summaryrefslogtreecommitdiff
path: root/src/caffe/parallel.cpp
blob: d9433917d250916a1ed5416441fcfc2bab7d2238 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#ifdef USE_NCCL

#include <cuda_runtime.h>
#include <glog/logging.h>
#include <stdio.h>
#include <sstream>
#include <string>
#include <vector>

#include "caffe/caffe.hpp"
#include "caffe/parallel.hpp"
#include "caffe/sgd_solvers.hpp"

namespace caffe {

enum Op {
  copy,
  replace_cpu,
  replace_gpu,
  replace_cpu_diff,
  replace_gpu_diff
};

template<typename Dtype>
static void apply_buffers(const vector<Blob<Dtype>*>& blobs,
                          Dtype* buffer, size_t total_size, Op op) {
  Dtype* ptr = buffer;
  for (int i = 0; i < blobs.size(); ++i) {
    int size = blobs[i]->count();
    switch (op) {
      case copy: {
        // Init buffer to current values of blobs
        caffe_copy(size,
                   reinterpret_cast<const Dtype*>(blobs[i]->data()->cpu_data()),
                   ptr);
        break;
      }
      case replace_cpu:
        blobs[i]->data()->set_cpu_data(ptr);
        break;
      case replace_gpu:
        blobs[i]->data()->set_gpu_data(ptr);
        break;
      case replace_cpu_diff:
        blobs[i]->diff()->set_cpu_data(ptr);
        break;
      case replace_gpu_diff:
        blobs[i]->diff()->set_gpu_data(ptr);
        break;
    }
    ptr += size;
  }
  // total_size is at least one byte
  CHECK_EQ(total_size, (ptr == buffer ? 1 : ptr - buffer));
}

// Buffer size necessary to store given blobs
template<typename Dtype>
static size_t total_size(const vector<Blob<Dtype>*>& params) {
  size_t size = 0;
  for (int i = 0; i < params.size(); ++i)
    size += params[i]->count();
  // Size have at least one byte, otherwise cudaMalloc fails if net has no
  // learnable parameters.
  return (size > 0) ? size : 1;
}

template<typename Dtype>
Params<Dtype>::Params(shared_ptr<Solver<Dtype> > root_solver)
  : size_(total_size<Dtype>(root_solver->net()->learnable_params())),
    data_(),
    diff_() {
}

template<typename Dtype>
GPUParams<Dtype>::GPUParams(shared_ptr<Solver<Dtype> > root_solver, int device)
  : Params<Dtype>(root_solver) {
  int initial_device;
  CUDA_CHECK(cudaGetDevice(&initial_device));

  // Allocate device buffers
  CUDA_CHECK(cudaSetDevice(device));
  CUDA_CHECK(cudaMalloc(&data_, size_ * sizeof(Dtype)));

  // Copy blob values
  const vector<Blob<Dtype>*>& net =
    root_solver->net()->learnable_params();
  apply_buffers(net, data_, size_, copy);

  CUDA_CHECK(cudaMalloc(&diff_, size_ * sizeof(Dtype)));
  caffe_gpu_set(size_, Dtype(0), diff_);

  CUDA_CHECK(cudaSetDevice(initial_device));
}

template<typename Dtype>
GPUParams<Dtype>::~GPUParams() {
  CUDA_CHECK(cudaFree(data_));
  CUDA_CHECK(cudaFree(diff_));
}

template<typename Dtype>
void GPUParams<Dtype>::Configure(Solver<Dtype>* solver) const {
  const vector<Blob<Dtype>*>& net =
    solver->net()->learnable_params();
  apply_buffers(net, data_, size_, replace_gpu);
  apply_buffers(net, diff_, size_, replace_gpu_diff);
}

static int getDevice() {
  int device = 0;
  CUDA_CHECK(cudaGetDevice(&device));
  return device;
}

template<typename Dtype>
NCCL<Dtype>::NCCL(shared_ptr<Solver<Dtype> > solver)
  : GPUParams<Dtype>(solver, getDevice()),
    comm_(), solver_(solver), barrier_() {
  this->Configure(solver.get());
  Init();
}

template<typename Dtype>
NCCL<Dtype>::NCCL(shared_ptr<Solver<Dtype> > solver, const string& uid)
  : GPUParams<Dtype>(solver, getDevice()),
    solver_(solver), barrier_() {
  this->Configure(solver.get());
  Caffe::set_multiprocess(true);
  ncclUniqueId nccl_uid;
  memcpy(&nccl_uid, &uid[0], NCCL_UNIQUE_ID_BYTES);  // NOLINT(caffe/alt_fn)
  NCCL_CHECK(ncclCommInitRank(&comm_,
                              Caffe::solver_count(),
                              nccl_uid,
                              Caffe::solver_rank()));
  Init();
}

template<typename Dtype>
void NCCL<Dtype>::Init() {
  if (solver_->param().layer_wise_reduce()) {
    CUDA_CHECK(cudaStreamCreateWithFlags(&stream_, cudaStreamNonBlocking));
  }
}

template<typename Dtype>
NCCL<Dtype>::~NCCL() {
  if (solver_->param().layer_wise_reduce()) {
    CUDA_CHECK(cudaStreamDestroy(stream_));
  }
  if (comm_) {
    ncclCommDestroy(comm_);
  }
}

template<typename Dtype>
boost::barrier* NCCL<Dtype>::barrier() {
  return barrier_;
}
template<typename Dtype>
void NCCL<Dtype>::set_barrier(boost::barrier* value) {
  barrier_ = value;
}

template<typename Dtype>
void NCCL<Dtype>::InitSingleProcess(vector<NCCL<Dtype>*>* nccls) {
  ncclComm_t* comms = new ncclComm_t[nccls->size()];
  int* gpu_list = new int[nccls->size()];
  for (int i = 0; i < nccls->size(); ++i) {
    gpu_list[i] = (*nccls)[i]->solver_->param().device_id();
  }
  NCCL_CHECK(ncclCommInitAll(comms, static_cast<int>(nccls->size()), gpu_list));
  for (int i = 0; i < nccls->size(); ++i) {
    (*nccls)[i]->comm_ = comms[i];
  }
}

template<typename Dtype>
string NCCL<Dtype>::new_uid() {
  string uid;
  uid.resize(NCCL_UNIQUE_ID_BYTES);
  ncclUniqueId nccl_uid;
  NCCL_CHECK(ncclGetUniqueId(&nccl_uid));
  memcpy(&uid[0], &nccl_uid, NCCL_UNIQUE_ID_BYTES);  // NOLINT(caffe/alt_fn)
  return uid;
}

template<typename Dtype>
void NCCL<Dtype>::Broadcast() {
  if (barrier_) {  // NULL in multi process case
    barrier_->wait();
  }
  NCCL_CHECK(ncclBcast(data_, static_cast<int>(size_),
                       nccl::dataType<Dtype>::type, 0,
                       comm_, cudaStreamDefault));
  if (barrier_) {
    barrier_->wait();
  }
}

template<typename Dtype>
void NCCL<Dtype>::run(int layer) {
  CHECK(solver_->param().layer_wise_reduce());
  vector<shared_ptr<Blob<Dtype> > >& blobs =
    solver_->net()->layers()[layer]->blobs();
#ifdef DEBUG
  // Assert blobs are contiguous to reduce in one step (e.g. bias often small)
  for (int i = 1; i < blobs.size(); ++i) {
    CHECK_EQ(blobs[i - 1]->gpu_diff() + blobs[i - 1]->count(),
             blobs[i + 0]->gpu_diff());
  }
#endif
  if (blobs.size() > 0) {
    // Make sure default stream is done computing gradients. Could be
    // replaced by cudaEventRecord+cudaStreamWaitEvent to avoid
    // blocking the default stream, but it's actually slower.
    CUDA_CHECK(cudaStreamSynchronize(cudaStreamDefault));

    // Reduce asynchronously
    int size = 0;
    for (int i = 0; i < blobs.size(); ++i) {
      size += blobs[i]->count();
    }
    if (barrier_) {  // NULL in multi process case
      barrier_->wait();
    }
    NCCL_CHECK(ncclAllReduce(blobs[0]->mutable_gpu_diff(),
                             blobs[0]->mutable_gpu_diff(),
                             size,
                             nccl::dataType<Dtype>::type,
                             ncclSum, comm_, stream_));
    caffe_gpu_scal(size, (Dtype) 1.0 / Caffe::solver_count(),
                   blobs[0]->mutable_gpu_diff(), stream_);
  }
}

template<typename Dtype>
void NCCL<Dtype>::on_gradients_ready() {
  if (solver_->param().layer_wise_reduce()) {
    CHECK_EQ(solver_->net()->params().size(),
             solver_->net()->learnable_params().size())
      << "Layer-wise reduce is not supported for nets with shared weights.";

    // Make sure reduction is done before applying gradients
    CUDA_CHECK(cudaStreamSynchronize(stream_));
  } else {
    if (barrier_) {  // NULL in multi process case
      barrier_->wait();
    }
    NCCL_CHECK(ncclAllReduce(diff_, diff_, static_cast<int>(size_),
                             nccl::dataType<Dtype>::type, ncclSum, comm_,
                             cudaStreamDefault));
    caffe_gpu_scal(static_cast<int>(size_),
                   (Dtype) 1.0 / Caffe::solver_count(), diff_);
  }
}

template<typename Dtype>
class Worker : public InternalThread {
 public:
  explicit Worker(shared_ptr<Solver<Dtype> > rank0, int device,
                  boost::barrier* barrier, vector<NCCL<Dtype>*>* nccls,
                  const char* restore)
    : rank0_(rank0), device_(device), barrier_(barrier),
      nccls_(nccls), restore_(restore) {
  }
  virtual ~Worker() {}

 protected:
  void InternalThreadEntry() {
    // Create solver and install callbacks
    SolverParameter param(rank0_->param());
    param.set_device_id(device_);
#ifdef DEBUG
    int device;
    CUDA_CHECK(cudaGetDevice(&device));
    CHECK_EQ(device, device_);
#endif
    param.set_type(rank0_->type());
    shared_ptr<Solver<Dtype> > s(SolverRegistry<Dtype>::CreateSolver(param));
    CHECK_EQ(s->type(), rank0_->type());
    if (restore_) {
      // Could not make NCCL broadcast solver state, it seems to crash
      // if called in a tight loop, regardless of barriers etc. so
      // restore all solvers from file.
      s->Restore(restore_);
    }
    NCCL<Dtype> nccl(s);
    nccl.set_barrier(barrier_);
    s->add_callback(&nccl);
    if (s->param().layer_wise_reduce()) {
      s->net()->add_after_backward(&nccl);
    }
    (*nccls_)[Caffe::solver_rank()] = &nccl;
    // Wait for other threads
    barrier_->wait();
    // Wait for NCCL init
    barrier_->wait();
    // Broadcast rank 0 state
    nccl.Broadcast();
    // Solve
    s->Step(param.max_iter() - s->iter());
    barrier_->wait();
#ifdef DEBUG
    // Check all solvers have same state
    SGDSolver<Dtype>* sa = static_cast<SGDSolver<Dtype>*>(rank0_.get());
    SGDSolver<Dtype>* sb = static_cast<SGDSolver<Dtype>*>(s.get());
    for (int h = 0; h < sa->history().size(); ++h) {
      CUDA_CHECK(cudaSetDevice(sa->param().device_id()));
      const Dtype* a = sa->history()[h]->cpu_data();
      CUDA_CHECK(cudaSetDevice(sb->param().device_id()));
      const Dtype* b = sb->history()[h]->cpu_data();
      for (int v = 0; v < sa->history()[h]->count(); ++v) {
        CHECK_DOUBLE_EQ(a[v], b[v]);
      }
    }
#endif
  }

  shared_ptr<Solver<Dtype> > rank0_;
  int device_;
  boost::barrier* barrier_;
  vector<NCCL<Dtype>*>* nccls_;
  const char* restore_;
};

template<typename Dtype>
void NCCL<Dtype>::Run(const vector<int>& gpus, const char* restore) {
  boost::barrier barrier(static_cast<int>(gpus.size()));
  vector<NCCL<Dtype>*> nccls(gpus.size());
  // Create workers
  vector<shared_ptr<Worker<Dtype> > > workers(gpus.size());
  for (int i = 1; i < gpus.size(); ++i) {
    CUDA_CHECK(cudaSetDevice(gpus[i]));
    Caffe::set_solver_rank(i);
    Worker<Dtype>* w = new Worker<Dtype>(solver_, gpus[i], &barrier,
                                         &nccls, restore);
    w->StartInternalThread();
    workers[i].reset(w);
  }
  CUDA_CHECK(cudaSetDevice(gpus[0]));
  Caffe::set_solver_rank(0);
  barrier_ = &barrier;
  solver_->add_callback(this);
  if (solver_->param().layer_wise_reduce()) {
    solver_->net()->add_after_backward(this);
  }
  nccls[0] = this;
  // Wait for workers
  barrier.wait();
  // Init NCCL
  InitSingleProcess(&nccls);
  barrier.wait();
  // Run first solver on current thread
  Broadcast();
  solver_->Solve();
  barrier.wait();  // Hangs without it when running tests
  // Wait for shutdown
  for (int i = 1; i < gpus.size(); ++i) {
    workers[i]->StopInternalThread();
  }
}

INSTANTIATE_CLASS(Params);
INSTANTIATE_CLASS(GPUParams);
INSTANTIATE_CLASS(Worker);
INSTANTIATE_CLASS(NCCL);

}  // namespace caffe

#endif  // USE_NCCL