summaryrefslogtreecommitdiff
path: root/src/caffe/layers/conv_layer.cpp
blob: cb1bca6579cd137816885891f6898470e921864e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// Copyright 2013 Yangqing Jia

#include <vector>

#include "caffe/layer.hpp"
#include "caffe/vision_layers.hpp"
#include "caffe/util/im2col.hpp"
#include "caffe/filler.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

template <typename Dtype>
void ConvolutionLayer<Dtype>::SetUp(const vector<Blob<Dtype>*>& bottom,
      vector<Blob<Dtype>*>* top) {
  CHECK_EQ(bottom.size(), 1) << "Conv Layer takes a single blob as input.";
  CHECK_EQ(top->size(), 1) << "Conv Layer takes a single blob as output.";
  KSIZE_ = this->layer_param_.kernelsize();
  STRIDE_ = this->layer_param_.stride();
  GROUP_ = this->layer_param_.group();
  PAD_ = this->layer_param_.pad();
  NUM_ = bottom[0]->num();
  CHANNELS_ = bottom[0]->channels();
  HEIGHT_ = bottom[0]->height();
  WIDTH_ = bottom[0]->width();
  NUM_OUTPUT_ = this->layer_param_.num_output();
  CHECK_GT(NUM_OUTPUT_, 0);
  CHECK_EQ(CHANNELS_ % GROUP_, 0);
  // The im2col result buffer would only hold one image at a time to avoid
  // overly large memory usage.
  int height_out = (HEIGHT_ + 2 * PAD_ - KSIZE_) / STRIDE_ + 1;
  int width_out = (WIDTH_ + 2 * PAD_ - KSIZE_) / STRIDE_ + 1;
  col_buffer_.Reshape(1, CHANNELS_ * KSIZE_ * KSIZE_, height_out, width_out);
  // Set the parameters
  CHECK_EQ(NUM_OUTPUT_ % GROUP_, 0)
      << "Number of output should be multiples of group.";
  biasterm_ = this->layer_param_.biasterm();
  // Figure out the dimensions for individual gemms.
  M_ = NUM_OUTPUT_ / GROUP_;
  K_ = CHANNELS_ * KSIZE_ * KSIZE_ / GROUP_;
  N_ = height_out * width_out;
  (*top)[0]->Reshape(bottom[0]->num(), NUM_OUTPUT_, height_out, width_out);
  // Check if we need to set up the weights
  if (this->blobs_.size() > 0) {
    LOG(INFO) << "Skipping parameter initialization";
  } else {
    if (biasterm_) {
      this->blobs_.resize(2);
    } else {
      this->blobs_.resize(1);
    }
    // Intialize the weight
    this->blobs_[0].reset(
        new Blob<Dtype>(NUM_OUTPUT_, CHANNELS_ / GROUP_, KSIZE_, KSIZE_));
    // fill the weights
    shared_ptr<Filler<Dtype> > weight_filler(
        GetFiller<Dtype>(this->layer_param_.weight_filler()));
    weight_filler->Fill(this->blobs_[0].get());
    // If necessary, intiialize and fill the bias term
    if (biasterm_) {
      this->blobs_[1].reset(new Blob<Dtype>(1, 1, 1, NUM_OUTPUT_));
      shared_ptr<Filler<Dtype> > bias_filler(
          GetFiller<Dtype>(this->layer_param_.bias_filler()));
      bias_filler->Fill(this->blobs_[1].get());
    }
  }
  // Set up the bias filler
  if (biasterm_) {
    bias_multiplier_.reset(new SyncedMemory(N_ * sizeof(Dtype)));
    Dtype* bias_multiplier_data =
        reinterpret_cast<Dtype*>(bias_multiplier_->mutable_cpu_data());
    for (int i = 0; i < N_; ++i) {
        bias_multiplier_data[i] = 1.;
    }
  }
}


template <typename Dtype>
Dtype ConvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      vector<Blob<Dtype>*>* top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  Dtype* top_data = (*top)[0]->mutable_cpu_data();
  Dtype* col_data = col_buffer_.mutable_cpu_data();
  const Dtype* weight = this->blobs_[0]->cpu_data();
  int weight_offset = M_ * K_;
  int col_offset = K_ * N_;
  int top_offset = M_ * N_;
  for (int n = 0; n < NUM_; ++n) {
    // First, im2col
    im2col_cpu(bottom_data + bottom[0]->offset(n), CHANNELS_, HEIGHT_,
                      WIDTH_, KSIZE_, PAD_, STRIDE_, col_data);
    // Second, innerproduct with groups
    for (int g = 0; g < GROUP_; ++g) {
      caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, M_, N_, K_,
        (Dtype)1., weight + weight_offset * g, col_data + col_offset * g,
        (Dtype)0., top_data + (*top)[0]->offset(n) + top_offset * g);
    }
    // third, add bias
    if (biasterm_) {
      caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, NUM_OUTPUT_,
          N_, 1, (Dtype)1., this->blobs_[1]->cpu_data(),
          reinterpret_cast<const Dtype*>(bias_multiplier_->cpu_data()),
          (Dtype)1., top_data + (*top)[0]->offset(n));
    }
  }
  return Dtype(0.);
}

template <typename Dtype>
void ConvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
      const bool propagate_down, vector<Blob<Dtype>*>* bottom) {
  const Dtype* top_diff = top[0]->cpu_diff();
  const Dtype* weight = this->blobs_[0]->cpu_data();
  Dtype* weight_diff = this->blobs_[0]->mutable_cpu_diff();
  const Dtype* bottom_data = (*bottom)[0]->cpu_data();
  Dtype* bottom_diff = (*bottom)[0]->mutable_cpu_diff();
  Dtype* col_data = col_buffer_.mutable_cpu_data();
  Dtype* col_diff = col_buffer_.mutable_cpu_diff();
  // bias gradient if necessary
  Dtype* bias_diff = NULL;

  if (biasterm_) {
    bias_diff = this->blobs_[1]->mutable_cpu_diff();
    memset(bias_diff, 0, sizeof(Dtype) * this->blobs_[1]->count());
    for (int n = 0; n < NUM_; ++n) {
      caffe_cpu_gemv<Dtype>(CblasNoTrans, NUM_OUTPUT_, N_,
          1., top_diff + top[0]->offset(n),
          reinterpret_cast<const Dtype*>(bias_multiplier_->cpu_data()), 1.,
          bias_diff);
    }
  }

  int weight_offset = M_ * K_;
  int col_offset = K_ * N_;
  int top_offset = M_ * N_;
  memset(weight_diff, 0, sizeof(Dtype) * this->blobs_[0]->count());
  for (int n = 0; n < NUM_; ++n) {
    // since we saved memory in the forward pass by not storing all col data,
    // we will need to recompute them.
    im2col_cpu(bottom_data + (*bottom)[0]->offset(n), CHANNELS_, HEIGHT_,
                      WIDTH_, KSIZE_, PAD_, STRIDE_, col_data);
    // gradient w.r.t. weight. Note that we will accumulate diffs.
    for (int g = 0; g < GROUP_; ++g) {
      caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasTrans, M_, K_, N_,
        (Dtype)1., top_diff + top[0]->offset(n) + top_offset * g,
        col_data + col_offset * g, (Dtype)1.,
        weight_diff + weight_offset * g);
    }
    // gradient w.r.t. bottom data, if necessary
    if (propagate_down) {
      for (int g = 0; g < GROUP_; ++g) {
        caffe_cpu_gemm<Dtype>(CblasTrans, CblasNoTrans, K_, N_, M_,
          (Dtype)1., weight + weight_offset * g,
          top_diff + top[0]->offset(n) + top_offset * g,
          (Dtype)0., col_diff + col_offset * g);
      }
      // col2im back to the data
      col2im_cpu(col_diff, CHANNELS_, HEIGHT_, WIDTH_, KSIZE_, PAD_, STRIDE_,
          bottom_diff + (*bottom)[0]->offset(n));
    }
  }
}

INSTANTIATE_CLASS(ConvolutionLayer);

}  // namespace caffe