summaryrefslogtreecommitdiff
path: root/src/gc/gcpriv.h
blob: 78d4e93d7e3ae1451aa4c0a6631d948d13796ed9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE file in the project root for full license information.
//
// optimize for speed


#ifndef _DEBUG
#ifdef _MSC_VER
#pragma optimize( "t", on )
#endif
#endif
#define inline __forceinline

#include "gc.h"

//#define DT_LOG

#include "gcrecord.h"

#ifdef _MSC_VER
#pragma warning(disable:4293)
#pragma warning(disable:4477)
#endif //_MSC_VER

inline void FATAL_GC_ERROR()
{
    DebugBreak();
    _ASSERTE(!"Fatal Error in GC.");
    EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE);
}

#ifdef _MSC_VER
#pragma inline_depth(20)
#endif

/* the following section defines the optional features */

// FEATURE_STRUCTALIGN was added by Midori. In CLR we are not interested
// in supporting custom alignments on LOH. Currently FEATURE_LOH_COMPACTION
// and FEATURE_STRUCTALIGN are mutually exclusive. It shouldn't be much 
// work to make FEATURE_STRUCTALIGN not apply to LOH so they can be both
// turned on.
#define FEATURE_LOH_COMPACTION

#ifdef FEATURE_64BIT_ALIGNMENT
// We need the following feature as part of keeping 64-bit types aligned in the GC heap.
#define RESPECT_LARGE_ALIGNMENT //used to keep "double" objects aligned during
                                //relocation
#endif //FEATURE_64BIT_ALIGNMENT

#define SHORT_PLUGS //used to keep ephemeral plugs short so they fit better into the oldest generation free items

#ifdef SHORT_PLUGS
#define DESIRED_PLUG_LENGTH (1000)
#endif //SHORT_PLUGS

#define FEATURE_PREMORTEM_FINALIZATION
#define GC_HISTORY

#ifndef FEATURE_REDHAWK
#define HEAP_ANALYZE
#define COLLECTIBLE_CLASS
#endif // !FEATURE_REDHAWK

#ifdef HEAP_ANALYZE
#define initial_internal_roots        (1024*16)
#endif // HEAP_ANALYZE

#define MARK_LIST         //used sorted list to speed up plan phase

#define BACKGROUND_GC   //concurrent background GC (requires WRITE_WATCH)

#ifdef SERVER_GC
#define MH_SC_MARK //scalable marking
//#define SNOOP_STATS //diagnostic
#define PARALLEL_MARK_LIST_SORT //do the sorting and merging of the multiple mark lists in server gc in parallel
#endif //SERVER_GC

//This is used to mark some type volatile only when the scalable marking is used. 
#if defined (SERVER_GC) && defined (MH_SC_MARK)
#define SERVER_SC_MARK_VOLATILE(x) VOLATILE(x)
#else //SERVER_GC&&MH_SC_MARK
#define SERVER_SC_MARK_VOLATILE(x) x
#endif //SERVER_GC&&MH_SC_MARK

//#define MULTIPLE_HEAPS         //Allow multiple heaps for servers

#define INTERIOR_POINTERS   //Allow interior pointers in the code manager

#define CARD_BUNDLE         //enable card bundle feature.(requires WRITE_WATCH)

// If this is defined we use a map for segments in order to find the heap for 
// a segment fast. But it does use more memory as we have to cover the whole
// heap range and for each entry we allocate a struct of 5 ptr-size words
// (3 for WKS as there's only one heap). 
#define SEG_MAPPING_TABLE

// If allocating the heap mapping table for the available VA consumes too
// much memory, you can enable this to allocate only the portion that
// corresponds to rw segments and grow it when needed in grow_brick_card_table.
// However in heap_of you will need to always compare the address with
// g_lowest/highest before you can look at the heap mapping table.
#define GROWABLE_SEG_MAPPING_TABLE

#ifdef BACKGROUND_GC
#define MARK_ARRAY      //Mark bit in an array
#endif //BACKGROUND_GC

#if defined(BACKGROUND_GC) || defined (CARD_BUNDLE)
#define WRITE_WATCH     //Write Watch feature
#endif //BACKGROUND_GC || CARD_BUNDLE

#ifdef WRITE_WATCH
#define array_size 100
#endif //WRITE_WATCH

//#define SHORT_PLUGS           //keep plug short

#define FFIND_OBJECT        //faster find_object, slower allocation
#define FFIND_DECAY  7      //Number of GC for which fast find will be active

//#define NO_WRITE_BARRIER  //no write barrier, use Write Watch feature

//#define DEBUG_WRITE_WATCH //Additional debug for write watch

//#define STRESS_PINNING    //Stress pinning by pinning randomly

//#define TRACE_GC          //debug trace gc operation
//#define SIMPLE_DPRINTF

//#define CATCH_GC          //catches exception during GC

//#define TIME_GC           //time allocation and garbage collection
//#define TIME_WRITE_WATCH  //time GetWriteWatch and ResetWriteWatch calls
//#define COUNT_CYCLES  //Use cycle counter for timing
//#define JOIN_STATS         //amount of time spent in the join
//also, see TIME_SUSPEND in switches.h.

//#define SYNCHRONIZATION_STATS
//#define SEG_REUSE_STATS

#if defined (SYNCHRONIZATION_STATS) || defined (STAGE_STATS)
#define BEGIN_TIMING(x) \
    LARGE_INTEGER x##_start; \
    QueryPerformanceCounter (&x##_start)

#define END_TIMING(x) \
    LARGE_INTEGER x##_end; \
    QueryPerformanceCounter (&x##_end); \
    x += x##_end.QuadPart - x##_start.QuadPart

#else
#define BEGIN_TIMING(x)
#define END_TIMING(x)
#define BEGIN_TIMING_CYCLES(x)
#define END_TIMING_CYCLES(x)
#endif //SYNCHRONIZATION_STATS || STAGE_STATS

#define NO_CATCH_HANDLERS  //to debug gc1, remove the catch handlers

/* End of optional features */

#ifdef GC_CONFIG_DRIVEN
void GCLogConfig (const char *fmt, ... );
#define cprintf(x) {GCLogConfig x;}
#endif //GC_CONFIG_DRIVEN

#ifdef _DEBUG
#define TRACE_GC
#endif

#define NUMBERGENERATIONS   4               //Max number of generations

// For the bestfit algorithm when we relocate ephemeral generations into an 
// existing gen2 segment.
// We recorded sizes from 2^6, 2^7, 2^8...up to 2^30 (1GB). So that's 25 sizes total.
#define MIN_INDEX_POWER2 6

#ifdef SERVER_GC

#ifdef BIT64
#define MAX_INDEX_POWER2 30
#else
#define MAX_INDEX_POWER2 26
#endif  // BIT64

#else //SERVER_GC

#ifdef BIT64
#define MAX_INDEX_POWER2 28
#else
#define MAX_INDEX_POWER2 24
#endif  // BIT64

#endif //SERVER_GC

#define MAX_NUM_BUCKETS (MAX_INDEX_POWER2 - MIN_INDEX_POWER2 + 1)

#define MAX_NUM_FREE_SPACES 200 
#define MIN_NUM_FREE_SPACES 5 

//Please leave these definitions intact.

#define CLREvent CLREventStatic

#ifdef CreateFileMapping

#undef CreateFileMapping

#endif //CreateFileMapping

#define CreateFileMapping WszCreateFileMapping

// hosted api
#ifdef InitializeCriticalSection
#undef InitializeCriticalSection
#endif //ifdef InitializeCriticalSection
#define InitializeCriticalSection UnsafeInitializeCriticalSection

#ifdef DeleteCriticalSection
#undef DeleteCriticalSection
#endif //ifdef DeleteCriticalSection
#define DeleteCriticalSection UnsafeDeleteCriticalSection

#ifdef EnterCriticalSection
#undef EnterCriticalSection
#endif //ifdef EnterCriticalSection
#define EnterCriticalSection UnsafeEEEnterCriticalSection

#ifdef LeaveCriticalSection
#undef LeaveCriticalSection
#endif //ifdef LeaveCriticalSection
#define LeaveCriticalSection UnsafeEELeaveCriticalSection

#ifdef TryEnterCriticalSection
#undef TryEnterCriticalSection
#endif //ifdef TryEnterCriticalSection
#define TryEnterCriticalSection UnsafeEETryEnterCriticalSection

#ifdef CreateSemaphore
#undef CreateSemaphore
#endif //CreateSemaphore
#define CreateSemaphore UnsafeCreateSemaphore

#ifdef CreateEvent
#undef CreateEvent
#endif //ifdef CreateEvent
#define CreateEvent UnsafeCreateEvent

#ifdef VirtualAlloc
#undef VirtualAlloc
#endif //ifdef VirtualAlloc
#define VirtualAlloc ClrVirtualAlloc

#ifdef VirtualFree
#undef VirtualFree
#endif //ifdef VirtualFree
#define VirtualFree ClrVirtualFree

#ifdef VirtualQuery
#undef VirtualQuery
#endif //ifdef VirtualQuery
#define VirtualQuery ClrVirtualQuery

#ifdef VirtualProtect
#undef VirtualProtect
#endif //ifdef VirtualProtect
#define VirtualProtect ClrVirtualProtect

#ifdef memcpy
#undef memcpy
#endif //memcpy

#ifdef FEATURE_STRUCTALIGN
#define REQD_ALIGN_DCL ,int requiredAlignment
#define REQD_ALIGN_ARG ,requiredAlignment
#define REQD_ALIGN_AND_OFFSET_DCL ,int requiredAlignment,size_t alignmentOffset
#define REQD_ALIGN_AND_OFFSET_DEFAULT_DCL ,int requiredAlignment=DATA_ALIGNMENT,size_t alignmentOffset=0
#define REQD_ALIGN_AND_OFFSET_ARG ,requiredAlignment,alignmentOffset
#else // FEATURE_STRUCTALIGN
#define REQD_ALIGN_DCL
#define REQD_ALIGN_ARG
#define REQD_ALIGN_AND_OFFSET_DCL
#define REQD_ALIGN_AND_OFFSET_DEFAULT_DCL
#define REQD_ALIGN_AND_OFFSET_ARG
#endif // FEATURE_STRUCTALIGN

#ifdef MULTIPLE_HEAPS
#define THREAD_NUMBER_DCL ,int thread
#define THREAD_NUMBER_ARG ,thread
#define THREAD_NUMBER_FROM_CONTEXT int thread = sc->thread_number;
#define THREAD_FROM_HEAP  int thread = heap_number;
#define HEAP_FROM_THREAD  gc_heap* hpt = gc_heap::g_heaps[thread];
#else
#define THREAD_NUMBER_DCL
#define THREAD_NUMBER_ARG
#define THREAD_NUMBER_FROM_CONTEXT
#define THREAD_FROM_HEAP
#define HEAP_FROM_THREAD  gc_heap* hpt = 0;
#endif //MULTIPLE_HEAPS

//These constants are ordered
const int policy_sweep = 0;
const int policy_compact = 1;
const int policy_expand  = 2;

#ifdef TRACE_GC


extern int     print_level;
extern BOOL    trace_gc;
extern int    gc_trace_fac;


class hlet
{
    static hlet* bindings;
    int prev_val;
    int* pval;
    hlet* prev_let;
public:
    hlet (int& place, int value)
    {
        prev_val = place;
        pval = &place;
        place = value;
        prev_let = bindings;
        bindings = this;
    }
    ~hlet ()
    {
        *pval = prev_val;
        bindings = prev_let;
    }
};


#define let(p,v) hlet __x = hlet (p, v);

#else //TRACE_GC

#define gc_count    -1
#define let(s,v)

#endif //TRACE_GC

#ifdef TRACE_GC
#define SEG_REUSE_LOG_0 7
#define SEG_REUSE_LOG_1 (SEG_REUSE_LOG_0 + 1)
#define DT_LOG_0 (SEG_REUSE_LOG_1 + 1)
#define BGC_LOG (DT_LOG_0 + 1)
#define GTC_LOG (DT_LOG_0 + 2)
#define GC_TABLE_LOG (DT_LOG_0 + 3)
#define JOIN_LOG (DT_LOG_0 + 4)
#define SPINLOCK_LOG (DT_LOG_0 + 5)
#define SNOOP_LOG (DT_LOG_0 + 6)

#ifndef DACCESS_COMPILE

#ifdef SIMPLE_DPRINTF

//#define dprintf(l,x) {if (trace_gc && ((l<=print_level)||gc_heap::settings.concurrent)) {printf ("\n");printf x ; fflush(stdout);}}
void GCLog (const char *fmt, ... );
//#define dprintf(l,x) {if (trace_gc && (l<=print_level)) {GCLog x;}}
//#define dprintf(l,x) {if ((l==SEG_REUSE_LOG_0) || (l==SEG_REUSE_LOG_1) || (trace_gc && (l<=3))) {GCLog x;}}
//#define dprintf(l,x) {if (l == DT_LOG_0) {GCLog x;}}
//#define dprintf(l,x) {if (trace_gc && ((l <= 2) || (l == BGC_LOG) || (l==GTC_LOG))) {GCLog x;}}
//#define dprintf(l,x) {if ((l == 1) || (l == 2222)) {GCLog x;}}
#define dprintf(l,x) {if ((l <= 1) || (l == GTC_LOG)) {GCLog x;}}
//#define dprintf(l,x) {if ((l==GTC_LOG) || (l <= 1)) {GCLog x;}}
//#define dprintf(l,x) {if (trace_gc && ((l <= print_level) || (l==GTC_LOG))) {GCLog x;}}
//#define dprintf(l,x) {if (l==GTC_LOG) {printf ("\n");printf x ; fflush(stdout);}}
#else //SIMPLE_DPRINTF

// The GCTrace output goes to stdout by default but can get sent to the stress log or the logfile if the
// reg key GCTraceFacility is set.  THe stress log can only take a format string and 4 numbers or
// string literals.
#define dprintf(l,x) {if (trace_gc && (l<=print_level)) { \
      if ( !gc_trace_fac) {printf ("\n");printf x ; fflush(stdout);} \
      else if ( gc_trace_fac == 2) {LogSpewAlways x;LogSpewAlways ("\n");} \
      else if ( gc_trace_fac == 1) {STRESS_LOG_VA(x);}}}

#endif //SIMPLE_DPRINTF

#else //DACCESS_COMPILE
#define dprintf(l,x)
#endif //DACCESS_COMPILE
#else //TRACE_GC
#define dprintf(l,x)
#endif //TRACE_GC

#ifndef FEATURE_REDHAWK
#undef  assert
#define assert _ASSERTE
#undef  ASSERT
#define ASSERT _ASSERTE
#endif // FEATURE_REDHAWK

#ifdef _DEBUG

struct GCDebugSpinLock {
    VOLATILE(int32_t) lock;                   // -1 if free, 0 if held
    VOLATILE(Thread *) holding_thread;     // -1 if no thread holds the lock.
    VOLATILE(BOOL) released_by_gc_p;       // a GC thread released the lock.

    GCDebugSpinLock()
        : lock(-1), holding_thread((Thread*) -1)
    {
    }
};
typedef GCDebugSpinLock GCSpinLock;

#elif defined (SYNCHRONIZATION_STATS)

struct GCSpinLockInstru {
    VOLATILE(int32_t) lock;
    // number of times we went into SwitchToThread in enter_spin_lock.
    unsigned int num_switch_thread;
    // number of times we went into WaitLonger.
    unsigned int num_wait_longer;
    // number of times we went to calling SwitchToThread in WaitLonger.
    unsigned int num_switch_thread_w;
    // number of times we went to calling DisablePreemptiveGC in WaitLonger.
    unsigned int num_disable_preemptive_w;

    GCSpinLockInstru()
        : lock(-1), num_switch_thread(0), num_wait_longer(0), num_switch_thread_w(0), num_disable_preemptive_w(0)
    {
    }

    void init()
    {
        num_switch_thread = 0;
        num_wait_longer = 0;
        num_switch_thread_w = 0;
        num_disable_preemptive_w = 0;
    }
};

typedef GCSpinLockInstru GCSpinLock;

#else

struct GCDebugSpinLock {
    VOLATILE(int32_t) lock;                   // -1 if free, 0 if held

    GCDebugSpinLock()
        : lock(-1)
    {
    }
};
typedef GCDebugSpinLock GCSpinLock;

#endif

class mark;
class heap_segment;
class CObjectHeader;
class l_heap;
class sorted_table;
class c_synchronize;
class seg_free_spaces;
class gc_heap;

#ifdef BACKGROUND_GC
class exclusive_sync;
class recursive_gc_sync;
#endif //BACKGROUND_GC

// The following 2 modes are of the same format as in clr\src\bcl\system\runtime\gcsettings.cs
// make sure you change that one if you change this one!
enum gc_pause_mode
{
    pause_batch = 0, //We are not concerned about pause length
    pause_interactive = 1,     //We are running an interactive app
    pause_low_latency = 2,     //short pauses are essential
    //avoid long pauses from blocking full GCs unless running out of memory
    pause_sustained_low_latency = 3,
    pause_no_gc = 4
};

enum gc_loh_compaction_mode
{
    loh_compaction_default = 1, // the default mode, don't compact LOH.
    loh_compaction_once = 2, // only compact once the next time a blocking full GC happens.
    loh_compaction_auto = 4 // GC decides when to compact LOH, to be implemented.
};

enum set_pause_mode_status
{
    set_pause_mode_success = 0,
    set_pause_mode_no_gc = 1 // NoGCRegion is in progress, can't change pause mode.
};

enum gc_tuning_point
{
    tuning_deciding_condemned_gen,
    tuning_deciding_full_gc,
    tuning_deciding_compaction,
    tuning_deciding_expansion,
    tuning_deciding_promote_ephemeral
};

#if defined(TRACE_GC) && defined(BACKGROUND_GC)
static const char * const str_bgc_state[] =
{
    "not_in_process",
    "mark_handles",
    "mark_stack",
    "revisit_soh",
    "revisit_loh",
    "overflow_soh",
    "overflow_loh",
    "final_marking",
    "sweep_soh",
    "sweep_loh",
    "plan_phase"
};
#endif // defined(TRACE_GC) && defined(BACKGROUND_GC)

enum allocation_state
{
    a_state_start = 0,
    a_state_can_allocate,
    a_state_cant_allocate,
    a_state_try_fit,
    a_state_try_fit_new_seg,
    a_state_try_fit_new_seg_after_cg,
    a_state_try_fit_no_seg,
    a_state_try_fit_after_cg,
    a_state_try_fit_after_bgc,
    a_state_try_free_full_seg_in_bgc, 
    a_state_try_free_after_bgc,
    a_state_try_seg_end,
    a_state_acquire_seg,
    a_state_acquire_seg_after_cg,
    a_state_acquire_seg_after_bgc,
    a_state_check_and_wait_for_bgc,
    a_state_trigger_full_compact_gc,
    a_state_trigger_ephemeral_gc,
    a_state_trigger_2nd_ephemeral_gc,
    a_state_check_retry_seg,
    a_state_max
};

enum gc_type
{
    gc_type_compacting = 0,
    gc_type_blocking = 1,
#ifdef BACKGROUND_GC
    gc_type_background = 2,
#endif //BACKGROUND_GC
    gc_type_max = 3
};


//encapsulates the mechanism for the current gc
class gc_mechanisms
{
public:
    VOLATILE(size_t) gc_index; // starts from 1 for the first GC, like dd_collection_count
    int condemned_generation;
    BOOL promotion;
    BOOL compaction;
    BOOL loh_compaction;
    BOOL heap_expansion;
    uint32_t concurrent;
    BOOL demotion;
    BOOL card_bundles;
    int  gen0_reduction_count;
    BOOL should_lock_elevation;
    int elevation_locked_count;
    BOOL elevation_reduced;
    BOOL minimal_gc;
    gc_reason reason;
    gc_pause_mode pause_mode;
    BOOL found_finalizers;

#ifdef BACKGROUND_GC
    BOOL background_p;
    bgc_state b_state;
    BOOL allocations_allowed;
#endif //BACKGROUND_GC

#ifdef STRESS_HEAP
    BOOL stress_induced;
#endif // STRESS_HEAP

    uint32_t entry_memory_load;

    void init_mechanisms(); //for each GC
    void first_init(); // for the life of the EE

    void record (gc_history_global* history);
};

// This is a compact version of gc_mechanism that we use to save in the history.
class gc_mechanisms_store
{
public:
    size_t gc_index; 
    bool promotion;
    bool compaction;
    bool loh_compaction;
    bool heap_expansion;
    bool concurrent;
    bool demotion;
    bool card_bundles;
    bool should_lock_elevation;
    int condemned_generation   : 8; 
    int gen0_reduction_count   : 8;
    int elevation_locked_count : 8;
    gc_reason reason           : 8;
    gc_pause_mode pause_mode   : 8;
#ifdef BACKGROUND_GC
    bgc_state b_state          : 8;
#endif //BACKGROUND_GC
    bool found_finalizers;

#ifdef BACKGROUND_GC
    bool background_p;
#endif //BACKGROUND_GC

#ifdef STRESS_HEAP
    bool stress_induced;
#endif // STRESS_HEAP

#ifdef BIT64
    uint32_t entry_memory_load;
#endif // BIT64

    void store (gc_mechanisms* gm)
    {
        gc_index                = gm->gc_index; 
        condemned_generation    = gm->condemned_generation;
        promotion               = (gm->promotion != 0);
        compaction              = (gm->compaction != 0);
        loh_compaction          = (gm->loh_compaction != 0);
        heap_expansion          = (gm->heap_expansion != 0);
        concurrent              = (gm->concurrent != 0);
        demotion                = (gm->demotion != 0);
        card_bundles            = (gm->card_bundles != 0);
        gen0_reduction_count    = gm->gen0_reduction_count;
        should_lock_elevation   = (gm->should_lock_elevation != 0);
        elevation_locked_count  = gm->elevation_locked_count;
        reason                  = gm->reason;
        pause_mode              = gm->pause_mode;
        found_finalizers        = (gm->found_finalizers != 0);

#ifdef BACKGROUND_GC
        background_p            = (gm->background_p != 0);
        b_state                 = gm->b_state;
#endif //BACKGROUND_GC

#ifdef STRESS_HEAP
        stress_induced          = (gm->stress_induced != 0);
#endif // STRESS_HEAP

#ifdef BIT64
        entry_memory_load       = gm->entry_memory_load;
#endif // BIT64        
    }
};

#ifdef GC_STATS

// GC specific statistics, tracking counts and timings for GCs occuring in the system.
// This writes the statistics to a file every 60 seconds, if a file is specified in
// COMPLUS_GcMixLog

struct GCStatistics
    : public StatisticsBase
{
    // initialized to the contents of COMPLUS_GcMixLog, or NULL, if not present
    static WCHAR* logFileName;
    static FILE*  logFile;

    // number of times we executed a background GC, a foreground GC, or a
    // non-concurrent GC
    int cntBGC, cntFGC, cntNGC;

    // min, max, and total time spent performing BGCs, FGCs, NGCs
    // (BGC time includes everything between the moment the BGC starts until 
    // it completes, i.e. the times of all FGCs occuring concurrently)
    MinMaxTot bgc, fgc, ngc;

    // number of times we executed a compacting GC (sweeping counts can be derived)
    int cntCompactNGC, cntCompactFGC;

    // count of reasons
    int cntReasons[reason_max];

    // count of condemned generation, by NGC and FGC:
    int cntNGCGen[max_generation+1];
    int cntFGCGen[max_generation];
    
    ///////////////////////////////////////////////////////////////////////////////////////////////
    // Internal mechanism:

    virtual void Initialize();
    virtual void DisplayAndUpdate();

    // Public API

    static BOOL Enabled()
    { return logFileName != NULL; }

    void AddGCStats(const gc_mechanisms& settings, size_t timeInMSec);
};

extern GCStatistics g_GCStatistics;
extern GCStatistics g_LastGCStatistics;

#endif // GC_STATS


typedef DPTR(class heap_segment)               PTR_heap_segment;
typedef DPTR(class gc_heap)                    PTR_gc_heap;
typedef DPTR(PTR_gc_heap)                      PTR_PTR_gc_heap;
#ifdef FEATURE_PREMORTEM_FINALIZATION
typedef DPTR(class CFinalize)                  PTR_CFinalize;
#endif // FEATURE_PREMORTEM_FINALIZATION

//-------------------------------------
//generation free list. It is an array of free lists bucketed by size, starting at sizes lower than first_bucket_size 
//and doubling each time. The last bucket (index == num_buckets) is for largest sizes with no limit

#define MAX_BUCKET_COUNT (13)//Max number of buckets for the small generations. 
class alloc_list 
{
    uint8_t* head;
    uint8_t* tail;

    size_t damage_count;
public:
#ifdef FL_VERIFICATION
    size_t item_count;
#endif //FL_VERIFICATION

    uint8_t*& alloc_list_head () { return head;}
    uint8_t*& alloc_list_tail () { return tail;}
    size_t& alloc_list_damage_count(){ return damage_count; }
    alloc_list()
    {
        head = 0; 
        tail = 0; 
        damage_count = 0;
    }
};


class allocator 
{
    size_t num_buckets;
    size_t frst_bucket_size;
    alloc_list first_bucket;
    alloc_list* buckets;
    alloc_list& alloc_list_of (unsigned int bn);
    size_t& alloc_list_damage_count_of (unsigned int bn);

public:
    allocator (unsigned int num_b, size_t fbs, alloc_list* b);
    allocator()
    {
        num_buckets = 1;
        frst_bucket_size = SIZE_T_MAX;
    }
    unsigned int number_of_buckets() {return (unsigned int)num_buckets;}

    size_t first_bucket_size() {return frst_bucket_size;}
    uint8_t*& alloc_list_head_of (unsigned int bn)
    {
        return alloc_list_of (bn).alloc_list_head();
    }
    uint8_t*& alloc_list_tail_of (unsigned int bn)
    {
        return alloc_list_of (bn).alloc_list_tail();
    }
    void clear();
    BOOL discard_if_no_fit_p()
    {
        return (num_buckets == 1);
    }

    // This is when we know there's nothing to repair because this free
    // list has never gone through plan phase. Right now it's only used
    // by the background ephemeral sweep when we copy the local free list
    // to gen0's free list.
    //
    // We copy head and tail manually (vs together like copy_to_alloc_list)
    // since we need to copy tail first because when we get the free items off
    // of each bucket we check head first. We also need to copy the
    // smaller buckets first so when gen0 allocation needs to thread
    // smaller items back that bucket is guaranteed to have been full
    // copied.
    void copy_with_no_repair (allocator* allocator_to_copy)
    {
        assert (num_buckets == allocator_to_copy->number_of_buckets());
        for (unsigned int i = 0; i < num_buckets; i++)
        {
            alloc_list* al = &(allocator_to_copy->alloc_list_of (i));
            alloc_list_tail_of(i) = al->alloc_list_tail();
            alloc_list_head_of(i) = al->alloc_list_head();
        }
    }

    void unlink_item (unsigned int bucket_number, uint8_t* item, uint8_t* previous_item, BOOL use_undo_p);
    void thread_item (uint8_t* item, size_t size);
    void thread_item_front (uint8_t* itme, size_t size);
    void thread_free_item (uint8_t* free_item, uint8_t*& head, uint8_t*& tail);
    void copy_to_alloc_list (alloc_list* toalist);
    void copy_from_alloc_list (alloc_list* fromalist);
    void commit_alloc_list_changes();
};

#define NUM_GEN_POWER2 (20)
#define BASE_GEN_SIZE (1*512)

// group the frequently used ones together (need intrumentation on accessors)
class generation
{
public:
    // Don't move these first two fields without adjusting the references
    // from the __asm in jitinterface.cpp.
    alloc_context   allocation_context;
    heap_segment*   allocation_segment;
    PTR_heap_segment start_segment;
    uint8_t*        allocation_context_start_region;
    uint8_t*        allocation_start;
    allocator       free_list_allocator;
    size_t          free_list_allocated;
    size_t          end_seg_allocated;
    BOOL            allocate_end_seg_p;
    size_t          condemned_allocated;
    size_t          free_list_space;
    size_t          free_obj_space;
    size_t          allocation_size;
    uint8_t*        plan_allocation_start;
    size_t          plan_allocation_start_size;

    // this is the pinned plugs that got allocated into this gen.
    size_t          pinned_allocated;
    size_t          pinned_allocation_compact_size;
    size_t          pinned_allocation_sweep_size;
    int             gen_num;

#ifdef FREE_USAGE_STATS
    size_t          gen_free_spaces[NUM_GEN_POWER2];
    // these are non pinned plugs only
    size_t          gen_plugs[NUM_GEN_POWER2];
    size_t          gen_current_pinned_free_spaces[NUM_GEN_POWER2];
    size_t          pinned_free_obj_space;
    // this is what got allocated into the pinned free spaces.
    size_t          allocated_in_pinned_free;
    size_t          allocated_since_last_pin;
#endif //FREE_USAGE_STATS
};

// The dynamic data fields are grouped into 3 categories:
//
// calculated logical data (like desired_allocation)
// physical data (like fragmentation)
// const data (like min_gc_size), initialized at the beginning
class dynamic_data
{
public:
    ptrdiff_t new_allocation;
    ptrdiff_t gc_new_allocation; // new allocation at beginning of gc
    float     surv;
    size_t    desired_allocation;

    // # of bytes taken by objects (ie, not free space) at the beginning
    // of the GC.
    size_t    begin_data_size;
    // # of bytes taken by survived objects after mark.
    size_t    survived_size;
    // # of bytes taken by survived pinned plugs after mark.
    size_t    pinned_survived_size;
    size_t    artificial_pinned_survived_size;
    size_t    added_pinned_size;

#ifdef SHORT_PLUGS
    size_t    padding_size;
#endif //SHORT_PLUGS
#if defined (RESPECT_LARGE_ALIGNMENT) || defined (FEATURE_STRUCTALIGN)
    // # of plugs that are not pinned plugs.
    size_t    num_npinned_plugs;
#endif //RESPECT_LARGE_ALIGNMENT || FEATURE_STRUCTALIGN
    //total object size after a GC, ie, doesn't include fragmentation
    size_t    current_size; 
    size_t    collection_count;
    size_t    promoted_size;
    size_t    freach_previous_promotion;
    size_t    fragmentation;    //fragmentation when we don't compact
    size_t    gc_clock;         //gc# when last GC happened
    size_t    time_clock;       //time when last gc started
    size_t    gc_elapsed_time;  // Time it took for the gc to complete
    float     gc_speed;         //  speed in bytes/msec for the gc to complete

    // min_size is always the same as min_gc_size..
    size_t    min_gc_size;
    size_t    max_size;
    size_t    min_size;
    size_t    default_new_allocation;
    size_t    fragmentation_limit;
    float     fragmentation_burden_limit;
    float     limit;
    float     max_limit;
};

#define ro_in_entry 0x1

#ifdef SEG_MAPPING_TABLE
// Note that I am storing both h0 and seg0, even though in Server GC you can get to 
// the heap* from the segment info. This is because heap_of needs to be really fast
// and we would not want yet another indirection.
struct seg_mapping
{
    // if an address is > boundary it belongs to h1; else h0.
    // since we init h0 and h1 to 0, if we get 0 it means that
    // address doesn't exist on managed segments. And heap_of 
    // would just return heap0 which is what it does now.
    uint8_t* boundary;
#ifdef MULTIPLE_HEAPS
    gc_heap* h0;
    gc_heap* h1;
#endif //MULTIPLE_HEAPS
    // You could have an address that's inbetween 2 segments and 
    // this would return a seg, the caller then will use 
    // in_range_for_segment to determine if it's on that seg.
    heap_segment* seg0; // this is what the seg for h0 is.
    heap_segment* seg1; // this is what the seg for h1 is.
    // Note that when frozen objects are used we mask seg1
    // with 0x1 to indicate that there is a ro segment for
    // this entry.
};
#endif //SEG_MAPPING_TABLE

// alignment helpers
//Alignment constant for allocation
#define ALIGNCONST (DATA_ALIGNMENT-1)

inline
size_t Align (size_t nbytes, int alignment=ALIGNCONST)
{
    return (nbytes + alignment) & ~alignment;
}

//return alignment constant for small object heap vs large object heap
inline
int get_alignment_constant (BOOL small_object_p)
{
#ifdef FEATURE_STRUCTALIGN
    // If any objects on the large object heap require 8-byte alignment,
    // the compiler will tell us so.  Let's not guess an alignment here.
    return ALIGNCONST;
#else // FEATURE_STRUCTALIGN
    return small_object_p ? ALIGNCONST : 7;
#endif // FEATURE_STRUCTALIGN
}

struct etw_opt_info
{
    size_t desired_allocation;
    size_t new_allocation;
    int    gen_number;
};

enum alloc_wait_reason
{
    // When we don't care about firing an event for
    // this.
    awr_ignored = -1,

    // when we detect we are in low memory
    awr_low_memory = 0,

    // when we detect the ephemeral segment is too full
    awr_low_ephemeral = 1,

    // we've given out too much budget for gen0.
    awr_gen0_alloc = 2,

    // we've given out too much budget for loh.
    awr_loh_alloc = 3,

    // this event is really obsolete - it's for pre-XP
    // OSs where low mem notification is not supported.
    awr_alloc_loh_low_mem = 4,

    // we ran out of VM spaced to reserve on loh.
    awr_loh_oos = 5, 

    // ran out of space when allocating a small object
    awr_gen0_oos_bgc = 6,

    // ran out of space when allocating a large object
    awr_loh_oos_bgc = 7,

    // waiting for BGC to let FGC happen
    awr_fgc_wait_for_bgc = 8,

    // wait for bgc to finish to get loh seg.
    awr_get_loh_seg = 9,

    // we don't allow loh allocation during bgc planning.
    awr_loh_alloc_during_plan = 10,

    // we don't allow too much loh allocation during bgc.
    awr_loh_alloc_during_bgc = 11
};

struct alloc_thread_wait_data
{
    int awr;
};

enum msl_take_state
{
    mt_get_large_seg,
    mt_wait_bgc_plan,
    mt_wait_bgc,
    mt_block_gc,
    mt_clr_mem,
    mt_clr_large_mem,
    mt_t_eph_gc,
    mt_t_full_gc,
    mt_alloc_small,
    mt_alloc_large,
    mt_alloc_small_cant,
    mt_alloc_large_cant,
    mt_try_alloc,
    mt_try_budget
};

enum msl_enter_state
{
    me_acquire,
    me_release
};

struct spinlock_info
{
    msl_enter_state enter_state;
    msl_take_state take_state;
    uint32_t thread_id;
};

const unsigned HS_CACHE_LINE_SIZE = 128;

#ifdef SNOOP_STATS
struct snoop_stats_data
{
    int heap_index;

    // total number of objects that we called
    // gc_mark on.
    size_t objects_checked_count;
    // total number of time we called gc_mark
    // on a 0 reference.
    size_t zero_ref_count;
    // total objects actually marked.
    size_t objects_marked_count;
    // number of objects written to the mark stack because
    // of mark_stolen.
    size_t stolen_stack_count;
    // number of objects pushed onto the mark stack because
    // of the partial mark code path.
    size_t partial_stack_count;
    // number of objects pushed onto the mark stack because
    // of the non partial mark code path.
    size_t normal_stack_count;
    // number of references marked without mark stack.
    size_t non_stack_count;

    // number of times we detect next heap's mark stack
    // is not busy.
    size_t stack_idle_count;

    // number of times we do switch to thread.
    size_t switch_to_thread_count;

    // number of times we are checking if the next heap's
    // mark stack is busy.
    size_t check_level_count;
    // number of times next stack is busy and level is 
    // at the bottom.
    size_t busy_count;
    // how many interlocked exchange operations we did
    size_t interlocked_count;
    // numer of times parent objects stolen
    size_t partial_mark_parent_count;
    // numer of times we look at a normal stolen entry, 
    // or the beginning/ending PM pair.
    size_t stolen_or_pm_count; 
    // number of times we see 2 for the entry.
    size_t stolen_entry_count; 
    // number of times we see a PM entry that's not ready.
    size_t pm_not_ready_count; 
    // number of stolen normal marked objects and partial mark children.
    size_t normal_count;
    // number of times the bottom of mark stack was cleared.
    size_t stack_bottom_clear_count;
};
#endif //SNOOP_STATS

struct no_gc_region_info
{
    size_t soh_allocation_size;
    size_t loh_allocation_size;
    size_t started;
    size_t num_gcs;
    size_t num_gcs_induced;
    start_no_gc_region_status start_status;
    gc_pause_mode saved_pause_mode;
    size_t saved_gen0_min_size;
    size_t saved_gen3_min_size;
    BOOL minimal_gc_p;
};

// if you change these, make sure you update them for sos (strike.cpp) as well.
// 
// !!!NOTE!!!
// Right now I am only recording data from blocking GCs. When recording from BGC,
// it should have its own copy just like gc_data_per_heap.
// for BGCs we will have a very different set of datapoints to record.
enum interesting_data_point
{
    idp_pre_short = 0,
    idp_post_short = 1,
    idp_merged_pin = 2,
    idp_converted_pin = 3,
    idp_pre_pin = 4,
    idp_post_pin = 5,
    idp_pre_and_post_pin = 6,
    idp_pre_short_padded = 7,
    idp_post_short_padded = 8,
    max_idp_count
};

//class definition of the internal class
#if defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE)
extern void GCProfileWalkHeapWorker(BOOL fProfilerPinned, BOOL fShouldWalkHeapRootsForEtw, BOOL fShouldWalkHeapObjectsForEtw);
#endif // defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE)
class gc_heap
{
    friend struct ::_DacGlobals;
#ifdef DACCESS_COMPILE
    friend class ::ClrDataAccess;
    friend class ::DacHeapWalker;
#endif //DACCESS_COMPILE

    friend class GCHeap;
#ifdef FEATURE_PREMORTEM_FINALIZATION
    friend class CFinalize;
#endif // FEATURE_PREMORTEM_FINALIZATION
    friend struct ::alloc_context;
    friend void ProfScanRootsHelper(Object** object, ScanContext *pSC, uint32_t dwFlags);
    friend void GCProfileWalkHeapWorker(BOOL fProfilerPinned, BOOL fShouldWalkHeapRootsForEtw, BOOL fShouldWalkHeapObjectsForEtw);
    friend class t_join;
    friend class gc_mechanisms;
    friend class seg_free_spaces;

#ifdef BACKGROUND_GC
    friend class exclusive_sync;
    friend class recursive_gc_sync;
#endif //BACKGROUND_GC

#if defined (WRITE_BARRIER_CHECK) && !defined (SERVER_GC)
    friend void checkGCWriteBarrier();
    friend void initGCShadow();
#endif //defined (WRITE_BARRIER_CHECK) && !defined (SERVER_GC)

#ifdef MULTIPLE_HEAPS
    typedef void (gc_heap::* card_fn) (uint8_t**, int);
#define call_fn(fn) (this->*fn)
#define __this this
#else
    typedef void (* card_fn) (uint8_t**);
#define call_fn(fn) (*fn)
#define __this (gc_heap*)0
#endif

public:

#ifdef TRACE_GC
    PER_HEAP
    void print_free_list (int gen, heap_segment* seg);
#endif // TRACE_GC

#ifdef SYNCHRONIZATION_STATS

    PER_HEAP_ISOLATED
    void init_sync_stats()
    {
#ifdef MULTIPLE_HEAPS
        for (int i = 0; i < gc_heap::n_heaps; i++)
        {
            gc_heap::g_heaps[i]->init_heap_sync_stats();
        }
#else  //MULTIPLE_HEAPS
        init_heap_sync_stats();
#endif  //MULTIPLE_HEAPS
    }

    PER_HEAP_ISOLATED
    void print_sync_stats(unsigned int gc_count_during_log)
    {
        // bad/good gl acquire is accumulative during the log interval (because the numbers are too small)
        // min/max msl_acquire is the min/max during the log interval, not each GC.
        // Threads is however many allocation threads for the last GC.
        // num of msl acquired, avg_msl, high and low are all for each GC.
        printf("%2s%2s%10s%10s%12s%6s%4s%8s(  st,  wl, stw, dpw)\n",
            "H", "T", "good_sus", "bad_sus", "avg_msl", "high", "low", "num_msl");

#ifdef MULTIPLE_HEAPS
        for (int i = 0; i < gc_heap::n_heaps; i++)
        {
            gc_heap::g_heaps[i]->print_heap_sync_stats(i, gc_count_during_log);
        }
#else  //MULTIPLE_HEAPS
        print_heap_sync_stats(0, gc_count_during_log);
#endif  //MULTIPLE_HEAPS
    }

#endif //SYNCHRONIZATION_STATS

    PER_HEAP
    void verify_soh_segment_list();
    PER_HEAP
    void verify_mark_array_cleared (heap_segment* seg);
    PER_HEAP
    void verify_mark_array_cleared();
    PER_HEAP
    void verify_seg_end_mark_array_cleared();
    PER_HEAP
    void verify_partial();

#ifdef VERIFY_HEAP
    PER_HEAP
    void verify_free_lists(); 
    PER_HEAP
    void verify_heap (BOOL begin_gc_p);
#endif //VERIFY_HEAP

    PER_HEAP_ISOLATED
    void fire_per_heap_hist_event (gc_history_per_heap* current_gc_data_per_heap, int heap_num);

    PER_HEAP_ISOLATED
    void fire_pevents();

#ifdef FEATURE_BASICFREEZE
    static void walk_read_only_segment(heap_segment *seg, void *pvContext, object_callback_func pfnMethodTable, object_callback_func pfnObjRef);
#endif

    static
    heap_segment* make_heap_segment (uint8_t* new_pages,
                                     size_t size, 
                                     int h_number);
    static
    l_heap* make_large_heap (uint8_t* new_pages, size_t size, BOOL managed);

    static
    gc_heap* make_gc_heap(
#if defined (MULTIPLE_HEAPS)
        GCHeap* vm_heap,
        int heap_number
#endif //MULTIPLE_HEAPS
        );

    static
    void destroy_gc_heap(gc_heap* heap);

    static
    HRESULT initialize_gc  (size_t segment_size,
                            size_t heap_size
#ifdef MULTIPLE_HEAPS
                            , unsigned number_of_heaps
#endif //MULTIPLE_HEAPS
        );

    static
    void shutdown_gc();

    PER_HEAP
    CObjectHeader* allocate (size_t jsize,
                             alloc_context* acontext);

#ifdef MULTIPLE_HEAPS
    static void balance_heaps (alloc_context* acontext);
    static 
    gc_heap* balance_heaps_loh (alloc_context* acontext, size_t size);
    static
    uint32_t __stdcall gc_thread_stub (void* arg);
#endif //MULTIPLE_HEAPS

    CObjectHeader* try_fast_alloc (size_t jsize);

    // For LOH allocations we only update the alloc_bytes_loh in allocation
    // context - we don't actually use the ptr/limit from it so I am
    // making this explicit by not passing in the alloc_context.
    PER_HEAP
    CObjectHeader* allocate_large_object (size_t size, int64_t& alloc_bytes);

#ifdef FEATURE_STRUCTALIGN
    PER_HEAP
    uint8_t* pad_for_alignment_large (uint8_t* newAlloc, int requiredAlignment, size_t size);
#endif // FEATURE_STRUCTALIGN

    PER_HEAP_ISOLATED
    void do_pre_gc();

    PER_HEAP_ISOLATED
    void do_post_gc();

    PER_HEAP
    BOOL expand_soh_with_minimal_gc();

    // EE is always suspended when this method is called.
    // returning FALSE means we actually didn't do a GC. This happens
    // when we figured that we needed to do a BGC.
    PER_HEAP
    int garbage_collect (int n);

    PER_HEAP
    void init_records();

    static 
    uint32_t* make_card_table (uint8_t* start, uint8_t* end);

    static
    void set_fgm_result (failure_get_memory f, size_t s, BOOL loh_p);

    static
    int grow_brick_card_tables (uint8_t* start,
                                uint8_t* end,
                                size_t size,
                                heap_segment* new_seg, 
                                gc_heap* hp,
                                BOOL loh_p);

    PER_HEAP
    BOOL is_mark_set (uint8_t* o);

protected:

    PER_HEAP
    void walk_heap (walk_fn fn, void* context, int gen_number, BOOL walk_large_object_heap_p);

    struct walk_relocate_args
    {
        uint8_t* last_plug;
        BOOL is_shortened;
        mark* pinned_plug_entry;
    };

    PER_HEAP
    void walk_plug (uint8_t* plug, size_t size, BOOL check_last_object_p,
                    walk_relocate_args* args, size_t profiling_context);

    PER_HEAP
    void walk_relocation (int condemned_gen_number,
                          uint8_t* first_condemned_address, size_t profiling_context);

    PER_HEAP
    void walk_relocation_in_brick (uint8_t* tree, walk_relocate_args* args, size_t profiling_context);

#if defined(BACKGROUND_GC) && defined(FEATURE_EVENT_TRACE)
    PER_HEAP
    void walk_relocation_for_bgc(size_t profiling_context);

    PER_HEAP
    void make_free_lists_for_profiler_for_bgc();
#endif // defined(BACKGROUND_GC) && defined(FEATURE_EVENT_TRACE)

    PER_HEAP
    int generation_to_condemn (int n, 
                               BOOL* blocking_collection_p,
                               BOOL* elevation_requested_p,
                               BOOL check_only_p);

    PER_HEAP_ISOLATED
    int joined_generation_to_condemn (BOOL should_evaluate_elevation, int n_initial, BOOL* blocking_collection
                                        STRESS_HEAP_ARG(int n_original));

    PER_HEAP_ISOLATED
    size_t min_reclaim_fragmentation_threshold(uint64_t total_mem, uint32_t num_heaps);

    PER_HEAP_ISOLATED
    uint64_t min_high_fragmentation_threshold(uint64_t available_mem, uint32_t num_heaps);

    PER_HEAP
    void concurrent_print_time_delta (const char* msg);
    PER_HEAP
    void free_list_info (int gen_num, const char* msg);

    // in svr GC on entry and exit of this method, the GC threads are not 
    // synchronized
    PER_HEAP
    void gc1();

    PER_HEAP_ISOLATED
    void save_data_for_no_gc();

    PER_HEAP_ISOLATED
    void restore_data_for_no_gc();

    PER_HEAP_ISOLATED
    void update_collection_counts_for_no_gc();

    PER_HEAP_ISOLATED
    BOOL should_proceed_with_gc();

    PER_HEAP_ISOLATED
    void record_gcs_during_no_gc();

    PER_HEAP
    BOOL find_loh_free_for_no_gc();

    PER_HEAP
    BOOL find_loh_space_for_no_gc();

    PER_HEAP
    BOOL commit_loh_for_no_gc (heap_segment* seg);

    PER_HEAP_ISOLATED
    start_no_gc_region_status prepare_for_no_gc_region (uint64_t total_size,
                                                        BOOL loh_size_known,
                                                        uint64_t loh_size,
                                                        BOOL disallow_full_blocking);

    PER_HEAP
    BOOL loh_allocated_for_no_gc();

    PER_HEAP_ISOLATED
    void release_no_gc_loh_segments();    

    PER_HEAP_ISOLATED
    void thread_no_gc_loh_segments();

    PER_HEAP
    void allocate_for_no_gc_after_gc();

    PER_HEAP
    void set_loh_allocations_for_no_gc();

    PER_HEAP
    void set_soh_allocations_for_no_gc();

    PER_HEAP
    void prepare_for_no_gc_after_gc();

    PER_HEAP_ISOLATED
    void set_allocations_for_no_gc();

    PER_HEAP_ISOLATED
    BOOL should_proceed_for_no_gc();

    PER_HEAP_ISOLATED
    start_no_gc_region_status get_start_no_gc_region_status();

    PER_HEAP_ISOLATED
    end_no_gc_region_status end_no_gc_region();

    PER_HEAP_ISOLATED
    void handle_failure_for_no_gc();

    PER_HEAP
    void fire_etw_allocation_event (size_t allocation_amount, int gen_number, uint8_t* object_address);

    PER_HEAP
    void fire_etw_pin_object_event (uint8_t* object, uint8_t** ppObject);

    PER_HEAP
    size_t limit_from_size (size_t size, size_t room, int gen_number,
                            int align_const);
    PER_HEAP
    int try_allocate_more_space (alloc_context* acontext, size_t jsize,
                                 int alloc_generation_number);
    PER_HEAP
    BOOL allocate_more_space (alloc_context* acontext, size_t jsize,
                              int alloc_generation_number);

    PER_HEAP
    size_t get_full_compact_gc_count();

    PER_HEAP
    BOOL short_on_end_of_seg (int gen_number,
                              heap_segment* seg,
                              int align_const);

    PER_HEAP
    BOOL a_fit_free_list_p (int gen_number, 
                            size_t size, 
                            alloc_context* acontext,
                            int align_const);

#ifdef BACKGROUND_GC
    PER_HEAP
    void wait_for_background (alloc_wait_reason awr);

    PER_HEAP
    void wait_for_bgc_high_memory (alloc_wait_reason awr);

    PER_HEAP
    void bgc_loh_alloc_clr (uint8_t* alloc_start,
                            size_t size, 
                            alloc_context* acontext,
                            int align_const, 
                            int lock_index,
                            BOOL check_used_p,
                            heap_segment* seg);
#endif //BACKGROUND_GC
    
#ifdef BACKGROUND_GC
    PER_HEAP
    void wait_for_background_planning (alloc_wait_reason awr);

    PER_HEAP
    BOOL bgc_loh_should_allocate();
#endif //BACKGROUND_GC

#define max_saved_spinlock_info 48

#ifdef SPINLOCK_HISTORY
    PER_HEAP
    int spinlock_info_index;

    PER_HEAP
    spinlock_info last_spinlock_info[max_saved_spinlock_info + 8];
#endif //SPINLOCK_HISTORY

    PER_HEAP
    void add_saved_spinlock_info (
            msl_enter_state enter_state, 
            msl_take_state take_state);

    PER_HEAP
    BOOL a_fit_free_list_large_p (size_t size, 
                                  alloc_context* acontext,
                                  int align_const);

    PER_HEAP
    BOOL a_fit_segment_end_p (int gen_number,
                              heap_segment* seg,
                              size_t size, 
                              alloc_context* acontext,
                              int align_const,
                              BOOL* commit_failed_p);
    PER_HEAP
    BOOL loh_a_fit_segment_end_p (int gen_number,
                                  size_t size, 
                                  alloc_context* acontext,
                                  int align_const,
                                  BOOL* commit_failed_p,
                                  oom_reason* oom_r);
    PER_HEAP
    BOOL loh_get_new_seg (generation* gen,
                          size_t size,
                          int align_const,
                          BOOL* commit_failed_p,
                          oom_reason* oom_r);

    PER_HEAP_ISOLATED
    size_t get_large_seg_size (size_t size);

    PER_HEAP
    BOOL retry_full_compact_gc (size_t size);

    PER_HEAP
    BOOL check_and_wait_for_bgc (alloc_wait_reason awr,
                                 BOOL* did_full_compact_gc);

    PER_HEAP
    BOOL trigger_full_compact_gc (gc_reason gr, 
                                  oom_reason* oom_r);

    PER_HEAP
    BOOL trigger_ephemeral_gc (gc_reason gr);

    PER_HEAP
    BOOL soh_try_fit (int gen_number,
                      size_t size, 
                      alloc_context* acontext,
                      int align_const,
                      BOOL* commit_failed_p,
                      BOOL* short_seg_end_p);
    PER_HEAP
    BOOL loh_try_fit (int gen_number,
                      size_t size, 
                      alloc_context* acontext,
                      int align_const,
                      BOOL* commit_failed_p,
                      oom_reason* oom_r);

    PER_HEAP
    BOOL allocate_small (int gen_number,
                         size_t size, 
                         alloc_context* acontext,
                         int align_const);

    enum c_gc_state
    {
        c_gc_state_marking,
        c_gc_state_planning,
        c_gc_state_free
    };

#ifdef RECORD_LOH_STATE
    #define max_saved_loh_states 12
    PER_HEAP
    int loh_state_index;

    struct loh_state_info
    {
        allocation_state alloc_state;
        uint32_t thread_id;
    };

    PER_HEAP
    loh_state_info last_loh_states[max_saved_loh_states];
    PER_HEAP
    void add_saved_loh_state (allocation_state loh_state_to_save, uint32_t thread_id);
#endif //RECORD_LOH_STATE
    PER_HEAP
    BOOL allocate_large (int gen_number,
                         size_t size, 
                         alloc_context* acontext,
                         int align_const);

    PER_HEAP_ISOLATED
    int init_semi_shared();
    PER_HEAP
    int init_gc_heap (int heap_number);
    PER_HEAP
    void self_destroy();
    PER_HEAP_ISOLATED
    void destroy_semi_shared();
    PER_HEAP
    void repair_allocation_contexts (BOOL repair_p);
    PER_HEAP
    void fix_allocation_contexts (BOOL for_gc_p);
    PER_HEAP
    void fix_youngest_allocation_area (BOOL for_gc_p);
    PER_HEAP
    void fix_allocation_context (alloc_context* acontext, BOOL for_gc_p,
                                 int align_const);
    PER_HEAP
    void fix_large_allocation_area (BOOL for_gc_p);
    PER_HEAP
    void fix_older_allocation_area (generation* older_gen);
    PER_HEAP
    void set_allocation_heap_segment (generation* gen);
    PER_HEAP
    void reset_allocation_pointers (generation* gen, uint8_t* start);
    PER_HEAP
    int object_gennum (uint8_t* o);
    PER_HEAP
    int object_gennum_plan (uint8_t* o);
    PER_HEAP_ISOLATED
    void init_heap_segment (heap_segment* seg);
    PER_HEAP
    void delete_heap_segment (heap_segment* seg, BOOL consider_hoarding=FALSE);
#ifdef FEATURE_BASICFREEZE
    PER_HEAP
    BOOL insert_ro_segment (heap_segment* seg);
    PER_HEAP
    void remove_ro_segment (heap_segment* seg);
#endif //FEATURE_BASICFREEZE
    PER_HEAP
    BOOL set_ro_segment_in_range (heap_segment* seg);
    PER_HEAP
    BOOL unprotect_segment (heap_segment* seg);
    PER_HEAP
    heap_segment* soh_get_segment_to_expand();
    PER_HEAP
    heap_segment* get_segment (size_t size, BOOL loh_p);
    PER_HEAP_ISOLATED
    void seg_mapping_table_add_segment (heap_segment* seg, gc_heap* hp);
    PER_HEAP_ISOLATED
    void seg_mapping_table_remove_segment (heap_segment* seg);
    PER_HEAP
    heap_segment* get_large_segment (size_t size, BOOL* did_full_compact_gc);
    PER_HEAP
    void thread_loh_segment (heap_segment* new_seg);
    PER_HEAP_ISOLATED
    heap_segment* get_segment_for_loh (size_t size
#ifdef MULTIPLE_HEAPS
                                      , gc_heap* hp
#endif //MULTIPLE_HEAPS
                                      );
    PER_HEAP
    void reset_heap_segment_pages (heap_segment* seg);
    PER_HEAP
    void decommit_heap_segment_pages (heap_segment* seg, size_t extra_space);
    PER_HEAP
    void decommit_heap_segment (heap_segment* seg);
    PER_HEAP
    void clear_gen0_bricks();
#ifdef BACKGROUND_GC
    PER_HEAP
    void rearrange_small_heap_segments();
#endif //BACKGROUND_GC
    PER_HEAP
    void rearrange_large_heap_segments();
    PER_HEAP
    void rearrange_heap_segments(BOOL compacting);
    PER_HEAP
    void switch_one_quantum();
    PER_HEAP
    void reset_ww_by_chunk (uint8_t* start_address, size_t total_reset_size);
    PER_HEAP
    void switch_on_reset (BOOL concurrent_p, size_t* current_total_reset_size, size_t last_reset_size);
    PER_HEAP
    void reset_write_watch (BOOL concurrent_p);
    PER_HEAP
    void adjust_ephemeral_limits ();
    PER_HEAP
    void make_generation (generation& gen, heap_segment* seg,
                          uint8_t* start, uint8_t* pointer);


#define USE_PADDING_FRONT 1
#define USE_PADDING_TAIL  2

    PER_HEAP
    BOOL size_fit_p (size_t size REQD_ALIGN_AND_OFFSET_DCL, uint8_t* alloc_pointer, uint8_t* alloc_limit,
                     uint8_t* old_loc=0, int use_padding=USE_PADDING_TAIL);
    PER_HEAP
    BOOL a_size_fit_p (size_t size, uint8_t* alloc_pointer, uint8_t* alloc_limit,
                       int align_const);

    PER_HEAP
    void handle_oom (int heap_num, oom_reason reason, size_t alloc_size, 
                     uint8_t* allocated, uint8_t* reserved);

    PER_HEAP
    size_t card_of ( uint8_t* object);
    PER_HEAP
    uint8_t* brick_address (size_t brick);
    PER_HEAP
    size_t brick_of (uint8_t* add);
    PER_HEAP
    uint8_t* card_address (size_t card);
    PER_HEAP
    size_t card_to_brick (size_t card);
    PER_HEAP
    void clear_card (size_t card);
    PER_HEAP
    void set_card (size_t card);
    PER_HEAP
    BOOL  card_set_p (size_t card);
    PER_HEAP
    void card_table_set_bit (uint8_t* location);

#ifdef CARD_BUNDLE
    PER_HEAP
    void update_card_table_bundle();
    PER_HEAP
    void reset_card_table_write_watch();
    PER_HEAP
    void card_bundle_clear(size_t cardb);
    PER_HEAP
    void card_bundles_set (size_t start_cardb, size_t end_cardb);
    PER_HEAP
    BOOL card_bundle_set_p (size_t cardb);
    PER_HEAP
    BOOL find_card_dword (size_t& cardw, size_t cardw_end);
    PER_HEAP
    void enable_card_bundles();
    PER_HEAP_ISOLATED
    BOOL card_bundles_enabled();

#endif //CARD_BUNDLE

    PER_HEAP
    BOOL find_card (uint32_t* card_table, size_t& card,
                    size_t card_word_end, size_t& end_card);
    PER_HEAP
    BOOL grow_heap_segment (heap_segment* seg, uint8_t* high_address);
    PER_HEAP
    int grow_heap_segment (heap_segment* seg, uint8_t* high_address, uint8_t* old_loc, size_t size, BOOL pad_front_p REQD_ALIGN_AND_OFFSET_DCL);
    PER_HEAP
    void copy_brick_card_range (uint8_t* la, uint32_t* old_card_table,
                                short* old_brick_table,
                                heap_segment* seg,
                                uint8_t* start, uint8_t* end);
    PER_HEAP
    void init_brick_card_range (heap_segment* seg);
    PER_HEAP
    void copy_brick_card_table_l_heap ();
    PER_HEAP
    void copy_brick_card_table();
    PER_HEAP
    void clear_brick_table (uint8_t* from, uint8_t* end);
    PER_HEAP
    void set_brick (size_t index, ptrdiff_t val);
    PER_HEAP
    int brick_entry (size_t index);
#ifdef MARK_ARRAY
    PER_HEAP
    unsigned int mark_array_marked (uint8_t* add);
    PER_HEAP
    void mark_array_set_marked (uint8_t* add);
    PER_HEAP
    BOOL is_mark_bit_set (uint8_t* add);
    PER_HEAP
    void gmark_array_set_marked (uint8_t* add);
    PER_HEAP
    void set_mark_array_bit (size_t mark_bit);
    PER_HEAP
    BOOL mark_array_bit_set (size_t mark_bit);
    PER_HEAP
    void mark_array_clear_marked (uint8_t* add);
    PER_HEAP
    void clear_mark_array (uint8_t* from, uint8_t* end, BOOL check_only=TRUE);
#ifdef BACKGROUND_GC
    PER_HEAP
    void seg_clear_mark_array_bits_soh (heap_segment* seg);
    PER_HEAP
    void clear_batch_mark_array_bits (uint8_t* start, uint8_t* end);
    PER_HEAP
    void bgc_clear_batch_mark_array_bits (uint8_t* start, uint8_t* end);
    PER_HEAP
    void clear_mark_array_by_objects (uint8_t* from, uint8_t* end, BOOL loh_p);
#ifdef VERIFY_HEAP
    PER_HEAP
    void set_batch_mark_array_bits (uint8_t* start, uint8_t* end);
    PER_HEAP
    void check_batch_mark_array_bits (uint8_t* start, uint8_t* end);
#endif //VERIFY_HEAP
#endif //BACKGROUND_GC
#endif //MARK_ARRAY

    PER_HEAP
    BOOL large_object_marked (uint8_t* o, BOOL clearp);

#ifdef BACKGROUND_GC
    PER_HEAP
    BOOL background_allowed_p();
#endif //BACKGROUND_GC

    PER_HEAP_ISOLATED
    void send_full_gc_notification (int gen_num, BOOL due_to_alloc_p);

    PER_HEAP
    void check_for_full_gc (int gen_num, size_t size);

    PER_HEAP
    void adjust_limit (uint8_t* start, size_t limit_size, generation* gen,
                       int gen_number);
    PER_HEAP
    void adjust_limit_clr (uint8_t* start, size_t limit_size,
                           alloc_context* acontext, heap_segment* seg,
                           int align_const, int gen_number);
    PER_HEAP
    void  leave_allocation_segment (generation* gen);

    PER_HEAP
    void init_free_and_plug();

    PER_HEAP
    void print_free_and_plug (const char* msg);

    PER_HEAP
    void add_gen_plug (int gen_number, size_t plug_size);

    PER_HEAP
    void add_gen_free (int gen_number, size_t free_size);

    PER_HEAP
    void add_item_to_current_pinned_free (int gen_number, size_t free_size);
    
    PER_HEAP
    void remove_gen_free (int gen_number, size_t free_size);

    PER_HEAP
    uint8_t* allocate_in_older_generation (generation* gen, size_t size,
                                        int from_gen_number,
                                        uint8_t* old_loc=0
                                        REQD_ALIGN_AND_OFFSET_DEFAULT_DCL);
    PER_HEAP
    generation*  ensure_ephemeral_heap_segment (generation* consing_gen);
    PER_HEAP
    uint8_t* allocate_in_condemned_generations (generation* gen,
                                             size_t size,
                                             int from_gen_number,
#ifdef SHORT_PLUGS
                                             BOOL* convert_to_pinned_p=NULL,
                                             uint8_t* next_pinned_plug=0,
                                             heap_segment* current_seg=0,
#endif //SHORT_PLUGS
                                             uint8_t* old_loc=0
                                             REQD_ALIGN_AND_OFFSET_DEFAULT_DCL);
#ifdef INTERIOR_POINTERS
    // Verifies that interior is actually in the range of seg; otherwise 
    // returns 0.
    PER_HEAP_ISOLATED
    heap_segment* find_segment (uint8_t* interior, BOOL small_segment_only_p);

    PER_HEAP
    heap_segment* find_segment_per_heap (uint8_t* interior, BOOL small_segment_only_p);

    PER_HEAP
    uint8_t* find_object_for_relocation (uint8_t* o, uint8_t* low, uint8_t* high);
#endif //INTERIOR_POINTERS

    PER_HEAP_ISOLATED
    gc_heap* heap_of (uint8_t* object);

    PER_HEAP_ISOLATED
    gc_heap* heap_of_gc (uint8_t* object);

    PER_HEAP_ISOLATED
    size_t&  promoted_bytes (int);

    PER_HEAP
    uint8_t* find_object (uint8_t* o, uint8_t* low);

    PER_HEAP
    dynamic_data* dynamic_data_of (int gen_number);
    PER_HEAP
    ptrdiff_t  get_desired_allocation (int gen_number);
    PER_HEAP
    ptrdiff_t  get_new_allocation (int gen_number);
    PER_HEAP
    ptrdiff_t  get_allocation (int gen_number);
    PER_HEAP
    bool new_allocation_allowed (int gen_number);
#ifdef BACKGROUND_GC
    PER_HEAP_ISOLATED
    void allow_new_allocation (int gen_number);
    PER_HEAP_ISOLATED
    void disallow_new_allocation (int gen_number);
#endif //BACKGROUND_GC
    PER_HEAP
    void reset_pinned_queue();
    PER_HEAP
    void reset_pinned_queue_bos();
    PER_HEAP
    void set_allocator_next_pin (generation* gen);
    PER_HEAP
    void set_allocator_next_pin (uint8_t* alloc_pointer, uint8_t*& alloc_limit);
    PER_HEAP
    void enque_pinned_plug (generation* gen, uint8_t* plug, size_t len);
    PER_HEAP
    void enque_pinned_plug (uint8_t* plug,
                            BOOL save_pre_plug_info_p,
                            uint8_t* last_object_in_last_plug);
    PER_HEAP
    void merge_with_last_pinned_plug (uint8_t* last_pinned_plug, size_t plug_size);
    PER_HEAP
    void set_pinned_info (uint8_t* last_pinned_plug,
                          size_t plug_len,
                          uint8_t* alloc_pointer,
                          uint8_t*& alloc_limit);
    PER_HEAP
    void set_pinned_info (uint8_t* last_pinned_plug, size_t plug_len, generation* gen);
    PER_HEAP
    void save_post_plug_info (uint8_t* last_pinned_plug, uint8_t* last_object_in_last_plug, uint8_t* post_plug);
    PER_HEAP
    size_t deque_pinned_plug ();
    PER_HEAP
    mark* pinned_plug_of (size_t bos);
    PER_HEAP
    mark* oldest_pin ();
    PER_HEAP
    mark* before_oldest_pin();
    PER_HEAP
    BOOL pinned_plug_que_empty_p ();
    PER_HEAP
    void make_mark_stack (mark* arr);
#ifdef MH_SC_MARK
    PER_HEAP
    int& mark_stack_busy();
    PER_HEAP
    VOLATILE(uint8_t*)& ref_mark_stack (gc_heap* hp, int index);
#endif
#ifdef BACKGROUND_GC
    PER_HEAP_ISOLATED
    size_t&  bpromoted_bytes (int);
    PER_HEAP
    void make_background_mark_stack (uint8_t** arr);
    PER_HEAP
    void make_c_mark_list (uint8_t** arr);
#endif //BACKGROUND_GC
    PER_HEAP
    generation* generation_of (int  n);
    PER_HEAP
    BOOL gc_mark1 (uint8_t* o);
    PER_HEAP
    BOOL gc_mark (uint8_t* o, uint8_t* low, uint8_t* high);
    PER_HEAP
    uint8_t* mark_object(uint8_t* o THREAD_NUMBER_DCL);
#ifdef HEAP_ANALYZE
    PER_HEAP
    void ha_mark_object_simple (uint8_t** o THREAD_NUMBER_DCL);
#endif //HEAP_ANALYZE
    PER_HEAP
    void mark_object_simple (uint8_t** o THREAD_NUMBER_DCL);
    PER_HEAP
    void mark_object_simple1 (uint8_t* o, uint8_t* start THREAD_NUMBER_DCL);

#ifdef MH_SC_MARK
    PER_HEAP
    void mark_steal ();
#endif //MH_SC_MARK

#ifdef BACKGROUND_GC

    PER_HEAP
    BOOL background_marked (uint8_t* o);
    PER_HEAP
    BOOL background_mark1 (uint8_t* o);
    PER_HEAP
    BOOL background_mark (uint8_t* o, uint8_t* low, uint8_t* high);
    PER_HEAP
    uint8_t* background_mark_object (uint8_t* o THREAD_NUMBER_DCL);
    PER_HEAP
    void background_mark_simple (uint8_t* o THREAD_NUMBER_DCL);
    PER_HEAP
    void background_mark_simple1 (uint8_t* o THREAD_NUMBER_DCL);
    PER_HEAP_ISOLATED
    void background_promote (Object**, ScanContext* , uint32_t);
    PER_HEAP
    BOOL background_object_marked (uint8_t* o, BOOL clearp);
    PER_HEAP
    void init_background_gc();
    PER_HEAP
    uint8_t* background_next_end (heap_segment*, BOOL);
    PER_HEAP
    void generation_delete_heap_segment (generation*, 
                                         heap_segment*, heap_segment*, heap_segment*);
    PER_HEAP
    void set_mem_verify (uint8_t*, uint8_t*, uint8_t);
    PER_HEAP
    void process_background_segment_end (heap_segment*, generation*, uint8_t*,
                                     heap_segment*, BOOL*);
    PER_HEAP
    void process_n_background_segments (heap_segment*, heap_segment*, generation* gen);
    PER_HEAP
    BOOL fgc_should_consider_object (uint8_t* o,
                                     heap_segment* seg,
                                     BOOL consider_bgc_mark_p,
                                     BOOL check_current_sweep_p,
                                     BOOL check_saved_sweep_p);
    PER_HEAP
    void should_check_bgc_mark (heap_segment* seg, 
                                BOOL* consider_bgc_mark_p, 
                                BOOL* check_current_sweep_p,
                                BOOL* check_saved_sweep_p);
    PER_HEAP
    void background_ephemeral_sweep();
    PER_HEAP
    void background_sweep ();
    PER_HEAP
    void background_mark_through_object (uint8_t* oo THREAD_NUMBER_DCL);
    PER_HEAP
    uint8_t* background_seg_end (heap_segment* seg, BOOL concurrent_p);
    PER_HEAP
    uint8_t* background_first_overflow (uint8_t* min_add,
                                     heap_segment* seg,
                                     BOOL concurrent_p, 
                                     BOOL small_object_p);
    PER_HEAP
    void background_process_mark_overflow_internal (int condemned_gen_number,
                                                    uint8_t* min_add, uint8_t* max_add,
                                                    BOOL concurrent_p);
    PER_HEAP
    BOOL background_process_mark_overflow (BOOL concurrent_p);

    // for foreground GC to get hold of background structures containing refs
    PER_HEAP
    void
    scan_background_roots (promote_func* fn, int hn, ScanContext *pSC);

    PER_HEAP
    BOOL bgc_mark_array_range (heap_segment* seg, 
                               BOOL whole_seg_p,
                               uint8_t** range_beg,
                               uint8_t** range_end);
    PER_HEAP
    void bgc_verify_mark_array_cleared (heap_segment* seg);
    PER_HEAP
    void verify_mark_bits_cleared (uint8_t* obj, size_t s);
    PER_HEAP
    void clear_all_mark_array();
#endif //BACKGROUND_GC

    PER_HEAP
    uint8_t* next_end (heap_segment* seg, uint8_t* f);
    PER_HEAP
    void fix_card_table ();
    PER_HEAP
    void mark_through_object (uint8_t* oo, BOOL mark_class_object_p THREAD_NUMBER_DCL);
    PER_HEAP
    BOOL process_mark_overflow (int condemned_gen_number);
    PER_HEAP
    void process_mark_overflow_internal (int condemned_gen_number,
                                         uint8_t* min_address, uint8_t* max_address);

#ifdef SNOOP_STATS
    PER_HEAP
    void print_snoop_stat();
#endif //SNOOP_STATS

#ifdef MH_SC_MARK

    PER_HEAP
    BOOL check_next_mark_stack (gc_heap* next_heap);

#endif //MH_SC_MARK

    PER_HEAP
    void scan_dependent_handles (int condemned_gen_number, ScanContext *sc, BOOL initial_scan_p);

    PER_HEAP
    void mark_phase (int condemned_gen_number, BOOL mark_only_p);

    PER_HEAP
    void pin_object (uint8_t* o, uint8_t** ppObject, uint8_t* low, uint8_t* high);
    PER_HEAP
    void reset_mark_stack ();
    PER_HEAP
    uint8_t* insert_node (uint8_t* new_node, size_t sequence_number,
                       uint8_t* tree, uint8_t* last_node);
    PER_HEAP
    size_t update_brick_table (uint8_t* tree, size_t current_brick,
                               uint8_t* x, uint8_t* plug_end);

    PER_HEAP
    void plan_generation_start (generation* gen, generation* consing_gen, uint8_t* next_plug_to_allocate);

    PER_HEAP
    void realloc_plan_generation_start (generation* gen, generation* consing_gen);

    PER_HEAP
    void plan_generation_starts (generation*& consing_gen);

    PER_HEAP
    void advance_pins_for_demotion (generation* gen);

    PER_HEAP
    void process_ephemeral_boundaries(uint8_t* x, int& active_new_gen_number,
                                      int& active_old_gen_number,
                                      generation*& consing_gen,
                                      BOOL& allocate_in_condemned);
    PER_HEAP
    void seg_clear_mark_bits (heap_segment* seg);
    PER_HEAP
    void sweep_ro_segments (heap_segment* start_seg);
    PER_HEAP
    void convert_to_pinned_plug (BOOL& last_npinned_plug_p, 
                                 BOOL& last_pinned_plug_p, 
                                 BOOL& pinned_plug_p,
                                 size_t ps,
                                 size_t& artificial_pinned_size);
    PER_HEAP
    void store_plug_gap_info (uint8_t* plug_start,
                              uint8_t* plug_end,
                              BOOL& last_npinned_plug_p, 
                              BOOL& last_pinned_plug_p, 
                              uint8_t*& last_pinned_plug,
                              BOOL& pinned_plug_p,
                              uint8_t* last_object_in_last_plug,
                              BOOL& merge_with_last_pin_p,
                              // this is only for verification purpose
                              size_t last_plug_len);
    PER_HEAP
    void plan_phase (int condemned_gen_number);

    PER_HEAP
    void record_interesting_data_point (interesting_data_point idp);

#ifdef GC_CONFIG_DRIVEN
    PER_HEAP
    void record_interesting_info_per_heap();
    PER_HEAP_ISOLATED
    void record_global_mechanisms();
    PER_HEAP_ISOLATED
    BOOL should_do_sweeping_gc (BOOL compact_p);
#endif //GC_CONFIG_DRIVEN

#ifdef FEATURE_LOH_COMPACTION
    // plan_loh can allocate memory so it can fail. If it fails, we will
    // fall back to sweeping.  
    PER_HEAP
    BOOL plan_loh();

    PER_HEAP
    void compact_loh();

    PER_HEAP
    void relocate_in_loh_compact();

#if defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE)
    PER_HEAP
    void walk_relocation_loh (size_t profiling_context);
#endif // defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE)

    PER_HEAP
    BOOL loh_enque_pinned_plug (uint8_t* plug, size_t len);

    PER_HEAP
    void loh_set_allocator_next_pin();

    PER_HEAP
    BOOL loh_pinned_plug_que_empty_p();

    PER_HEAP
    size_t loh_deque_pinned_plug();

    PER_HEAP
    mark* loh_pinned_plug_of (size_t bos);

    PER_HEAP
    mark* loh_oldest_pin();

    PER_HEAP
    BOOL loh_size_fit_p (size_t size, uint8_t* alloc_pointer, uint8_t* alloc_limit);

    PER_HEAP
    uint8_t* loh_allocate_in_condemned (uint8_t* old_loc, size_t size);

    PER_HEAP_ISOLATED
    BOOL loh_object_p (uint8_t* o);

    PER_HEAP_ISOLATED
    BOOL should_compact_loh();

    // If the LOH compaction mode is just to compact once,
    // we need to see if we should reset it back to not compact.
    // We would only reset if every heap's LOH was compacted.
    PER_HEAP_ISOLATED
    void check_loh_compact_mode  (BOOL all_heaps_compacted_p);
#endif //FEATURE_LOH_COMPACTION

    PER_HEAP
    void decommit_ephemeral_segment_pages (int condemned_gen_number);
    PER_HEAP
    void fix_generation_bounds (int condemned_gen_number,
                                generation* consing_gen);
    PER_HEAP
    uint8_t* generation_limit (int gen_number);

    struct make_free_args
    {
        int free_list_gen_number;
        uint8_t* current_gen_limit;
        generation* free_list_gen;
        uint8_t* highest_plug;
    };
    PER_HEAP
    uint8_t* allocate_at_end (size_t size);
    PER_HEAP
    BOOL ensure_gap_allocation (int condemned_gen_number);
    // make_free_lists is only called by blocking GCs.
    PER_HEAP
    void make_free_lists (int condemned_gen_number);
    PER_HEAP
    void make_free_list_in_brick (uint8_t* tree, make_free_args* args);
    PER_HEAP
    void thread_gap (uint8_t* gap_start, size_t size, generation*  gen);
    PER_HEAP
    void loh_thread_gap_front (uint8_t* gap_start, size_t size, generation*  gen);
    PER_HEAP
    void make_unused_array (uint8_t* x, size_t size, BOOL clearp=FALSE, BOOL resetp=FALSE);
    PER_HEAP
    void clear_unused_array (uint8_t* x, size_t size);
    PER_HEAP
    void relocate_address (uint8_t** old_address THREAD_NUMBER_DCL);
    struct relocate_args
    {
        uint8_t* last_plug;
        uint8_t* low;
        uint8_t* high;
        BOOL is_shortened;
        mark* pinned_plug_entry;
    };

    PER_HEAP
    void reloc_survivor_helper (uint8_t** pval);
    PER_HEAP
    void check_class_object_demotion (uint8_t* obj);
    PER_HEAP
    void check_class_object_demotion_internal (uint8_t* obj);

    PER_HEAP 
    void check_demotion_helper (uint8_t** pval, uint8_t* parent_obj);

    PER_HEAP
    void relocate_survivor_helper (uint8_t* plug, uint8_t* plug_end);

    PER_HEAP
    void verify_pins_with_post_plug_info (const char* msg);

#ifdef COLLECTIBLE_CLASS
    PER_HEAP
    void unconditional_set_card_collectible (uint8_t* obj);
#endif //COLLECTIBLE_CLASS

    PER_HEAP
    void relocate_shortened_survivor_helper (uint8_t* plug, uint8_t* plug_end, mark* pinned_plug_entry);
    
    PER_HEAP
    void relocate_obj_helper (uint8_t* x, size_t s);

    PER_HEAP
    void reloc_ref_in_shortened_obj (uint8_t** address_to_set_card, uint8_t** address_to_reloc);

    PER_HEAP
    void relocate_pre_plug_info (mark* pinned_plug_entry);

    PER_HEAP
    void relocate_shortened_obj_helper (uint8_t* x, size_t s, uint8_t* end, mark* pinned_plug_entry, BOOL is_pinned);

    PER_HEAP
    void relocate_survivors_in_plug (uint8_t* plug, uint8_t* plug_end,
                                     BOOL check_last_object_p, 
                                     mark* pinned_plug_entry);
    PER_HEAP
    void relocate_survivors_in_brick (uint8_t* tree, relocate_args* args);

    PER_HEAP
    void update_oldest_pinned_plug();

    PER_HEAP
    void relocate_survivors (int condemned_gen_number,
                             uint8_t* first_condemned_address );
    PER_HEAP
    void relocate_phase (int condemned_gen_number,
                         uint8_t* first_condemned_address);

    struct compact_args
    {
        BOOL copy_cards_p;
        uint8_t* last_plug;
        ptrdiff_t last_plug_relocation;
        uint8_t* before_last_plug;
        size_t current_compacted_brick;
        BOOL is_shortened;
        mark* pinned_plug_entry;
        BOOL check_gennum_p;
        int src_gennum;

        void print()
        {
            dprintf (3, ("last plug: %Ix, last plug reloc: %Ix, before last: %Ix, b: %Ix",
                last_plug, last_plug_relocation, before_last_plug, current_compacted_brick));
        }
    };

    PER_HEAP
    void copy_cards_range (uint8_t* dest, uint8_t* src, size_t len, BOOL copy_cards_p);
    PER_HEAP
    void  gcmemcopy (uint8_t* dest, uint8_t* src, size_t len, BOOL copy_cards_p);
    PER_HEAP
    void compact_plug (uint8_t* plug, size_t size, BOOL check_last_object_p, compact_args* args);
    PER_HEAP
    void compact_in_brick (uint8_t* tree, compact_args* args);

    PER_HEAP
    mark* get_next_pinned_entry (uint8_t* tree,
                                 BOOL* has_pre_plug_info_p,
                                 BOOL* has_post_plug_info_p,
                                 BOOL deque_p=TRUE);

    PER_HEAP
    mark* get_oldest_pinned_entry (BOOL* has_pre_plug_info_p, BOOL* has_post_plug_info_p);

    PER_HEAP
    void recover_saved_pinned_info();

    PER_HEAP
    void compact_phase (int condemned_gen_number, uint8_t*
                        first_condemned_address, BOOL clear_cards);
    PER_HEAP
    void clear_cards (size_t start_card, size_t end_card);
    PER_HEAP
    void clear_card_for_addresses (uint8_t* start_address, uint8_t* end_address);
    PER_HEAP
    void copy_cards (size_t dst_card, size_t src_card,
                     size_t end_card, BOOL nextp);
    PER_HEAP
    void copy_cards_for_addresses (uint8_t* dest, uint8_t* src, size_t len);

#ifdef BACKGROUND_GC
    PER_HEAP
    void copy_mark_bits (size_t dst_mark_bit, size_t src_mark_bit, size_t end_mark_bit);
    PER_HEAP
    void copy_mark_bits_for_addresses (uint8_t* dest, uint8_t* src, size_t len);
#endif //BACKGROUND_GC


    PER_HEAP
    BOOL ephemeral_pointer_p (uint8_t* o);
    PER_HEAP
    void fix_brick_to_highest (uint8_t* o, uint8_t* next_o);
    PER_HEAP
    uint8_t* find_first_object (uint8_t* start_address, uint8_t* first_object);
    PER_HEAP
    uint8_t* compute_next_boundary (uint8_t* low, int gen_number, BOOL relocating);
    PER_HEAP
    void keep_card_live (uint8_t* o, size_t& n_gen,
                         size_t& cg_pointers_found);
    PER_HEAP
    void mark_through_cards_helper (uint8_t** poo, size_t& ngen,
                                    size_t& cg_pointers_found,
                                    card_fn fn, uint8_t* nhigh,
                                    uint8_t* next_boundary);

    PER_HEAP
    BOOL card_transition (uint8_t* po, uint8_t* end, size_t card_word_end,
                               size_t& cg_pointers_found, 
                               size_t& n_eph, size_t& n_card_set,
                               size_t& card, size_t& end_card,
                               BOOL& foundp, uint8_t*& start_address,
                               uint8_t*& limit, size_t& n_cards_cleared);
    PER_HEAP
    void mark_through_cards_for_segments (card_fn fn, BOOL relocating);

    PER_HEAP
    void repair_allocation_in_expanded_heap (generation* gen);
    PER_HEAP
    BOOL can_fit_in_spaces_p (size_t* ordered_blocks, int small_index, size_t* ordered_spaces, int big_index);
    PER_HEAP
    BOOL can_fit_blocks_p (size_t* ordered_blocks, int block_index, size_t* ordered_spaces, int* space_index);
    PER_HEAP
    BOOL can_fit_all_blocks_p (size_t* ordered_blocks, size_t* ordered_spaces, int count);
#ifdef SEG_REUSE_STATS
    PER_HEAP
    size_t dump_buckets (size_t* ordered_indices, int count, size_t* total_size);
#endif //SEG_REUSE_STATS
    PER_HEAP
    void build_ordered_free_spaces (heap_segment* seg);
    PER_HEAP
    void count_plug (size_t last_plug_size, uint8_t*& last_plug);
    PER_HEAP
    void count_plugs_in_brick (uint8_t* tree, uint8_t*& last_plug);
    PER_HEAP
    void build_ordered_plug_indices ();
    PER_HEAP
    void init_ordered_free_space_indices ();
    PER_HEAP
    void trim_free_spaces_indices ();
    PER_HEAP
    BOOL try_best_fit (BOOL end_of_segment_p);
    PER_HEAP
    BOOL best_fit (size_t free_space, size_t largest_free_space, size_t additional_space, BOOL* use_additional_space);
    PER_HEAP
    BOOL process_free_space (heap_segment* seg, 
                             size_t free_space,
                             size_t min_free_size, 
                             size_t min_cont_size,
                             size_t* total_free_space,
                             size_t* largest_free_space);
    PER_HEAP
    size_t compute_eph_gen_starts_size();
    PER_HEAP
    void compute_new_ephemeral_size();
    PER_HEAP
    BOOL can_expand_into_p (heap_segment* seg, size_t min_free_size,
                            size_t min_cont_size, allocator* al);
    PER_HEAP
    uint8_t* allocate_in_expanded_heap (generation* gen, size_t size,
                                     BOOL& adjacentp, uint8_t* old_loc,
#ifdef SHORT_PLUGS
                                     BOOL set_padding_on_saved_p,
                                     mark* pinned_plug_entry,
#endif //SHORT_PLUGS
                                     BOOL consider_bestfit, int active_new_gen_number
                                     REQD_ALIGN_AND_OFFSET_DEFAULT_DCL);
    PER_HEAP
    void realloc_plug (size_t last_plug_size, uint8_t*& last_plug,
                       generation* gen, uint8_t* start_address,
                       unsigned int& active_new_gen_number,
                       uint8_t*& last_pinned_gap, BOOL& leftp,
                       BOOL shortened_p
#ifdef SHORT_PLUGS
                       , mark* pinned_plug_entry
#endif //SHORT_PLUGS
                       );
    PER_HEAP
    void realloc_in_brick (uint8_t* tree, uint8_t*& last_plug, uint8_t* start_address,
                           generation* gen,
                           unsigned int& active_new_gen_number,
                           uint8_t*& last_pinned_gap, BOOL& leftp);
    PER_HEAP
    void realloc_plugs (generation* consing_gen, heap_segment* seg,
                        uint8_t* start_address, uint8_t* end_address,
                        unsigned active_new_gen_number);

    PER_HEAP
    void set_expand_in_full_gc (int condemned_gen_number);

    PER_HEAP
    void verify_no_pins (uint8_t* start, uint8_t* end);

    PER_HEAP
    generation* expand_heap (int condemned_generation,
                             generation* consing_gen,
                             heap_segment* new_heap_segment);

    PER_HEAP
    void save_ephemeral_generation_starts();

    static size_t get_time_now();

    PER_HEAP
    bool init_dynamic_data ();
    PER_HEAP
    float surv_to_growth (float cst, float limit, float max_limit);
    PER_HEAP
    size_t desired_new_allocation (dynamic_data* dd, size_t out,
                                   int gen_number, int pass);

    PER_HEAP
    void trim_youngest_desired_low_memory();

    PER_HEAP
    void decommit_ephemeral_segment_pages();

#ifdef BIT64
    PER_HEAP_ISOLATED
    size_t trim_youngest_desired (uint32_t memory_load,
                                  size_t total_new_allocation,
                                  size_t total_min_allocation);
    PER_HEAP_ISOLATED
    size_t joined_youngest_desired (size_t new_allocation);
#endif // BIT64
    PER_HEAP_ISOLATED
    size_t get_total_heap_size ();
    PER_HEAP
    size_t generation_size (int gen_number);
    PER_HEAP_ISOLATED
    size_t get_total_survived_size();
    PER_HEAP
    size_t get_current_allocated();
    PER_HEAP_ISOLATED
    size_t get_total_allocated();
    PER_HEAP
    size_t current_generation_size (int gen_number);
    PER_HEAP
    size_t generation_plan_size (int gen_number);
    PER_HEAP
    void  compute_promoted_allocation (int gen_number);
    PER_HEAP
    size_t  compute_in (int gen_number);
    PER_HEAP
    void compute_new_dynamic_data (int gen_number);
    PER_HEAP
    gc_history_per_heap* get_gc_data_per_heap();
    PER_HEAP
    size_t new_allocation_limit (size_t size, size_t free_size, int gen_number);
    PER_HEAP
    size_t generation_fragmentation (generation* gen,
                                     generation* consing_gen,
                                     uint8_t* end);
    PER_HEAP
    size_t generation_sizes (generation* gen);
    PER_HEAP
    size_t approximate_new_allocation();
    PER_HEAP
    size_t end_space_after_gc();
    PER_HEAP
    BOOL decide_on_compacting (int condemned_gen_number,
                               size_t fragmentation,
                               BOOL& should_expand);
    PER_HEAP
    BOOL ephemeral_gen_fit_p (gc_tuning_point tp);
    PER_HEAP
    void reset_large_object (uint8_t* o);
    PER_HEAP
    void sweep_large_objects ();
    PER_HEAP
    void relocate_in_large_objects ();
    PER_HEAP
    void mark_through_cards_for_large_objects (card_fn fn, BOOL relocating);
    PER_HEAP
    void descr_segment (heap_segment* seg);
    PER_HEAP
    void descr_card_table ();
    PER_HEAP
    void descr_generations (BOOL begin_gc_p);

#if defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE)
    PER_HEAP_ISOLATED
    void descr_generations_to_profiler (gen_walk_fn fn, void *context);
    PER_HEAP
    void record_survived_for_profiler(int condemned_gen_number, uint8_t * first_condemned_address);
    PER_HEAP
    void notify_profiler_of_surviving_large_objects ();
#endif // defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE)

    /*------------ Multiple non isolated heaps ----------------*/
#ifdef MULTIPLE_HEAPS
    PER_HEAP_ISOLATED
    BOOL   create_thread_support (unsigned number_of_heaps);
    PER_HEAP_ISOLATED
    void destroy_thread_support ();
    PER_HEAP
    HANDLE create_gc_thread();
    PER_HEAP
    uint32_t gc_thread_function();
#ifdef MARK_LIST
#ifdef PARALLEL_MARK_LIST_SORT
    PER_HEAP
    void sort_mark_list();
    PER_HEAP
    void merge_mark_lists();
    PER_HEAP
    void append_to_mark_list(uint8_t **start, uint8_t **end);
#else //PARALLEL_MARK_LIST_SORT
    PER_HEAP_ISOLATED
    void combine_mark_lists();
#endif //PARALLEL_MARK_LIST_SORT
#endif
#endif //MULTIPLE_HEAPS

    /*------------ End of Multiple non isolated heaps ---------*/

#ifndef SEG_MAPPING_TABLE
    PER_HEAP_ISOLATED
    heap_segment* segment_of (uint8_t* add,  ptrdiff_t & delta,
                              BOOL verify_p = FALSE);
#endif //SEG_MAPPING_TABLE

#ifdef BACKGROUND_GC

    //this is called by revisit....
    PER_HEAP
    uint8_t* high_page (heap_segment* seg, BOOL concurrent_p);

    PER_HEAP
    void revisit_written_page (uint8_t* page, uint8_t* end, BOOL concurrent_p,
                               heap_segment* seg,  uint8_t*& last_page,
                               uint8_t*& last_object, BOOL large_objects_p,
                               size_t& num_marked_objects);
    PER_HEAP
    void revisit_written_pages (BOOL concurrent_p, BOOL reset_only_p=FALSE);

    PER_HEAP
    void concurrent_scan_dependent_handles (ScanContext *sc);

    PER_HEAP_ISOLATED
    void suspend_EE ();

    PER_HEAP_ISOLATED
    void bgc_suspend_EE ();

    PER_HEAP_ISOLATED
    void restart_EE ();

    PER_HEAP
    void background_verify_mark (Object*& object, ScanContext* sc, uint32_t flags);

    PER_HEAP
    void background_scan_dependent_handles (ScanContext *sc);

    PER_HEAP
    void allow_fgc();

    // Restores BGC settings if necessary.
    PER_HEAP_ISOLATED
    void recover_bgc_settings();

    PER_HEAP
    void save_bgc_data_per_heap();

    PER_HEAP
    BOOL should_commit_mark_array();

    PER_HEAP
    void clear_commit_flag();

    PER_HEAP_ISOLATED
    void clear_commit_flag_global();

    PER_HEAP_ISOLATED
    void verify_mark_array_cleared (heap_segment* seg, uint32_t* mark_array_addr);

    PER_HEAP_ISOLATED
    void verify_mark_array_cleared (uint8_t* begin, uint8_t* end, uint32_t* mark_array_addr);

    PER_HEAP_ISOLATED
    BOOL commit_mark_array_by_range (uint8_t* begin,
                                     uint8_t* end,
                                     uint32_t* mark_array_addr);

    PER_HEAP_ISOLATED
    BOOL commit_mark_array_new_seg (gc_heap* hp, 
                                    heap_segment* seg,
                                    uint8_t* new_lowest_address = 0);

    PER_HEAP_ISOLATED
    BOOL commit_mark_array_with_check (heap_segment* seg, uint32_t* mark_array_addr);

    // commit the portion of the mark array that corresponds to 
    // this segment (from beginning to reserved).
    // seg and heap_segment_reserved (seg) are guaranteed to be 
    // page aligned.
    PER_HEAP_ISOLATED
    BOOL commit_mark_array_by_seg (heap_segment* seg, uint32_t* mark_array_addr);

    // During BGC init, we commit the mark array for all in range
    // segments whose mark array hasn't been committed or fully
    // committed. All rw segments are in range, only ro segments
    // can be partial in range.
    PER_HEAP
    BOOL commit_mark_array_bgc_init (uint32_t* mark_array_addr);

    PER_HEAP
    BOOL commit_new_mark_array (uint32_t* new_mark_array);

    // We need to commit all segments that intersect with the bgc
    // range. If a segment is only partially in range, we still
    // should commit the mark array for the whole segment as 
    // we will set the mark array commit flag for this segment.
    PER_HEAP_ISOLATED
    BOOL commit_new_mark_array_global (uint32_t* new_mark_array);

    // We can't decommit the first and the last page in the mark array
    // if the beginning and ending don't happen to be page aligned.
    PER_HEAP
    void decommit_mark_array_by_seg (heap_segment* seg);

    PER_HEAP
    void background_mark_phase();

    PER_HEAP
    void background_drain_mark_list (int thread);

    PER_HEAP
    void background_grow_c_mark_list();

    PER_HEAP_ISOLATED
    void background_promote_callback(Object** object, ScanContext* sc, uint32_t flags);

    PER_HEAP
    void mark_absorb_new_alloc();

    PER_HEAP
    void restart_vm();

    PER_HEAP
    BOOL prepare_bgc_thread(gc_heap* gh);
    PER_HEAP
    BOOL create_bgc_thread(gc_heap* gh);
    PER_HEAP_ISOLATED
    BOOL create_bgc_threads_support (int number_of_heaps);
    PER_HEAP
    BOOL create_bgc_thread_support();
    PER_HEAP_ISOLATED
    int check_for_ephemeral_alloc();
    PER_HEAP_ISOLATED
    void wait_to_proceed();
    PER_HEAP_ISOLATED
    void fire_alloc_wait_event_begin (alloc_wait_reason awr);
    PER_HEAP_ISOLATED
    void fire_alloc_wait_event_end (alloc_wait_reason awr);
    PER_HEAP
    void background_gc_wait_lh (alloc_wait_reason awr = awr_ignored);
    PER_HEAP
    uint32_t background_gc_wait (alloc_wait_reason awr = awr_ignored, int time_out_ms = INFINITE);
    PER_HEAP_ISOLATED
    void start_c_gc();
    PER_HEAP
    void kill_gc_thread();
    PER_HEAP
    uint32_t bgc_thread_function();
    PER_HEAP_ISOLATED
    void do_background_gc();
    static
    uint32_t __stdcall bgc_thread_stub (void* arg);

#ifdef FEATURE_REDHAWK
    // Helper used to wrap the start routine of background GC threads so we can do things like initialize the
    // Redhawk thread state which requires running in the new thread's context.
    static uint32_t WINAPI rh_bgc_thread_stub(void * pContext);

    // Context passed to the above.
    struct rh_bgc_thread_ctx
    {
        PTHREAD_START_ROUTINE   m_pRealStartRoutine;
        gc_heap *               m_pRealContext;
    };
#endif //FEATURE_REDHAWK

#endif //BACKGROUND_GC
 
public:

    PER_HEAP_ISOLATED
    VOLATILE(bool) internal_gc_done;

#ifdef BACKGROUND_GC
    PER_HEAP_ISOLATED
    uint32_t cm_in_progress;

    PER_HEAP
    BOOL expanded_in_fgc;

    // normally this is FALSE; we set it to TRUE at the end of the gen1 GC
    // we do right before the bgc starts.
    PER_HEAP_ISOLATED
    BOOL     dont_restart_ee_p;

    PER_HEAP_ISOLATED
    CLREvent bgc_start_event;
#endif //BACKGROUND_GC

    PER_HEAP_ISOLATED
    uint32_t wait_for_gc_done(int32_t timeOut = INFINITE);

    // Returns TRUE if the thread used to be in cooperative mode 
    // before calling this function.
    PER_HEAP_ISOLATED
    BOOL enable_preemptive (Thread* current_thread);
    PER_HEAP_ISOLATED
    void disable_preemptive (Thread* current_thread, BOOL restore_cooperative);

    /* ------------------- per heap members --------------------------*/

    PER_HEAP
#ifndef MULTIPLE_HEAPS
    CLREvent gc_done_event;
#else // MULTIPLE_HEAPS
    CLREvent gc_done_event;
#endif // MULTIPLE_HEAPS

    PER_HEAP
    VOLATILE(int32_t) gc_done_event_lock;

    PER_HEAP
    VOLATILE(bool) gc_done_event_set;

    PER_HEAP 
    void set_gc_done();

    PER_HEAP 
    void reset_gc_done();

    PER_HEAP
    void enter_gc_done_event_lock();

    PER_HEAP
    void exit_gc_done_event_lock();

#ifdef MULTIPLE_HEAPS
    PER_HEAP
    uint8_t*  ephemeral_low;      //lowest ephemeral address

    PER_HEAP
    uint8_t*  ephemeral_high;     //highest ephemeral address
#endif //MULTIPLE_HEAPS

    PER_HEAP
    uint32_t* card_table;

    PER_HEAP
    short* brick_table;

#ifdef MARK_ARRAY
#ifdef MULTIPLE_HEAPS
    PER_HEAP
    uint32_t* mark_array;
#else
    SPTR_DECL(uint32_t, mark_array);
#endif //MULTIPLE_HEAPS
#endif //MARK_ARRAY

#ifdef CARD_BUNDLE
    PER_HEAP
    uint32_t* card_bundle_table;
#endif //CARD_BUNDLE

#if !defined(SEG_MAPPING_TABLE) || defined(FEATURE_BASICFREEZE)
    PER_HEAP_ISOLATED
    sorted_table* seg_table;
#endif //!SEG_MAPPING_TABLE || FEATURE_BASICFREEZE

    PER_HEAP_ISOLATED
    VOLATILE(BOOL) gc_started;

    // The following 2 events are there to support the gen2 
    // notification feature which is only enabled if concurrent
    // GC is disabled.
    PER_HEAP_ISOLATED
    CLREvent full_gc_approach_event;

    PER_HEAP_ISOLATED
    CLREvent full_gc_end_event;

    // Full GC Notification percentages.
    PER_HEAP_ISOLATED
    uint32_t fgn_maxgen_percent;

    PER_HEAP_ISOLATED
    uint32_t fgn_loh_percent;

    PER_HEAP_ISOLATED
    VOLATILE(bool) full_gc_approach_event_set;

#ifdef BACKGROUND_GC
    PER_HEAP_ISOLATED
    BOOL fgn_last_gc_was_concurrent;
#endif //BACKGROUND_GC

    PER_HEAP
    size_t fgn_last_alloc;

    static uint32_t user_thread_wait (CLREvent *event, BOOL no_mode_change, int time_out_ms=INFINITE);

    static wait_full_gc_status full_gc_wait (CLREvent *event, int time_out_ms);

    PER_HEAP
    uint8_t* demotion_low;

    PER_HEAP
    uint8_t* demotion_high;

    PER_HEAP
    BOOL demote_gen1_p;

    PER_HEAP
    uint8_t* last_gen1_pin_end;

    PER_HEAP
    gen_to_condemn_tuning gen_to_condemn_reasons;

    PER_HEAP
    size_t etw_allocation_running_amount[2];

    PER_HEAP
    int gc_policy;  //sweep, compact, expand

#ifdef MULTIPLE_HEAPS
    PER_HEAP_ISOLATED
    CLREvent gc_start_event;

    PER_HEAP_ISOLATED
    CLREvent ee_suspend_event;

    PER_HEAP
    heap_segment* new_heap_segment;

#define alloc_quantum_balance_units (16)

    PER_HEAP_ISOLATED
    size_t min_balance_threshold;
#else //MULTIPLE_HEAPS

    PER_HEAP
    size_t allocation_running_time;

    PER_HEAP
    size_t allocation_running_amount;

#endif //MULTIPLE_HEAPS

    PER_HEAP_ISOLATED
    gc_mechanisms settings;

    PER_HEAP_ISOLATED
    gc_history_global gc_data_global;

    PER_HEAP_ISOLATED
    size_t gc_last_ephemeral_decommit_time;

    PER_HEAP_ISOLATED
    size_t gc_gen0_desired_high;

    PER_HEAP
    size_t gen0_big_free_spaces;

#ifdef SHORT_PLUGS
    PER_HEAP_ISOLATED
    float short_plugs_pad_ratio;
#endif //SHORT_PLUGS

#ifdef BIT64
    PER_HEAP_ISOLATED
    size_t youngest_gen_desired_th;

    PER_HEAP_ISOLATED
    size_t mem_one_percent;

    PER_HEAP_ISOLATED
    uint64_t total_physical_mem;

    PER_HEAP_ISOLATED
    uint64_t available_physical_mem;
#endif // BIT64

    PER_HEAP_ISOLATED
    size_t last_gc_index;

    PER_HEAP_ISOLATED
    size_t min_segment_size;

    PER_HEAP
    uint8_t* lowest_address;

    PER_HEAP
    uint8_t* highest_address;

    PER_HEAP
    BOOL ephemeral_promotion;
    PER_HEAP
    uint8_t* saved_ephemeral_plan_start[NUMBERGENERATIONS-1];
    PER_HEAP
    size_t saved_ephemeral_plan_start_size[NUMBERGENERATIONS-1];

protected:
#ifdef MULTIPLE_HEAPS
    PER_HEAP
    GCHeap* vm_heap;
    PER_HEAP
    int heap_number;
    PER_HEAP
    VOLATILE(int) alloc_context_count;
#else //MULTIPLE_HEAPS
#define vm_heap ((GCHeap*) g_pGCHeap)
#define heap_number (0)
#endif //MULTIPLE_HEAPS

#ifndef MULTIPLE_HEAPS
    SPTR_DECL(heap_segment,ephemeral_heap_segment);
#else
    PER_HEAP
    heap_segment* ephemeral_heap_segment;
#endif // !MULTIPLE_HEAPS

    PER_HEAP
    size_t time_bgc_last;

    PER_HEAP
    uint8_t*       gc_low; // lowest address being condemned

    PER_HEAP
    uint8_t*       gc_high; //highest address being condemned

    PER_HEAP
    size_t      mark_stack_tos;

    PER_HEAP
    size_t      mark_stack_bos;

    PER_HEAP
    size_t      mark_stack_array_length;

    PER_HEAP
    mark*       mark_stack_array;

    PER_HEAP
    BOOL       verify_pinned_queue_p;

    PER_HEAP
    uint8_t*       oldest_pinned_plug;

#ifdef FEATURE_LOH_COMPACTION
    PER_HEAP
    size_t      loh_pinned_queue_tos;

    PER_HEAP
    size_t      loh_pinned_queue_bos;

    PER_HEAP
    size_t      loh_pinned_queue_length;

    PER_HEAP_ISOLATED
    int         loh_pinned_queue_decay;

    PER_HEAP
    mark*       loh_pinned_queue;

    // This is for forced LOH compaction via the complus env var
    PER_HEAP_ISOLATED
    BOOL        loh_compaction_always_p;

    // This is set by the user.
    PER_HEAP_ISOLATED
    gc_loh_compaction_mode loh_compaction_mode;

    // We may not compact LOH on every heap if we can't
    // grow the pinned queue. This is to indicate whether
    // this heap's LOH is compacted or not. So even if
    // settings.loh_compaction is TRUE this may not be TRUE.
    PER_HEAP
    BOOL        loh_compacted_p;
#endif //FEATURE_LOH_COMPACTION

#ifdef BACKGROUND_GC

    PER_HEAP
    uint32_t bgc_thread_id;

#ifdef WRITE_WATCH
    PER_HEAP
    uint8_t* background_written_addresses [array_size+2];
#endif //WRITE_WATCH

#if defined (DACCESS_COMPILE) && !defined (MULTIPLE_HEAPS)
    // doesn't need to be volatile for DAC.
    SVAL_DECL(c_gc_state, current_c_gc_state);
#else
    PER_HEAP_ISOLATED
    VOLATILE(c_gc_state) current_c_gc_state;     //tells the large object allocator to
    //mark the object as new since the start of gc.
#endif //DACCESS_COMPILE && !MULTIPLE_HEAPS

    PER_HEAP_ISOLATED
    gc_mechanisms saved_bgc_settings;

    PER_HEAP
    gc_history_per_heap bgc_data_per_heap;

    PER_HEAP
    BOOL bgc_thread_running; // gc thread is its main loop

    PER_HEAP_ISOLATED
    BOOL keep_bgc_threads_p;

    // This event is used by BGC threads to do something on 
    // one specific thread while other BGC threads have to 
    // wait. This is different from a join 'cause you can't
    // specify which thread should be doing some task
    // while other threads have to wait.
    // For example, to make the BGC threads managed threads 
    // we need to create them on the thread that called 
    // SuspendEE which is heap 0.
    PER_HEAP_ISOLATED
    CLREvent bgc_threads_sync_event;

    PER_HEAP
    Thread* bgc_thread;

    PER_HEAP
    CRITICAL_SECTION bgc_threads_timeout_cs;

    PER_HEAP_ISOLATED
    CLREvent background_gc_done_event;

    PER_HEAP
    CLREvent background_gc_create_event;

    PER_HEAP_ISOLATED
    CLREvent ee_proceed_event;

    PER_HEAP
    CLREvent gc_lh_block_event;

    PER_HEAP_ISOLATED
    bool gc_can_use_concurrent;

    PER_HEAP_ISOLATED
    bool temp_disable_concurrent_p;

    PER_HEAP_ISOLATED
    BOOL do_ephemeral_gc_p;

    PER_HEAP_ISOLATED
    BOOL do_concurrent_p;

    PER_HEAP
    VOLATILE(bgc_state) current_bgc_state;

    struct gc_history
    {
        size_t gc_index;
        bgc_state current_bgc_state;
        uint32_t gc_time_ms;
        // This is in bytes per ms; consider breaking it 
        // into the efficiency per phase.
        size_t gc_efficiency; 
        uint8_t* eph_low;
        uint8_t* gen0_start;
        uint8_t* eph_high;
        uint8_t* bgc_highest;
        uint8_t* bgc_lowest;
        uint8_t* fgc_highest;
        uint8_t* fgc_lowest;
        uint8_t* g_highest;
        uint8_t* g_lowest;
    };

#define max_history_count 64

    PER_HEAP
    int gchist_index_per_heap;

    PER_HEAP
    gc_history gchist_per_heap[max_history_count];

    PER_HEAP_ISOLATED
    int gchist_index;

    PER_HEAP_ISOLATED
    gc_mechanisms_store gchist[max_history_count];

    PER_HEAP
    void add_to_history_per_heap();

    PER_HEAP_ISOLATED
    void add_to_history();

    PER_HEAP
    size_t total_promoted_bytes;

    PER_HEAP
    size_t     bgc_overflow_count;

    PER_HEAP
    size_t     bgc_begin_loh_size;
    PER_HEAP
    size_t     end_loh_size;

    // We need to throttle the LOH allocations during BGC since we can't
    // collect LOH when BGC is in progress. 
    // We allow the LOH heap size to double during a BGC. So for every
    // 10% increase we will have the LOH allocating thread sleep for one more
    // ms. So we are already 30% over the original heap size the thread will
    // sleep for 3ms.
    PER_HEAP
    uint32_t   bgc_alloc_spin_loh;

    // This includes what we allocate at the end of segment - allocating
    // in free list doesn't increase the heap size.
    PER_HEAP
    size_t     bgc_loh_size_increased;

    PER_HEAP
    size_t     bgc_loh_allocated_in_free;

    PER_HEAP
    size_t     background_soh_alloc_count;

    PER_HEAP
    size_t     background_loh_alloc_count;

    PER_HEAP
    uint8_t**  background_mark_stack_tos;

    PER_HEAP
    uint8_t**  background_mark_stack_array;

    PER_HEAP
    size_t    background_mark_stack_array_length;

    PER_HEAP
    uint8_t*  background_min_overflow_address;

    PER_HEAP
    uint8_t*  background_max_overflow_address;

    // We can't process the soh range concurrently so we
    // wait till final mark to process it.
    PER_HEAP
    BOOL      processed_soh_overflow_p;

    PER_HEAP
    uint8_t*  background_min_soh_overflow_address;

    PER_HEAP
    uint8_t*  background_max_soh_overflow_address;

    PER_HEAP
    heap_segment* saved_overflow_ephemeral_seg;

#ifndef MULTIPLE_HEAPS
    SPTR_DECL(heap_segment, saved_sweep_ephemeral_seg);

    SPTR_DECL(uint8_t, saved_sweep_ephemeral_start);

    SPTR_DECL(uint8_t, background_saved_lowest_address);

    SPTR_DECL(uint8_t, background_saved_highest_address);
#else

    PER_HEAP
    heap_segment* saved_sweep_ephemeral_seg;

    PER_HEAP
    uint8_t* saved_sweep_ephemeral_start;

    PER_HEAP
    uint8_t* background_saved_lowest_address;

    PER_HEAP
    uint8_t* background_saved_highest_address;
#endif //!MULTIPLE_HEAPS

    // This is used for synchronization between the bgc thread
    // for this heap and the user threads allocating on this
    // heap.
    PER_HEAP
    exclusive_sync* bgc_alloc_lock;

#ifdef SNOOP_STATS
    PER_HEAP
    snoop_stats_data snoop_stat;
#endif //SNOOP_STATS


    PER_HEAP
    uint8_t**          c_mark_list;

    PER_HEAP
    size_t          c_mark_list_length;

    PER_HEAP
    size_t          c_mark_list_index;
#endif //BACKGROUND_GC

#ifdef MARK_LIST
    PER_HEAP
    uint8_t** mark_list;

    PER_HEAP_ISOLATED
    size_t mark_list_size;

    PER_HEAP
    uint8_t** mark_list_end;

    PER_HEAP
    uint8_t** mark_list_index;

    PER_HEAP_ISOLATED
    uint8_t** g_mark_list;
#ifdef PARALLEL_MARK_LIST_SORT
    PER_HEAP_ISOLATED
    uint8_t** g_mark_list_copy;
    PER_HEAP
    uint8_t*** mark_list_piece_start;
    uint8_t*** mark_list_piece_end;
#endif //PARALLEL_MARK_LIST_SORT
#endif //MARK_LIST

    PER_HEAP
    uint8_t*  min_overflow_address;

    PER_HEAP
    uint8_t*  max_overflow_address;

    PER_HEAP
    uint8_t*  shigh; //keeps track of the highest marked object

    PER_HEAP
    uint8_t*  slow; //keeps track of the lowest marked object

    PER_HEAP
    size_t allocation_quantum;

    PER_HEAP
    size_t alloc_contexts_used;

    PER_HEAP_ISOLATED
    no_gc_region_info current_no_gc_region_info;

    PER_HEAP
    size_t soh_allocation_no_gc;

    PER_HEAP
    size_t loh_allocation_no_gc;

    PER_HEAP
    heap_segment* saved_loh_segment_no_gc;

    PER_HEAP_ISOLATED
    BOOL proceed_with_gc_p;

#define youngest_generation (generation_of (0))
#define large_object_generation (generation_of (max_generation+1))

#ifndef MULTIPLE_HEAPS
    SPTR_DECL(uint8_t,alloc_allocated);
#else
    PER_HEAP
    uint8_t* alloc_allocated; //keeps track of the highest
    //address allocated by alloc
#endif // !MULTIPLE_HEAPS

    // The more_space_lock and gc_lock is used for 3 purposes:
    //
    // 1) to coordinate threads that exceed their quantum (UP & MP) (more_space_lock)
    // 2) to synchronize allocations of large objects (more_space_lock)
    // 3) to synchronize the GC itself (gc_lock)
    //
    PER_HEAP_ISOLATED
    GCSpinLock gc_lock; //lock while doing GC

    PER_HEAP
    GCSpinLock more_space_lock; //lock while allocating more space

#ifdef SYNCHRONIZATION_STATS

    PER_HEAP
    unsigned int good_suspension;

    PER_HEAP
    unsigned int bad_suspension;

    // Number of times when msl_acquire is > 200 cycles.
    PER_HEAP
    unsigned int num_high_msl_acquire;

    // Number of times when msl_acquire is < 200 cycles.
    PER_HEAP
    unsigned int num_low_msl_acquire;

    // Number of times the more_space_lock is acquired.
    PER_HEAP
    unsigned int num_msl_acquired;

    // Total cycles it takes to acquire the more_space_lock.
    PER_HEAP
    uint64_t total_msl_acquire;

    PER_HEAP
    void init_heap_sync_stats()
    {
        good_suspension = 0;
        bad_suspension = 0;
        num_msl_acquired = 0;
        total_msl_acquire = 0;
        num_high_msl_acquire = 0;
        num_low_msl_acquire = 0;
        more_space_lock.init();
        gc_lock.init();
    }

    PER_HEAP
    void print_heap_sync_stats(unsigned int heap_num, unsigned int gc_count_during_log)
    {
        printf("%2d%2d%10u%10u%12u%6u%4u%8u(%4u,%4u,%4u,%4u)\n",
            heap_num,
            alloc_contexts_used,
            good_suspension,
            bad_suspension,
            (unsigned int)(total_msl_acquire / gc_count_during_log),
            num_high_msl_acquire / gc_count_during_log,
            num_low_msl_acquire / gc_count_during_log,
            num_msl_acquired / gc_count_during_log,
            more_space_lock.num_switch_thread / gc_count_during_log,
            more_space_lock.num_wait_longer / gc_count_during_log,
            more_space_lock.num_switch_thread_w / gc_count_during_log,
            more_space_lock.num_disable_preemptive_w / gc_count_during_log);
    }

#endif //SYNCHRONIZATION_STATS

#ifdef MULTIPLE_HEAPS
    PER_HEAP
    generation generation_table [NUMBERGENERATIONS+1];
#endif


#define NUM_LOH_ALIST (7)
#define BASE_LOH_ALIST (64*1024)
    PER_HEAP 
    alloc_list loh_alloc_list[NUM_LOH_ALIST-1];

#define NUM_GEN2_ALIST (12)
#ifdef BIT64
#define BASE_GEN2_ALIST (1*256)
#else
#define BASE_GEN2_ALIST (1*128)
#endif // BIT64
    PER_HEAP
    alloc_list gen2_alloc_list[NUM_GEN2_ALIST-1];

//------------------------------------------    

    PER_HEAP
    dynamic_data dynamic_data_table [NUMBERGENERATIONS+1];

    PER_HEAP
    gc_history_per_heap gc_data_per_heap;

    PER_HEAP
    size_t maxgen_pinned_compact_before_advance;

    // dynamic tuning.
    PER_HEAP
    BOOL dt_low_ephemeral_space_p (gc_tuning_point tp);
    // if elevate_p is FALSE, it means we are determining fragmentation for a generation
    // to see if we should condemn this gen; otherwise it means we are determining if
    // we should elevate to doing max_gen from an ephemeral gen.
    PER_HEAP
    BOOL dt_high_frag_p (gc_tuning_point tp, int gen_number, BOOL elevate_p=FALSE);
    PER_HEAP
    BOOL 
    dt_estimate_reclaim_space_p (gc_tuning_point tp, int gen_number, uint64_t total_mem);
    PER_HEAP
    BOOL dt_estimate_high_frag_p (gc_tuning_point tp, int gen_number, uint64_t available_mem);
    PER_HEAP
    BOOL dt_low_card_table_efficiency_p (gc_tuning_point tp);

    PER_HEAP
    int generation_skip_ratio;//in %

    PER_HEAP
    BOOL gen0_bricks_cleared;
#ifdef FFIND_OBJECT
    PER_HEAP
    int gen0_must_clear_bricks;
#endif //FFIND_OBJECT
    
    PER_HEAP_ISOLATED
    size_t full_gc_counts[gc_type_max];

    // the # of bytes allocates since the last full compacting GC.
    PER_HEAP
    uint64_t loh_alloc_since_cg;

    PER_HEAP
    BOOL elevation_requested;

    // if this is TRUE, we should always guarantee that we do a 
    // full compacting GC before we OOM.
    PER_HEAP
    BOOL last_gc_before_oom;

    PER_HEAP_ISOLATED
    BOOL should_expand_in_full_gc;

#ifdef BACKGROUND_GC
    PER_HEAP_ISOLATED
    size_t ephemeral_fgc_counts[max_generation];

    PER_HEAP_ISOLATED
    BOOL alloc_wait_event_p;

#ifndef MULTIPLE_HEAPS
    SPTR_DECL(uint8_t, next_sweep_obj);
#else
    PER_HEAP
    uint8_t* next_sweep_obj;
#endif //MULTIPLE_HEAPS

    PER_HEAP
    uint8_t* current_sweep_pos;

#endif //BACKGROUND_GC

#ifndef MULTIPLE_HEAPS
    SVAL_DECL(oom_history, oom_info);
#ifdef FEATURE_PREMORTEM_FINALIZATION
    SPTR_DECL(CFinalize,finalize_queue);
#endif //FEATURE_PREMORTEM_FINALIZATION
#else

    PER_HEAP
    oom_history oom_info;

#ifdef FEATURE_PREMORTEM_FINALIZATION
    PER_HEAP
    PTR_CFinalize finalize_queue;
#endif //FEATURE_PREMORTEM_FINALIZATION
#endif // !MULTIPLE_HEAPS

    PER_HEAP
    fgm_history fgm_result;

    PER_HEAP_ISOLATED
    size_t eph_gen_starts_size;

#ifdef GC_CONFIG_DRIVEN
    PER_HEAP_ISOLATED
    size_t time_init;

    PER_HEAP_ISOLATED
    size_t time_since_init;

    // 0 stores compacting GCs;
    // 1 stores sweeping GCs;
    PER_HEAP_ISOLATED
    size_t compact_or_sweep_gcs[2];

    PER_HEAP
    size_t interesting_data_per_gc[max_idp_count];

#ifdef MULTIPLE_HEAPS
    PER_HEAP
    size_t interesting_data_per_heap[max_idp_count];

    PER_HEAP
    size_t compact_reasons_per_heap[max_compact_reasons_count];

    PER_HEAP
    size_t expand_mechanisms_per_heap[max_expand_mechanisms_count];

    PER_HEAP
    size_t interesting_mechanism_bits_per_heap[max_gc_mechanism_bits_count];
#endif //MULTIPLE_HEAPS
#endif //GC_CONFIG_DRIVEN

    PER_HEAP
    BOOL        ro_segments_in_range;

#ifdef BACKGROUND_GC
    PER_HEAP
    heap_segment* freeable_small_heap_segment;
#endif //BACKGROUND_GC

    PER_HEAP
    heap_segment* freeable_large_heap_segment;

    PER_HEAP_ISOLATED
    heap_segment* segment_standby_list;

    PER_HEAP
    size_t ordered_free_space_indices[MAX_NUM_BUCKETS];

    PER_HEAP
    size_t saved_ordered_free_space_indices[MAX_NUM_BUCKETS];

    PER_HEAP
    size_t ordered_plug_indices[MAX_NUM_BUCKETS];

    PER_HEAP
    size_t saved_ordered_plug_indices[MAX_NUM_BUCKETS];

    PER_HEAP
    BOOL ordered_plug_indices_init;

    PER_HEAP
    BOOL use_bestfit;

    PER_HEAP
    uint8_t* bestfit_first_pin;

    PER_HEAP
    BOOL commit_end_of_seg;

    PER_HEAP
    size_t max_free_space_items; // dynamically adjusted.

    PER_HEAP
    size_t free_space_buckets;

    PER_HEAP
    size_t free_space_items;

    // -1 means we are using all the free
    // spaces we have (not including
    // end of seg space).
    PER_HEAP
    int trimmed_free_space_index;

    PER_HEAP
    size_t total_ephemeral_plugs;

    PER_HEAP
    seg_free_spaces* bestfit_seg;

    // Note: we know this from the plan phase.
    // total_ephemeral_plugs actually has the same value
    // but while we are calculating its value we also store
    // info on how big the plugs are for best fit which we
    // don't do in plan phase.
    // TODO: get rid of total_ephemeral_plugs.
    PER_HEAP
    size_t total_ephemeral_size;

public:

#ifdef HEAP_ANALYZE

    PER_HEAP_ISOLATED
    BOOL heap_analyze_enabled;

    PER_HEAP
    size_t internal_root_array_length;

#ifndef MULTIPLE_HEAPS
    SPTR_DECL(PTR_uint8_t, internal_root_array);
    SVAL_DECL(size_t, internal_root_array_index);
    SVAL_DECL(BOOL,   heap_analyze_success);
#else
    PER_HEAP
    uint8_t** internal_root_array;

    PER_HEAP
    size_t internal_root_array_index;

    PER_HEAP
    BOOL   heap_analyze_success;
#endif // !MULTIPLE_HEAPS

    // next two fields are used to optimize the search for the object 
    // enclosing the current reference handled by ha_mark_object_simple.
    PER_HEAP
    uint8_t*  current_obj;

    PER_HEAP
    size_t current_obj_size;

#endif //HEAP_ANALYZE

    /* ----------------------- global members ----------------------- */
public:

    PER_HEAP
    int         condemned_generation_num;

    PER_HEAP
    BOOL        blocking_collection;

#ifdef MULTIPLE_HEAPS
    SVAL_DECL(int, n_heaps);
    SPTR_DECL(PTR_gc_heap, g_heaps);

    static
    HANDLE*   g_gc_threads; // keep all of the gc threads.
    static
    size_t*   g_promoted;
#ifdef BACKGROUND_GC
    static
    size_t*   g_bpromoted;
#endif //BACKGROUND_GC
#ifdef MH_SC_MARK
    PER_HEAP_ISOLATED
    int*  g_mark_stack_busy;
#endif //MH_SC_MARK
#else
    static
    size_t    g_promoted;
#ifdef BACKGROUND_GC
    static
    size_t    g_bpromoted;
#endif //BACKGROUND_GC
#endif //MULTIPLE_HEAPS
    
    static
    size_t reserved_memory;
    static
    size_t reserved_memory_limit;
    static
    BOOL      g_low_memory_status;

protected:
    PER_HEAP
    void update_collection_counts ();

}; // class gc_heap


#ifdef FEATURE_PREMORTEM_FINALIZATION
class CFinalize
{
#ifdef DACCESS_COMPILE
    friend class ::ClrDataAccess;
#endif // DACCESS_COMPILE
private:

    //adjust the count and add a constant to add a segment
    static const int ExtraSegCount = 2;
    static const int FinalizerListSeg = NUMBERGENERATIONS+1;
    static const int CriticalFinalizerListSeg = NUMBERGENERATIONS;
    //Does not correspond to a segment
    static const int FreeList = NUMBERGENERATIONS+ExtraSegCount;

    PTR_PTR_Object m_Array;
    PTR_PTR_Object m_FillPointers[NUMBERGENERATIONS+ExtraSegCount];
    PTR_PTR_Object m_EndArray;
    size_t   m_PromotedCount;
    
    VOLATILE(int32_t) lock;
#ifdef _DEBUG
    uint32_t lockowner_threadid;
#endif // _DEBUG

    BOOL GrowArray();
    void MoveItem (Object** fromIndex,
                   unsigned int fromSeg,
                   unsigned int toSeg);

    inline PTR_PTR_Object& SegQueue (unsigned int Seg)
    {
        return (Seg ? m_FillPointers [Seg-1] : m_Array);
    }
    inline PTR_PTR_Object& SegQueueLimit (unsigned int Seg)
    {
        return m_FillPointers [Seg];
    }

    BOOL IsSegEmpty ( unsigned int i)
    {
        ASSERT ( (int)i < FreeList);
        return (SegQueueLimit(i) == SegQueue (i));

    }

    BOOL FinalizeSegForAppDomain (AppDomain *pDomain, 
                                  BOOL fRunFinalizers, 
                                  unsigned int Seg);

public:
    ~CFinalize();
    bool Initialize();
    void EnterFinalizeLock();
    void LeaveFinalizeLock();
    bool RegisterForFinalization (int gen, Object* obj, size_t size=0);
    Object* GetNextFinalizableObject (BOOL only_non_critical=FALSE);
    BOOL ScanForFinalization (promote_func* fn, int gen,BOOL mark_only_p, gc_heap* hp);
    void RelocateFinalizationData (int gen, gc_heap* hp);
#ifdef GC_PROFILING
    void WalkFReachableObjects (gc_heap* hp);
#endif //GC_PROFILING
    void GcScanRoots (promote_func* fn, int hn, ScanContext *pSC);
    void UpdatePromotedGenerations (int gen, BOOL gen_0_empty_p);
    size_t GetPromotedCount();

    //Methods used by the shutdown code to call every finalizer
    void SetSegForShutDown(BOOL fHasLock);
    size_t GetNumberFinalizableObjects();
    void DiscardNonCriticalObjects();

    //Methods used by the app domain unloading call to finalize objects in an app domain
    BOOL FinalizeAppDomain (AppDomain *pDomain, BOOL fRunFinalizers);

    void CheckFinalizerObjects();
};
#endif // FEATURE_PREMORTEM_FINALIZATION

inline
 size_t& dd_begin_data_size (dynamic_data* inst)
{
  return inst->begin_data_size;
}
inline
 size_t& dd_survived_size (dynamic_data* inst)
{
  return inst->survived_size;
}
#if defined (RESPECT_LARGE_ALIGNMENT) || defined (FEATURE_STRUCTALIGN)
inline
 size_t& dd_num_npinned_plugs(dynamic_data* inst)
{
  return inst->num_npinned_plugs;
}
#endif //RESPECT_LARGE_ALIGNMENT || FEATURE_STRUCTALIGN
inline
size_t& dd_pinned_survived_size (dynamic_data* inst)
{
  return inst->pinned_survived_size;
}
inline
size_t& dd_added_pinned_size (dynamic_data* inst)
{
  return inst->added_pinned_size;
}
inline
size_t& dd_artificial_pinned_survived_size (dynamic_data* inst)
{
  return inst->artificial_pinned_survived_size;
}
#ifdef SHORT_PLUGS
inline
size_t& dd_padding_size (dynamic_data* inst)
{
  return inst->padding_size;
}
#endif //SHORT_PLUGS
inline
 size_t& dd_current_size (dynamic_data* inst)
{
  return inst->current_size;
}
inline
float& dd_surv (dynamic_data* inst)
{
  return inst->surv;
}
inline
size_t& dd_freach_previous_promotion (dynamic_data* inst)
{
  return inst->freach_previous_promotion;
}
inline
size_t& dd_desired_allocation (dynamic_data* inst)
{
  return inst->desired_allocation;
}
inline
size_t& dd_collection_count (dynamic_data* inst)
{
    return inst->collection_count;
}
inline
size_t& dd_promoted_size (dynamic_data* inst)
{
    return inst->promoted_size;
}
inline
float& dd_limit (dynamic_data* inst)
{
  return inst->limit;
}
inline
float& dd_max_limit (dynamic_data* inst)
{
  return inst->max_limit;
}
inline
size_t& dd_min_gc_size (dynamic_data* inst)
{
  return inst->min_gc_size;
}
inline
size_t& dd_max_size (dynamic_data* inst)
{
  return inst->max_size;
}
inline
size_t& dd_min_size (dynamic_data* inst)
{
  return inst->min_size;
}
inline
ptrdiff_t& dd_new_allocation (dynamic_data* inst)
{
  return inst->new_allocation;
}
inline
ptrdiff_t& dd_gc_new_allocation (dynamic_data* inst)
{
  return inst->gc_new_allocation;
}
inline
size_t& dd_default_new_allocation (dynamic_data* inst)
{
  return inst->default_new_allocation;
}
inline
size_t& dd_fragmentation_limit (dynamic_data* inst)
{
  return inst->fragmentation_limit;
}
inline
float& dd_fragmentation_burden_limit (dynamic_data* inst)
{
  return inst->fragmentation_burden_limit;
}
inline
float dd_v_fragmentation_burden_limit (dynamic_data* inst)
{
  return (min (2*dd_fragmentation_burden_limit (inst), 0.75f));
}
inline
size_t& dd_fragmentation (dynamic_data* inst)
{
  return inst->fragmentation;
}

inline
size_t& dd_gc_clock (dynamic_data* inst)
{
  return inst->gc_clock;
}
inline
size_t& dd_time_clock (dynamic_data* inst)
{
  return inst->time_clock;
}

inline
size_t& dd_gc_elapsed_time (dynamic_data* inst)
{
    return inst->gc_elapsed_time;
}

inline
float& dd_gc_speed (dynamic_data* inst)
{
    return inst->gc_speed;
}

inline
alloc_context* generation_alloc_context (generation* inst)
{
    return &(inst->allocation_context);
}

inline
uint8_t*& generation_allocation_start (generation* inst)
{
  return inst->allocation_start;
}
inline
uint8_t*& generation_allocation_pointer (generation* inst)
{
  return inst->allocation_context.alloc_ptr;
}
inline
uint8_t*& generation_allocation_limit (generation* inst)
{
  return inst->allocation_context.alloc_limit;
}
inline 
allocator* generation_allocator (generation* inst)
{
    return &inst->free_list_allocator;
}

inline
PTR_heap_segment& generation_start_segment (generation* inst)
{
  return inst->start_segment;
}
inline
heap_segment*& generation_allocation_segment (generation* inst)
{
  return inst->allocation_segment;
}
inline
uint8_t*& generation_plan_allocation_start (generation* inst)
{
  return inst->plan_allocation_start;
}
inline
size_t& generation_plan_allocation_start_size (generation* inst)
{
  return inst->plan_allocation_start_size;
}
inline
uint8_t*& generation_allocation_context_start_region (generation* inst)
{
  return inst->allocation_context_start_region;
}
inline
size_t& generation_free_list_space (generation* inst)
{
  return inst->free_list_space;
}
inline
size_t& generation_free_obj_space (generation* inst)
{
  return inst->free_obj_space;
}
inline
size_t& generation_allocation_size (generation* inst)
{
  return inst->allocation_size;
}

inline
size_t& generation_pinned_allocated (generation* inst)
{
    return inst->pinned_allocated;
}
inline
size_t& generation_pinned_allocation_sweep_size (generation* inst)
{
    return inst->pinned_allocation_sweep_size;
}
inline
size_t& generation_pinned_allocation_compact_size (generation* inst)
{
    return inst->pinned_allocation_compact_size;
}
inline
size_t&  generation_free_list_allocated (generation* inst)
{
    return inst->free_list_allocated;
}
inline
size_t&  generation_end_seg_allocated (generation* inst)
{
    return inst->end_seg_allocated;
}
inline
BOOL&  generation_allocate_end_seg_p (generation* inst)
{
    return inst->allocate_end_seg_p;
}
inline
size_t& generation_condemned_allocated (generation* inst)
{
    return inst->condemned_allocated;
}
#ifdef FREE_USAGE_STATS
inline
size_t& generation_pinned_free_obj_space (generation* inst)
{
    return inst->pinned_free_obj_space;
}
inline
size_t& generation_allocated_in_pinned_free (generation* inst)
{
    return inst->allocated_in_pinned_free;
}
inline
size_t& generation_allocated_since_last_pin (generation* inst)
{
    return inst->allocated_since_last_pin;
}
#endif //FREE_USAGE_STATS
inline 
float generation_allocator_efficiency (generation* inst)
{
    if ((generation_free_list_allocated (inst) + generation_free_obj_space (inst)) != 0)
    {
        return ((float) (generation_free_list_allocated (inst)) / (float)(generation_free_list_allocated (inst) + generation_free_obj_space (inst)));
    }
    else
        return 0;
}
inline
size_t generation_unusable_fragmentation (generation* inst)
{
    return (size_t)(generation_free_obj_space (inst) + 
                    (1.0f-generation_allocator_efficiency(inst))*generation_free_list_space (inst));
}

#define plug_skew           sizeof(ObjHeader)
#define min_obj_size        (sizeof(uint8_t*)+plug_skew+sizeof(size_t))//syncblock + vtable+ first field
//Note that this encodes the fact that plug_skew is a multiple of uint8_t*.
// We always use USE_PADDING_TAIL when fitting so items on the free list should be
// twice the min_obj_size.
#define min_free_list       (2*min_obj_size)
struct plug
{
    uint8_t *  skew[plug_skew / sizeof(uint8_t *)];
};

class pair
{
public:
    short left;
    short right;
};

//Note that these encode the fact that plug_skew is a multiple of uint8_t*.
// Each of new field is prepended to the prior struct.

struct plug_and_pair
{
    pair        m_pair;
    plug        m_plug;
};

struct plug_and_reloc
{
    ptrdiff_t   reloc;
    pair        m_pair;
    plug        m_plug;
};

struct plug_and_gap
{
    ptrdiff_t   gap;
    ptrdiff_t   reloc;
    union
    {
        pair    m_pair;
        int     lr;  //for clearing the entire pair in one instruction
    };
    plug        m_plug;
};

struct gap_reloc_pair
{
    size_t gap;
    size_t   reloc;
    pair        m_pair;
};

#define min_pre_pin_obj_size (sizeof (gap_reloc_pair) + min_obj_size)

struct DECLSPEC_ALIGN(8) aligned_plug_and_gap
{
    plug_and_gap plugandgap;
};

struct loh_obj_and_pad
{
    ptrdiff_t   reloc;    
    plug        m_plug;
};

struct loh_padding_obj
{
    uint8_t*    mt;
    size_t      len;
    ptrdiff_t   reloc;
    plug        m_plug;
};
#define loh_padding_obj_size (sizeof(loh_padding_obj))

//flags description
#define heap_segment_flags_readonly     1
#define heap_segment_flags_inrange      2
#define heap_segment_flags_unmappable   4
#define heap_segment_flags_loh          8
#ifdef BACKGROUND_GC
#define heap_segment_flags_swept        16
#define heap_segment_flags_decommitted  32
#define heap_segment_flags_ma_committed 64
// for segments whose mark array is only partially committed.
#define heap_segment_flags_ma_pcommitted 128
#endif //BACKGROUND_GC

//need to be careful to keep enough pad items to fit a relocation node
//padded to QuadWord before the plug_skew

class heap_segment
{
public:
    uint8_t*        allocated;
    uint8_t*        committed;
    uint8_t*        reserved;
    uint8_t*        used;
    uint8_t*        mem;
    size_t          flags;
    PTR_heap_segment next;
    uint8_t*        plan_allocated;
#ifdef BACKGROUND_GC
    uint8_t*        background_allocated;
    uint8_t*        saved_bg_allocated;
#endif //BACKGROUND_GC

#ifdef MULTIPLE_HEAPS
    gc_heap*        heap;
#endif //MULTIPLE_HEAPS

#ifdef _MSC_VER
// Disable this warning - we intentionally want __declspec(align()) to insert padding for us
#pragma warning(disable:4324)  // structure was padded due to __declspec(align())
#endif
    aligned_plug_and_gap padandplug;
#ifdef _MSC_VER
#pragma warning(default:4324)  // structure was padded due to __declspec(align())
#endif
};

inline
uint8_t*& heap_segment_reserved (heap_segment* inst)
{
  return inst->reserved;
}
inline
uint8_t*& heap_segment_committed (heap_segment* inst)
{
  return inst->committed;
}
inline
uint8_t*& heap_segment_used (heap_segment* inst)
{
  return inst->used;
}
inline
uint8_t*& heap_segment_allocated (heap_segment* inst)
{
  return inst->allocated;
}

inline
BOOL heap_segment_read_only_p (heap_segment* inst)
{
    return ((inst->flags & heap_segment_flags_readonly) != 0);
}

inline
BOOL heap_segment_in_range_p (heap_segment* inst)
{
    return (!(inst->flags & heap_segment_flags_readonly) ||
            ((inst->flags & heap_segment_flags_inrange) != 0));
}

inline
BOOL heap_segment_unmappable_p (heap_segment* inst)
{
    return (!(inst->flags & heap_segment_flags_readonly) ||
            ((inst->flags & heap_segment_flags_unmappable) != 0));
}

inline
BOOL heap_segment_loh_p (heap_segment * inst)
{
    return !!(inst->flags & heap_segment_flags_loh);
}

#ifdef BACKGROUND_GC
inline
BOOL heap_segment_decommitted_p (heap_segment * inst)
{
    return !!(inst->flags & heap_segment_flags_decommitted);
}
#endif //BACKGROUND_GC

inline
PTR_heap_segment & heap_segment_next (heap_segment* inst)
{
  return inst->next;
}
inline
uint8_t*& heap_segment_mem (heap_segment* inst)
{
  return inst->mem;
}
inline
uint8_t*& heap_segment_plan_allocated (heap_segment* inst)
{
  return inst->plan_allocated;
}

#ifdef BACKGROUND_GC
inline
uint8_t*& heap_segment_background_allocated (heap_segment* inst)
{
  return inst->background_allocated;
}
inline
uint8_t*& heap_segment_saved_bg_allocated (heap_segment* inst)
{
  return inst->saved_bg_allocated;
}
#endif //BACKGROUND_GC

#ifdef MULTIPLE_HEAPS
inline
gc_heap*& heap_segment_heap (heap_segment* inst)
{
    return inst->heap;
}
#endif //MULTIPLE_HEAPS

#ifndef MULTIPLE_HEAPS

#ifndef DACCESS_COMPILE
extern "C" {
#endif //!DACCESS_COMPILE

GARY_DECL(generation,generation_table,NUMBERGENERATIONS+1);

#ifdef GC_CONFIG_DRIVEN
GARY_DECL(size_t, interesting_data_per_heap, max_idp_count);
GARY_DECL(size_t, compact_reasons_per_heap, max_compact_reasons_count);
GARY_DECL(size_t, expand_mechanisms_per_heap, max_expand_mechanisms_count);
GARY_DECL(size_t, interesting_mechanism_bits_per_heap, max_gc_mechanism_bits_count);
#endif //GC_CONFIG_DRIVEN

#ifndef DACCESS_COMPILE
}
#endif //!DACCESS_COMPILE

#endif //MULTIPLE_HEAPS

inline
generation* gc_heap::generation_of (int  n)
{
    assert (((n <= max_generation+1) && (n >= 0)));
    return &generation_table [ n ];
}

inline
dynamic_data* gc_heap::dynamic_data_of (int gen_number)
{
    return &dynamic_data_table [ gen_number ];
}

extern "C" uint8_t* g_ephemeral_low;
extern "C" uint8_t* g_ephemeral_high;

#define card_word_width ((size_t)32)

//
// The value of card_size is determined empirically according to the average size of an object
// In the code we also rely on the assumption that one card_table entry (uint32_t) covers an entire os page
//
#if defined (BIT64)
#define card_size ((size_t)(2*OS_PAGE_SIZE/card_word_width))
#else
#define card_size ((size_t)(OS_PAGE_SIZE/card_word_width))
#endif // BIT64

inline
size_t card_word (size_t card)
{
    return card / card_word_width;
}

inline
unsigned card_bit (size_t card)
{
    return (unsigned)(card % card_word_width);
}

inline
size_t gcard_of (uint8_t* object)
{
    return (size_t)(object) / card_size;
}