summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorTanner Gooding <tagoo@outlook.com>2018-09-16 22:35:26 -0700
committerTanner Gooding <tagoo@outlook.com>2018-09-20 13:12:46 -0700
commit520d408e2ce6a243779db51661a869af199908d4 (patch)
treeb1e2620a74566aa66fb8f6a58d8ef30510907e5d /src
parentb9e981c3e8fc1c718958ca3e0433ba6a6e3cf3cc (diff)
downloadcoreclr-520d408e2ce6a243779db51661a869af199908d4.tar.gz
coreclr-520d408e2ce6a243779db51661a869af199908d4.tar.bz2
coreclr-520d408e2ce6a243779db51661a869af199908d4.zip
Removing the Dragon4 and DoubleToNumber native implementation.
Diffstat (limited to 'src')
-rw-r--r--src/classlibnative/bcltype/CMakeLists.txt1
-rw-r--r--src/classlibnative/bcltype/bignum.cpp599
-rw-r--r--src/classlibnative/bcltype/bignum.h152
-rw-r--r--src/classlibnative/bcltype/number.cpp306
-rw-r--r--src/classlibnative/bcltype/number.h1
-rw-r--r--src/vm/ecalllist.h1
6 files changed, 0 insertions, 1060 deletions
diff --git a/src/classlibnative/bcltype/CMakeLists.txt b/src/classlibnative/bcltype/CMakeLists.txt
index 41cf3cffb5..ada524cca0 100644
--- a/src/classlibnative/bcltype/CMakeLists.txt
+++ b/src/classlibnative/bcltype/CMakeLists.txt
@@ -7,7 +7,6 @@ endif(PerfCountersSupportedBuild)
set(BCLTYPE_SOURCES
arraynative.cpp
arrayhelpers.cpp
- bignum.cpp
diyfp.cpp
grisu3.cpp
number.cpp
diff --git a/src/classlibnative/bcltype/bignum.cpp b/src/classlibnative/bcltype/bignum.cpp
deleted file mode 100644
index c4aa534524..0000000000
--- a/src/classlibnative/bcltype/bignum.cpp
+++ /dev/null
@@ -1,599 +0,0 @@
-// Licensed to the .NET Foundation under one or more agreements.
-// The .NET Foundation licenses this file to you under the MIT license.
-// See the LICENSE file in the project root for more information.
-//
-// File: bignum.cpp
-//
-
-//
-
-#include "bignum.h"
-#include <intrin.h>
-
-constexpr UINT32 BigNum::m_power10UInt32Table[UINT32POWER10NUM];
-BigNum BigNum::m_power10BigNumTable[BIGPOWER10NUM];
-BigNum::StaticInitializer BigNum::m_initializer;
-
-BigNum::BigNum()
- :m_len(0) // Note: we do not zeroing m_blocks due to performance.
-{
-}
-
-BigNum::BigNum(UINT32 value)
-{
- SetUInt32(value);
-}
-
-BigNum::BigNum(UINT64 value)
-{
- SetUInt64(value);
-}
-
-BigNum::~BigNum()
-{
-}
-
-BigNum& BigNum::operator=(const BigNum &rhs)
-{
- memcpy(m_blocks, rhs.m_blocks, ((UINT32)rhs.m_len) * sizeof(UINT32));
- m_len = rhs.m_len;
-
- return *this;
-}
-
-int BigNum::Compare(const BigNum& lhs, const BigNum& rhs)
-{
- _ASSERTE(lhs.m_len <= BIGSIZE);
- _ASSERTE(rhs.m_len <= BIGSIZE);
-
- int lenDiff = (int)lhs.m_len - (int)rhs.m_len;
- if (lenDiff != 0)
- {
- return lenDiff;
- }
-
- if (lhs.m_len == 0)
- {
- _ASSERTE(rhs.m_len == 0);
-
- return 0;
- }
-
- for (INT32 currentIndex = lhs.m_len - 1; currentIndex >= 0; --currentIndex)
- {
- INT64 diff = (INT64)(lhs.m_blocks[currentIndex]) - (INT64)(rhs.m_blocks[currentIndex]);
- if (diff != 0)
- {
- return diff > 0 ? 1 : -1;
- }
- }
-
- return 0;
-}
-
-void BigNum::ShiftLeft(UINT64 input, UINT32 shift, BigNum& output)
-{
- if (shift == 0)
- {
- return;
- }
-
- UINT32 shiftBlocks = shift / 32;
- UINT32 remaningToShiftBits = shift % 32;
-
- if (shiftBlocks > 0)
- {
- // If blocks shifted, we should fill the corresponding blocks with zero.
- output.ExtendBlocks(0, shiftBlocks);
- }
-
- if (remaningToShiftBits == 0)
- {
- // We shift 32 * n (n >= 1) bits. No remaining bits.
- output.ExtendBlock((UINT32)(input & 0xFFFFFFFF));
-
- UINT32 highBits = (UINT32)(input >> 32);
- if (highBits != 0)
- {
- output.ExtendBlock(highBits);
- }
- }
- else
- {
- // Extract the high position bits which would be shifted out of range.
- UINT32 highPositionBits = (UINT32)input >> (64 - remaningToShiftBits);
-
- // Shift the input. The result should be stored to current block.
- UINT64 shiftedInput = input << remaningToShiftBits;
- output.ExtendBlock(shiftedInput & 0xFFFFFFFF);
-
- UINT32 highBits = (UINT32)(input >> 32);
- if (highBits != 0)
- {
- output.ExtendBlock(highBits);
- }
-
- if (highPositionBits != 0)
- {
- // If the high position bits is not 0, we should store them to next block.
- output.ExtendBlock(highPositionBits);
- }
- }
-}
-
-void BigNum::ShiftLeft(UINT32 shift)
-{
- if (m_len == 0 || shift == 0)
- {
- return;
- }
-
- UINT32 shiftBlocks = shift / 32;
- UINT32 shiftBits = shift % 32;
-
- // Process blocks high to low so that we can safely process in place
- int inLength = m_len;
-
- // Check if the shift is block aligned
- if (shiftBits == 0)
- {
- // Copy blocks from high to low
- UINT32* pInCurrent = m_blocks + inLength;
- UINT32* pOutCurrent = pInCurrent + shiftBlocks;
- while (pInCurrent >= m_blocks)
- {
- *pOutCurrent = *pInCurrent;
-
- --pInCurrent;
- --pOutCurrent;
- }
-
- m_len += shiftBlocks;
-
- // Zero the remaining low blocks
- memset(m_blocks, 0, shiftBlocks);
- }
- else
- {
- // We need to shift partial blocks
- int inBlockIdx = inLength - 1;
- UINT32 outBlockIdx = inLength + shiftBlocks;
-
- _ASSERTE(outBlockIdx < BIGSIZE);
-
- // Set the length to hold the shifted blocks
- m_len = outBlockIdx + 1;
-
- // Output the initial blocks
- const UINT32 lowBitsShift = (32 - shiftBits);
- UINT32 highBits = 0;
- UINT32 block = m_blocks[inBlockIdx];
- UINT32 lowBits = block >> lowBitsShift;
- while (inBlockIdx > 0)
- {
- m_blocks[outBlockIdx] = highBits | lowBits;
- highBits = block << shiftBits;
-
- --inBlockIdx;
- --outBlockIdx;
-
- block = m_blocks[inBlockIdx];
- lowBits = block >> lowBitsShift;
- }
-
- // Output the final blocks
- m_blocks[outBlockIdx] = highBits | lowBits;
- m_blocks[outBlockIdx - 1] = block << shiftBits;
-
- // Zero the remaining low blocks
- memset(m_blocks, 0, shiftBlocks * sizeof(UINT32));
-
- // Check if the terminating block has no set bits
- if (m_blocks[m_len - 1] == 0)
- {
- --m_len;
- }
- }
-}
-
-void BigNum::Pow10(int exp, BigNum& result)
-{
- // We leverage two arrays - m_power10UInt32Table and m_power10BigNumTable to speed up the
- // pow10 calculation.
- //
- // m_power10UInt32Table stores the results of 10^0 to 10^7.
- // m_power10BigNumTable stores the results of 10^8, 10^16, 10^32, 10^64, 10^128 and 10^256.
- //
- // For example, let's say exp = (111111)2. We can split the exp to two parts, one is small exp,
- // which 10^smallExp can be represented as UINT32, another part is 10^bigExp, which must be represented as BigNum.
- // So the result should be 10^smallExp * 10^bigExp.
- //
- // Calculate 10^smallExp is simple, we just lookup the 10^smallExp from m_power10UInt32Table.
- // But here's a bad news: although UINT32 can represent 10^9, exp 9's binary representation is 1001.
- // That means 10^(1011), 10^(1101), 10^(1111) all cannot be stored as UINT32, we cannot easily say something like:
- // "Any bits <= 3 is small exp, any bits > 3 is big exp". So instead of involving 10^8, 10^9 to m_power10UInt32Table,
- // consider 10^8 and 10^9 as a bigNum, so they fall into m_power10BigNumTable. Now we can have a simple rule:
- // "Any bits <= 3 is small exp, any bits > 3 is big exp".
- //
- // For (111111)2, we first calculate 10^(smallExp), which is 10^(7), now we can shift right 3 bits, prepare to calculate the bigExp part,
- // the exp now becomes (000111)2.
- //
- // Apparently the lowest bit of bigExp should represent 10^8 because we have already shifted 3 bits for smallExp, so m_power10BigNumTable[0] = 10^8.
- // Now let's shift exp right 1 bit, the lowest bit should represent 10^(8 * 2) = 10^16, and so on...
- //
- // That's why we just need the values of m_power10BigNumTable be power of 2.
- //
- // More details of this implementation can be found at: https://github.com/dotnet/coreclr/pull/12894#discussion_r128890596
-
- BigNum temp1;
- BigNum temp2;
-
- BigNum* pCurrentTemp = &temp1;
- BigNum* pNextTemp = &temp2;
-
- // Extract small exp.
- UINT32 smallExp = exp & 0x7;
- pCurrentTemp->SetUInt32(m_power10UInt32Table[smallExp]);
-
- exp >>= 3;
- UINT32 idx = 0;
-
- while (exp != 0)
- {
- // If the current bit is set, multiply it with the corresponding power of 10
- if (exp & 1)
- {
- // Multiply into the next temporary
- Multiply(*pCurrentTemp, m_power10BigNumTable[idx], *pNextTemp);
-
- // Swap to the next temporary
- BigNum* t = pNextTemp;
- pNextTemp = pCurrentTemp;
- pCurrentTemp = t;
- }
-
- // Advance to the next bit
- ++idx;
- exp >>= 1;
- }
-
- result = *pCurrentTemp;
-}
-
-void BigNum::PrepareHeuristicDivide(BigNum* pDividend, BigNum* pDivisor)
-{
- UINT32 hiBlock = pDivisor->m_blocks[pDivisor->m_len - 1];
- if (hiBlock < 8 || hiBlock > 429496729)
- {
- // Inspired by http://www.ryanjuckett.com/programming/printing-floating-point-numbers/
- // Perform a bit shift on all values to get the highest block of the divisor into
- // the range [8,429496729]. We are more likely to make accurate quotient estimations
- // in heuristicDivide() with higher divisor values so
- // we shift the divisor to place the highest bit at index 27 of the highest block.
- // This is safe because (2^28 - 1) = 268435455 which is less than 429496729. This means
- // that all values with a highest bit at index 27 are within range.
- UINT32 hiBlockLog2 = LogBase2(hiBlock);
- UINT32 shift = (59 - hiBlockLog2) % 32;
-
- pDivisor->ShiftLeft(shift);
- pDividend->ShiftLeft(shift);
- }
-}
-
-UINT32 BigNum::HeuristicDivide(BigNum* pDividend, const BigNum& divisor)
-{
- UINT32 len = divisor.m_len;
- if (pDividend->m_len < len)
- {
- return 0;
- }
-
- const UINT32* pFinalDivisorBlock = divisor.m_blocks + len - 1;
- UINT32* pFinalDividendBlock = pDividend->m_blocks + len - 1;
-
- // This is an estimated quotient. Its error should be less than 2.
- // Reference inequality:
- // a/b - floor(floor(a)/(floor(b) + 1)) < 2
- UINT32 quotient = *pFinalDividendBlock / (*pFinalDivisorBlock + 1);
-
- if (quotient != 0)
- {
- // Now we use our estimated quotient to update each block of dividend.
- // dividend = dividend - divisor * quotient
- const UINT32 *pDivisorCurrent = divisor.m_blocks;
- UINT32 *pDividendCurrent = pDividend->m_blocks;
-
- UINT64 borrow = 0;
- UINT64 carry = 0;
- do
- {
- UINT64 product = (UINT64)*pDivisorCurrent * (UINT64)quotient + carry;
- carry = product >> 32;
-
- UINT64 difference = (UINT64)*pDividendCurrent - (product & 0xFFFFFFFF) - borrow;
- borrow = (difference >> 32) & 1;
-
- *pDividendCurrent = difference & 0xFFFFFFFF;
-
- ++pDivisorCurrent;
- ++pDividendCurrent;
- } while (pDivisorCurrent <= pFinalDivisorBlock);
-
- // Remove all leading zero blocks from dividend
- while (len > 0 && pDividend->m_blocks[len - 1] == 0)
- {
- --len;
- }
-
- pDividend->m_len = len;
- }
-
- // If the dividend is still larger than the divisor, we overshot our estimate quotient. To correct,
- // we increment the quotient and subtract one more divisor from the dividend (Because we guaranteed the error range).
- if (BigNum::Compare(*pDividend, divisor) >= 0)
- {
- ++quotient;
-
- // dividend = dividend - divisor
- const UINT32 *pDivisorCur = divisor.m_blocks;
- UINT32 *pDividendCur = pDividend->m_blocks;
-
- UINT64 borrow = 0;
- do
- {
- UINT64 difference = (UINT64)*pDividendCur - (UINT64)*pDivisorCur - borrow;
- borrow = (difference >> 32) & 1;
-
- *pDividendCur = difference & 0xFFFFFFFF;
-
- ++pDivisorCur;
- ++pDividendCur;
- } while (pDivisorCur <= pFinalDivisorBlock);
-
- // Remove all leading zero blocks from dividend
- while (len > 0 && pDividend->m_blocks[len - 1] == 0)
- {
- --len;
- }
-
- pDividend->m_len = len;
- }
-
- return quotient;
-}
-
-void BigNum::Multiply(UINT32 value)
-{
- Multiply(*this, value, *this);
-}
-
-void BigNum::Multiply(const BigNum& value)
-{
- BigNum temp;
- BigNum::Multiply(*this, value, temp);
-
- memcpy(m_blocks, temp.m_blocks, ((UINT32)temp.m_len) * sizeof(UINT32));
- m_len = temp.m_len;
-}
-
-void BigNum::Multiply(const BigNum& lhs, UINT32 value, BigNum& result)
-{
- if (lhs.IsZero() || value == 1)
- {
- result = lhs;
-
- return;
- }
-
- if (value == 0)
- {
- result.SetZero();
-
- return;
- }
-
- const UINT32* pCurrent = lhs.m_blocks;
- const UINT32* pEnd = pCurrent + lhs.m_len;
- UINT32* pResultCurrent = result.m_blocks;
-
- UINT64 carry = 0;
- while (pCurrent != pEnd)
- {
- UINT64 product = (UINT64)(*pCurrent) * (UINT64)value + carry;
- carry = product >> 32;
- *pResultCurrent = (UINT32)(product & 0xFFFFFFFF);
-
- ++pResultCurrent;
- ++pCurrent;
- }
-
- if (carry != 0)
- {
- _ASSERTE(lhs.m_len + 1 <= BIGSIZE);
- *pResultCurrent = (UINT32)carry;
- result.m_len += lhs.m_len + 1;
- }
-}
-
-void BigNum::Multiply(const BigNum& lhs, const BigNum& rhs, BigNum& result)
-{
- if (lhs.IsZero() || (rhs.m_len == 1 && rhs.m_blocks[0] == 1))
- {
- result = lhs;
-
- return;
- }
-
- if (rhs.IsZero())
- {
- result.SetZero();
-
- return;
- }
-
- const BigNum* pLarge = NULL;
- const BigNum* pSmall = NULL;
- if (lhs.m_len < rhs.m_len)
- {
- pSmall = &lhs;
- pLarge = &rhs;
- }
- else
- {
- pSmall = &rhs;
- pLarge = &lhs;
- }
-
- UINT32 maxResultLength = pSmall->m_len + pLarge->m_len;
- _ASSERTE(maxResultLength <= BIGSIZE);
-
- // Zero out result internal blocks.
- memset(result.m_blocks, 0, sizeof(UINT32) * BIGSIZE);
-
- const UINT32* pLargeBegin = pLarge->m_blocks;
- const UINT32* pLargeEnd = pLarge->m_blocks + pLarge->m_len;
-
- UINT32* pResultStart = result.m_blocks;
- const UINT32* pSmallCurrent = pSmall->m_blocks;
- const UINT32* pSmallEnd = pSmallCurrent + pSmall->m_len;
-
- while (pSmallCurrent != pSmallEnd)
- {
- // Multiply each block of large BigNum.
- if (*pSmallCurrent != 0)
- {
- const UINT32* pLargeCurrent = pLargeBegin;
- UINT32* pResultCurrent = pResultStart;
- UINT64 carry = 0;
-
- do
- {
- UINT64 product = (UINT64)(*pResultCurrent) + (UINT64)(*pSmallCurrent) * (UINT64)(*pLargeCurrent) + carry;
- carry = product >> 32;
- *pResultCurrent = (UINT32)(product & 0xFFFFFFFF);
-
- ++pResultCurrent;
- ++pLargeCurrent;
- } while (pLargeCurrent != pLargeEnd);
-
- *pResultCurrent = (UINT32)(carry & 0xFFFFFFFF);
- }
-
- ++pSmallCurrent;
- ++pResultStart;
- }
-
- if (maxResultLength > 0 && result.m_blocks[maxResultLength - 1] == 0)
- {
- result.m_len = maxResultLength - 1;
- }
- else
- {
- result.m_len = maxResultLength;
- }
-}
-
-void BigNum::Multiply10()
-{
- if (IsZero())
- {
- return;
- }
-
- const UINT32* pCurrent = m_blocks;
- const UINT32* pEnd = pCurrent + m_len;
- UINT32* pResultCurrent = m_blocks;
-
- UINT64 carry = 0;
- while (pCurrent != pEnd)
- {
- UINT64 product = ((UINT64)(*pCurrent) << 3) + ((UINT64)(*pCurrent) << 1) + carry;
- carry = product >> 32;
- *pResultCurrent = (UINT32)(product & 0xFFFFFFFF);
-
- ++pResultCurrent;
- ++pCurrent;
- }
-
- if (carry != 0)
- {
- _ASSERTE(m_len + 1 <= BIGSIZE);
- *pResultCurrent = (UINT32)carry;
- m_len += 1;
- }
-}
-
-bool BigNum::IsZero() const
-{
- return m_len == 0;
-}
-
-void BigNum::SetUInt32(UINT32 value)
-{
- m_len = 1;
- m_blocks[0] = value;
-}
-
-void BigNum::SetUInt64(UINT64 value)
-{
- m_blocks[0] = (UINT32)(value & 0xFFFFFFFF);
- m_blocks[1] = (UINT32)(value >> 32);
- m_len = (m_blocks[1] == 0) ? 1 : 2;
-}
-
-void BigNum::SetZero()
-{
- m_len = 0;
-}
-
-void BigNum::ExtendBlock(UINT32 blockValue)
-{
- m_blocks[m_len] = blockValue;
- ++m_len;
-}
-
-void BigNum::ExtendBlocks(UINT32 blockValue, UINT32 blockCount)
-{
- _ASSERTE(blockCount > 0);
-
- if (blockCount == 1)
- {
- ExtendBlock(blockValue);
-
- return;
- }
-
- memset(m_blocks + m_len, 0, (blockCount - 1) * sizeof(UINT32));
- m_len += blockCount;
- m_blocks[m_len - 1] = blockValue;
-}
-
-UINT32 BigNum::LogBase2(UINT32 value)
-{
- _ASSERTE(value != 0);
-
- DWORD r;
- BitScanReverse(&r, (DWORD)value);
-
- return (UINT32)r;
-}
-
-UINT32 BigNum::LogBase2(UINT64 value)
-{
- _ASSERTE(value != 0);
-
-#if (defined(_X86_) || defined(_ARM_)) && !defined(FEATURE_PAL)
- UINT64 temp = value >> 32;
- if (temp != 0)
- {
- return 32 + LogBase2((UINT32)temp);
- }
-
- return LogBase2((UINT32)value);
-#else
- DWORD r;
- BitScanReverse64(&r, (DWORD64)value);
-
- return (UINT32)r;
-#endif
-}
diff --git a/src/classlibnative/bcltype/bignum.h b/src/classlibnative/bcltype/bignum.h
deleted file mode 100644
index 0af7710d6e..0000000000
--- a/src/classlibnative/bcltype/bignum.h
+++ /dev/null
@@ -1,152 +0,0 @@
-// Licensed to the .NET Foundation under one or more agreements.
-// The .NET Foundation licenses this file to you under the MIT license.
-// See the LICENSE file in the project root for more information.
-//
-// File: bignum.h
-//
-
-//
-
-#ifndef _BIGNUM_H_
-#define _BIGNUM_H_
-
-#include <clrtypes.h>
-
-class BigNum
-{
-public:
- BigNum();
- BigNum(UINT32 value);
- BigNum(UINT64 value);
- ~BigNum();
-
- BigNum & operator=(const BigNum &rhs);
-
- static UINT32 LogBase2(UINT32 val);
- static UINT32 LogBase2(UINT64 val);
-
- static int Compare(const BigNum& lhs, const BigNum& rhs);
-
- static void ShiftLeft(UINT64 input, UINT32 shift, BigNum& output);
- static void Pow10(int exp, BigNum& result);
- static void PrepareHeuristicDivide(BigNum* pDividend, BigNum* divisor);
- static UINT32 HeuristicDivide(BigNum* pDividend, const BigNum& divisor);
- static void Multiply(const BigNum& lhs, UINT32 value, BigNum& result);
- static void Multiply(const BigNum& lhs, const BigNum& rhs, BigNum& result);
-
- bool IsZero() const;
-
- void Multiply(UINT32 value);
- void Multiply(const BigNum& value);
- void Multiply10();
- void ShiftLeft(UINT32 shift);
- void SetUInt32(UINT32 value);
- void SetUInt64(UINT64 value);
- void SetZero();
- void ExtendBlock(UINT32 blockValue);
- void ExtendBlocks(UINT32 blockValue, UINT32 blockCount);
-
-private:
-
- static const UINT32 BIGSIZE = 35;
- static const UINT32 UINT32POWER10NUM = 8;
- static const UINT32 BIGPOWER10NUM = 6;
- static constexpr UINT32 m_power10UInt32Table[UINT32POWER10NUM] =
- {
- 1, // 10^0
- 10, // 10^1
- 100, // 10^2
- 1000, // 10^3
- 10000, // 10^4
- 100000, // 10^5
- 1000000, // 10^6
- 10000000, // 10^7
- };
- static BigNum m_power10BigNumTable[BIGPOWER10NUM];
-
- static class StaticInitializer
- {
- public:
- StaticInitializer()
- {
- // 10^8
- m_power10BigNumTable[0].m_len = (UINT32)1;
- m_power10BigNumTable[0].m_blocks[0] = (UINT32)100000000;
-
- // 10^16
- m_power10BigNumTable[1].m_len = (UINT32)2;
- m_power10BigNumTable[1].m_blocks[0] = (UINT32)0x6fc10000;
- m_power10BigNumTable[1].m_blocks[1] = (UINT32)0x002386f2;
-
- // 10^32
- m_power10BigNumTable[2].m_len = (UINT32)4;
- m_power10BigNumTable[2].m_blocks[0] = (UINT32)0x00000000;
- m_power10BigNumTable[2].m_blocks[1] = (UINT32)0x85acef81;
- m_power10BigNumTable[2].m_blocks[2] = (UINT32)0x2d6d415b;
- m_power10BigNumTable[2].m_blocks[3] = (UINT32)0x000004ee;
-
- // 10^64
- m_power10BigNumTable[3].m_len = (UINT32)7;
- m_power10BigNumTable[3].m_blocks[0] = (UINT32)0x00000000;
- m_power10BigNumTable[3].m_blocks[1] = (UINT32)0x00000000;
- m_power10BigNumTable[3].m_blocks[2] = (UINT32)0xbf6a1f01;
- m_power10BigNumTable[3].m_blocks[3] = (UINT32)0x6e38ed64;
- m_power10BigNumTable[3].m_blocks[4] = (UINT32)0xdaa797ed;
- m_power10BigNumTable[3].m_blocks[5] = (UINT32)0xe93ff9f4;
- m_power10BigNumTable[3].m_blocks[6] = (UINT32)0x00184f03;
-
- // 10^128
- m_power10BigNumTable[4].m_len = (UINT32)14;
- m_power10BigNumTable[4].m_blocks[0] = (UINT32)0x00000000;
- m_power10BigNumTable[4].m_blocks[1] = (UINT32)0x00000000;
- m_power10BigNumTable[4].m_blocks[2] = (UINT32)0x00000000;
- m_power10BigNumTable[4].m_blocks[3] = (UINT32)0x00000000;
- m_power10BigNumTable[4].m_blocks[4] = (UINT32)0x2e953e01;
- m_power10BigNumTable[4].m_blocks[5] = (UINT32)0x03df9909;
- m_power10BigNumTable[4].m_blocks[6] = (UINT32)0x0f1538fd;
- m_power10BigNumTable[4].m_blocks[7] = (UINT32)0x2374e42f;
- m_power10BigNumTable[4].m_blocks[8] = (UINT32)0xd3cff5ec;
- m_power10BigNumTable[4].m_blocks[9] = (UINT32)0xc404dc08;
- m_power10BigNumTable[4].m_blocks[10] = (UINT32)0xbccdb0da;
- m_power10BigNumTable[4].m_blocks[11] = (UINT32)0xa6337f19;
- m_power10BigNumTable[4].m_blocks[12] = (UINT32)0xe91f2603;
- m_power10BigNumTable[4].m_blocks[13] = (UINT32)0x0000024e;
-
- // 10^256
- m_power10BigNumTable[5].m_len = (UINT32)27;
- m_power10BigNumTable[5].m_blocks[0] = (UINT32)0x00000000;
- m_power10BigNumTable[5].m_blocks[1] = (UINT32)0x00000000;
- m_power10BigNumTable[5].m_blocks[2] = (UINT32)0x00000000;
- m_power10BigNumTable[5].m_blocks[3] = (UINT32)0x00000000;
- m_power10BigNumTable[5].m_blocks[4] = (UINT32)0x00000000;
- m_power10BigNumTable[5].m_blocks[5] = (UINT32)0x00000000;
- m_power10BigNumTable[5].m_blocks[6] = (UINT32)0x00000000;
- m_power10BigNumTable[5].m_blocks[7] = (UINT32)0x00000000;
- m_power10BigNumTable[5].m_blocks[8] = (UINT32)0x982e7c01;
- m_power10BigNumTable[5].m_blocks[9] = (UINT32)0xbed3875b;
- m_power10BigNumTable[5].m_blocks[10] = (UINT32)0xd8d99f72;
- m_power10BigNumTable[5].m_blocks[11] = (UINT32)0x12152f87;
- m_power10BigNumTable[5].m_blocks[12] = (UINT32)0x6bde50c6;
- m_power10BigNumTable[5].m_blocks[13] = (UINT32)0xcf4a6e70;
- m_power10BigNumTable[5].m_blocks[14] = (UINT32)0xd595d80f;
- m_power10BigNumTable[5].m_blocks[15] = (UINT32)0x26b2716e;
- m_power10BigNumTable[5].m_blocks[16] = (UINT32)0xadc666b0;
- m_power10BigNumTable[5].m_blocks[17] = (UINT32)0x1d153624;
- m_power10BigNumTable[5].m_blocks[18] = (UINT32)0x3c42d35a;
- m_power10BigNumTable[5].m_blocks[19] = (UINT32)0x63ff540e;
- m_power10BigNumTable[5].m_blocks[20] = (UINT32)0xcc5573c0;
- m_power10BigNumTable[5].m_blocks[21] = (UINT32)0x65f9ef17;
- m_power10BigNumTable[5].m_blocks[22] = (UINT32)0x55bc28f2;
- m_power10BigNumTable[5].m_blocks[23] = (UINT32)0x80dcc7f7;
- m_power10BigNumTable[5].m_blocks[24] = (UINT32)0xf46eeddc;
- m_power10BigNumTable[5].m_blocks[25] = (UINT32)0x5fdcefce;
- m_power10BigNumTable[5].m_blocks[26] = (UINT32)0x000553f7;
- }
- } m_initializer;
-
- UINT32 m_blocks[BIGSIZE];
- UINT32 m_len;
-};
-
-
-#endif
diff --git a/src/classlibnative/bcltype/number.cpp b/src/classlibnative/bcltype/number.cpp
index e8db5ab52a..849c742c55 100644
--- a/src/classlibnative/bcltype/number.cpp
+++ b/src/classlibnative/bcltype/number.cpp
@@ -9,7 +9,6 @@
#include "common.h"
#include "number.h"
-#include "bignum.h"
#include "grisu3.h"
#include "fp.h"
@@ -18,303 +17,6 @@ typedef wchar_t wchar;
#define SCALE_NAN 0x80000000
#define SCALE_INF 0x7FFFFFFF
-void Dragon4( double value, int count, int* dec, int* sign, wchar_t* digits )
-{
- // ========================================================================================================================================
- // This implementation is based on the paper: https://www.cs.indiana.edu/~dyb/pubs/FP-Printing-PLDI96.pdf
- // Besides the paper, some of the code and ideas are modified from http://www.ryanjuckett.com/programming/printing-floating-point-numbers/
- // You must read these two materials to fully understand the code.
- //
- // Note: we only support fixed format input.
- // ========================================================================================================================================
- //
- // Overview:
- //
- // The input double number can be represented as:
- // value = f * 2^e = r / s.
- //
- // f: the output mantissa. Note: f is not the 52 bits mantissa of the input double number.
- // e: biased exponent.
- // r: numerator.
- // s: denominator.
- // k: value = d0.d1d2 . . . dn * 10^k
-
- // Step 1:
- // Extract meta data from the input double value.
- //
- // Refer to IEEE double precision floating point format.
- UINT64 f = 0;
- int e = 0;
- ExtractFractionAndBiasedExponent(value, &f, &e);
-
- UINT32 mantissaHighBitIdx = 0;
- if (((FPDOUBLE*)&value)->exp != 0)
- {
- mantissaHighBitIdx = 52;
- }
- else
- {
- mantissaHighBitIdx = BigNum::LogBase2(f);
- }
-
- // Step 2:
- // Estimate k. We'll verify it and fix any error later.
- //
- // This is an improvement of the estimation in the original paper.
- // Inspired by http://www.ryanjuckett.com/programming/printing-floating-point-numbers/
- //
- // LOG10V2 = 0.30102999566398119521373889472449
- // DRIFT_FACTOR = 0.69 = 1 - log10V2 - epsilon (a small number account for drift of floating point multiplication)
- int k = (int)(ceil(double((int)mantissaHighBitIdx + e) * LOG10V2 - DRIFT_FACTOR));
-
- // Step 3:
- // Store the input double value in BigNum format.
- //
- // To keep the precision, we represent the double value as r/s.
- // We have several optimization based on following table in the paper.
- //
- // ----------------------------------------------------------------------------------------------------------
- // | e >= 0 | e < 0 |
- // ----------------------------------------------------------------------------------------------------------
- // | f != b^(P - 1) | f = b^(P - 1) | e = min exp or f != b^(P - 1) | e > min exp and f = b^(P - 1) |
- // --------------------------------------------------------------------------------------------------------------
- // | r | f * b^e * 2 | f * b^(e + 1) * 2 | f * 2 | f * b * 2 |
- // --------------------------------------------------------------------------------------------------------------
- // | s | 2 | b * 2 | b^(-e) * 2 | b^(-e + 1) * 2 |
- // --------------------------------------------------------------------------------------------------------------
- //
- // Note, we do not need m+ and m- because we only support fixed format input here.
- // m+ and m- are used for free format input, which need to determine the exact range of values
- // that would round to value when input so that we can generate the shortest correct digits.
- //
- // In our case, we just output digits until reaching the expected precision.
- BigNum r(f);
- BigNum s;
- if (e >= 0)
- {
- // When f != b^(P - 1):
- // r = f * b^e * 2
- // s = 2
- // value = r / s = f * b^e * 2 / 2 = f * b^e / 1
- //
- // When f = b^(P - 1):
- // r = f * b^(e + 1) * 2
- // s = b * 2
- // value = r / s = f * b^(e + 1) * 2 / b * 2 = f * b^e / 1
- //
- // Therefore, we can simply say that when e >= 0:
- // r = f * b^e = f * 2^e
- // s = 1
-
- r.ShiftLeft(e);
- s.SetUInt64(1);
- }
- else
- {
- // When e = min exp or f != b^(P - 1):
- // r = f * 2
- // s = b^(-e) * 2
- // value = r / s = f * 2 / b^(-e) * 2 = f / b^(-e)
- //
- // When e > min exp and f = b^(P - 1):
- // r = f * b * 2
- // s = b^(-e + 1) * 2
- // value = r / s = f * b * 2 / b^(-e + 1) * 2 = f / b^(-e)
- //
- // Therefore, we can simply say that when e < 0:
- // r = f
- // s = b^(-e) = 2^(-e)
-
- BigNum::ShiftLeft(1, -e, s);
- }
-
- // According to the paper, we should use k >= 0 instead of k > 0 here.
- // However, if k = 0, both r and s won't be changed, we don't need to do any operation.
- //
- // Following are the Scheme code from the paper:
- // --------------------------------------------------------------------------------
- // (if (>= est 0)
- // (fixup r (* s (exptt B est)) m+ m− est B low-ok? high-ok? )
- // (let ([scale (exptt B (− est))])
- // (fixup (* r scale) s (* m+ scale) (* m− scale) est B low-ok? high-ok? ))))
- // --------------------------------------------------------------------------------
- //
- // If est is 0, (* s (exptt B est)) = s, (* r scale) = (* r (exptt B (− est)))) = r.
- //
- // So we just skip when k = 0.
-
- if (k > 0)
- {
- BigNum poweredValue;
- BigNum::Pow10(k, poweredValue);
- s.Multiply(poweredValue);
- }
- else if (k < 0)
- {
- BigNum poweredValue;
- BigNum::Pow10(-k, poweredValue);
- r.Multiply(poweredValue);
- }
-
- if (BigNum::Compare(r, s) >= 0)
- {
- // The estimation was incorrect. Fix the error by increasing 1.
- k += 1;
- }
- else
- {
- r.Multiply10();
- }
-
- *dec = k - 1;
-
- // This the prerequisite of calling BigNum::HeuristicDivide().
- BigNum::PrepareHeuristicDivide(&r, &s);
-
- // Step 4:
- // Calculate digits.
- //
- // Output digits until reaching the last but one precision or the numerator becomes zero.
- int digitsNum = 0;
- int currentDigit = 0;
- while (true)
- {
- currentDigit = BigNum::HeuristicDivide(&r, s);
- if (r.IsZero() || digitsNum + 1 == count)
- {
- break;
- }
-
- digits[digitsNum] = L'0' + currentDigit;
- ++digitsNum;
-
- r.Multiply10();
- }
-
- // Step 5:
- // Set the last digit.
- //
- // We round to the closest digit by comparing value with 0.5:
- // compare( value, 0.5 )
- // = compare( r / s, 0.5 )
- // = compare( r, 0.5 * s)
- // = compare(2 * r, s)
- // = compare(r << 1, s)
- r.ShiftLeft(1);
- int compareResult = BigNum::Compare(r, s);
- bool isRoundDown = compareResult < 0;
-
- // We are in the middle, round towards the even digit (i.e. IEEE rouding rules)
- if (compareResult == 0)
- {
- isRoundDown = (currentDigit & 1) == 0;
- }
-
- if (isRoundDown)
- {
- digits[digitsNum] = L'0' + currentDigit;
- ++digitsNum;
- }
- else
- {
- wchar_t* pCurDigit = digits + digitsNum;
-
- // Rounding up for 9 is special.
- if (currentDigit == 9)
- {
- // find the first non-nine prior digit
- while (true)
- {
- // If we are at the first digit
- if (pCurDigit == digits)
- {
- // Output 1 at the next highest exponent
- *pCurDigit = L'1';
- ++digitsNum;
- *dec += 1;
- break;
- }
-
- --pCurDigit;
- --digitsNum;
- if (*pCurDigit != L'9')
- {
- // increment the digit
- *pCurDigit += 1;
- ++digitsNum;
- break;
- }
- }
- }
- else
- {
- // It's simple if the digit is not 9.
- *pCurDigit = L'0' + currentDigit + 1;
- ++digitsNum;
- }
- }
-
- while (digitsNum < count)
- {
- digits[digitsNum] = L'0';
- ++digitsNum;
- }
-
- digits[count] = 0;
-
- ++*dec;
- *sign = ((FPDOUBLE*)&value)->sign;
-}
-
-// Convert a double value to a NUMBER struct.
-//
-// 1. You should ensure the input value is not infinity or NaN.
-// 2. For 0.0, number->digits will be set as an empty string. i.e the value of the first bucket is 0.
-void DoubleToNumberWorker( double value, int count, int* dec, int* sign, wchar_t* digits )
-{
- _ASSERTE(dec != nullptr && sign != nullptr && digits != nullptr);
-
- // The caller of DoubleToNumberWorker should already checked the Infinity and NAN values.
- _ASSERTE(((FPDOUBLE*)&value)->exp != 0x7ff);
-
- // Shortcut for zero.
- if (value == 0.0)
- {
- *dec = 0;
- *sign = _signbit(value);
-
- // Instead of zeroing digits, we just make it as an empty string due to performance reason.
- *digits = 0;
-
- return;
- }
-
- // Try Grisu3 first.
- if (Grisu3::Run(value, count, dec, sign, digits))
- {
- return;
- }
-
- // Grisu3 failed, fall back to Dragon4.
- Dragon4(value, count, dec, sign, digits);
-}
-
-void DoubleToNumber(double value, int precision, NUMBER* number)
-{
- WRAPPER_NO_CONTRACT
- _ASSERTE(number != NULL);
-
- number->precision = precision;
- if (((FPDOUBLE*)&value)->exp == 0x7FF) {
- number->scale = (((FPDOUBLE*)&value)->mantLo || ((FPDOUBLE*)&value)->mantHi) ? SCALE_NAN: SCALE_INF;
- number->sign = ((FPDOUBLE*)&value)->sign;
- number->digits[0] = 0;
- }
- else {
- DoubleToNumberWorker(value, precision, &number->scale, &number->sign, number->digits);
- }
-}
-
/*===========================================================
Portable NumberToDouble implementation
--------------------------------------
@@ -733,14 +435,6 @@ done:
if (number->sign) *(UINT64*)value |= I64(0x8000000000000000);
}
-FCIMPL3_VII(void, COMNumber::DoubleToNumberFC, double value, int precision, NUMBER* number)
-{
- FCALL_CONTRACT;
-
- DoubleToNumber(value, precision, number);
-}
-FCIMPLEND
-
FCIMPL1(double, COMNumber::NumberToDoubleFC, NUMBER* number)
{
FCALL_CONTRACT;
diff --git a/src/classlibnative/bcltype/number.h b/src/classlibnative/bcltype/number.h
index 480e6ad6a0..2359deb9ad 100644
--- a/src/classlibnative/bcltype/number.h
+++ b/src/classlibnative/bcltype/number.h
@@ -39,7 +39,6 @@ struct NUMBER {
class COMNumber
{
public:
- static FCDECL3_VII(void, DoubleToNumberFC, double value, int precision, NUMBER* number);
static FCDECL1(double, NumberToDoubleFC, NUMBER* number);
};
diff --git a/src/vm/ecalllist.h b/src/vm/ecalllist.h
index 7a6cb315cf..7983f7f5a2 100644
--- a/src/vm/ecalllist.h
+++ b/src/vm/ecalllist.h
@@ -740,7 +740,6 @@ FCFuncStart(gWaitHandleFuncs)
FCFuncEnd()
FCFuncStart(gNumberFuncs)
- FCFuncElement("DoubleToNumber", COMNumber::DoubleToNumberFC)
FCFuncElement("NumberToDouble", COMNumber::NumberToDoubleFC)
FCFuncEnd()