summaryrefslogtreecommitdiff
path: root/src/caffe/layers/lrn_layer.cpp
blob: 36c1ace4c99a1764a01962df0947094594a4e423 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#include <vector>

#include "caffe/layer.hpp"
#include "caffe/util/math_functions.hpp"
#include "caffe/vision_layers.hpp"

namespace caffe {

template <typename Dtype>
void LRNLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  size_ = this->layer_param_.lrn_param().local_size();
  CHECK_EQ(size_ % 2, 1) << "LRN only supports odd values for local_size";
  pre_pad_ = (size_ - 1) / 2;
  alpha_ = this->layer_param_.lrn_param().alpha();
  beta_ = this->layer_param_.lrn_param().beta();
  k_ = this->layer_param_.lrn_param().k();
  if (this->layer_param_.lrn_param().norm_region() ==
      LRNParameter_NormRegion_WITHIN_CHANNEL) {
    // Set up split_layer_ to use inputs in the numerator and denominator.
    split_top_vec_.clear();
    split_top_vec_.push_back(&product_input_);
    split_top_vec_.push_back(&square_input_);
    LayerParameter split_param;
    split_layer_.reset(new SplitLayer<Dtype>(split_param));
    split_layer_->SetUp(bottom, split_top_vec_);
    // Set up square_layer_ to square the inputs.
    square_bottom_vec_.clear();
    square_top_vec_.clear();
    square_bottom_vec_.push_back(&square_input_);
    square_top_vec_.push_back(&square_output_);
    LayerParameter square_param;
    square_param.mutable_power_param()->set_power(Dtype(2));
    square_layer_.reset(new PowerLayer<Dtype>(square_param));
    square_layer_->SetUp(square_bottom_vec_, square_top_vec_);
    // Set up pool_layer_ to sum over square neighborhoods of the input.
    pool_top_vec_.clear();
    pool_top_vec_.push_back(&pool_output_);
    LayerParameter pool_param;
    pool_param.mutable_pooling_param()->set_pool(
        PoolingParameter_PoolMethod_AVE);
    pool_param.mutable_pooling_param()->set_pad(pre_pad_);
    pool_param.mutable_pooling_param()->set_kernel_size(size_);
    pool_layer_.reset(new PoolingLayer<Dtype>(pool_param));
    pool_layer_->SetUp(square_top_vec_, pool_top_vec_);
    // Set up power_layer_ to compute (1 + alpha_/N^2 s)^-beta_, where s is
    // the sum of a squared neighborhood (the output of pool_layer_).
    power_top_vec_.clear();
    power_top_vec_.push_back(&power_output_);
    LayerParameter power_param;
    power_param.mutable_power_param()->set_power(-beta_);
    power_param.mutable_power_param()->set_scale(alpha_);
    power_param.mutable_power_param()->set_shift(Dtype(1));
    power_layer_.reset(new PowerLayer<Dtype>(power_param));
    power_layer_->SetUp(pool_top_vec_, power_top_vec_);
    // Set up a product_layer_ to compute outputs by multiplying inputs by the
    // inverse demoninator computed by the power layer.
    product_bottom_vec_.clear();
    product_bottom_vec_.push_back(&product_input_);
    product_bottom_vec_.push_back(&power_output_);
    LayerParameter product_param;
    EltwiseParameter* eltwise_param = product_param.mutable_eltwise_param();
    eltwise_param->set_operation(EltwiseParameter_EltwiseOp_PROD);
    product_layer_.reset(new EltwiseLayer<Dtype>(product_param));
    product_layer_->SetUp(product_bottom_vec_, top);
  }
}

template <typename Dtype>
void LRNLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, "
      << "corresponding to (num, channels, height, width)";
  num_ = bottom[0]->num();
  channels_ = bottom[0]->channels();
  height_ = bottom[0]->height();
  width_ = bottom[0]->width();
  switch (this->layer_param_.lrn_param().norm_region()) {
  case LRNParameter_NormRegion_ACROSS_CHANNELS:
    top[0]->Reshape(num_, channels_, height_, width_);
    scale_.Reshape(num_, channels_, height_, width_);
    break;
  case LRNParameter_NormRegion_WITHIN_CHANNEL:
    split_layer_->Reshape(bottom, split_top_vec_);
    square_layer_->Reshape(square_bottom_vec_, square_top_vec_);
    pool_layer_->Reshape(square_top_vec_, pool_top_vec_);
    power_layer_->Reshape(pool_top_vec_, power_top_vec_);
    product_layer_->Reshape(product_bottom_vec_, top);
    break;
  }
}

template <typename Dtype>
void LRNLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  switch (this->layer_param_.lrn_param().norm_region()) {
  case LRNParameter_NormRegion_ACROSS_CHANNELS:
    CrossChannelForward_cpu(bottom, top);
    break;
  case LRNParameter_NormRegion_WITHIN_CHANNEL:
    WithinChannelForward(bottom, top);
    break;
  default:
    LOG(FATAL) << "Unknown normalization region.";
  }
}

template <typename Dtype>
void LRNLayer<Dtype>::CrossChannelForward_cpu(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  Dtype* top_data = top[0]->mutable_cpu_data();
  Dtype* scale_data = scale_.mutable_cpu_data();
  // start with the constant value
  for (int i = 0; i < scale_.count(); ++i) {
    scale_data[i] = k_;
  }
  Blob<Dtype> padded_square(1, channels_ + size_ - 1, height_, width_);
  Dtype* padded_square_data = padded_square.mutable_cpu_data();
  caffe_set(padded_square.count(), Dtype(0), padded_square_data);
  Dtype alpha_over_size = alpha_ / size_;
  // go through the images
  for (int n = 0; n < num_; ++n) {
    // compute the padded square
    caffe_sqr(channels_ * height_ * width_,
        bottom_data + bottom[0]->offset(n),
        padded_square_data + padded_square.offset(0, pre_pad_));
    // Create the first channel scale
    for (int c = 0; c < size_; ++c) {
      caffe_axpy<Dtype>(height_ * width_, alpha_over_size,
          padded_square_data + padded_square.offset(0, c),
          scale_data + scale_.offset(n, 0));
    }
    for (int c = 1; c < channels_; ++c) {
      // copy previous scale
      caffe_copy<Dtype>(height_ * width_,
          scale_data + scale_.offset(n, c - 1),
          scale_data + scale_.offset(n, c));
      // add head
      caffe_axpy<Dtype>(height_ * width_, alpha_over_size,
          padded_square_data + padded_square.offset(0, c + size_ - 1),
          scale_data + scale_.offset(n, c));
      // subtract tail
      caffe_axpy<Dtype>(height_ * width_, -alpha_over_size,
          padded_square_data + padded_square.offset(0, c - 1),
          scale_data + scale_.offset(n, c));
    }
  }

  // In the end, compute output
  caffe_powx<Dtype>(scale_.count(), scale_data, -beta_, top_data);
  caffe_mul<Dtype>(scale_.count(), top_data, bottom_data, top_data);
}

template <typename Dtype>
void LRNLayer<Dtype>::WithinChannelForward(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  split_layer_->Forward(bottom, split_top_vec_);
  square_layer_->Forward(square_bottom_vec_, square_top_vec_);
  pool_layer_->Forward(square_top_vec_, pool_top_vec_);
  power_layer_->Forward(pool_top_vec_, power_top_vec_);
  product_layer_->Forward(product_bottom_vec_, top);
}

template <typename Dtype>
void LRNLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
  switch (this->layer_param_.lrn_param().norm_region()) {
  case LRNParameter_NormRegion_ACROSS_CHANNELS:
    CrossChannelBackward_cpu(top, propagate_down, bottom);
    break;
  case LRNParameter_NormRegion_WITHIN_CHANNEL:
    WithinChannelBackward(top, propagate_down, bottom);
    break;
  default:
    LOG(FATAL) << "Unknown normalization region.";
  }
}

template <typename Dtype>
void LRNLayer<Dtype>::CrossChannelBackward_cpu(
    const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down,
    const vector<Blob<Dtype>*>& bottom) {
  const Dtype* top_diff = top[0]->cpu_diff();
  const Dtype* top_data = top[0]->cpu_data();
  const Dtype* bottom_data = bottom[0]->cpu_data();
  const Dtype* scale_data = scale_.cpu_data();
  Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
  Blob<Dtype> padded_ratio(1, channels_ + size_ - 1, height_, width_);
  Blob<Dtype> accum_ratio(1, 1, height_, width_);
  Dtype* padded_ratio_data = padded_ratio.mutable_cpu_data();
  Dtype* accum_ratio_data = accum_ratio.mutable_cpu_data();
  // We hack a little bit by using the diff() to store an additional result
  Dtype* accum_ratio_times_bottom = accum_ratio.mutable_cpu_diff();
  caffe_set(padded_ratio.count(), Dtype(0), padded_ratio_data);
  Dtype cache_ratio_value = 2. * alpha_ * beta_ / size_;

  caffe_powx<Dtype>(scale_.count(), scale_data, -beta_, bottom_diff);
  caffe_mul<Dtype>(scale_.count(), top_diff, bottom_diff, bottom_diff);

  // go through individual data
  int inverse_pre_pad = size_ - (size_ + 1) / 2;
  for (int n = 0; n < num_; ++n) {
    int block_offset = scale_.offset(n);
    // first, compute diff_i * y_i / s_i
    caffe_mul<Dtype>(channels_ * height_ * width_,
        top_diff + block_offset, top_data + block_offset,
        padded_ratio_data + padded_ratio.offset(0, inverse_pre_pad));
    caffe_div<Dtype>(channels_ * height_ * width_,
        padded_ratio_data + padded_ratio.offset(0, inverse_pre_pad),
        scale_data + block_offset,
        padded_ratio_data + padded_ratio.offset(0, inverse_pre_pad));
    // Now, compute the accumulated ratios and the bottom diff
    caffe_set(accum_ratio.count(), Dtype(0), accum_ratio_data);
    for (int c = 0; c < size_ - 1; ++c) {
      caffe_axpy<Dtype>(height_ * width_, 1.,
          padded_ratio_data + padded_ratio.offset(0, c), accum_ratio_data);
    }
    for (int c = 0; c < channels_; ++c) {
      caffe_axpy<Dtype>(height_ * width_, 1.,
          padded_ratio_data + padded_ratio.offset(0, c + size_ - 1),
          accum_ratio_data);
      // compute bottom diff
      caffe_mul<Dtype>(height_ * width_,
          bottom_data + top[0]->offset(n, c),
          accum_ratio_data, accum_ratio_times_bottom);
      caffe_axpy<Dtype>(height_ * width_, -cache_ratio_value,
          accum_ratio_times_bottom, bottom_diff + top[0]->offset(n, c));
      caffe_axpy<Dtype>(height_ * width_, -1.,
          padded_ratio_data + padded_ratio.offset(0, c), accum_ratio_data);
    }
  }
}

template <typename Dtype>
void LRNLayer<Dtype>::WithinChannelBackward(
    const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down,
    const vector<Blob<Dtype>*>& bottom) {
  if (propagate_down[0]) {
    vector<bool> product_propagate_down(2, true);
    product_layer_->Backward(top, product_propagate_down, product_bottom_vec_);
    power_layer_->Backward(power_top_vec_, propagate_down, pool_top_vec_);
    pool_layer_->Backward(pool_top_vec_, propagate_down, square_top_vec_);
    square_layer_->Backward(square_top_vec_, propagate_down,
                            square_bottom_vec_);
    split_layer_->Backward(split_top_vec_, propagate_down, bottom);
  }
}

#ifdef CPU_ONLY
STUB_GPU(LRNLayer);
STUB_GPU_FORWARD(LRNLayer, CrossChannelForward);
STUB_GPU_BACKWARD(LRNLayer, CrossChannelBackward);
#endif

INSTANTIATE_CLASS(LRNLayer);
REGISTER_LAYER_CLASS(LRN);

}  // namespace caffe