summaryrefslogtreecommitdiff
path: root/src/caffe/test/test_hdf5data_layer.cpp
blob: 68e10286d0bcaf566559191751e25f90d88ed247 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#include <string>
#include <vector>

#include "hdf5.h"

#include "gtest/gtest.h"

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/layers/hdf5_data_layer.hpp"
#include "caffe/proto/caffe.pb.h"

#include "caffe/test/test_caffe_main.hpp"

namespace caffe {

template <typename TypeParam>
class HDF5DataLayerTest : public MultiDeviceTest<TypeParam> {
  typedef typename TypeParam::Dtype Dtype;

 protected:
  HDF5DataLayerTest()
      : filename(NULL),
        blob_top_data_(new Blob<Dtype>()),
        blob_top_label_(new Blob<Dtype>()),
        blob_top_label2_(new Blob<Dtype>()) {}
  virtual void SetUp() {
    blob_top_vec_.push_back(blob_top_data_);
    blob_top_vec_.push_back(blob_top_label_);
    blob_top_vec_.push_back(blob_top_label2_);

    // Check out generate_sample_data.py in the same directory.
    filename = new string(
    CMAKE_SOURCE_DIR "caffe/test/test_data/sample_data_list.txt" CMAKE_EXT);
    LOG(INFO)<< "Using sample HDF5 data file " << filename;
  }

  virtual ~HDF5DataLayerTest() {
    delete blob_top_data_;
    delete blob_top_label_;
    delete blob_top_label2_;
    delete filename;
  }

  string* filename;
  Blob<Dtype>* const blob_top_data_;
  Blob<Dtype>* const blob_top_label_;
  Blob<Dtype>* const blob_top_label2_;
  vector<Blob<Dtype>*> blob_bottom_vec_;
  vector<Blob<Dtype>*> blob_top_vec_;
};

TYPED_TEST_CASE(HDF5DataLayerTest, TestDtypesAndDevices);

TYPED_TEST(HDF5DataLayerTest, TestRead) {
  typedef typename TypeParam::Dtype Dtype;
  // Create LayerParameter with the known parameters.
  // The data file we are reading has 10 rows and 8 columns,
  // with values from 0 to 10*8 reshaped in row-major order.
  LayerParameter param;
  param.add_top("data");
  param.add_top("label");
  param.add_top("label2");

  HDF5DataParameter* hdf5_data_param = param.mutable_hdf5_data_param();
  int batch_size = 5;
  hdf5_data_param->set_batch_size(batch_size);
  hdf5_data_param->set_source(*(this->filename));
  int num_cols = 8;
  int height = 6;
  int width = 5;

  // Test that the layer setup got the correct parameters.
  HDF5DataLayer<Dtype> layer(param);
  layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
  EXPECT_EQ(this->blob_top_data_->num(), batch_size);
  EXPECT_EQ(this->blob_top_data_->channels(), num_cols);
  EXPECT_EQ(this->blob_top_data_->height(), height);
  EXPECT_EQ(this->blob_top_data_->width(), width);

  EXPECT_EQ(this->blob_top_label_->num_axes(), 2);
  EXPECT_EQ(this->blob_top_label_->shape(0), batch_size);
  EXPECT_EQ(this->blob_top_label_->shape(1), 1);

  EXPECT_EQ(this->blob_top_label2_->num_axes(), 2);
  EXPECT_EQ(this->blob_top_label2_->shape(0), batch_size);
  EXPECT_EQ(this->blob_top_label2_->shape(1), 1);

  layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);

  // Go through the data 10 times (5 batches).
  const int data_size = num_cols * height * width;
  for (int iter = 0; iter < 10; ++iter) {
    layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_);

    // On even iterations, we're reading the first half of the data.
    // On odd iterations, we're reading the second half of the data.
    // NB: label is 1-indexed
    int label_offset = 1 + ((iter % 2 == 0) ? 0 : batch_size);
    int label2_offset = 1 + label_offset;
    int data_offset = (iter % 2 == 0) ? 0 : batch_size * data_size;

    // Every two iterations we are reading the second file,
    // which has the same labels, but data is offset by total data size,
    // which is 2400 (see generate_sample_data).
    int file_offset = (iter % 4 < 2) ? 0 : 2400;

    for (int i = 0; i < batch_size; ++i) {
      EXPECT_EQ(
        label_offset + i,
        this->blob_top_label_->cpu_data()[i]);
      EXPECT_EQ(
        label2_offset + i,
        this->blob_top_label2_->cpu_data()[i]);
    }
    for (int i = 0; i < batch_size; ++i) {
      for (int j = 0; j < num_cols; ++j) {
        for (int h = 0; h < height; ++h) {
          for (int w = 0; w < width; ++w) {
            int idx = (
              i * num_cols * height * width +
              j * height * width +
              h * width + w);
            EXPECT_EQ(
              file_offset + data_offset + idx,
              this->blob_top_data_->cpu_data()[idx])
              << "debug: i " << i << " j " << j
              << " iter " << iter;
          }
        }
      }
    }
  }
}

TYPED_TEST(HDF5DataLayerTest, TestSkip) {
  typedef typename TypeParam::Dtype Dtype;
  LayerParameter param;
  param.add_top("data");
  param.add_top("label");

  HDF5DataParameter* hdf5_data_param = param.mutable_hdf5_data_param();
  int batch_size = 5;
  hdf5_data_param->set_batch_size(batch_size);
  hdf5_data_param->set_source(*(this->filename));

  Caffe::set_solver_count(8);
  for (int dev = 0; dev < Caffe::solver_count(); ++dev) {
    Caffe::set_solver_rank(dev);

    HDF5DataLayer<Dtype> layer(param);
    layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
    int label = dev;
    for (int iter = 0; iter < 1; ++iter) {
      layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_);
      for (int i = 0; i < batch_size; ++i) {
        EXPECT_EQ(1 + label, this->blob_top_label_->cpu_data()[i]);
        label = (label + Caffe::solver_count()) % (batch_size * 2);
      }
    }
  }
  Caffe::set_solver_count(1);
  Caffe::set_solver_rank(0);
}

}  // namespace caffe