summaryrefslogtreecommitdiff
path: root/src/gc/gcee.cpp
blob: a736a596e7981cb0e19e21637ac94825c15465a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
// 

// 


// sets up vars for GC

#include "gcpriv.h"

#ifndef DACCESS_COMPILE

COUNTER_ONLY(PERF_COUNTER_TIMER_PRECISION g_TotalTimeInGC = 0);
COUNTER_ONLY(PERF_COUNTER_TIMER_PRECISION g_TotalTimeSinceLastGCEnd = 0);

#if defined(ENABLE_PERF_COUNTERS) || defined(FEATURE_EVENT_TRACE)
size_t g_GenerationSizes[NUMBERGENERATIONS];
size_t g_GenerationPromotedSizes[NUMBERGENERATIONS];
#endif // ENABLE_PERF_COUNTERS || FEATURE_EVENT_TRACE

void GCHeap::UpdatePreGCCounters()
{
#if defined(ENABLE_PERF_COUNTERS)
#ifdef MULTIPLE_HEAPS
    gc_heap* hp = 0;
#else
    gc_heap* hp = pGenGCHeap;
#endif //MULTIPLE_HEAPS

    size_t allocation_0 = 0;
    size_t allocation_3 = 0; 
    
    // Publish perf stats
    g_TotalTimeInGC = GET_CYCLE_COUNT();

#ifdef MULTIPLE_HEAPS
    int hn = 0;
    for (hn = 0; hn < gc_heap::n_heaps; hn++)
    {
        hp = gc_heap::g_heaps [hn];
            
        allocation_0 += 
            dd_desired_allocation (hp->dynamic_data_of (0))-
            dd_new_allocation (hp->dynamic_data_of (0));
        allocation_3 += 
            dd_desired_allocation (hp->dynamic_data_of (max_generation+1))-
            dd_new_allocation (hp->dynamic_data_of (max_generation+1));
    }
#else
    allocation_0 = 
        dd_desired_allocation (hp->dynamic_data_of (0))-
        dd_new_allocation (hp->dynamic_data_of (0));
    allocation_3 = 
        dd_desired_allocation (hp->dynamic_data_of (max_generation+1))-
        dd_new_allocation (hp->dynamic_data_of (max_generation+1));
        
#endif //MULTIPLE_HEAPS

    GetPerfCounters().m_GC.cbAlloc += allocation_0;
    GetPerfCounters().m_GC.cbAlloc += allocation_3;
    GetPerfCounters().m_GC.cbLargeAlloc += allocation_3;

#ifdef _PREFAST_
    // prefix complains about us dereferencing hp in wks build even though we only access static members
    // this way. not sure how to shut it up except for this ugly workaround:
    PREFIX_ASSUME( hp != NULL);
#endif //_PREFAST_
    if (hp->settings.reason == reason_induced IN_STRESS_HEAP( && !hp->settings.stress_induced))
    {
        COUNTER_ONLY(GetPerfCounters().m_GC.cInducedGCs++);
    }

    GetPerfCounters().m_Security.timeRTchecks = 0;
    GetPerfCounters().m_Security.timeRTchecksBase = 1; // To avoid divide by zero

#endif //ENABLE_PERF_COUNTERS

#ifdef FEATURE_EVENT_TRACE
#ifdef MULTIPLE_HEAPS
        //take the first heap....
    gc_mechanisms *pSettings = &gc_heap::g_heaps[0]->settings;
#else
    gc_mechanisms *pSettings = &gc_heap::settings;
#endif //MULTIPLE_HEAPS

    ETW::GCLog::ETW_GC_INFO Info;

    Info.GCStart.Count = (uint32_t)pSettings->gc_index;
    Info.GCStart.Depth = (uint32_t)pSettings->condemned_generation;
    Info.GCStart.Reason = (ETW::GCLog::ETW_GC_INFO::GC_REASON)((int)(pSettings->reason));

    Info.GCStart.Type = ETW::GCLog::ETW_GC_INFO::GC_NGC;
    if (pSettings->concurrent)
    {
        Info.GCStart.Type = ETW::GCLog::ETW_GC_INFO::GC_BGC;
    }
#ifdef BACKGROUND_GC
    else if (Info.GCStart.Depth < max_generation)
    {
        if (pSettings->background_p)
            Info.GCStart.Type = ETW::GCLog::ETW_GC_INFO::GC_FGC;
    }
#endif //BACKGROUND_GC

    ETW::GCLog::FireGcStartAndGenerationRanges(&Info);
#endif // FEATURE_EVENT_TRACE
}

void GCHeap::UpdatePostGCCounters()
{
    totalSurvivedSize = gc_heap::get_total_survived_size();

    //
    // The following is for instrumentation.
    //
    // Calculate the common ones for ETW and perf counters.
#if defined(ENABLE_PERF_COUNTERS) || defined(FEATURE_EVENT_TRACE)
#ifdef MULTIPLE_HEAPS
    //take the first heap....
    gc_heap* hp1 = gc_heap::g_heaps[0];
    gc_mechanisms *pSettings = &hp1->settings;
#else
    gc_heap* hp1 = pGenGCHeap;
    gc_mechanisms *pSettings = &gc_heap::settings;
#endif //MULTIPLE_HEAPS

    int condemned_gen = pSettings->condemned_generation;

    memset (g_GenerationSizes, 0, sizeof (g_GenerationSizes));
    memset (g_GenerationPromotedSizes, 0, sizeof (g_GenerationPromotedSizes));
    
    size_t total_num_gc_handles = g_dwHandles;
    uint32_t total_num_sync_blocks = SyncBlockCache::GetSyncBlockCache()->GetActiveCount();

    // Note this is however for perf counter only, for legacy reasons. What we showed 
    // in perf counters for "gen0 size" was really the gen0 budget which made
    // sense (somewhat) at the time. For backward compatibility we are keeping
    // this calculated the same way. For ETW we use the true gen0 size (and 
    // gen0 budget is also reported in an event).
    size_t youngest_budget = 0;

    size_t promoted_finalization_mem = 0;
    size_t total_num_pinned_objects = gc_heap::get_total_pinned_objects();

#ifndef FEATURE_REDHAWK
    // if a max gen garbage collection was performed, resync the GC Handle counter; 
    // if threads are currently suspended, we do not need to obtain a lock on each handle table
    if (condemned_gen == max_generation)
        total_num_gc_handles = HndCountAllHandles(!IsGCInProgress());
#endif //FEATURE_REDHAWK

    // per generation calculation.
    for (int gen_index = 0; gen_index <= (max_generation+1); gen_index++)
    {
#ifdef MULTIPLE_HEAPS
        int hn = 0;
        for (hn = 0; hn < gc_heap::n_heaps; hn++)
        {
            gc_heap* hp = gc_heap::g_heaps[hn];
#else
            gc_heap* hp = pGenGCHeap;
            {
#endif //MULTIPLE_HEAPS
                dynamic_data* dd = hp->dynamic_data_of (gen_index);

                if (gen_index == 0)
                {
                    youngest_budget += dd_desired_allocation (hp->dynamic_data_of (gen_index));
                }

                g_GenerationSizes[gen_index] += hp->generation_size (gen_index);

                if (gen_index <= condemned_gen)
                {
                    g_GenerationPromotedSizes[gen_index] += dd_promoted_size (dd);
                }

                if ((gen_index == (max_generation+1)) && (condemned_gen == max_generation))
                {
                    g_GenerationPromotedSizes[gen_index] += dd_promoted_size (dd);
                }

                if (gen_index == 0)
                {
                    promoted_finalization_mem +=  dd_freach_previous_promotion (dd);
                }
#ifdef MULTIPLE_HEAPS
            }
#else
        }
#endif //MULTIPLE_HEAPS
    }
#endif //ENABLE_PERF_COUNTERS || FEATURE_EVENT_TRACE

#ifdef FEATURE_EVENT_TRACE
    ETW::GCLog::ETW_GC_INFO Info;

    Info.GCEnd.Depth = condemned_gen;
    Info.GCEnd.Count = (uint32_t)pSettings->gc_index;
    ETW::GCLog::FireGcEndAndGenerationRanges(Info.GCEnd.Count, Info.GCEnd.Depth);

    ETW::GCLog::ETW_GC_INFO HeapInfo;
    ZeroMemory(&HeapInfo, sizeof(HeapInfo));

    for (int gen_index = 0; gen_index <= (max_generation+1); gen_index++)
    {
        HeapInfo.HeapStats.GenInfo[gen_index].GenerationSize = g_GenerationSizes[gen_index];
        HeapInfo.HeapStats.GenInfo[gen_index].TotalPromotedSize = g_GenerationPromotedSizes[gen_index];
    }

#ifdef SIMPLE_DPRINTF
    dprintf (2, ("GC#%d: 0: %Id(%Id); 1: %Id(%Id); 2: %Id(%Id); 3: %Id(%Id)", 
        Info.GCEnd.Count,
        HeapInfo.HeapStats.GenInfo[0].GenerationSize,
        HeapInfo.HeapStats.GenInfo[0].TotalPromotedSize,
        HeapInfo.HeapStats.GenInfo[1].GenerationSize,
        HeapInfo.HeapStats.GenInfo[1].TotalPromotedSize,
        HeapInfo.HeapStats.GenInfo[2].GenerationSize,
        HeapInfo.HeapStats.GenInfo[2].TotalPromotedSize,
        HeapInfo.HeapStats.GenInfo[3].GenerationSize,
        HeapInfo.HeapStats.GenInfo[3].TotalPromotedSize));
#endif //SIMPLE_DPRINTF

    HeapInfo.HeapStats.FinalizationPromotedSize = promoted_finalization_mem;
    HeapInfo.HeapStats.FinalizationPromotedCount = GetFinalizablePromotedCount();
    HeapInfo.HeapStats.PinnedObjectCount = (uint32_t)total_num_pinned_objects;
    HeapInfo.HeapStats.SinkBlockCount =  total_num_sync_blocks;
    HeapInfo.HeapStats.GCHandleCount =  (uint32_t)total_num_gc_handles;

    FireEtwGCHeapStats_V1(HeapInfo.HeapStats.GenInfo[0].GenerationSize, HeapInfo.HeapStats.GenInfo[0].TotalPromotedSize,
                    HeapInfo.HeapStats.GenInfo[1].GenerationSize, HeapInfo.HeapStats.GenInfo[1].TotalPromotedSize,
                    HeapInfo.HeapStats.GenInfo[2].GenerationSize, HeapInfo.HeapStats.GenInfo[2].TotalPromotedSize,
                    HeapInfo.HeapStats.GenInfo[3].GenerationSize, HeapInfo.HeapStats.GenInfo[3].TotalPromotedSize,
                    HeapInfo.HeapStats.FinalizationPromotedSize,
                    HeapInfo.HeapStats.FinalizationPromotedCount,
                    HeapInfo.HeapStats.PinnedObjectCount,
                    HeapInfo.HeapStats.SinkBlockCount,
                    HeapInfo.HeapStats.GCHandleCount, 
                    GetClrInstanceId());
#endif // FEATURE_EVENT_TRACE

#if defined(ENABLE_PERF_COUNTERS)
    for (int gen_index = 0; gen_index <= (max_generation+1); gen_index++)
    {
        _ASSERTE(FitsIn<size_t>(g_GenerationSizes[gen_index]));
        _ASSERTE(FitsIn<size_t>(g_GenerationPromotedSizes[gen_index]));

        if (gen_index == (max_generation+1))
        {
            GetPerfCounters().m_GC.cLrgObjSize = static_cast<size_t>(g_GenerationSizes[gen_index]);
        }
        else
        {
            GetPerfCounters().m_GC.cGenHeapSize[gen_index] = ((gen_index == 0) ? 
                                                                youngest_budget : 
                                                                static_cast<size_t>(g_GenerationSizes[gen_index]));
        }

        // the perf counters only count the promoted size for gen0 and gen1.
        if (gen_index < max_generation)
        {
            GetPerfCounters().m_GC.cbPromotedMem[gen_index] = static_cast<size_t>(g_GenerationPromotedSizes[gen_index]);
        }

        if (gen_index <= max_generation)
        {
            GetPerfCounters().m_GC.cGenCollections[gen_index] =
                dd_collection_count (hp1->dynamic_data_of (gen_index));
        }
    }

    // Committed and reserved memory 
    {
        size_t committed_mem = 0;
        size_t reserved_mem = 0;
#ifdef MULTIPLE_HEAPS
        int hn = 0;
        for (hn = 0; hn < gc_heap::n_heaps; hn++)
        {
            gc_heap* hp = gc_heap::g_heaps [hn];
#else
            gc_heap* hp = pGenGCHeap;
            {
#endif //MULTIPLE_HEAPS
                heap_segment* seg = generation_start_segment (hp->generation_of (max_generation));
                while (seg)
                {
                    committed_mem += heap_segment_committed (seg) - heap_segment_mem (seg);
                    reserved_mem += heap_segment_reserved (seg) - heap_segment_mem (seg);
                    seg = heap_segment_next (seg);
                }
                //same for large segments
                seg = generation_start_segment (hp->generation_of (max_generation + 1));
                while (seg)
                {
                    committed_mem += heap_segment_committed (seg) - 
                        heap_segment_mem (seg);
                    reserved_mem += heap_segment_reserved (seg) - 
                        heap_segment_mem (seg);
                    seg = heap_segment_next (seg);
                }
#ifdef MULTIPLE_HEAPS
            }
#else
        }
#endif //MULTIPLE_HEAPS

        GetPerfCounters().m_GC.cTotalCommittedBytes = committed_mem;
        GetPerfCounters().m_GC.cTotalReservedBytes = reserved_mem;
    }

    _ASSERTE(FitsIn<size_t>(HeapInfo.HeapStats.FinalizationPromotedSize));
    _ASSERTE(FitsIn<size_t>(HeapInfo.HeapStats.FinalizationPromotedCount));
    GetPerfCounters().m_GC.cbPromotedFinalizationMem = static_cast<size_t>(HeapInfo.HeapStats.FinalizationPromotedSize);
    GetPerfCounters().m_GC.cSurviveFinalize = static_cast<size_t>(HeapInfo.HeapStats.FinalizationPromotedCount);
    
    // Compute Time in GC
    PERF_COUNTER_TIMER_PRECISION _currentPerfCounterTimer = GET_CYCLE_COUNT();

    g_TotalTimeInGC = _currentPerfCounterTimer - g_TotalTimeInGC;
    PERF_COUNTER_TIMER_PRECISION _timeInGCBase = (_currentPerfCounterTimer - g_TotalTimeSinceLastGCEnd);

    if (_timeInGCBase < g_TotalTimeInGC)
        g_TotalTimeInGC = 0;        // isn't likely except on some SMP machines-- perhaps make sure that
                                    //  _timeInGCBase >= g_TotalTimeInGC by setting affinity in GET_CYCLE_COUNT
                                    
    while (_timeInGCBase > UINT_MAX) 
    {
        _timeInGCBase = _timeInGCBase >> 8;
        g_TotalTimeInGC = g_TotalTimeInGC >> 8;
    }

    // Update Total Time    
    GetPerfCounters().m_GC.timeInGC = (uint32_t)g_TotalTimeInGC;
    GetPerfCounters().m_GC.timeInGCBase = (uint32_t)_timeInGCBase;

    if (!GetPerfCounters().m_GC.cProcessID)
        GetPerfCounters().m_GC.cProcessID = (size_t)GetCurrentProcessId();
    
    g_TotalTimeSinceLastGCEnd = _currentPerfCounterTimer;

    GetPerfCounters().m_GC.cPinnedObj = total_num_pinned_objects;
    GetPerfCounters().m_GC.cHandles = total_num_gc_handles;
    GetPerfCounters().m_GC.cSinkBlocks = total_num_sync_blocks;
#endif //ENABLE_PERF_COUNTERS
}

size_t GCHeap::GetCurrentObjSize()
{
    return (totalSurvivedSize + gc_heap::get_total_allocated());
}

size_t GCHeap::GetLastGCStartTime(int generation)
{
#ifdef MULTIPLE_HEAPS
    gc_heap* hp = gc_heap::g_heaps[0];
#else
    gc_heap* hp = pGenGCHeap;
#endif //MULTIPLE_HEAPS

    return dd_time_clock (hp->dynamic_data_of (generation));
}

size_t GCHeap::GetLastGCDuration(int generation)
{
#ifdef MULTIPLE_HEAPS
    gc_heap* hp = gc_heap::g_heaps[0];
#else
    gc_heap* hp = pGenGCHeap;
#endif //MULTIPLE_HEAPS

    return dd_gc_elapsed_time (hp->dynamic_data_of (generation));
}

size_t GetHighPrecisionTimeStamp();

size_t GCHeap::GetNow()
{
    return GetHighPrecisionTimeStamp();
}

bool GCHeap::IsGCInProgressHelper (bool bConsiderGCStart)
{
    return GcInProgress || (bConsiderGCStart? VolatileLoad(&gc_heap::gc_started) : FALSE);
}

uint32_t GCHeap::WaitUntilGCComplete(bool bConsiderGCStart)
{
    if (bConsiderGCStart)
    {
        if (gc_heap::gc_started)
        {
            gc_heap::wait_for_gc_done();
        }
    }

    uint32_t dwWaitResult = NOERROR;

    if (GcInProgress) 
    {
        ASSERT( WaitForGCEvent->IsValid() );

#ifdef DETECT_DEADLOCK
        // wait for GC to complete
BlockAgain:
        dwWaitResult = WaitForGCEvent->Wait(DETECT_DEADLOCK_TIMEOUT, FALSE );

        if (dwWaitResult == WAIT_TIMEOUT) {
            //  Even in retail, stop in the debugger if available.  Ideally, the
            //  following would use DebugBreak, but debspew.h makes this a null
            //  macro in retail.  Note that in debug, we don't use the debspew.h
            //  macros because these take a critical section that may have been
            //  taken by a suspended thread.
            FreeBuildDebugBreak();
            goto BlockAgain;
        }

#else  //DETECT_DEADLOCK
        
        dwWaitResult = WaitForGCEvent->Wait(INFINITE, FALSE );
        
#endif //DETECT_DEADLOCK
    }

    return dwWaitResult;
}

void GCHeap::SetGCInProgress(bool fInProgress)
{
    GcInProgress = fInProgress;
}

CLREvent * GCHeap::GetWaitForGCEvent()
{
    return WaitForGCEvent;
}

void GCHeap::WaitUntilConcurrentGCComplete()
{
#ifdef BACKGROUND_GC
    if (pGenGCHeap->settings.concurrent)
        pGenGCHeap->background_gc_wait();
#endif //BACKGROUND_GC
}

bool GCHeap::IsConcurrentGCInProgress()
{
#ifdef BACKGROUND_GC
    return !!pGenGCHeap->settings.concurrent;
#else
    return false;
#endif //BACKGROUND_GC
}

#ifdef FEATURE_EVENT_TRACE
void gc_heap::fire_etw_allocation_event (size_t allocation_amount, int gen_number, uint8_t* object_address)
{
    void * typeId = nullptr;
    const WCHAR * name = nullptr;
#ifdef FEATURE_REDHAWK
    typeId = RedhawkGCInterface::GetLastAllocEEType();
#else
    InlineSString<MAX_CLASSNAME_LENGTH> strTypeName;

    EX_TRY
    {
        TypeHandle th = GetThread()->GetTHAllocContextObj();

        if (th != 0)
        {
            th.GetName(strTypeName);
            name = strTypeName.GetUnicode();
            typeId = th.GetMethodTable();
        }
    }
    EX_CATCH {}
    EX_END_CATCH(SwallowAllExceptions)
#endif

    if (typeId != nullptr)
    {
        FireEtwGCAllocationTick_V3((uint32_t)allocation_amount,
                                   ((gen_number == 0) ? ETW::GCLog::ETW_GC_INFO::AllocationSmall : ETW::GCLog::ETW_GC_INFO::AllocationLarge), 
                                   GetClrInstanceId(),
                                   allocation_amount,
                                   typeId, 
                                   name,
                                   heap_number,
                                   object_address
                                   );
    }
}
void gc_heap::fire_etw_pin_object_event (uint8_t* object, uint8_t** ppObject)
{
#ifdef FEATURE_REDHAWK
    UNREFERENCED_PARAMETER(object);
    UNREFERENCED_PARAMETER(ppObject);
#else
    Object* obj = (Object*)object;

    InlineSString<MAX_CLASSNAME_LENGTH> strTypeName; 
   
    EX_TRY
    {
        FAULT_NOT_FATAL();

        TypeHandle th = obj->GetGCSafeTypeHandleIfPossible();
        if(th != NULL)
        {
            th.GetName(strTypeName);
        }

        FireEtwPinObjectAtGCTime(ppObject,
                             object,
                             obj->GetSize(),
                             strTypeName.GetUnicode(),
                             GetClrInstanceId());
    }
    EX_CATCH {}
    EX_END_CATCH(SwallowAllExceptions)
#endif // FEATURE_REDHAWK
}
#endif // FEATURE_EVENT_TRACE

uint32_t gc_heap::user_thread_wait (CLREvent *event, BOOL no_mode_change, int time_out_ms)
{
    Thread* pCurThread = NULL;
    bool mode = false;
    uint32_t dwWaitResult = NOERROR;
    
    if (!no_mode_change)
    {
        pCurThread = GetThread();
        mode = pCurThread ? GCToEEInterface::IsPreemptiveGCDisabled(pCurThread) : false;
        if (mode)
        {
            GCToEEInterface::EnablePreemptiveGC(pCurThread);
        }
    }

    dwWaitResult = event->Wait(time_out_ms, FALSE);

    if (!no_mode_change && mode)
    {
        GCToEEInterface::DisablePreemptiveGC(pCurThread);
    }

    return dwWaitResult;
}

#ifdef BACKGROUND_GC
// Wait for background gc to finish
uint32_t gc_heap::background_gc_wait (alloc_wait_reason awr, int time_out_ms)
{
    dprintf(2, ("Waiting end of background gc"));
    assert (background_gc_done_event.IsValid());
    fire_alloc_wait_event_begin (awr);
    uint32_t dwRet = user_thread_wait (&background_gc_done_event, FALSE, time_out_ms);
    fire_alloc_wait_event_end (awr);
    dprintf(2, ("Waiting end of background gc is done"));

    return dwRet;
}

// Wait for background gc to finish sweeping large objects
void gc_heap::background_gc_wait_lh (alloc_wait_reason awr)
{
    dprintf(2, ("Waiting end of background large sweep"));
    assert (gc_lh_block_event.IsValid());
    fire_alloc_wait_event_begin (awr);
    user_thread_wait (&gc_lh_block_event, FALSE);
    fire_alloc_wait_event_end (awr);
    dprintf(2, ("Waiting end of background large sweep is done"));
}

#endif //BACKGROUND_GC


/******************************************************************************/
IGCHeapInternal* CreateGCHeap() {
    return new(nothrow) GCHeap();   // we return wks or svr 
}

void GCHeap::DiagTraceGCSegments()
{
#ifdef FEATURE_EVENT_TRACE
    heap_segment* seg = 0;
#ifdef MULTIPLE_HEAPS
    // walk segments in each heap
    for (int i = 0; i < gc_heap::n_heaps; i++)
    {
        gc_heap* h = gc_heap::g_heaps [i];
#else
    {
        gc_heap* h = pGenGCHeap;
#endif //MULTIPLE_HEAPS

        for (seg = generation_start_segment (h->generation_of (max_generation)); seg != 0; seg = heap_segment_next(seg))
        {
            ETW::GCLog::ETW_GC_INFO Info;
            Info.GCCreateSegment.Address = (size_t)heap_segment_mem(seg);
            Info.GCCreateSegment.Size = (size_t)(heap_segment_reserved (seg) - heap_segment_mem(seg));
            Info.GCCreateSegment.Type = (heap_segment_read_only_p (seg) ? 
                                         ETW::GCLog::ETW_GC_INFO::READ_ONLY_HEAP :
                                         ETW::GCLog::ETW_GC_INFO::SMALL_OBJECT_HEAP);
            FireEtwGCCreateSegment_V1(Info.GCCreateSegment.Address, Info.GCCreateSegment.Size, Info.GCCreateSegment.Type, GetClrInstanceId());
        }

        // large obj segments
        for (seg = generation_start_segment (h->generation_of (max_generation+1)); seg != 0; seg = heap_segment_next(seg))
        {
            FireEtwGCCreateSegment_V1((size_t)heap_segment_mem(seg), 
                                   (size_t)(heap_segment_reserved (seg) - heap_segment_mem(seg)), 
                                   ETW::GCLog::ETW_GC_INFO::LARGE_OBJECT_HEAP, 
                                   GetClrInstanceId());
        }
    }
#endif // FEATURE_EVENT_TRACE
}

void GCHeap::DiagDescrGenerations (gen_walk_fn fn, void *context)
{
#if defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE)
    pGenGCHeap->descr_generations_to_profiler(fn, context);
#endif // defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE)
}

segment_handle GCHeap::RegisterFrozenSegment(segment_info *pseginfo)
{
#ifdef FEATURE_BASICFREEZE
    heap_segment * seg = new (nothrow) heap_segment;
    if (!seg)
    {
        return NULL;
    }

    uint8_t* base_mem = (uint8_t*)pseginfo->pvMem;
    heap_segment_mem(seg) = base_mem + pseginfo->ibFirstObject;
    heap_segment_allocated(seg) = base_mem + pseginfo->ibAllocated;
    heap_segment_committed(seg) = base_mem + pseginfo->ibCommit;
    heap_segment_reserved(seg) = base_mem + pseginfo->ibReserved;
    heap_segment_next(seg) = 0;
    heap_segment_used(seg) = heap_segment_allocated(seg);
    heap_segment_plan_allocated(seg) = 0;
    seg->flags = heap_segment_flags_readonly;

#if defined (MULTIPLE_HEAPS) && !defined (ISOLATED_HEAPS)
    gc_heap* heap = gc_heap::g_heaps[0];
    heap_segment_heap(seg) = heap;
#else
    gc_heap* heap = pGenGCHeap;
#endif //MULTIPLE_HEAPS && !ISOLATED_HEAPS

    if (heap->insert_ro_segment(seg) == FALSE)
    {
        delete seg;
        return NULL;
    }

    return reinterpret_cast< segment_handle >(seg);
#else
    assert(!"Should not call GCHeap::RegisterFrozenSegment without FEATURE_BASICFREEZE defined!");
    return NULL;
#endif // FEATURE_BASICFREEZE
}

void GCHeap::UnregisterFrozenSegment(segment_handle seg)
{
#ifdef FEATURE_BASICFREEZE
#if defined (MULTIPLE_HEAPS) && !defined (ISOLATED_HEAPS)
    gc_heap* heap = gc_heap::g_heaps[0];
#else
    gc_heap* heap = pGenGCHeap;
#endif //MULTIPLE_HEAPS && !ISOLATED_HEAPS

    heap->remove_ro_segment(reinterpret_cast<heap_segment*>(seg));
#else
    assert(!"Should not call GCHeap::UnregisterFrozenSegment without FEATURE_BASICFREEZE defined!");
#endif // FEATURE_BASICFREEZE
}

bool GCHeap::RuntimeStructuresValid()
{
    return GCScan::GetGcRuntimeStructuresValid();
}


#endif // !DACCESS_COMPILE