summaryrefslogtreecommitdiff
path: root/src/caffe/layers/window_data_layer.cpp
blob: f8db61c9258a15ed8eb48925a57178bcba879d25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#ifdef USE_OPENCV
#include <opencv2/highgui/highgui_c.h>
#include <stdint.h>

#include <algorithm>
#include <map>
#include <string>
#include <utility>
#include <vector>

#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"

#include "caffe/common.hpp"
#include "caffe/data_layers.hpp"
#include "caffe/layer.hpp"
#include "caffe/util/benchmark.hpp"
#include "caffe/util/io.hpp"
#include "caffe/util/math_functions.hpp"
#include "caffe/util/rng.hpp"

// caffe.proto > LayerParameter > WindowDataParameter
//   'source' field specifies the window_file
//   'crop_size' indicates the desired warped size

namespace caffe {

template <typename Dtype>
WindowDataLayer<Dtype>::~WindowDataLayer<Dtype>() {
  this->StopInternalThread();
}

template <typename Dtype>
void WindowDataLayer<Dtype>::DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  // LayerSetUp runs through the window_file and creates two structures
  // that hold windows: one for foreground (object) windows and one
  // for background (non-object) windows. We use an overlap threshold
  // to decide which is which.

  // window_file format
  // repeated:
  //    # image_index
  //    img_path (abs path)
  //    channels
  //    height
  //    width
  //    num_windows
  //    class_index overlap x1 y1 x2 y2

  LOG(INFO) << "Window data layer:" << std::endl
      << "  foreground (object) overlap threshold: "
      << this->layer_param_.window_data_param().fg_threshold() << std::endl
      << "  background (non-object) overlap threshold: "
      << this->layer_param_.window_data_param().bg_threshold() << std::endl
      << "  foreground sampling fraction: "
      << this->layer_param_.window_data_param().fg_fraction() << std::endl
      << "  cache_images: "
      << this->layer_param_.window_data_param().cache_images() << std::endl
      << "  root_folder: "
      << this->layer_param_.window_data_param().root_folder();

  cache_images_ = this->layer_param_.window_data_param().cache_images();
  string root_folder = this->layer_param_.window_data_param().root_folder();

  const bool prefetch_needs_rand =
      this->transform_param_.mirror() ||
      this->transform_param_.crop_size();
  if (prefetch_needs_rand) {
    const unsigned int prefetch_rng_seed = caffe_rng_rand();
    prefetch_rng_.reset(new Caffe::RNG(prefetch_rng_seed));
  } else {
    prefetch_rng_.reset();
  }

  std::ifstream infile(this->layer_param_.window_data_param().source().c_str());
  CHECK(infile.good()) << "Failed to open window file "
      << this->layer_param_.window_data_param().source() << std::endl;

  map<int, int> label_hist;
  label_hist.insert(std::make_pair(0, 0));

  string hashtag;
  int image_index, channels;
  if (!(infile >> hashtag >> image_index)) {
    LOG(FATAL) << "Window file is empty";
  }
  do {
    CHECK_EQ(hashtag, "#");
    // read image path
    string image_path;
    infile >> image_path;
    image_path = root_folder + image_path;
    // read image dimensions
    vector<int> image_size(3);
    infile >> image_size[0] >> image_size[1] >> image_size[2];
    channels = image_size[0];
    image_database_.push_back(std::make_pair(image_path, image_size));

    if (cache_images_) {
      Datum datum;
      if (!ReadFileToDatum(image_path, &datum)) {
        LOG(ERROR) << "Could not open or find file " << image_path;
        return;
      }
      image_database_cache_.push_back(std::make_pair(image_path, datum));
    }
    // read each box
    int num_windows;
    infile >> num_windows;
    const float fg_threshold =
        this->layer_param_.window_data_param().fg_threshold();
    const float bg_threshold =
        this->layer_param_.window_data_param().bg_threshold();
    for (int i = 0; i < num_windows; ++i) {
      int label, x1, y1, x2, y2;
      float overlap;
      infile >> label >> overlap >> x1 >> y1 >> x2 >> y2;

      vector<float> window(WindowDataLayer::NUM);
      window[WindowDataLayer::IMAGE_INDEX] = image_index;
      window[WindowDataLayer::LABEL] = label;
      window[WindowDataLayer::OVERLAP] = overlap;
      window[WindowDataLayer::X1] = x1;
      window[WindowDataLayer::Y1] = y1;
      window[WindowDataLayer::X2] = x2;
      window[WindowDataLayer::Y2] = y2;

      // add window to foreground list or background list
      if (overlap >= fg_threshold) {
        int label = window[WindowDataLayer::LABEL];
        CHECK_GT(label, 0);
        fg_windows_.push_back(window);
        label_hist.insert(std::make_pair(label, 0));
        label_hist[label]++;
      } else if (overlap < bg_threshold) {
        // background window, force label and overlap to 0
        window[WindowDataLayer::LABEL] = 0;
        window[WindowDataLayer::OVERLAP] = 0;
        bg_windows_.push_back(window);
        label_hist[0]++;
      }
    }

    if (image_index % 100 == 0) {
      LOG(INFO) << "num: " << image_index << " "
          << image_path << " "
          << image_size[0] << " "
          << image_size[1] << " "
          << image_size[2] << " "
          << "windows to process: " << num_windows;
    }
  } while (infile >> hashtag >> image_index);

  LOG(INFO) << "Number of images: " << image_index+1;

  for (map<int, int>::iterator it = label_hist.begin();
      it != label_hist.end(); ++it) {
    LOG(INFO) << "class " << it->first << " has " << label_hist[it->first]
              << " samples";
  }

  LOG(INFO) << "Amount of context padding: "
      << this->layer_param_.window_data_param().context_pad();

  LOG(INFO) << "Crop mode: "
      << this->layer_param_.window_data_param().crop_mode();

  // image
  const int crop_size = this->transform_param_.crop_size();
  CHECK_GT(crop_size, 0);
  const int batch_size = this->layer_param_.window_data_param().batch_size();
  top[0]->Reshape(batch_size, channels, crop_size, crop_size);
  for (int i = 0; i < this->PREFETCH_COUNT; ++i)
    this->prefetch_[i].data_.Reshape(
        batch_size, channels, crop_size, crop_size);

  LOG(INFO) << "output data size: " << top[0]->num() << ","
      << top[0]->channels() << "," << top[0]->height() << ","
      << top[0]->width();
  // label
  vector<int> label_shape(1, batch_size);
  top[1]->Reshape(label_shape);
  for (int i = 0; i < this->PREFETCH_COUNT; ++i) {
    this->prefetch_[i].label_.Reshape(label_shape);
  }

  // data mean
  has_mean_file_ = this->transform_param_.has_mean_file();
  has_mean_values_ = this->transform_param_.mean_value_size() > 0;
  if (has_mean_file_) {
    const string& mean_file =
          this->transform_param_.mean_file();
    LOG(INFO) << "Loading mean file from: " << mean_file;
    BlobProto blob_proto;
    ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
    data_mean_.FromProto(blob_proto);
  }
  if (has_mean_values_) {
    CHECK(has_mean_file_ == false) <<
      "Cannot specify mean_file and mean_value at the same time";
    for (int c = 0; c < this->transform_param_.mean_value_size(); ++c) {
      mean_values_.push_back(this->transform_param_.mean_value(c));
    }
    CHECK(mean_values_.size() == 1 || mean_values_.size() == channels) <<
     "Specify either 1 mean_value or as many as channels: " << channels;
    if (channels > 1 && mean_values_.size() == 1) {
      // Replicate the mean_value for simplicity
      for (int c = 1; c < channels; ++c) {
        mean_values_.push_back(mean_values_[0]);
      }
    }
  }
}

template <typename Dtype>
unsigned int WindowDataLayer<Dtype>::PrefetchRand() {
  CHECK(prefetch_rng_);
  caffe::rng_t* prefetch_rng =
      static_cast<caffe::rng_t*>(prefetch_rng_->generator());
  return (*prefetch_rng)();
}

// This function is called on prefetch thread
template <typename Dtype>
void WindowDataLayer<Dtype>::load_batch(Batch<Dtype>* batch) {
  // At each iteration, sample N windows where N*p are foreground (object)
  // windows and N*(1-p) are background (non-object) windows
  CPUTimer batch_timer;
  batch_timer.Start();
  double read_time = 0;
  double trans_time = 0;
  CPUTimer timer;
  Dtype* top_data = batch->data_.mutable_cpu_data();
  Dtype* top_label = batch->label_.mutable_cpu_data();
  const Dtype scale = this->layer_param_.window_data_param().scale();
  const int batch_size = this->layer_param_.window_data_param().batch_size();
  const int context_pad = this->layer_param_.window_data_param().context_pad();
  const int crop_size = this->transform_param_.crop_size();
  const bool mirror = this->transform_param_.mirror();
  const float fg_fraction =
      this->layer_param_.window_data_param().fg_fraction();
  Dtype* mean = NULL;
  int mean_off = 0;
  int mean_width = 0;
  int mean_height = 0;
  if (this->has_mean_file_) {
    mean = this->data_mean_.mutable_cpu_data();
    mean_off = (this->data_mean_.width() - crop_size) / 2;
    mean_width = this->data_mean_.width();
    mean_height = this->data_mean_.height();
  }
  cv::Size cv_crop_size(crop_size, crop_size);
  const string& crop_mode = this->layer_param_.window_data_param().crop_mode();

  bool use_square = (crop_mode == "square") ? true : false;

  // zero out batch
  caffe_set(batch->data_.count(), Dtype(0), top_data);

  const int num_fg = static_cast<int>(static_cast<float>(batch_size)
      * fg_fraction);
  const int num_samples[2] = { batch_size - num_fg, num_fg };

  int item_id = 0;
  // sample from bg set then fg set
  for (int is_fg = 0; is_fg < 2; ++is_fg) {
    for (int dummy = 0; dummy < num_samples[is_fg]; ++dummy) {
      // sample a window
      timer.Start();
      const unsigned int rand_index = PrefetchRand();
      vector<float> window = (is_fg) ?
          fg_windows_[rand_index % fg_windows_.size()] :
          bg_windows_[rand_index % bg_windows_.size()];

      bool do_mirror = mirror && PrefetchRand() % 2;

      // load the image containing the window
      pair<std::string, vector<int> > image =
          image_database_[window[WindowDataLayer<Dtype>::IMAGE_INDEX]];

      cv::Mat cv_img;
      if (this->cache_images_) {
        pair<std::string, Datum> image_cached =
          image_database_cache_[window[WindowDataLayer<Dtype>::IMAGE_INDEX]];
        cv_img = DecodeDatumToCVMat(image_cached.second, true);
      } else {
        cv_img = cv::imread(image.first, CV_LOAD_IMAGE_COLOR);
        if (!cv_img.data) {
          LOG(ERROR) << "Could not open or find file " << image.first;
          return;
        }
      }
      read_time += timer.MicroSeconds();
      timer.Start();
      const int channels = cv_img.channels();

      // crop window out of image and warp it
      int x1 = window[WindowDataLayer<Dtype>::X1];
      int y1 = window[WindowDataLayer<Dtype>::Y1];
      int x2 = window[WindowDataLayer<Dtype>::X2];
      int y2 = window[WindowDataLayer<Dtype>::Y2];

      int pad_w = 0;
      int pad_h = 0;
      if (context_pad > 0 || use_square) {
        // scale factor by which to expand the original region
        // such that after warping the expanded region to crop_size x crop_size
        // there's exactly context_pad amount of padding on each side
        Dtype context_scale = static_cast<Dtype>(crop_size) /
            static_cast<Dtype>(crop_size - 2*context_pad);

        // compute the expanded region
        Dtype half_height = static_cast<Dtype>(y2-y1+1)/2.0;
        Dtype half_width = static_cast<Dtype>(x2-x1+1)/2.0;
        Dtype center_x = static_cast<Dtype>(x1) + half_width;
        Dtype center_y = static_cast<Dtype>(y1) + half_height;
        if (use_square) {
          if (half_height > half_width) {
            half_width = half_height;
          } else {
            half_height = half_width;
          }
        }
        x1 = static_cast<int>(round(center_x - half_width*context_scale));
        x2 = static_cast<int>(round(center_x + half_width*context_scale));
        y1 = static_cast<int>(round(center_y - half_height*context_scale));
        y2 = static_cast<int>(round(center_y + half_height*context_scale));

        // the expanded region may go outside of the image
        // so we compute the clipped (expanded) region and keep track of
        // the extent beyond the image
        int unclipped_height = y2-y1+1;
        int unclipped_width = x2-x1+1;
        int pad_x1 = std::max(0, -x1);
        int pad_y1 = std::max(0, -y1);
        int pad_x2 = std::max(0, x2 - cv_img.cols + 1);
        int pad_y2 = std::max(0, y2 - cv_img.rows + 1);
        // clip bounds
        x1 = x1 + pad_x1;
        x2 = x2 - pad_x2;
        y1 = y1 + pad_y1;
        y2 = y2 - pad_y2;
        CHECK_GT(x1, -1);
        CHECK_GT(y1, -1);
        CHECK_LT(x2, cv_img.cols);
        CHECK_LT(y2, cv_img.rows);

        int clipped_height = y2-y1+1;
        int clipped_width = x2-x1+1;

        // scale factors that would be used to warp the unclipped
        // expanded region
        Dtype scale_x =
            static_cast<Dtype>(crop_size)/static_cast<Dtype>(unclipped_width);
        Dtype scale_y =
            static_cast<Dtype>(crop_size)/static_cast<Dtype>(unclipped_height);

        // size to warp the clipped expanded region to
        cv_crop_size.width =
            static_cast<int>(round(static_cast<Dtype>(clipped_width)*scale_x));
        cv_crop_size.height =
            static_cast<int>(round(static_cast<Dtype>(clipped_height)*scale_y));
        pad_x1 = static_cast<int>(round(static_cast<Dtype>(pad_x1)*scale_x));
        pad_x2 = static_cast<int>(round(static_cast<Dtype>(pad_x2)*scale_x));
        pad_y1 = static_cast<int>(round(static_cast<Dtype>(pad_y1)*scale_y));
        pad_y2 = static_cast<int>(round(static_cast<Dtype>(pad_y2)*scale_y));

        pad_h = pad_y1;
        // if we're mirroring, we mirror the padding too (to be pedantic)
        if (do_mirror) {
          pad_w = pad_x2;
        } else {
          pad_w = pad_x1;
        }

        // ensure that the warped, clipped region plus the padding fits in the
        // crop_size x crop_size image (it might not due to rounding)
        if (pad_h + cv_crop_size.height > crop_size) {
          cv_crop_size.height = crop_size - pad_h;
        }
        if (pad_w + cv_crop_size.width > crop_size) {
          cv_crop_size.width = crop_size - pad_w;
        }
      }

      cv::Rect roi(x1, y1, x2-x1+1, y2-y1+1);
      cv::Mat cv_cropped_img = cv_img(roi);
      cv::resize(cv_cropped_img, cv_cropped_img,
          cv_crop_size, 0, 0, cv::INTER_LINEAR);

      // horizontal flip at random
      if (do_mirror) {
        cv::flip(cv_cropped_img, cv_cropped_img, 1);
      }

      // copy the warped window into top_data
      for (int h = 0; h < cv_cropped_img.rows; ++h) {
        const uchar* ptr = cv_cropped_img.ptr<uchar>(h);
        int img_index = 0;
        for (int w = 0; w < cv_cropped_img.cols; ++w) {
          for (int c = 0; c < channels; ++c) {
            int top_index = ((item_id * channels + c) * crop_size + h + pad_h)
                     * crop_size + w + pad_w;
            // int top_index = (c * height + h) * width + w;
            Dtype pixel = static_cast<Dtype>(ptr[img_index++]);
            if (this->has_mean_file_) {
              int mean_index = (c * mean_height + h + mean_off + pad_h)
                           * mean_width + w + mean_off + pad_w;
              top_data[top_index] = (pixel - mean[mean_index]) * scale;
            } else {
              if (this->has_mean_values_) {
                top_data[top_index] = (pixel - this->mean_values_[c]) * scale;
              } else {
                top_data[top_index] = pixel * scale;
              }
            }
          }
        }
      }
      trans_time += timer.MicroSeconds();
      // get window label
      top_label[item_id] = window[WindowDataLayer<Dtype>::LABEL];

      #if 0
      // useful debugging code for dumping transformed windows to disk
      string file_id;
      std::stringstream ss;
      ss << PrefetchRand();
      ss >> file_id;
      std::ofstream inf((string("dump/") + file_id +
          string("_info.txt")).c_str(), std::ofstream::out);
      inf << image.first << std::endl
          << window[WindowDataLayer<Dtype>::X1]+1 << std::endl
          << window[WindowDataLayer<Dtype>::Y1]+1 << std::endl
          << window[WindowDataLayer<Dtype>::X2]+1 << std::endl
          << window[WindowDataLayer<Dtype>::Y2]+1 << std::endl
          << do_mirror << std::endl
          << top_label[item_id] << std::endl
          << is_fg << std::endl;
      inf.close();
      std::ofstream top_data_file((string("dump/") + file_id +
          string("_data.txt")).c_str(),
          std::ofstream::out | std::ofstream::binary);
      for (int c = 0; c < channels; ++c) {
        for (int h = 0; h < crop_size; ++h) {
          for (int w = 0; w < crop_size; ++w) {
            top_data_file.write(reinterpret_cast<char*>(
                &top_data[((item_id * channels + c) * crop_size + h)
                          * crop_size + w]),
                sizeof(Dtype));
          }
        }
      }
      top_data_file.close();
      #endif

      item_id++;
    }
  }
  batch_timer.Stop();
  DLOG(INFO) << "Prefetch batch: " << batch_timer.MilliSeconds() << " ms.";
  DLOG(INFO) << "     Read time: " << read_time / 1000 << " ms.";
  DLOG(INFO) << "Transform time: " << trans_time / 1000 << " ms.";
}

INSTANTIATE_CLASS(WindowDataLayer);
REGISTER_LAYER_CLASS(WindowData);

}  // namespace caffe
#endif  // USE_OPENCV