summaryrefslogtreecommitdiff
path: root/src/jit/block.h
blob: 6d2fab41df2a506b933093078d2805f5486e3997 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX                                                                           XX
XX                          BasicBlock                                       XX
XX                                                                           XX
XX                                                                           XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/

/*****************************************************************************/
#ifndef _BLOCK_H_
#define _BLOCK_H_
/*****************************************************************************/

#include "vartype.h" // For "var_types.h"
#include "_typeinfo.h"
/*****************************************************************************/

// Defines VARSET_TP
#include "varset.h"

#include "blockset.h"
#include "jitstd.h"
#include "bitvec.h"
#include "jithashtable.h"

/*****************************************************************************/
typedef BitVec EXPSET_TP;
#if LARGE_EXPSET
#define EXPSET_SZ 64
#else
#define EXPSET_SZ 32
#endif

typedef BitVec          ASSERT_TP;
typedef BitVec_ValArg_T ASSERT_VALARG_TP;
typedef BitVec_ValRet_T ASSERT_VALRET_TP;

// We use the following format when print the BasicBlock number: bbNum
// This define is used with string concatenation to put this in printf format strings  (Note that %u means unsigned int)
#define FMT_BB "BB%02u"

/*****************************************************************************
 *
 *  Each basic block ends with a jump which is described as a value
 *  of the following enumeration.
 */

// clang-format off

enum BBjumpKinds : BYTE
{
    BBJ_EHFINALLYRET,// block ends with 'endfinally' (for finally or fault)
    BBJ_EHFILTERRET, // block ends with 'endfilter'
    BBJ_EHCATCHRET,  // block ends with a leave out of a catch (only #if FEATURE_EH_FUNCLETS)
    BBJ_THROW,       // block ends with 'throw'
    BBJ_RETURN,      // block ends with 'ret'
    BBJ_NONE,        // block flows into the next one (no jump)
    BBJ_ALWAYS,      // block always jumps to the target
    BBJ_LEAVE,       // block always jumps to the target, maybe out of guarded region. Only used until importing.
    BBJ_CALLFINALLY, // block always calls the target finally
    BBJ_COND,        // block conditionally jumps to the target
    BBJ_SWITCH,      // block ends with a switch statement

    BBJ_COUNT
};

// clang-format on

struct GenTree;
struct GenTreeStmt;
struct BasicBlock;
class Compiler;
class typeInfo;
struct BasicBlockList;
struct flowList;
struct EHblkDsc;

/*****************************************************************************
 *
 *  The following describes a switch block.
 *
 *  Things to know:
 *  1. If bbsHasDefault is true, the default case is the last one in the array of basic block addresses
 *     namely bbsDstTab[bbsCount - 1].
 *  2. bbsCount must be at least 1, for the default case. bbsCount cannot be zero. It appears that the ECMA spec
 *     allows for a degenerate switch with zero cases. Normally, the optimizer will optimize degenerate
 *     switches with just a default case to a BBJ_ALWAYS branch, and a switch with just two cases to a BBJ_COND.
 *     However, in debuggable code, we might not do that, so bbsCount might be 1.
 */
struct BBswtDesc
{
    unsigned     bbsCount;  // count of cases (includes 'default' if bbsHasDefault)
    BasicBlock** bbsDstTab; // case label table address
    bool         bbsHasDefault;

    BBswtDesc() : bbsHasDefault(true)
    {
    }

    void removeDefault()
    {
        assert(bbsHasDefault);
        assert(bbsCount > 0);
        bbsHasDefault = false;
        bbsCount--;
    }

    BasicBlock* getDefault()
    {
        assert(bbsHasDefault);
        assert(bbsCount > 0);
        return bbsDstTab[bbsCount - 1];
    }
};

struct StackEntry
{
    GenTree* val;
    typeInfo seTypeInfo;
};
/*****************************************************************************/

enum ThisInitState
{
    TIS_Bottom, // We don't know anything about the 'this' pointer.
    TIS_Uninit, // The 'this' pointer for this constructor is known to be uninitialized.
    TIS_Init,   // The 'this' pointer for this constructor is known to be initialized.
    TIS_Top,    // This results from merging the state of two blocks one with TIS_Unint and the other with TIS_Init.
                // We use this in fault blocks to prevent us from accessing the 'this' pointer, but otherwise
                // allowing the fault block to generate code.
};

struct EntryState
{
    ThisInitState thisInitialized; // used to track whether the this ptr is initialized.
    unsigned      esStackDepth;    // size of esStack
    StackEntry*   esStack;         // ptr to  stack
};

// Enumeration of the kinds of memory whose state changes the compiler tracks
enum MemoryKind
{
    ByrefExposed = 0, // Includes anything byrefs can read/write (everything in GcHeap, address-taken locals,
                      //                                          unmanaged heap, callers' locals, etc.)
    GcHeap,           // Includes actual GC heap, and also static fields
    MemoryKindCount,  // Number of MemoryKinds
};
#ifdef DEBUG
const char* const memoryKindNames[] = {"ByrefExposed", "GcHeap"};
#endif // DEBUG

// Bitmask describing a set of memory kinds (usable in bitfields)
typedef unsigned int MemoryKindSet;

// Bitmask for a MemoryKindSet containing just the specified MemoryKind
inline MemoryKindSet memoryKindSet(MemoryKind memoryKind)
{
    return (1U << memoryKind);
}

// Bitmask for a MemoryKindSet containing the specified MemoryKinds
template <typename... MemoryKinds>
inline MemoryKindSet memoryKindSet(MemoryKind memoryKind, MemoryKinds... memoryKinds)
{
    return memoryKindSet(memoryKind) | memoryKindSet(memoryKinds...);
}

// Bitmask containing all the MemoryKinds
const MemoryKindSet fullMemoryKindSet = (1 << MemoryKindCount) - 1;

// Bitmask containing no MemoryKinds
const MemoryKindSet emptyMemoryKindSet = 0;

// Standard iterator class for iterating through MemoryKinds
class MemoryKindIterator
{
    int value;

public:
    explicit inline MemoryKindIterator(int val) : value(val)
    {
    }
    inline MemoryKindIterator& operator++()
    {
        ++value;
        return *this;
    }
    inline MemoryKindIterator operator++(int)
    {
        return MemoryKindIterator(value++);
    }
    inline MemoryKind operator*()
    {
        return static_cast<MemoryKind>(value);
    }
    friend bool operator==(const MemoryKindIterator& left, const MemoryKindIterator& right)
    {
        return left.value == right.value;
    }
    friend bool operator!=(const MemoryKindIterator& left, const MemoryKindIterator& right)
    {
        return left.value != right.value;
    }
};

// Empty struct that allows enumerating memory kinds via `for(MemoryKind kind : allMemoryKinds())`
struct allMemoryKinds
{
    inline allMemoryKinds()
    {
    }
    inline MemoryKindIterator begin()
    {
        return MemoryKindIterator(0);
    }
    inline MemoryKindIterator end()
    {
        return MemoryKindIterator(MemoryKindCount);
    }
};

// This encapsulates the "exception handling" successors of a block.  That is,
// if a basic block BB1 occurs in a try block, we consider the first basic block
// BB2 of the corresponding handler to be an "EH successor" of BB1.  Because we
// make the conservative assumption that control flow can jump from a try block
// to its handler at any time, the immediate (regular control flow)
// predecessor(s) of the the first block of a try block are also considered to
// have the first block of the handler as an EH successor.  This makes variables that
// are "live-in" to the handler become "live-out" for these try-predecessor block,
// so that they become live-in to the try -- which we require.
//
// This class maintains the minimum amount of state necessary to implement
// successor iteration. The basic block whose successors are enumerated and
// the compiler need to be provided by Advance/Current's callers. In addition
// to iterators, this allows the use of other approaches that are more space
// efficient.
class EHSuccessorIterPosition
{
    // The number of "regular" (i.e., non-exceptional) successors that remain to
    // be considered.  If BB1 has successor BB2, and BB2 is the first block of a
    // try block, then we consider the catch block of BB2's try to be an EH
    // successor of BB1.  This captures the iteration over the successors of BB1
    // for this purpose.  (In reverse order; we're done when this field is 0).
    unsigned m_remainingRegSuccs;

    // The current "regular" successor of "m_block" that we're considering.
    BasicBlock* m_curRegSucc;

    // The current try block.  If non-null, then the current successor "m_curRegSucc"
    // is the first block of the handler of this block.  While this try block has
    // enclosing try's that also start with "m_curRegSucc", the corresponding handlers will be
    // further EH successors.
    EHblkDsc* m_curTry;

    // Requires that "m_curTry" is NULL.  Determines whether there is, as
    // discussed just above, a regular successor that's the first block of a
    // try; if so, sets "m_curTry" to that try block.  (As noted above, selecting
    // the try containing the current regular successor as the "current try" may cause
    // multiple first-blocks of catches to be yielded as EH successors: trys enclosing
    // the current try are also included if they also start with the current EH successor.)
    void FindNextRegSuccTry(Compiler* comp, BasicBlock* block);

public:
    // Constructs a position that "points" to the first EH successor of `block`.
    EHSuccessorIterPosition(Compiler* comp, BasicBlock* block);

    // Constructs a position that "points" past the last EH successor of `block` ("end" position).
    EHSuccessorIterPosition() : m_remainingRegSuccs(0), m_curTry(nullptr)
    {
    }

    // Go on to the next EH successor.
    void Advance(Compiler* comp, BasicBlock* block);

    // Returns the current EH successor.
    // Requires that "*this" is not equal to the "end" position.
    BasicBlock* Current(Compiler* comp, BasicBlock* block);

    // Returns "true" iff "*this" is equal to "ehsi".
    bool operator==(const EHSuccessorIterPosition& ehsi)
    {
        return m_curTry == ehsi.m_curTry && m_remainingRegSuccs == ehsi.m_remainingRegSuccs;
    }

    bool operator!=(const EHSuccessorIterPosition& ehsi)
    {
        return !((*this) == ehsi);
    }
};

// Yields both normal and EH successors (in that order) in one iteration.
//
// This class maintains the minimum amount of state necessary to implement
// successor iteration. The basic block whose successors are enumerated and
// the compiler need to be provided by Advance/Current's callers. In addition
// to iterators, this allows the use of other approaches that are more space
// efficient.
class AllSuccessorIterPosition
{
    // Normal successor position
    unsigned m_numNormSuccs;
    unsigned m_remainingNormSucc;
    // EH successor position
    EHSuccessorIterPosition m_ehIter;

    // True iff m_blk is a BBJ_CALLFINALLY block, and the current try block of m_ehIter,
    // the first block of whose handler would be next yielded, is the jump target of m_blk.
    inline bool CurTryIsBlkCallFinallyTarget(Compiler* comp, BasicBlock* block);

public:
    // Constructs a position that "points" to the first successor of `block`.
    inline AllSuccessorIterPosition(Compiler* comp, BasicBlock* block);

    // Constructs a position that "points" past the last successor of `block` ("end" position).
    AllSuccessorIterPosition() : m_remainingNormSucc(0), m_ehIter()
    {
    }

    // Go on to the next successor.
    inline void Advance(Compiler* comp, BasicBlock* block);

    // Returns the current successor.
    // Requires that "*this" is not equal to the "end" position.
    inline BasicBlock* Current(Compiler* comp, BasicBlock* block);

    bool IsCurrentEH()
    {
        return m_remainingNormSucc == 0;
    }

    bool HasCurrent()
    {
        return *this != AllSuccessorIterPosition();
    }

    // Returns "true" iff "*this" is equal to "asi".
    bool operator==(const AllSuccessorIterPosition& asi)
    {
        return (m_remainingNormSucc == asi.m_remainingNormSucc) && (m_ehIter == asi.m_ehIter);
    }

    bool operator!=(const AllSuccessorIterPosition& asi)
    {
        return !((*this) == asi);
    }
};

//------------------------------------------------------------------------
// BasicBlock: describes a basic block in the flowgraph.
//
// Note that this type derives from LIR::Range in order to make the LIR
// utilities that are polymorphic over basic block and scratch ranges
// faster and simpler.
//
struct BasicBlock : private LIR::Range
{
    friend class LIR;

    BasicBlock* bbNext; // next BB in ascending PC offset order
    BasicBlock* bbPrev;

    void setNext(BasicBlock* next)
    {
        bbNext = next;
        if (next)
        {
            next->bbPrev = this;
        }
    }

    unsigned __int64 bbFlags; // see BBF_xxxx below

    unsigned bbNum; // the block's number

    unsigned bbPostOrderNum; // the block's post order number in the graph.
    unsigned bbRefs; // number of blocks that can reach here, either by fall-through or a branch. If this falls to zero,
                     // the block is unreachable.

// clang-format off

#define BBF_VISITED             0x00000001 // BB visited during optimizations
#define BBF_MARKED              0x00000002 // BB marked  during optimizations
#define BBF_CHANGED             0x00000004 // input/output of this block has changed
#define BBF_REMOVED             0x00000008 // BB has been removed from bb-list

#define BBF_DONT_REMOVE         0x00000010 // BB should not be removed during flow graph optimizations
#define BBF_IMPORTED            0x00000020 // BB byte-code has been imported
#define BBF_INTERNAL            0x00000040 // BB has been added by the compiler
#define BBF_FAILED_VERIFICATION 0x00000080 // BB has verification exception

#define BBF_TRY_BEG             0x00000100 // BB starts a 'try' block
#define BBF_FUNCLET_BEG         0x00000200 // BB is the beginning of a funclet
#define BBF_HAS_NULLCHECK       0x00000400 // BB contains a null check
#define BBF_NEEDS_GCPOLL        0x00000800 // This BB is the source of a back edge and needs a GC Poll

#define BBF_RUN_RARELY          0x00001000 // BB is rarely run (catch clauses, blocks with throws etc)
#define BBF_LOOP_HEAD           0x00002000 // BB is the head of a loop
#define BBF_LOOP_CALL0          0x00004000 // BB starts a loop that sometimes won't call
#define BBF_LOOP_CALL1          0x00008000 // BB starts a loop that will always     call

#define BBF_HAS_LABEL           0x00010000 // BB needs a label
#define BBF_JMP_TARGET          0x00020000 // BB is a target of an implicit/explicit jump
#define BBF_HAS_JMP             0x00040000 // BB executes a JMP instruction (instead of return)
#define BBF_GC_SAFE_POINT       0x00080000 // BB has a GC safe point (a call).  More abstractly, BB does not require a
                                           // (further) poll -- this may be because this BB has a call, or, in some
                                           // cases, because the BB occurs in a loop, and we've determined that all
                                           // paths in the loop body leading to BB include a call.

#define BBF_HAS_VTABREF         0x00100000 // BB contains reference of vtable
#define BBF_HAS_IDX_LEN         0x00200000 // BB contains simple index or length expressions on an array local var.
#define BBF_HAS_NEWARRAY        0x00400000 // BB contains 'new' of an array
#define BBF_HAS_NEWOBJ          0x00800000 // BB contains 'new' of an object type.

#if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_)

#define BBF_FINALLY_TARGET      0x01000000 // BB is the target of a finally return: where a finally will return during
                                           // non-exceptional flow. Because the ARM calling sequence for calling a
                                           // finally explicitly sets the return address to the finally target and jumps
                                           // to the finally, instead of using a call instruction, ARM needs this to
                                           // generate correct code at the finally target, to allow for proper stack
                                           // unwind from within a non-exceptional call to a finally.

#endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_)

#define BBF_BACKWARD_JUMP       0x02000000 // BB is surrounded by a backward jump/switch arc
#define BBF_RETLESS_CALL        0x04000000 // BBJ_CALLFINALLY that will never return (and therefore, won't need a paired
                                           // BBJ_ALWAYS); see isBBCallAlwaysPair().
#define BBF_LOOP_PREHEADER      0x08000000 // BB is a loop preheader block

#define BBF_COLD                0x10000000 // BB is cold
#define BBF_PROF_WEIGHT         0x20000000 // BB weight is computed from profile data
#define BBF_IS_LIR              0x40000000 // Set if the basic block contains LIR (as opposed to HIR)
#define BBF_KEEP_BBJ_ALWAYS     0x80000000 // A special BBJ_ALWAYS block, used by EH code generation. Keep the jump kind
                                           // as BBJ_ALWAYS. Used for the paired BBJ_ALWAYS block following the
                                           // BBJ_CALLFINALLY block, as well as, on x86, the final step block out of a
                                           // finally.

#define BBF_CLONED_FINALLY_BEGIN    0x100000000 // First block of a cloned finally region
#define BBF_CLONED_FINALLY_END      0x200000000 // Last block of a cloned finally region

// clang-format on

#define BBF_DOMINATED_BY_EXCEPTIONAL_ENTRY 0x400000000 // Block is dominated by exceptional entry.

// Flags that relate blocks to loop structure.

#define BBF_LOOP_FLAGS (BBF_LOOP_PREHEADER | BBF_LOOP_HEAD | BBF_LOOP_CALL0 | BBF_LOOP_CALL1)

    bool isRunRarely() const
    {
        return ((bbFlags & BBF_RUN_RARELY) != 0);
    }
    bool isLoopHead() const
    {
        return ((bbFlags & BBF_LOOP_HEAD) != 0);
    }

// Flags to update when two blocks are compacted

#define BBF_COMPACT_UPD                                                                                                \
    (BBF_CHANGED | BBF_GC_SAFE_POINT | BBF_HAS_JMP | BBF_NEEDS_GCPOLL | BBF_HAS_IDX_LEN | BBF_BACKWARD_JUMP |          \
     BBF_HAS_NEWARRAY | BBF_HAS_NEWOBJ)

// Flags a block should not have had before it is split.

#define BBF_SPLIT_NONEXIST                                                                                             \
    (BBF_CHANGED | BBF_LOOP_HEAD | BBF_LOOP_CALL0 | BBF_LOOP_CALL1 | BBF_RETLESS_CALL | BBF_LOOP_PREHEADER | BBF_COLD)

// Flags lost by the top block when a block is split.
// Note, this is a conservative guess.
// For example, the top block might or might not have BBF_GC_SAFE_POINT,
// but we assume it does not have BBF_GC_SAFE_POINT any more.

#define BBF_SPLIT_LOST (BBF_GC_SAFE_POINT | BBF_HAS_JMP | BBF_KEEP_BBJ_ALWAYS | BBF_CLONED_FINALLY_END)

// Flags gained by the bottom block when a block is split.
// Note, this is a conservative guess.
// For example, the bottom block might or might not have BBF_HAS_NEWARRAY,
// but we assume it has BBF_HAS_NEWARRAY.

// TODO: Should BBF_RUN_RARELY be added to BBF_SPLIT_GAINED ?

#define BBF_SPLIT_GAINED                                                                                               \
    (BBF_DONT_REMOVE | BBF_HAS_LABEL | BBF_HAS_JMP | BBF_BACKWARD_JUMP | BBF_HAS_IDX_LEN | BBF_HAS_NEWARRAY |          \
     BBF_PROF_WEIGHT | BBF_HAS_NEWOBJ | BBF_KEEP_BBJ_ALWAYS | BBF_CLONED_FINALLY_END)

#ifndef __GNUC__ // GCC doesn't like C_ASSERT at global scope
    static_assert_no_msg((BBF_SPLIT_NONEXIST & BBF_SPLIT_LOST) == 0);
    static_assert_no_msg((BBF_SPLIT_NONEXIST & BBF_SPLIT_GAINED) == 0);
#endif

#ifdef DEBUG
    void     dspFlags();                   // Print the flags
    unsigned dspCheapPreds();              // Print the predecessors (bbCheapPreds)
    unsigned dspPreds();                   // Print the predecessors (bbPreds)
    unsigned dspSuccs(Compiler* compiler); // Print the successors. The 'compiler' argument determines whether EH
                                           // regions are printed: see NumSucc() for details.
    void dspJumpKind();                    // Print the block jump kind (e.g., BBJ_NONE, BBJ_COND, etc.).
    void dspBlockHeader(Compiler* compiler,
                        bool      showKind  = true,
                        bool      showFlags = false,
                        bool showPreds = true); // Print a simple basic block header for various output, including a
                                                // list of predecessors and successors.
    const char* dspToString(int blockNumPadding = 0);
#endif // DEBUG

    typedef unsigned weight_t; // Type used to hold block and edge weights
                               // Note that for CLR v2.0 and earlier our
                               // block weights were stored using unsigned shorts

#define BB_UNITY_WEIGHT 100 // how much a normal execute once block weights
#define BB_LOOP_WEIGHT 8    // how much more loops are weighted
#define BB_ZERO_WEIGHT 0
#define BB_MAX_WEIGHT ULONG_MAX // we're using an 'unsigned' for the weight
#define BB_VERY_HOT_WEIGHT 256  // how many average hits a BB has (per BBT scenario run) for this block
                                // to be considered as very hot

    weight_t bbWeight; // The dynamic execution weight of this block

    // getCalledCount -- get the value used to normalize weights for this method
    weight_t getCalledCount(Compiler* comp);

    // getBBWeight -- get the normalized weight of this block
    weight_t getBBWeight(Compiler* comp);

    // hasProfileWeight -- Returns true if this block's weight came from profile data
    bool hasProfileWeight() const
    {
        return ((this->bbFlags & BBF_PROF_WEIGHT) != 0);
    }

    // setBBWeight -- if the block weight is not derived from a profile,
    // then set the weight to the input weight, making sure to not overflow BB_MAX_WEIGHT
    // Note to set the weight from profile data, instead use setBBProfileWeight
    void setBBWeight(weight_t weight)
    {
        if (!hasProfileWeight())
        {
            this->bbWeight = min(weight, BB_MAX_WEIGHT);
        }
    }

    // setBBProfileWeight -- Set the profile-derived weight for a basic block
    void setBBProfileWeight(unsigned weight)
    {
        this->bbFlags |= BBF_PROF_WEIGHT;
        this->bbWeight = weight;
    }

    // modifyBBWeight -- same as setBBWeight, but also make sure that if the block is rarely run, it stays that
    // way, and if it's not rarely run then its weight never drops below 1.
    void modifyBBWeight(weight_t weight)
    {
        if (this->bbWeight != BB_ZERO_WEIGHT)
        {
            setBBWeight(max(weight, 1));
        }
    }

    // this block will inherit the same weight and relevant bbFlags as bSrc
    void inheritWeight(BasicBlock* bSrc)
    {
        this->bbWeight = bSrc->bbWeight;

        if (bSrc->hasProfileWeight())
        {
            this->bbFlags |= BBF_PROF_WEIGHT;
        }
        else
        {
            this->bbFlags &= ~BBF_PROF_WEIGHT;
        }

        if (this->bbWeight == 0)
        {
            this->bbFlags |= BBF_RUN_RARELY;
        }
        else
        {
            this->bbFlags &= ~BBF_RUN_RARELY;
        }
    }

    // Similar to inheritWeight(), but we're splitting a block (such as creating blocks for qmark removal).
    // So, specify a percentage (0 to 99; if it's 100, just use inheritWeight()) of the weight that we're
    // going to inherit. Since the number isn't exact, clear the BBF_PROF_WEIGHT flag.
    void inheritWeightPercentage(BasicBlock* bSrc, unsigned percentage)
    {
        assert(0 <= percentage && percentage < 100);

        // Check for overflow
        if (bSrc->bbWeight * 100 <= bSrc->bbWeight)
        {
            this->bbWeight = bSrc->bbWeight;
        }
        else
        {
            this->bbWeight = bSrc->bbWeight * percentage / 100;
        }

        this->bbFlags &= ~BBF_PROF_WEIGHT;

        if (this->bbWeight == 0)
        {
            this->bbFlags |= BBF_RUN_RARELY;
        }
        else
        {
            this->bbFlags &= ~BBF_RUN_RARELY;
        }
    }

    // makeBlockHot()
    //     This is used to override any profiling data
    //     and force a block to be in the hot region.
    //     We only call this method for handler entry point
    //     and only when HANDLER_ENTRY_MUST_BE_IN_HOT_SECTION is 1.
    //     Doing this helps fgReorderBlocks() by telling
    //     it to try to move these blocks into the hot region.
    //     Note that we do this strictly as an optimization,
    //     not for correctness. fgDetermineFirstColdBlock()
    //     will find all handler entry points and ensure that
    //     for now we don't place them in the cold section.
    //
    void makeBlockHot()
    {
        if (this->bbWeight == BB_ZERO_WEIGHT)
        {
            this->bbFlags &= ~BBF_RUN_RARELY;  // Clear any RarelyRun flag
            this->bbFlags &= ~BBF_PROF_WEIGHT; // Clear any profile-derived flag
            this->bbWeight = 1;
        }
    }

    bool isMaxBBWeight()
    {
        return (bbWeight == BB_MAX_WEIGHT);
    }

    // Returns "true" if the block is empty. Empty here means there are no statement
    // trees *except* PHI definitions.
    bool isEmpty();

    // Returns "true" iff "this" is the first block of a BBJ_CALLFINALLY/BBJ_ALWAYS pair --
    // a block corresponding to an exit from the try of a try/finally.  In the flow graph,
    // this becomes a block that calls the finally, and a second, immediately
    // following empty block (in the bbNext chain) to which the finally will return, and which
    // branches unconditionally to the next block to be executed outside the try/finally.
    // Note that code is often generated differently than this description. For example, on ARM,
    // the target of the BBJ_ALWAYS is loaded in LR (the return register), and a direct jump is
    // made to the 'finally'. The effect is that the 'finally' returns directly to the target of
    // the BBJ_ALWAYS. A "retless" BBJ_CALLFINALLY is one that has no corresponding BBJ_ALWAYS.
    // This can happen if the finally is known to not return (e.g., it contains a 'throw'). In
    // that case, the BBJ_CALLFINALLY flags has BBF_RETLESS_CALL set. Note that ARM never has
    // "retless" BBJ_CALLFINALLY blocks due to a requirement to use the BBJ_ALWAYS for
    // generating code.
    bool isBBCallAlwaysPair()
    {
#if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_)
        if (this->bbJumpKind == BBJ_CALLFINALLY)
#else
        if ((this->bbJumpKind == BBJ_CALLFINALLY) && !(this->bbFlags & BBF_RETLESS_CALL))
#endif
        {
#if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_)
            // On ARM, there are no retless BBJ_CALLFINALLY.
            assert(!(this->bbFlags & BBF_RETLESS_CALL));
#endif
            // Some asserts that the next block is a BBJ_ALWAYS of the proper form.
            assert(this->bbNext != nullptr);
            assert(this->bbNext->bbJumpKind == BBJ_ALWAYS);
            assert(this->bbNext->bbFlags & BBF_KEEP_BBJ_ALWAYS);
            assert(this->bbNext->isEmpty());

            return true;
        }
        else
        {
            return false;
        }
    }

    BBjumpKinds bbJumpKind; // jump (if any) at the end of this block

    /* The following union describes the jump target(s) of this block */
    union {
        unsigned    bbJumpOffs; // PC offset (temporary only)
        BasicBlock* bbJumpDest; // basic block
        BBswtDesc*  bbJumpSwt;  // switch descriptor
    };

    // NumSucc() gives the number of successors, and GetSucc() returns a given numbered successor.
    //
    // There are two versions of these functions: ones that take a Compiler* and ones that don't. You must
    // always use a matching set. Thus, if you call NumSucc() without a Compiler*, you must also call
    // GetSucc() without a Compiler*.
    //
    // The behavior of NumSucc()/GetSucc() is different when passed a Compiler* for blocks that end in:
    // (1) BBJ_EHFINALLYRET (a return from a finally or fault block)
    // (2) BBJ_EHFILTERRET (a return from EH filter block)
    // (3) BBJ_SWITCH
    //
    // For BBJ_EHFINALLYRET, if no Compiler* is passed, then the block is considered to have no
    // successor. If Compiler* is passed, we figure out the actual successors. Some cases will want one behavior,
    // other cases the other. For example, IL verification requires that these blocks end in an empty operand
    // stack, and since the dataflow analysis of IL verification is concerned only with the contents of the
    // operand stack, we can consider the finally block to have no successors. But a more general dataflow
    // analysis that is tracking the contents of local variables might want to consider *all* successors,
    // and would pass the current Compiler object.
    //
    // Similarly, BBJ_EHFILTERRET blocks are assumed to have no successors if Compiler* is not passed; if
    // Compiler* is passed, NumSucc/GetSucc yields the first block of the try block's handler.
    //
    // For BBJ_SWITCH, if Compiler* is not passed, then all switch successors are returned. If Compiler*
    // is passed, then only unique switch successors are returned; the duplicate successors are omitted.
    //
    // Note that for BBJ_COND, which has two successors (fall through and condition true branch target),
    // only the unique targets are returned. Thus, if both targets are the same, NumSucc() will only return 1
    // instead of 2.

    // NumSucc: Returns the number of successors of "this".
    unsigned NumSucc();
    unsigned NumSucc(Compiler* comp);

    // GetSucc: Returns the "i"th successor. Requires (0 <= i < NumSucc()).
    BasicBlock* GetSucc(unsigned i);
    BasicBlock* GetSucc(unsigned i, Compiler* comp);

    BasicBlock* GetUniquePred(Compiler* comp);

    BasicBlock* GetUniqueSucc();

    unsigned countOfInEdges() const
    {
        return bbRefs;
    }

    __declspec(property(get = getBBTreeList, put = setBBTreeList)) GenTree* bbTreeList; // the body of the block.

    GenTree* getBBTreeList() const
    {
        return m_firstNode;
    }

    void setBBTreeList(GenTree* tree)
    {
        m_firstNode = tree;
    }

    EntryState* bbEntryState; // verifier tracked state of all entries in stack.

#define NO_BASE_TMP UINT_MAX // base# to use when we have none
    unsigned bbStkTempsIn;   // base# for input stack temps
    unsigned bbStkTempsOut;  // base# for output stack temps

#define MAX_XCPTN_INDEX (USHRT_MAX - 1)

    // It would be nice to make bbTryIndex and bbHndIndex private, but there is still code that uses them directly,
    // especially Compiler::fgNewBBinRegion() and friends.

    // index, into the compHndBBtab table, of innermost 'try' clause containing the BB (used for raising exceptions).
    // Stored as index + 1; 0 means "no try index".
    unsigned short bbTryIndex;

    // index, into the compHndBBtab table, of innermost handler (filter, catch, fault/finally) containing the BB.
    // Stored as index + 1; 0 means "no handler index".
    unsigned short bbHndIndex;

    // Given two EH indices that are either bbTryIndex or bbHndIndex (or related), determine if index1 might be more
    // deeply nested than index2. Both index1 and index2 are in the range [0..compHndBBtabCount], where 0 means
    // "main function" and otherwise the value is an index into compHndBBtab[]. Note that "sibling" EH regions will
    // have a numeric index relationship that doesn't indicate nesting, whereas a more deeply nested region must have
    // a lower index than the region it is nested within. Note that if you compare a single block's bbTryIndex and
    // bbHndIndex, there is guaranteed to be a nesting relationship, since that block can't be simultaneously in two
    // sibling EH regions. In that case, "maybe" is actually "definitely".
    static bool ehIndexMaybeMoreNested(unsigned index1, unsigned index2)
    {
        if (index1 == 0)
        {
            // index1 is in the main method. It can't be more deeply nested than index2.
            return false;
        }
        else if (index2 == 0)
        {
            // index1 represents an EH region, whereas index2 is the main method. Thus, index1 is more deeply nested.
            assert(index1 > 0);
            return true;
        }
        else
        {
            // If index1 has a smaller index, it might be more deeply nested than index2.
            assert(index1 > 0);
            assert(index2 > 0);
            return index1 < index2;
        }
    }

    // catch type: class token of handler, or one of BBCT_*. Only set on first block of catch handler.
    unsigned bbCatchTyp;

    bool hasTryIndex() const
    {
        return bbTryIndex != 0;
    }
    bool hasHndIndex() const
    {
        return bbHndIndex != 0;
    }
    unsigned getTryIndex() const
    {
        assert(bbTryIndex != 0);
        return bbTryIndex - 1;
    }
    unsigned getHndIndex() const
    {
        assert(bbHndIndex != 0);
        return bbHndIndex - 1;
    }
    void setTryIndex(unsigned val)
    {
        bbTryIndex = (unsigned short)(val + 1);
        assert(bbTryIndex != 0);
    }
    void setHndIndex(unsigned val)
    {
        bbHndIndex = (unsigned short)(val + 1);
        assert(bbHndIndex != 0);
    }
    void clearTryIndex()
    {
        bbTryIndex = 0;
    }
    void clearHndIndex()
    {
        bbHndIndex = 0;
    }

    void copyEHRegion(const BasicBlock* from)
    {
        bbTryIndex = from->bbTryIndex;
        bbHndIndex = from->bbHndIndex;
    }

    static bool sameTryRegion(const BasicBlock* blk1, const BasicBlock* blk2)
    {
        return blk1->bbTryIndex == blk2->bbTryIndex;
    }
    static bool sameHndRegion(const BasicBlock* blk1, const BasicBlock* blk2)
    {
        return blk1->bbHndIndex == blk2->bbHndIndex;
    }
    static bool sameEHRegion(const BasicBlock* blk1, const BasicBlock* blk2)
    {
        return sameTryRegion(blk1, blk2) && sameHndRegion(blk1, blk2);
    }

// Some non-zero value that will not collide with real tokens for bbCatchTyp
#define BBCT_NONE 0x00000000
#define BBCT_FAULT 0xFFFFFFFC
#define BBCT_FINALLY 0xFFFFFFFD
#define BBCT_FILTER 0xFFFFFFFE
#define BBCT_FILTER_HANDLER 0xFFFFFFFF
#define handlerGetsXcptnObj(hndTyp) ((hndTyp) != BBCT_NONE && (hndTyp) != BBCT_FAULT && (hndTyp) != BBCT_FINALLY)

    // TODO-Cleanup: Get rid of bbStkDepth and use bbStackDepthOnEntry() instead
    union {
        unsigned short bbStkDepth; // stack depth on entry
        unsigned short bbFPinVars; // number of inner enregistered FP vars
    };

    // Basic block predecessor lists. Early in compilation, some phases might need to compute "cheap" predecessor
    // lists. These are stored in bbCheapPreds, computed by fgComputeCheapPreds(). If bbCheapPreds is valid,
    // 'fgCheapPredsValid' will be 'true'. Later, the "full" predecessor lists are created by fgComputePreds(), stored
    // in 'bbPreds', and then maintained throughout compilation. 'fgComputePredsDone' will be 'true' after the
    // full predecessor lists are created. See the comment at fgComputeCheapPreds() to see how those differ from
    // the "full" variant.
    union {
        BasicBlockList* bbCheapPreds; // ptr to list of cheap predecessors (used before normal preds are computed)
        flowList*       bbPreds;      // ptr to list of predecessors
    };

    BlockSet    bbReach; // Set of all blocks that can reach this one
    BasicBlock* bbIDom;  // Represent the closest dominator to this block (called the Immediate
                         // Dominator) used to compute the dominance tree.
    unsigned bbDfsNum;   // The index of this block in DFS reverse post order
                         // relative to the flow graph.

    IL_OFFSET bbCodeOffs;    // IL offset of the beginning of the block
    IL_OFFSET bbCodeOffsEnd; // IL offset past the end of the block. Thus, the [bbCodeOffs..bbCodeOffsEnd)
                             // range is not inclusive of the end offset. The count of IL bytes in the block
                             // is bbCodeOffsEnd - bbCodeOffs, assuming neither are BAD_IL_OFFSET.

#ifdef DEBUG
    void dspBlockILRange(); // Display the block's IL range as [XXX...YYY), where XXX and YYY might be "???" for
                            // BAD_IL_OFFSET.
#endif                      // DEBUG

    VARSET_TP bbVarUse; // variables used     by block (before an assignment)
    VARSET_TP bbVarDef; // variables assigned by block (before a use)

    VARSET_TP bbLiveIn;  // variables live on entry
    VARSET_TP bbLiveOut; // variables live on exit

    // Use, def, live in/out information for the implicit memory variable.
    MemoryKindSet bbMemoryUse : MemoryKindCount; // must be set for any MemoryKinds this block references
    MemoryKindSet bbMemoryDef : MemoryKindCount; // must be set for any MemoryKinds this block mutates
    MemoryKindSet bbMemoryLiveIn : MemoryKindCount;
    MemoryKindSet bbMemoryLiveOut : MemoryKindCount;
    MemoryKindSet bbMemoryHavoc : MemoryKindCount; // If true, at some point the block does an operation
                                                   // that leaves memory in an unknown state. (E.g.,
                                                   // unanalyzed call, store through unknown pointer...)

    // We want to make phi functions for the special implicit var memory.  But since this is not a real
    // lclVar, and thus has no local #, we can't use a GenTreePhiArg.  Instead, we use this struct.
    struct MemoryPhiArg
    {
        unsigned      m_ssaNum;  // SSA# for incoming value.
        MemoryPhiArg* m_nextArg; // Next arg in the list, else NULL.

        unsigned GetSsaNum()
        {
            return m_ssaNum;
        }

        MemoryPhiArg(unsigned ssaNum, MemoryPhiArg* nextArg = nullptr) : m_ssaNum(ssaNum), m_nextArg(nextArg)
        {
        }

        void* operator new(size_t sz, class Compiler* comp);
    };
    static MemoryPhiArg* EmptyMemoryPhiDef; // Special value (0x1, FWIW) to represent a to-be-filled in Phi arg list
                                            // for Heap.
    MemoryPhiArg* bbMemorySsaPhiFunc[MemoryKindCount]; // If the "in" Heap SSA var is not a phi definition, this value
                                                       // is NULL.
    // Otherwise, it is either the special value EmptyMemoryPhiDefn, to indicate
    // that Heap needs a phi definition on entry, or else it is the linked list
    // of the phi arguments.
    unsigned bbMemorySsaNumIn[MemoryKindCount];  // The SSA # of memory on entry to the block.
    unsigned bbMemorySsaNumOut[MemoryKindCount]; // The SSA # of memory on exit from the block.

    VARSET_TP bbScope; // variables in scope over the block

    void InitVarSets(class Compiler* comp);

    /* The following are the standard bit sets for dataflow analysis.
     *  We perform CSE and range-checks at the same time
     *  and assertion propagation separately,
     *  thus we can union them since the two operations are completely disjunct.
     */

    union {
        EXPSET_TP bbCseGen; // CSEs computed by block
#if ASSERTION_PROP
        ASSERT_TP bbAssertionGen; // value assignments computed by block
#endif
    };

    union {
        EXPSET_TP bbCseIn; // CSEs available on entry
#if ASSERTION_PROP
        ASSERT_TP bbAssertionIn; // value assignments available on entry
#endif
    };

    union {
        EXPSET_TP bbCseOut; // CSEs available on exit
#if ASSERTION_PROP
        ASSERT_TP bbAssertionOut; // value assignments available on exit
#endif
    };

    void* bbEmitCookie;

#if FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_)
    void* bbUnwindNopEmitCookie;
#endif // FEATURE_EH_FUNCLETS && defined(_TARGET_ARM_)

#ifdef VERIFIER
    stackDesc bbStackIn;  // stack descriptor for  input
    stackDesc bbStackOut; // stack descriptor for output

    verTypeVal* bbTypesIn;  // list of variable types on  input
    verTypeVal* bbTypesOut; // list of variable types on output
#endif                      // VERIFIER

    /* The following fields used for loop detection */

    typedef unsigned char loopNumber;
    static const unsigned NOT_IN_LOOP = UCHAR_MAX;

#ifdef DEBUG
    // This is the label a loop gets as part of the second, reachability-based
    // loop discovery mechanism.  This is apparently only used for debugging.
    // We hope we'll eventually just have one loop-discovery mechanism, and this will go away.
    loopNumber bbLoopNum; // set to 'n' for a loop #n header
#endif                    // DEBUG

    loopNumber bbNatLoopNum; // Index, in optLoopTable, of most-nested loop that contains this block,
                             // or else NOT_IN_LOOP if this block is not in a loop.

#define MAX_LOOP_NUM 16       // we're using a 'short' for the mask
#define LOOP_MASK_TP unsigned // must be big enough for a mask

//-------------------------------------------------------------------------

#if MEASURE_BLOCK_SIZE
    static size_t s_Size;
    static size_t s_Count;
#endif // MEASURE_BLOCK_SIZE

    bool bbFallsThrough();

    // Our slop fraction is 1/128 of the block weight rounded off
    static weight_t GetSlopFraction(weight_t weightBlk)
    {
        return ((weightBlk + 64) / 128);
    }

    // Given an the edge b1 -> b2, calculate the slop fraction by
    // using the higher of the two block weights
    static weight_t GetSlopFraction(BasicBlock* b1, BasicBlock* b2)
    {
        return GetSlopFraction(max(b1->bbWeight, b2->bbWeight));
    }

#ifdef DEBUG
    unsigned        bbTgtStkDepth; // Native stack depth on entry (for throw-blocks)
    static unsigned s_nMaxTrees;   // The max # of tree nodes in any BB

    unsigned bbStmtNum; // The statement number of the first stmt in this block

    // This is used in integrity checks.  We semi-randomly pick a traversal stamp, label all blocks
    // in the BB list with that stamp (in this field); then we can tell if (e.g.) predecessors are
    // still in the BB list by whether they have the same stamp (with high probability).
    unsigned bbTraversalStamp;
    unsigned bbID;
#endif // DEBUG

    ThisInitState bbThisOnEntry();
    unsigned      bbStackDepthOnEntry();
    void bbSetStack(void* stackBuffer);
    StackEntry* bbStackOnEntry();
    void        bbSetRunRarely();

    // "bbNum" is one-based (for unknown reasons); it is sometimes useful to have the corresponding
    // zero-based number for use as an array index.
    unsigned bbInd()
    {
        assert(bbNum > 0);
        return bbNum - 1;
    }

    GenTreeStmt* firstStmt() const;
    GenTreeStmt* lastStmt() const;

    GenTree* firstNode();
    GenTree* lastNode();

    bool endsWithJmpMethod(Compiler* comp);

    bool endsWithTailCall(Compiler* comp,
                          bool      fastTailCallsOnly,
                          bool      tailCallsConvertibleToLoopOnly,
                          GenTree** tailCall);

    bool endsWithTailCallOrJmp(Compiler* comp, bool fastTailCallsOnly = false);

    bool endsWithTailCallConvertibleToLoop(Compiler* comp, GenTree** tailCall);

    // Returns the first statement in the statement list of "this" that is
    // not an SSA definition (a lcl = phi(...) assignment).
    GenTreeStmt* FirstNonPhiDef();
    GenTree*     FirstNonPhiDefOrCatchArgAsg();

    BasicBlock() : bbLiveIn(VarSetOps::UninitVal()), bbLiveOut(VarSetOps::UninitVal())
    {
    }

    // Iteratable collection of successors of a block.
    template <typename TPosition>
    class Successors
    {
        Compiler*   m_comp;
        BasicBlock* m_block;

    public:
        Successors(Compiler* comp, BasicBlock* block) : m_comp(comp), m_block(block)
        {
        }

        class iterator
        {
            Compiler*   m_comp;
            BasicBlock* m_block;
            TPosition   m_pos;

        public:
            iterator(Compiler* comp, BasicBlock* block) : m_comp(comp), m_block(block), m_pos(comp, block)
            {
            }

            iterator() : m_pos()
            {
            }

            void operator++(void)
            {
                m_pos.Advance(m_comp, m_block);
            }

            BasicBlock* operator*()
            {
                return m_pos.Current(m_comp, m_block);
            }

            bool operator==(const iterator& other)
            {
                return m_pos == other.m_pos;
            }

            bool operator!=(const iterator& other)
            {
                return m_pos != other.m_pos;
            }
        };

        iterator begin()
        {
            return iterator(m_comp, m_block);
        }

        iterator end()
        {
            return iterator();
        }
    };

    Successors<EHSuccessorIterPosition> GetEHSuccs(Compiler* comp)
    {
        return Successors<EHSuccessorIterPosition>(comp, this);
    }

    Successors<AllSuccessorIterPosition> GetAllSuccs(Compiler* comp)
    {
        return Successors<AllSuccessorIterPosition>(comp, this);
    }

    // Try to clone block state and statements from `from` block to `to` block (which must be new/empty),
    // optionally replacing uses of local `varNum` with IntCns `varVal`.  Return true if all statements
    // in the block are cloned successfully, false (with partially-populated `to` block) if one fails.
    static bool CloneBlockState(
        Compiler* compiler, BasicBlock* to, const BasicBlock* from, unsigned varNum = (unsigned)-1, int varVal = 0);

    void MakeLIR(GenTree* firstNode, GenTree* lastNode);
    bool IsLIR();

    void SetDominatedByExceptionalEntryFlag()
    {
        bbFlags |= BBF_DOMINATED_BY_EXCEPTIONAL_ENTRY;
    }

    bool IsDominatedByExceptionalEntryFlag()
    {
        return (bbFlags & BBF_DOMINATED_BY_EXCEPTIONAL_ENTRY) != 0;
    }
};

template <>
struct JitPtrKeyFuncs<BasicBlock> : public JitKeyFuncsDefEquals<const BasicBlock*>
{
public:
    // Make sure hashing is deterministic and not on "ptr."
    static unsigned GetHashCode(const BasicBlock* ptr);
};

// A set of blocks.
typedef JitHashTable<BasicBlock*, JitPtrKeyFuncs<BasicBlock>, bool> BlkSet;

// A vector of blocks.
typedef jitstd::vector<BasicBlock*> BlkVector;

// A map of block -> set of blocks, can be used as sparse block trees.
typedef JitHashTable<BasicBlock*, JitPtrKeyFuncs<BasicBlock>, BlkSet*> BlkToBlkSetMap;

// A map of block -> vector of blocks, can be used as sparse block trees.
typedef JitHashTable<BasicBlock*, JitPtrKeyFuncs<BasicBlock>, BlkVector> BlkToBlkVectorMap;

// Map from Block to Block.  Used for a variety of purposes.
typedef JitHashTable<BasicBlock*, JitPtrKeyFuncs<BasicBlock>, BasicBlock*> BlockToBlockMap;

// In compiler terminology the control flow between two BasicBlocks
// is typically referred to as an "edge".  Most well known are the
// backward branches for loops, which are often called "back-edges".
//
// "struct flowList" is the type that represents our control flow edges.
// This type is a linked list of zero or more "edges".
// (The list of zero edges is represented by NULL.)
// Every BasicBlock has a field called bbPreds of this type.  This field
// represents the list of "edges" that flow into this BasicBlock.
// The flowList type only stores the BasicBlock* of the source for the
// control flow edge.  The destination block for the control flow edge
// is implied to be the block which contained the bbPreds field.
//
// For a switch branch target there may be multiple "edges" that have
// the same source block (and destination block).  We need to count the
// number of these edges so that during optimization we will know when
// we have zero of them.  Rather than have extra flowList entries we
// increment the flDupCount field.
//
// When we have Profile weight for the BasicBlocks we can usually compute
// the number of times each edge was executed by examining the adjacent
// BasicBlock weights.  As we are doing for BasicBlocks, we call the number
// of times that a control flow edge was executed the "edge weight".
// In order to compute the edge weights we need to use a bounded range
// for every edge weight. These two fields, 'flEdgeWeightMin' and 'flEdgeWeightMax'
// are used to hold a bounded range.  Most often these will converge such
// that both values are the same and that value is the exact edge weight.
// Sometimes we are left with a rage of possible values between [Min..Max]
// which represents an inexact edge weight.
//
// The bbPreds list is initially created by Compiler::fgComputePreds()
// and is incrementally kept up to date.
//
// The edge weight are computed by Compiler::fgComputeEdgeWeights()
// the edge weights are used to straighten conditional branches
// by Compiler::fgReorderBlocks()
//
// We have a simpler struct, BasicBlockList, which is simply a singly-linked
// list of blocks. This is used for various purposes, but one is as a "cheap"
// predecessor list, computed by fgComputeCheapPreds(), and stored as a list
// on BasicBlock pointed to by bbCheapPreds.

struct BasicBlockList
{
    BasicBlockList* next;  // The next BasicBlock in the list, nullptr for end of list.
    BasicBlock*     block; // The BasicBlock of interest.

    BasicBlockList() : next(nullptr), block(nullptr)
    {
    }

    BasicBlockList(BasicBlock* blk, BasicBlockList* rest) : next(rest), block(blk)
    {
    }
};

struct flowList
{
    flowList*   flNext;  // The next BasicBlock in the list, nullptr for end of list.
    BasicBlock* flBlock; // The BasicBlock of interest.

    BasicBlock::weight_t flEdgeWeightMin;
    BasicBlock::weight_t flEdgeWeightMax;

    unsigned flDupCount; // The count of duplicate "edges" (use only for switch stmts)

    // These two methods are used to set new values for flEdgeWeightMin and flEdgeWeightMax
    // they are used only during the computation of the edge weights
    // They return false if the newWeight is not between the current [min..max]
    // when slop is non-zero we allow for the case where our weights might be off by 'slop'
    //
    bool setEdgeWeightMinChecked(BasicBlock::weight_t newWeight, BasicBlock::weight_t slop, bool* wbUsedSlop);
    bool setEdgeWeightMaxChecked(BasicBlock::weight_t newWeight, BasicBlock::weight_t slop, bool* wbUsedSlop);

    flowList() : flNext(nullptr), flBlock(nullptr), flEdgeWeightMin(0), flEdgeWeightMax(0), flDupCount(0)
    {
    }

    flowList(BasicBlock* blk, flowList* rest)
        : flNext(rest), flBlock(blk), flEdgeWeightMin(0), flEdgeWeightMax(0), flDupCount(0)
    {
    }
};

// This enum represents a pre/post-visit action state to emulate a depth-first
// spanning tree traversal of a tree or graph.
enum DfsStackState
{
    DSS_Invalid, // The initialized, invalid error state
    DSS_Pre,     // The DFS pre-order (first visit) traversal state
    DSS_Post     // The DFS post-order (last visit) traversal state
};

// These structs represents an entry in a stack used to emulate a non-recursive
// depth-first spanning tree traversal of a graph. The entry contains either a
// block pointer or a block number depending on which is more useful.
struct DfsBlockEntry
{
    DfsStackState dfsStackState; // The pre/post traversal action for this entry
    BasicBlock*   dfsBlock;      // The corresponding block for the action

    DfsBlockEntry() : dfsStackState(DSS_Invalid), dfsBlock(nullptr)
    {
    }

    DfsBlockEntry(DfsStackState state, BasicBlock* basicBlock) : dfsStackState(state), dfsBlock(basicBlock)
    {
    }
};

struct DfsNumEntry
{
    DfsStackState dfsStackState; // The pre/post traversal action for this entry
    unsigned      dfsNum;        // The corresponding block number for the action

    DfsNumEntry() : dfsStackState(DSS_Invalid), dfsNum(0)
    {
    }

    DfsNumEntry(DfsStackState state, unsigned bbNum) : dfsStackState(state), dfsNum(bbNum)
    {
    }
};

/*****************************************************************************/

extern BasicBlock* __cdecl verAllocBasicBlock();

#ifdef DEBUG
extern void __cdecl verDispBasicBlocks();
#endif

/*****************************************************************************
 *
 *  The following call-backs supplied by the client; it's used by the code
 *  emitter to convert a basic block to its corresponding emitter cookie.
 */

void* emitCodeGetCookie(BasicBlock* block);

AllSuccessorIterPosition::AllSuccessorIterPosition(Compiler* comp, BasicBlock* block)
    : m_numNormSuccs(block->NumSucc(comp)), m_remainingNormSucc(m_numNormSuccs), m_ehIter(comp, block)
{
    if (CurTryIsBlkCallFinallyTarget(comp, block))
    {
        m_ehIter.Advance(comp, block);
    }
}

bool AllSuccessorIterPosition::CurTryIsBlkCallFinallyTarget(Compiler* comp, BasicBlock* block)
{
    return (block->bbJumpKind == BBJ_CALLFINALLY) && (m_ehIter != EHSuccessorIterPosition()) &&
           (block->bbJumpDest == m_ehIter.Current(comp, block));
}

void AllSuccessorIterPosition::Advance(Compiler* comp, BasicBlock* block)
{
    if (m_remainingNormSucc > 0)
    {
        m_remainingNormSucc--;
    }
    else
    {
        m_ehIter.Advance(comp, block);

        // If the original block whose successors we're iterating over
        // is a BBJ_CALLFINALLY, that finally clause's first block
        // will be yielded as a normal successor.  Don't also yield as
        // an exceptional successor.
        if (CurTryIsBlkCallFinallyTarget(comp, block))
        {
            m_ehIter.Advance(comp, block);
        }
    }
}

// Requires that "this" is not equal to the standard "end" iterator.  Returns the
// current successor.
BasicBlock* AllSuccessorIterPosition::Current(Compiler* comp, BasicBlock* block)
{
    if (m_remainingNormSucc > 0)
    {
        return block->GetSucc(m_numNormSuccs - m_remainingNormSucc, comp);
    }
    else
    {
        return m_ehIter.Current(comp, block);
    }
}

typedef BasicBlock::Successors<EHSuccessorIterPosition>::iterator  EHSuccessorIter;
typedef BasicBlock::Successors<AllSuccessorIterPosition>::iterator AllSuccessorIter;

// An enumerator of a block's all successors. In some cases (e.g. SsaBuilder::TopologicalSort)
// using iterators is not exactly efficient, at least because they contain an unnecessary
// member - a pointer to the Compiler object.
class AllSuccessorEnumerator
{
    BasicBlock*              m_block;
    AllSuccessorIterPosition m_pos;

public:
    // Needed only because ArrayStack is broken - its built-in storage is such
    // that it default constructs elements that do not actually exist.
    AllSuccessorEnumerator() : m_block(nullptr), m_pos()
    {
    }

    // Constructs an enumerator of all `block`'s successors.
    AllSuccessorEnumerator(Compiler* comp, BasicBlock* block) : m_block(block), m_pos(comp, block)
    {
    }

    // Gets the block whose successors are enumerated.
    BasicBlock* Block()
    {
        return m_block;
    }

    // Returns true if the next successor is an EH successor.
    bool IsNextEHSuccessor()
    {
        return m_pos.IsCurrentEH();
    }

    // Returns the next available successor or `nullptr` if there are no more successors.
    BasicBlock* NextSuccessor(Compiler* comp)
    {
        if (!m_pos.HasCurrent())
        {
            return nullptr;
        }

        BasicBlock* succ = m_pos.Current(comp, m_block);
        m_pos.Advance(comp, m_block);
        return succ;
    }
};

/*****************************************************************************/
#endif // _BLOCK_H_
/*****************************************************************************/