledAdd(emitAttr attr, regNumber targetReg, regNumber baseReg, regNumber indexReg, int scale)
{
    emitter* emit = getEmitter();
    if (scale == 0)
    {
        // target = base + index
        getEmitter()->emitIns_R_R_R(INS_add, attr, targetReg, baseReg, indexReg);
    }
    else
    {
// target = base + index<<scale
#if defined(_TARGET_ARM_)
        emit->emitIns_R_R_R_I(INS_add, attr, targetReg, baseReg, indexReg, scale, INS_FLAGS_DONT_CARE, INS_OPTS_LSL);
#elif defined(_TARGET_ARM64_)
        emit->emitIns_R_R_R_I(INS_add, attr, targetReg, baseReg, indexReg, scale, INS_OPTS_LSL);
#endif
    }
}

//------------------------------------------------------------------------
// genLeaInstruction: Produce code for a GT_LEA node.
//
// Arguments:
//    lea - the node
//
void CodeGen::genLeaInstruction(GenTreeAddrMode* lea)
{
    genConsumeOperands(lea);
    emitter* emit   = getEmitter();
    emitAttr size   = emitTypeSize(lea);
    int      offset = lea->Offset();

    // In ARM we can only load addresses of the form:
    //
    // [Base + index*scale]
    // [Base + Offset]
    // [Literal] (PC-Relative)
    //
    // So for the case of a LEA node of the form [Base + Index*Scale + Offset] we will generate:
    // destReg = baseReg + indexReg * scale;
    // destReg = destReg + offset;
    //
    // TODO-ARM64-CQ: The purpose of the GT_LEA node is to directly reflect a single target architecture
    //             addressing mode instruction.  Currently we're 'cheating' by producing one or more
    //             instructions to generate the addressing mode so we need to modify lowering to
    //             produce LEAs that are a 1:1 relationship to the ARM64 architecture.
    if (lea->Base() && lea->Index())
    {
        GenTree* memBase = lea->Base();
        GenTree* index   = lea->Index();

        DWORD scale;

        assert(isPow2(lea->gtScale));
        BitScanForward(&scale, lea->gtScale);

        assert(scale <= 4);

        if (offset != 0)
        {
            regNumber tmpReg = lea->GetSingleTempReg();

            // When generating fully interruptible code we have to use the "large offset" sequence
            // when calculating a EA_BYREF as we can't report a byref that points outside of the object
            //
            bool useLargeOffsetSeq = compiler->genInterruptible && (size == EA_BYREF);

            if (!useLargeOffsetSeq && emitter::emitIns_valid_imm_for_add(offset))
            {
                // Generate code to set tmpReg = base + index*scale
                genScaledAdd(size, tmpReg, memBase->gtRegNum, index->gtRegNum, scale);

                // Then compute target reg from [tmpReg + offset]
                emit->emitIns_R_R_I(INS_add, size, lea->gtRegNum, tmpReg, offset);
            }
            else // large offset sequence
            {
                noway_assert(tmpReg != index->gtRegNum);
                noway_assert(tmpReg != memBase->gtRegNum);

                // First load/store tmpReg with the offset constant
                //      rTmp = imm
                instGen_Set_Reg_To_Imm(EA_PTRSIZE, tmpReg, offset);

                // Then add the scaled index register
                //      rTmp = rTmp + index*scale
                genScaledAdd(EA_PTRSIZE, tmpReg, tmpReg, index->gtRegNum, scale);

                // Then compute target reg from [base + tmpReg ]
                //      rDst = base + rTmp
                emit->emitIns_R_R_R(INS_add, size, lea->gtRegNum, memBase->gtRegNum, tmpReg);
            }
        }
        else
        {
            // Then compute target reg from [base + index*scale]
            genScaledAdd(size, lea->gtRegNum, memBase->gtRegNum, index->gtRegNum, scale);
        }
    }
    else if (lea->Base())
    {
        GenTree* memBase = lea->Base();

        if (emitter::emitIns_valid_imm_for_add(offset))
        {
            if (offset != 0)
            {
                // Then compute target reg from [memBase + offset]
                emit->emitIns_R_R_I(INS_add, size, lea->gtRegNum, memBase->gtRegNum, offset);
            }
            else // offset is zero
            {
                if (lea->gtRegNum != memBase->gtRegNum)
                {
                    emit->emitIns_R_R(INS_mov, size, lea->gtRegNum, memBase->gtRegNum);
                }
            }
        }
        else
        {
            // We require a tmpReg to hold the offset
            regNumber tmpReg = lea->GetSingleTempReg();

            // First load tmpReg with the large offset constant
            instGen_Set_Reg_To_Imm(EA_PTRSIZE, tmpReg, offset);

            // Then compute target reg from [memBase + tmpReg]
            emit->emitIns_R_R_R(INS_add, size, lea->gtRegNum, memBase->gtRegNum, tmpReg);
        }
    }
    else if (lea->Index())
    {
        // If we encounter a GT_LEA node without a base it means it came out
        // when attempting to optimize an arbitrary arithmetic expression during lower.
        // This is currently disabled in ARM64 since we need to adjust lower to account
        // for the simpler instructions ARM64 supports.
        // TODO-ARM64-CQ:  Fix this and let LEA optimize arithmetic trees too.
        assert(!"We shouldn't see a baseless address computation during CodeGen for ARM64");
    }

    genProduceReg(lea);
}

//------------------------------------------------------------------------
// isStructReturn: Returns whether the 'treeNode' is returning a struct.
//
// Arguments:
//    treeNode - The tree node to evaluate whether is a struct return.
//
// Return Value:
//    Returns true if the 'treeNode" is a GT_RETURN node of type struct.
//    Otherwise returns false.
//
bool CodeGen::isStructReturn(GenTree* treeNode)
{
    // This method could be called for 'treeNode' of GT_RET_FILT or GT_RETURN.
    // For the GT_RET_FILT, the return is always
    // a bool or a void, for the end of a finally block.
    noway_assert(treeNode->OperGet() == GT_RETURN || treeNode->OperGet() == GT_RETFILT);

    return varTypeIsStruct(treeNode);
}

//------------------------------------------------------------------------
// genStructReturn: Generates code for returning a struct.
//
// Arguments:
//    treeNode - The GT_RETURN tree node.
//
// Return Value:
//    None
//
// Assumption:
//    op1 of GT_RETURN node is either GT_LCL_VAR or multi-reg GT_CALL
void CodeGen::genStructReturn(GenTree* treeNode)
{
    assert(treeNode->OperGet() == GT_RETURN);
    assert(isStructReturn(treeNode));
    GenTree* op1 = treeNode->gtGetOp1();

    if (op1->OperGet() == GT_LCL_VAR)
    {
        GenTreeLclVarCommon* lclVar  = op1->AsLclVarCommon();
        LclVarDsc*           varDsc  = &(compiler->lvaTable[lclVar->gtLclNum]);
        var_types            lclType = genActualType(varDsc->TypeGet());

        assert(varTypeIsStruct(lclType));
        assert(varDsc->lvIsMultiRegRet);

        ReturnTypeDesc retTypeDesc;
        unsigned       regCount;

        retTypeDesc.InitializeStructReturnType(compiler, varDsc->lvVerTypeInfo.GetClassHandle());
        regCount = retTypeDesc.GetReturnRegCount();

        assert(regCount >= 2);

        assert(varTypeIsSIMD(lclType) || op1->isContained());

        if (op1->isContained())
        {
            // Copy var on stack into ABI return registers
            // TODO: It could be optimized by reducing two float loading to one double
            int offset = 0;
            for (unsigned i = 0; i < regCount; ++i)
            {
                var_types type = retTypeDesc.GetReturnRegType(i);
                regNumber reg  = retTypeDesc.GetABIReturnReg(i);
                getEmitter()->emitIns_R_S(ins_Load(type), emitTypeSize(type), reg, lclVar->gtLclNum, offset);
                offset += genTypeSize(type);
            }
        }
        else
        {
            // Handle SIMD genStructReturn case
            NYI_ARM("SIMD genStructReturn");

#ifdef _TARGET_ARM64_
            genConsumeRegs(op1);
            regNumber src = op1->gtRegNum;

            // Treat src register as a homogenous vector with element size equal to the reg size
            // Insert pieces in order
            for (unsigned i = 0; i < regCount; ++i)
            {
                var_types type = retTypeDesc.GetReturnRegType(i);
                regNumber reg  = retTypeDesc.GetABIReturnReg(i);
                if (varTypeIsFloating(type))
                {
                    // If the register piece is to be passed in a floating point register
                    // Use a vector mov element instruction
                    // reg is not a vector, so it is in the first element reg[0]
                    // mov reg[0], src[i]
                    // This effectively moves from `src[i]` to `reg[0]`, upper bits of reg remain unchanged
                    // For the case where src == reg, since we are only writing reg[0], as long as we iterate
                    // so that src[0] is consumed before writing reg[0], we do not need a temporary.
                    getEmitter()->emitIns_R_R_I_I(INS_mov, emitTypeSize(type), reg, src, 0, i);
                }
                else
                {
                    // If the register piece is to be passed in an integer register
                    // Use a vector mov to general purpose register instruction
                    // mov reg, src[i]
                    // This effectively moves from `src[i]` to `reg`
                    getEmitter()->emitIns_R_R_I(INS_mov, emitTypeSize(type), reg, src, i);
                }
            }
#endif // _TARGET_ARM64_
        }
    }
    else // op1 must be multi-reg GT_CALL
    {
        assert(op1->IsMultiRegCall() || op1->IsCopyOrReloadOfMultiRegCall());

        genConsumeRegs(op1);

        GenTree*     actualOp1 = op1->gtSkipReloadOrCopy();
        GenTreeCall* call      = actualOp1->AsCall();

        ReturnTypeDesc* pRetTypeDesc;
        unsigned        regCount;
        unsigned        matchingCount = 0;

        pRetTypeDesc = call->GetReturnTypeDesc();
        regCount     = pRetTypeDesc->GetReturnRegCount();

        var_types regType[MAX_RET_REG_COUNT];
        regNumber returnReg[MAX_RET_REG_COUNT];
        regNumber allocatedReg[MAX_RET_REG_COUNT];
        regMaskTP srcRegsMask       = 0;
        regMaskTP dstRegsMask       = 0;
        bool      needToShuffleRegs = false; // Set to true if we have to move any registers

        for (unsigned i = 0; i < regCount; ++i)
        {
            regType[i]   = pRetTypeDesc->GetReturnRegType(i);
            returnReg[i] = pRetTypeDesc->GetABIReturnReg(i);

            regNumber reloadReg = REG_NA;
            if (op1->IsCopyOrReload())
            {
                // GT_COPY/GT_RELOAD will have valid reg for those positions
                // that need to be copied or reloaded.
                reloadReg = op1->AsCopyOrReload()->GetRegNumByIdx(i);
            }

            if (reloadReg != REG_NA)
            {
                allocatedReg[i] = reloadReg;
            }
            else
            {
                allocatedReg[i] = call->GetRegNumByIdx(i);
            }

            if (returnReg[i] == allocatedReg[i])
            {
                matchingCount++;
            }
            else // We need to move this value
            {
                // We want to move the value from allocatedReg[i] into returnReg[i]
                // so record these two registers in the src and dst masks
                //
                srcRegsMask |= genRegMask(allocatedReg[i]);
                dstRegsMask |= genRegMask(returnReg[i]);

                needToShuffleRegs = true;
            }
        }

        if (needToShuffleRegs)
        {
            assert(matchingCount < regCount);

            unsigned  remainingRegCount = regCount - matchingCount;
            regMaskTP extraRegMask      = treeNode->gtRsvdRegs;

            while (remainingRegCount > 0)
            {
                // set 'available' to the 'dst' registers that are not currently holding 'src' registers
                //
                regMaskTP availableMask = dstRegsMask & ~srcRegsMask;

                regMaskTP dstMask;
                regNumber srcReg;
                regNumber dstReg;
                var_types curType   = TYP_UNKNOWN;
                regNumber freeUpReg = REG_NA;

                if (availableMask == 0)
                {
                    // Circular register dependencies
                    // So just free up the lowest register in dstRegsMask by moving it to the 'extra' register

                    assert(dstRegsMask == srcRegsMask);         // this has to be true for us to reach here
                    assert(extraRegMask != 0);                  // we require an 'extra' register
                    assert((extraRegMask & ~dstRegsMask) != 0); // it can't be part of dstRegsMask

                    availableMask = extraRegMask & ~dstRegsMask;

                    regMaskTP srcMask = genFindLowestBit(srcRegsMask);
                    freeUpReg         = genRegNumFromMask(srcMask);
                }

                dstMask = genFindLowestBit(availableMask);
                dstReg  = genRegNumFromMask(dstMask);
                srcReg  = REG_NA;

                if (freeUpReg != REG_NA)
                {
                    // We will free up the srcReg by moving it to dstReg which is an extra register
                    //
                    srcReg = freeUpReg;

                    // Find the 'srcReg' and set 'curType', change allocatedReg[] to dstReg
                    // and add the new register mask bit to srcRegsMask
                    //
                    for (unsigned i = 0; i < regCount; ++i)
                    {
                        if (allocatedReg[i] == srcReg)
                        {
                            curType         = regType[i];
                            allocatedReg[i] = dstReg;
                            srcRegsMask |= genRegMask(dstReg);
                        }
                    }
                }
                else // The normal case
                {
                    // Find the 'srcReg' and set 'curType'
                    //
                    for (unsigned i = 0; i < regCount; ++i)
                    {
                        if (returnReg[i] == dstReg)
                        {
                            srcReg  = allocatedReg[i];
                            curType = regType[i];
                        }
                    }
                    // After we perform this move we will have one less registers to setup
                    remainingRegCount--;
                }
                assert(curType != TYP_UNKNOWN);

                inst_RV_RV(ins_Copy(curType), dstReg, srcReg, curType);

                // Clear the appropriate bits in srcRegsMask and dstRegsMask
                srcRegsMask &= ~genRegMask(srcReg);
                dstRegsMask &= ~genRegMask(dstReg);

            } // while (remainingRegCount > 0)

        } // (needToShuffleRegs)

    } // op1 must be multi-reg GT_CALL
}
#endif // _TARGET_ARMARCH_