summaryrefslogtreecommitdiff
path: root/src/inc/volatile.h
blob: fa756ef05191ee2a5a3dcca08aff744313a1700c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
//
// Volatile.h
// 

// 
// Defines the Volatile<T> type, which provides uniform volatile-ness on
// Visual C++ and GNU C++.
// 
// Visual C++ treats accesses to volatile variables as follows: no read or write
// can be removed by the compiler, no global memory access can be moved backwards past
// a volatile read, and no global memory access can be moved forward past a volatile
// write.
// 
// The GCC volatile semantic is straight out of the C standard: the compiler is not 
// allowed to remove accesses to volatile variables, and it is not allowed to reorder 
// volatile accesses relative to other volatile accesses.  It is allowed to freely 
// reorder non-volatile accesses relative to volatile accesses.
//
// We have lots of code that assumes that ordering of non-volatile accesses will be 
// constrained relative to volatile accesses.  For example, this pattern appears all 
// over the place:
//
//     static volatile int lock = 0;
//
//     while (InterlockedCompareExchange(&lock, 0, 1)) 
//     {
//         //spin
//     }
//                
//     //read and write variables protected by the lock
//
//     lock = 0;
//
// This depends on the reads and writes in the critical section not moving past the 
// final statement, which releases the lock.  If this should happen, then you have an 
// unintended race.
// 
// The solution is to ban the use of the "volatile" keyword, and instead define our
// own type Volatile<T>, which acts like a variable of type T except that accesses to
// the variable are always given VC++'s volatile semantics.
// 
// (NOTE: The code above is not intended to be an example of how a spinlock should be 
// implemented; it has many flaws, and should not be used. This code is intended only 
// to illustrate where we might get into trouble with GCC's volatile semantics.)
// 
// @TODO: many of the variables marked volatile in the CLR do not actually need to be 
// volatile.  For example, if a variable is just always passed to Interlocked functions
// (such as a refcount variable), there is no need for it to be volatile.  A future 
// cleanup task should be to examine each volatile variable and make them non-volatile
// if possible.
// 
// @TODO: link to a "Memory Models for CLR Devs" doc here (this doc does not yet exist).
//

#ifndef _VOLATILE_H_
#define _VOLATILE_H_

#include "staticcontract.h"

//
// This code is extremely compiler- and CPU-specific, and will need to be altered to 
// support new compilers and/or CPUs.  Here we enforce that we can only compile using
// VC++, or GCC on x86 or AMD64.
// 
#if !defined(_MSC_VER) && !defined(__GNUC__)
#error The Volatile type is currently only defined for Visual C++ and GNU C++
#endif

#if defined(__GNUC__) && !defined(_X86_) && !defined(_AMD64_) && !defined(_ARM_) && !defined(_ARM64_)
#error The Volatile type is currently only defined for GCC when targeting x86, AMD64, ARM or ARM64 CPUs
#endif

#if defined(__GNUC__)
#if defined(_ARM_) || defined(_ARM64_)
// This is functionally equivalent to the MemoryBarrier() macro used on ARM on Windows.
#define VOLATILE_MEMORY_BARRIER() asm volatile ("dmb ish" : : : "memory")
#else
//
// For GCC, we prevent reordering by the compiler by inserting the following after a volatile
// load (to prevent subsequent operations from moving before the read), and before a volatile 
// write (to prevent prior operations from moving past the write).  We don't need to do anything
// special to prevent CPU reorderings, because the x86 and AMD64 architectures are already
// sufficiently constrained for our purposes.  If we ever need to run on weaker CPU architectures
// (such as PowerPC), then we will need to do more work.
// 
// Please do not use this macro outside of this file.  It is subject to change or removal without
// notice.
//
#define VOLATILE_MEMORY_BARRIER() asm volatile ("" : : : "memory")
#endif // _ARM_ || _ARM64_
#elif (defined(_ARM_) || defined(_ARM64_)) && _ISO_VOLATILE
// ARM & ARM64 have a very weak memory model and very few tools to control that model. We're forced to perform a full
// memory barrier to preserve the volatile semantics. Technically this is only necessary on MP systems but we
// currently don't have a cheap way to determine the number of CPUs from this header file. Revisit this if it
// turns out to be a performance issue for the uni-proc case.
#define VOLATILE_MEMORY_BARRIER() MemoryBarrier()
#else
//
// On VC++, reorderings at the compiler and machine level are prevented by the use of the 
// "volatile" keyword in VolatileLoad and VolatileStore.  This should work on any CPU architecture
// targeted by VC++ with /iso_volatile-.
//
#define VOLATILE_MEMORY_BARRIER()
#endif // __GNUC__

template<typename T>
struct RemoveVolatile
{
   typedef T type;
};

template<typename T>
struct RemoveVolatile<volatile T>
{
   typedef T type;
};


//
// VolatileLoad loads a T from a pointer to T.  It is guaranteed that this load will not be optimized
// away by the compiler, and that any operation that occurs after this load, in program order, will
// not be moved before this load.  In general it is not guaranteed that the load will be atomic, though
// this is the case for most aligned scalar data types.  If you need atomic loads or stores, you need
// to consult the compiler and CPU manuals to find which circumstances allow atomicity.
//
// Starting at version 3.8, clang errors out on initializing of type int * to volatile int *. To fix this, we add two templates to cast away volatility
// Helper structures for casting away volatileness


template<typename T>
inline
T VolatileLoad(T const * pt)
{
    STATIC_CONTRACT_SUPPORTS_DAC_HOST_ONLY;

#ifndef DACCESS_COMPILE
#if defined(_ARM64_) && defined(__GNUC__)
    T val;
    static const unsigned lockFreeAtomicSizeMask = (1 << 1) | (1 << 2) | (1 << 4) | (1 << 8);
    if((1 << sizeof(T)) & lockFreeAtomicSizeMask)
    {
        __atomic_load((T const *)pt, const_cast<typename RemoveVolatile<T>::type *>(&val), __ATOMIC_ACQUIRE);
    }
    else
    {
        val = *(T volatile const *)pt;
        asm volatile ("dmb ishld" : : : "memory");
    }
#else
    T val = *(T volatile const *)pt;
    VOLATILE_MEMORY_BARRIER();
#endif
#else
    T val = *pt;
#endif
    return val;
}

template<typename T>
inline
T VolatileLoadWithoutBarrier(T const * pt)
{
    STATIC_CONTRACT_SUPPORTS_DAC_HOST_ONLY;

#ifndef DACCESS_COMPILE
    T val = *(T volatile const *)pt;
#else
    T val = *pt;
#endif
    return val;
}

template <typename T> class Volatile;

template<typename T>
inline
T VolatileLoad(Volatile<T> const * pt)
{
    STATIC_CONTRACT_SUPPORTS_DAC;
    return pt->Load();
}

//
// VolatileStore stores a T into the target of a pointer to T.  Is is guaranteed that this store will
// not be optimized away by the compiler, and that any operation that occurs before this store, in program
// order, will not be moved after this store.  In general, it is not guaranteed that the store will be
// atomic, though this is the case for most aligned scalar data types.  If you need atomic loads or stores,
// you need to consult the compiler and CPU manuals to find which circumstances allow atomicity.
//
template<typename T>
inline
void VolatileStore(T* pt, T val)
{
    STATIC_CONTRACT_SUPPORTS_DAC_HOST_ONLY;

#ifndef DACCESS_COMPILE
#if defined(_ARM64_) && defined(__GNUC__)
    static const unsigned lockFreeAtomicSizeMask = (1 << 1) | (1 << 2) | (1 << 4) | (1 << 8);
    if((1 << sizeof(T)) & lockFreeAtomicSizeMask)
    {
        __atomic_store((T volatile *)pt, &val, __ATOMIC_RELEASE);
    }
    else
    {
        VOLATILE_MEMORY_BARRIER();
        *(T volatile *)pt = val;
    }
#else
    VOLATILE_MEMORY_BARRIER();
    *(T volatile *)pt = val;
#endif
#else
    *pt = val;
#endif
}

template<typename T>
inline
void VolatileStoreWithoutBarrier(T* pt, T val)
{
    STATIC_CONTRACT_SUPPORTS_DAC_HOST_ONLY;

#ifndef DACCESS_COMPILE
    *(T volatile *)pt = val;
#else
    *pt = val;
#endif
}

//
// Volatile<T> implements accesses with our volatile semantics over a variable of type T.
// Wherever you would have used a "volatile Foo" or, equivalently, "Foo volatile", use Volatile<Foo> 
// instead.  If Foo is a pointer type, use VolatilePtr.
// 
// Note that there are still some things that don't work with a Volatile<T>,
// that would have worked with a "volatile T".  For example, you can't cast a Volatile<int> to a float.
// You must instead cast to an int, then to a float.  Or you can call Load on the Volatile<int>, and
// cast the result to a float.  In general, calling Load or Store explicitly will work around 
// any problems that can't be solved by operator overloading.
// 
// @TODO: it's not clear that we actually *want* any operator overloading here.  It's in here primarily
// to ease the task of converting all of the old uses of the volatile keyword, but in the long
// run it's probably better if users of this class are forced to call Load() and Store() explicitly.
// This would make it much more clear where the memory barriers are, and which operations are actually
// being performed, but it will have to wait for another cleanup effort.
//
template <typename T>
class Volatile
{
private:
    //
    // The data which we are treating as volatile
    //
    T m_val;

public:
    //
    // Default constructor.  Results in an unitialized value!
    //
    inline Volatile() 
    {
        STATIC_CONTRACT_SUPPORTS_DAC;
    }

    //
    // Allow initialization of Volatile<T> from a T
    //
    inline Volatile(const T& val) 
    {
        STATIC_CONTRACT_SUPPORTS_DAC;
        ((volatile T &)m_val) = val;
    }

    //
    // Copy constructor
    //
    inline Volatile(const Volatile<T>& other)
    {
        STATIC_CONTRACT_SUPPORTS_DAC;
        ((volatile T &)m_val) = other.Load();
    }

    //
    // Loads the value of the volatile variable.  See code:VolatileLoad for the semantics of this operation.
    //
    inline T Load() const
    {
        STATIC_CONTRACT_SUPPORTS_DAC;
        return VolatileLoad(&m_val);
    }

    //
    // Loads the value of the volatile variable atomically without erecting the memory barrier.
    //
    inline T LoadWithoutBarrier() const
    {
        STATIC_CONTRACT_SUPPORTS_DAC;
        return ((volatile T &)m_val);
    }

    //
    // Stores a new value to the volatile variable.  See code:VolatileStore for the semantics of this
    // operation.
    //
    inline void Store(const T& val) 
    {
        STATIC_CONTRACT_SUPPORTS_DAC;
        VolatileStore(&m_val, val);
    }


    //
    // Stores a new value to the volatile variable atomically without erecting the memory barrier.
    //
    inline void StoreWithoutBarrier(const T& val) const
    {
        STATIC_CONTRACT_SUPPORTS_DAC;
        ((volatile T &)m_val) = val;
    }


    //
    // Gets a pointer to the volatile variable.  This is dangerous, as it permits the variable to be
    // accessed without using Load and Store, but it is necessary for passing Volatile<T> to APIs like
    // InterlockedIncrement.
    //
    inline volatile T* GetPointer() { return (volatile T*)&m_val; }


    //
    // Gets the raw value of the variable.  This is dangerous, as it permits the variable to be
    // accessed without using Load and Store
    //
    inline T& RawValue() { return m_val; }

    //
    // Allow casts from Volatile<T> to T.  Note that this allows implicit casts, so you can
    // pass a Volatile<T> directly to a method that expects a T.
    //
    inline operator T() const 
    {
        STATIC_CONTRACT_SUPPORTS_DAC;
        return this->Load();
    }

    //
    // Assignment from T
    //
    inline Volatile<T>& operator=(T val) {Store(val); return *this;}

    //
    // Get the address of the volatile variable.  This is dangerous, as it allows the value of the 
    // volatile variable to be accessed directly, without going through Load and Store, but it is
    // necessary for passing Volatile<T> to APIs like InterlockedIncrement.  Note that we are returning
    // a pointer to a volatile T here, so we cannot accidentally pass this pointer to an API that 
    // expects a normal pointer.
    //
    inline T volatile * operator&() {return this->GetPointer();}
    inline T volatile const * operator&() const {return this->GetPointer();}

    //
    // Comparison operators
    //
    template<typename TOther>
    inline bool operator==(const TOther& other) const {return this->Load() == other;}

    template<typename TOther>
    inline bool operator!=(const TOther& other) const {return this->Load() != other;}

    //
    // Miscellaneous operators.  Add more as necessary.
    //
	inline Volatile<T>& operator+=(T val) {Store(this->Load() + val); return *this;}
	inline Volatile<T>& operator-=(T val) {Store(this->Load() - val); return *this;}
    inline Volatile<T>& operator|=(T val) {Store(this->Load() | val); return *this;}
    inline Volatile<T>& operator&=(T val) {Store(this->Load() & val); return *this;}
    inline bool operator!() const { STATIC_CONTRACT_SUPPORTS_DAC; return !this->Load();}

    //
    // Prefix increment
    //
    inline Volatile& operator++() {this->Store(this->Load()+1); return *this;}

    //
    // Postfix increment
    //
    inline T operator++(int) {T val = this->Load(); this->Store(val+1); return val;}

    //
    // Prefix decrement
    //
    inline Volatile& operator--() {this->Store(this->Load()-1); return *this;}

    //
    // Postfix decrement
    //
    inline T operator--(int) {T val = this->Load(); this->Store(val-1); return val;}
};

//
// A VolatilePtr builds on Volatile<T> by adding operators appropriate to pointers.
// Wherever you would have used "Foo * volatile", use "VolatilePtr<Foo>" instead.
// 
// VolatilePtr also allows the substution of other types for the underlying pointer.  This
// allows you to wrap a VolatilePtr around a custom type that looks like a pointer.  For example,
// if what you want is a "volatile DPTR<Foo>", use "VolatilePtr<Foo, DPTR<Foo>>".
//
template <typename T, typename P = T*>
class VolatilePtr : public Volatile<P>
{
public:
    //
    // Default constructor.  Results in an uninitialized pointer!
    //
    inline VolatilePtr() 
    {
        STATIC_CONTRACT_SUPPORTS_DAC;
    }

    //
    // Allow assignment from the pointer type.
    //
    inline VolatilePtr(P val) : Volatile<P>(val) 
    {
        STATIC_CONTRACT_SUPPORTS_DAC;
    }

    //
    // Copy constructor
    //
    inline VolatilePtr(const VolatilePtr& other) : Volatile<P>(other) 
    {
        STATIC_CONTRACT_SUPPORTS_DAC;
    }

    //
    // Cast to the pointer type
    //
    inline operator P() const 
    {
        STATIC_CONTRACT_SUPPORTS_DAC;
        return (P)this->Load();
    }

    //
    // Member access
    //
    inline P operator->() const 
    {
        STATIC_CONTRACT_SUPPORTS_DAC;
        return (P)this->Load();
    }

    //
    // Dereference the pointer
    //
    inline T& operator*() const 
    {
        STATIC_CONTRACT_SUPPORTS_DAC;
        return *(P)this->Load();
    }

    //
    // Access the pointer as an array
    //
    template <typename TIndex>
    inline T& operator[](TIndex index) 
    {
        STATIC_CONTRACT_SUPPORTS_DAC;
        return ((P)this->Load())[index];
    }
};

//
// From here on out, we ban the use of the "volatile" keyword.  If you found this while trying to define
// a volatile variable, go to the top of this file and start reading.
//
#ifdef volatile
#undef volatile
#endif
// ***** Temporarily removing this to unblock integration with new VC++ bits
//#define volatile (DoNotUseVolatileKeyword) volatile

// The substitution for volatile above is defined in such a way that we can still explicitly access the
// volatile keyword without error using the macros below. Use with care.
//#define REMOVE_DONOTUSE_ERROR(x)
//#define RAW_KEYWORD(x) REMOVE_DONOTUSE_ERROR x
#define RAW_KEYWORD(x) x

#ifdef DACCESS_COMPILE
// No need to use volatile in DAC builds - DAC is single-threaded and the target
// process is suspended.
#define VOLATILE(T) T
#else

// Disable use of Volatile<T> for GC/HandleTable code except on platforms where it's absolutely necessary.
#if defined(_MSC_VER) && !defined(_ARM_) && !defined(_ARM64_)
#define VOLATILE(T) T RAW_KEYWORD(volatile)
#else
#define VOLATILE(T) Volatile<T>
#endif

#endif // DACCESS_COMPILE

// VolatilePtr-specific clr::SafeAddRef and clr::SafeRelease
namespace clr
{
    template < typename ItfT, typename PtrT > inline
    #ifdef __checkReturn // Volatile.h is used in corunix headers, which don't define/nullify SAL.
        __checkReturn
    #endif
    VolatilePtr<ItfT, PtrT>&
    SafeAddRef(VolatilePtr<ItfT, PtrT>& pItf)
    {
        STATIC_CONTRACT_LIMITED_METHOD;
        SafeAddRef(pItf.Load());
        return pItf;
    }

    template < typename ItfT, typename PtrT > inline
    ULONG
    SafeRelease(VolatilePtr<ItfT, PtrT>& pItf)
    {
        STATIC_CONTRACT_LIMITED_METHOD;
        return SafeRelease(pItf.Load());
    }
}

#endif //_VOLATILE_H_