1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
|
#ifndef CAFFE_VISION_LAYERS_HPP_
#define CAFFE_VISION_LAYERS_HPP_
#include <string>
#include <utility>
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/common_layers.hpp"
#include "caffe/data_layers.hpp"
#include "caffe/layer.hpp"
#include "caffe/loss_layers.hpp"
#include "caffe/neuron_layers.hpp"
#include "caffe/proto/caffe.pb.h"
namespace caffe {
/**
* @brief Abstract base class that factors out the BLAS code common to
* ConvolutionLayer and DeconvolutionLayer.
*/
template <typename Dtype>
class BaseConvolutionLayer : public Layer<Dtype> {
public:
explicit BaseConvolutionLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline int MinBottomBlobs() const { return 1; }
virtual inline int MinTopBlobs() const { return 1; }
virtual inline bool EqualNumBottomTopBlobs() const { return true; }
protected:
// Helper functions that abstract away the column buffer and gemm arguments.
// The last argument in forward_cpu_gemm is so that we can skip the im2col if
// we just called weight_cpu_gemm with the same input.
void forward_cpu_gemm(const Dtype* input, const Dtype* weights,
Dtype* output, bool skip_im2col = false);
void forward_cpu_bias(Dtype* output, const Dtype* bias);
void backward_cpu_gemm(const Dtype* input, const Dtype* weights,
Dtype* output);
void weight_cpu_gemm(const Dtype* input, const Dtype* output, Dtype*
weights);
void backward_cpu_bias(Dtype* bias, const Dtype* input);
#ifndef CPU_ONLY
void forward_gpu_gemm(const Dtype* col_input, const Dtype* weights,
Dtype* output, bool skip_im2col = false);
void forward_gpu_bias(Dtype* output, const Dtype* bias);
void backward_gpu_gemm(const Dtype* input, const Dtype* weights,
Dtype* col_output);
void weight_gpu_gemm(const Dtype* col_input, const Dtype* output, Dtype*
weights);
void backward_gpu_bias(Dtype* bias, const Dtype* input);
#endif
// reverse_dimensions should return true iff we are implementing deconv, so
// that conv helpers know which dimensions are which.
virtual bool reverse_dimensions() = 0;
// Compute height_out_ and width_out_ from other parameters.
virtual void compute_output_shape() = 0;
int kernel_h_, kernel_w_;
int stride_h_, stride_w_;
int num_;
int channels_;
int pad_h_, pad_w_;
int height_, width_;
int group_;
int num_output_;
int height_out_, width_out_;
bool bias_term_;
bool is_1x1_;
private:
// wrap im2col/col2im so we don't have to remember the (long) argument lists
inline void conv_im2col_cpu(const Dtype* data, Dtype* col_buff) {
im2col_cpu(data, conv_in_channels_, conv_in_height_, conv_in_width_,
kernel_h_, kernel_w_, pad_h_, pad_w_, stride_h_, stride_w_, col_buff);
}
inline void conv_col2im_cpu(const Dtype* col_buff, Dtype* data) {
col2im_cpu(col_buff, conv_in_channels_, conv_in_height_, conv_in_width_,
kernel_h_, kernel_w_, pad_h_, pad_w_, stride_h_, stride_w_, data);
}
#ifndef CPU_ONLY
inline void conv_im2col_gpu(const Dtype* data, Dtype* col_buff) {
im2col_gpu(data, conv_in_channels_, conv_in_height_, conv_in_width_,
kernel_h_, kernel_w_, pad_h_, pad_w_, stride_h_, stride_w_, col_buff);
}
inline void conv_col2im_gpu(const Dtype* col_buff, Dtype* data) {
col2im_gpu(col_buff, conv_in_channels_, conv_in_height_, conv_in_width_,
kernel_h_, kernel_w_, pad_h_, pad_w_, stride_h_, stride_w_, data);
}
#endif
int conv_out_channels_;
int conv_in_channels_;
int conv_out_spatial_dim_;
int conv_in_height_;
int conv_in_width_;
int kernel_dim_;
int weight_offset_;
int col_offset_;
int output_offset_;
Blob<Dtype> col_buffer_;
Blob<Dtype> bias_multiplier_;
};
/**
* @brief Convolves the input image with a bank of learned filters,
* and (optionally) adds biases.
*
* Caffe convolves by reduction to matrix multiplication. This achieves
* high-throughput and generality of input and filter dimensions but comes at
* the cost of memory for matrices. This makes use of efficiency in BLAS.
*
* The input is "im2col" transformed to a channel K' x H x W data matrix
* for multiplication with the N x K' x H x W filter matrix to yield a
* N' x H x W output matrix that is then "col2im" restored. K' is the
* input channel * kernel height * kernel width dimension of the unrolled
* inputs so that the im2col matrix has a column for each input region to
* be filtered. col2im restores the output spatial structure by rolling up
* the output channel N' columns of the output matrix.
*/
template <typename Dtype>
class ConvolutionLayer : public BaseConvolutionLayer<Dtype> {
public:
/**
* @param param provides ConvolutionParameter convolution_param,
* with ConvolutionLayer options:
* - num_output. The number of filters.
* - kernel_size / kernel_h / kernel_w. The filter dimensions, given by
* kernel_size for square filters or kernel_h and kernel_w for rectangular
* filters.
* - stride / stride_h / stride_w (\b optional, default 1). The filter
* stride, given by stride_size for equal dimensions or stride_h and stride_w
* for different strides. By default the convolution is dense with stride 1.
* - pad / pad_h / pad_w (\b optional, default 0). The zero-padding for
* convolution, given by pad for equal dimensions or pad_h and pad_w for
* different padding. Input padding is computed implicitly instead of
* actually padding.
* - group (\b optional, default 1). The number of filter groups. Group
* convolution is a method for reducing parameterization by selectively
* connecting input and output channels. The input and output channel dimensions must be divisible
* by the number of groups. For group @f$ \geq 1 @f$, the
* convolutional filters' input and output channels are separated s.t. each
* group takes 1 / group of the input channels and makes 1 / group of the
* output channels. Concretely 4 input channels, 8 output channels, and
* 2 groups separate input channels 1-2 and output channels 1-4 into the
* first group and input channels 3-4 and output channels 5-8 into the second
* group.
* - bias_term (\b optional, default true). Whether to have a bias.
* - engine: convolution has CAFFE (matrix multiplication) and CUDNN (library
* kernels + stream parallelism) engines.
*/
explicit ConvolutionLayer(const LayerParameter& param)
: BaseConvolutionLayer<Dtype>(param) {}
virtual inline const char* type() const { return "Convolution"; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual inline bool reverse_dimensions() { return false; }
virtual void compute_output_shape();
};
/**
* @brief Convolve the input with a bank of learned filters, and (optionally)
* add biases, treating filters and convolution parameters in the
* opposite sense as ConvolutionLayer.
*
* ConvolutionLayer computes each output value by dotting an input window with
* a filter; DeconvolutionLayer multiplies each input value by a filter
* elementwise, and sums over the resulting output windows. In other words,
* DeconvolutionLayer is ConvolutionLayer with the forward and backward passes
* reversed. DeconvolutionLayer reuses ConvolutionParameter for its
* parameters, but they take the opposite sense as in ConvolutionLayer (so
* padding is removed from the output rather than added to the input, and
* stride results in upsampling rather than downsampling).
*/
template <typename Dtype>
class DeconvolutionLayer : public BaseConvolutionLayer<Dtype> {
public:
explicit DeconvolutionLayer(const LayerParameter& param)
: BaseConvolutionLayer<Dtype>(param) {}
virtual inline const char* type() const { return "Deconvolution"; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual inline bool reverse_dimensions() { return true; }
virtual void compute_output_shape();
};
#ifdef USE_CUDNN
/*
* @brief cuDNN implementation of ConvolutionLayer.
* Fallback to ConvolutionLayer for CPU mode.
*
* cuDNN accelerates convolution through forward kernels for filtering and bias
* plus backward kernels for the gradient w.r.t. the filters, biases, and
* inputs. Caffe + cuDNN further speeds up the computation through forward
* parallelism across groups and backward parallelism across gradients.
*
* The CUDNN engine does not have memory overhead for matrix buffers. For many
* input and filter regimes the CUDNN engine is faster than the CAFFE engine,
* but for fully-convolutional models and large inputs the CAFFE engine can be
* faster as long as it fits in memory.
*/
template <typename Dtype>
class CuDNNConvolutionLayer : public ConvolutionLayer<Dtype> {
public:
explicit CuDNNConvolutionLayer(const LayerParameter& param)
: ConvolutionLayer<Dtype>(param), handles_setup_(false) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual ~CuDNNConvolutionLayer();
protected:
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
bool handles_setup_;
cudnnHandle_t* handle_;
cudaStream_t* stream_;
vector<cudnnTensorDescriptor_t> bottom_descs_, top_descs_;
cudnnTensorDescriptor_t bias_desc_;
cudnnFilterDescriptor_t filter_desc_;
vector<cudnnConvolutionDescriptor_t> conv_descs_;
int bottom_offset_, top_offset_, weight_offset_, bias_offset_;
size_t workspaceSizeInBytes;
void *workspace;
};
#endif
/**
* @brief A helper for image operations that rearranges image regions into
* column vectors. Used by ConvolutionLayer to perform convolution
* by matrix multiplication.
*
* TODO(dox): thorough documentation for Forward, Backward, and proto params.
*/
template <typename Dtype>
class Im2colLayer : public Layer<Dtype> {
public:
explicit Im2colLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline const char* type() const { return "Im2col"; }
virtual inline int ExactNumBottomBlobs() const { return 1; }
virtual inline int ExactNumTopBlobs() const { return 1; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
int kernel_h_, kernel_w_;
int stride_h_, stride_w_;
int channels_;
int height_, width_;
int pad_h_, pad_w_;
};
// Forward declare PoolingLayer and SplitLayer for use in LRNLayer.
template <typename Dtype> class PoolingLayer;
template <typename Dtype> class SplitLayer;
/**
* @brief Normalize the input in a local region across or within feature maps.
*
* TODO(dox): thorough documentation for Forward, Backward, and proto params.
*/
template <typename Dtype>
class LRNLayer : public Layer<Dtype> {
public:
explicit LRNLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline const char* type() const { return "LRN"; }
virtual inline int ExactNumBottomBlobs() const { return 1; }
virtual inline int ExactNumTopBlobs() const { return 1; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void CrossChannelForward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void CrossChannelForward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void WithinChannelForward(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void CrossChannelBackward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void CrossChannelBackward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void WithinChannelBackward(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
int size_;
int pre_pad_;
Dtype alpha_;
Dtype beta_;
Dtype k_;
int num_;
int channels_;
int height_;
int width_;
// Fields used for normalization ACROSS_CHANNELS
// scale_ stores the intermediate summing results
Blob<Dtype> scale_;
// Fields used for normalization WITHIN_CHANNEL
shared_ptr<SplitLayer<Dtype> > split_layer_;
vector<Blob<Dtype>*> split_top_vec_;
shared_ptr<PowerLayer<Dtype> > square_layer_;
Blob<Dtype> square_input_;
Blob<Dtype> square_output_;
vector<Blob<Dtype>*> square_bottom_vec_;
vector<Blob<Dtype>*> square_top_vec_;
shared_ptr<PoolingLayer<Dtype> > pool_layer_;
Blob<Dtype> pool_output_;
vector<Blob<Dtype>*> pool_top_vec_;
shared_ptr<PowerLayer<Dtype> > power_layer_;
Blob<Dtype> power_output_;
vector<Blob<Dtype>*> power_top_vec_;
shared_ptr<EltwiseLayer<Dtype> > product_layer_;
Blob<Dtype> product_input_;
vector<Blob<Dtype>*> product_bottom_vec_;
};
/**
* @brief Pools the input image by taking the max, average, etc. within regions.
*
* TODO(dox): thorough documentation for Forward, Backward, and proto params.
*/
template <typename Dtype>
class PoolingLayer : public Layer<Dtype> {
public:
explicit PoolingLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline const char* type() const { return "Pooling"; }
virtual inline int ExactNumBottomBlobs() const { return 1; }
virtual inline int MinTopBlobs() const { return 1; }
// MAX POOL layers can output an extra top blob for the mask;
// others can only output the pooled inputs.
virtual inline int MaxTopBlobs() const {
return (this->layer_param_.pooling_param().pool() ==
PoolingParameter_PoolMethod_MAX) ? 2 : 1;
}
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
int kernel_h_, kernel_w_;
int stride_h_, stride_w_;
int pad_h_, pad_w_;
int channels_;
int height_, width_;
int pooled_height_, pooled_width_;
bool global_pooling_;
Blob<Dtype> rand_idx_;
Blob<int> max_idx_;
};
#ifdef USE_CUDNN
/*
* @brief cuDNN implementation of PoolingLayer.
* Fallback to PoolingLayer for CPU mode.
*/
template <typename Dtype>
class CuDNNPoolingLayer : public PoolingLayer<Dtype> {
public:
explicit CuDNNPoolingLayer(const LayerParameter& param)
: PoolingLayer<Dtype>(param), handles_setup_(false) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual ~CuDNNPoolingLayer();
// Currently, cuDNN does not support the extra top blob.
virtual inline int MinTopBlobs() const { return -1; }
virtual inline int ExactNumTopBlobs() const { return 1; }
protected:
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
bool handles_setup_;
cudnnHandle_t handle_;
cudnnTensorDescriptor_t bottom_desc_, top_desc_;
cudnnPoolingDescriptor_t pooling_desc_;
cudnnPoolingMode_t mode_;
};
#endif
/**
* @brief Does spatial pyramid pooling on the input image
* by taking the max, average, etc. within regions
* so that the result vector of different sized
* images are of the same size.
*/
template <typename Dtype>
class SPPLayer : public Layer<Dtype> {
public:
explicit SPPLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline const char* type() const { return "SPP"; }
virtual inline int ExactNumBottomBlobs() const { return 1; }
virtual inline int MinTopBlobs() const { return 1; }
// MAX POOL layers can output an extra top blob for the mask;
// others can only output the pooled inputs.
virtual inline int MaxTopBlobs() const {
return (this->layer_param_.pooling_param().pool() ==
PoolingParameter_PoolMethod_MAX) ? 2 : 1;
}
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
// calculates the kernel and stride dimensions for the pooling layer,
// returns a correctly configured LayerParameter for a PoolingLayer
virtual LayerParameter GetPoolingParam(const int pyramid_level,
const int bottom_h, const int bottom_w, const SPPParameter spp_param);
int pyramid_height_;
int bottom_h_, bottom_w_;
int channels_;
int kernel_h_, kernel_w_;
int pad_h_, pad_w_;
/// the internal Split layer that feeds the pooling layers
shared_ptr<SplitLayer<Dtype> > split_layer_;
/// top vector holder used in call to the underlying SplitLayer::Forward
vector<Blob<Dtype>*> split_top_vec_;
/// bottom vector holder used in call to the underlying PoolingLayer::Forward
vector<vector<Blob<Dtype>*>*> pooling_bottom_vecs_;
/// the internal Pooling layers of different kernel sizes
vector<shared_ptr<PoolingLayer<Dtype> > > pooling_layers_;
/// top vector holders used in call to the underlying PoolingLayer::Forward
vector<vector<Blob<Dtype>*>*> pooling_top_vecs_;
/// pooling_outputs stores the outputs of the PoolingLayers
vector<Blob<Dtype>*> pooling_outputs_;
/// the internal Flatten layers that the Pooling layers feed into
vector<FlattenLayer<Dtype>*> flatten_layers_;
/// top vector holders used in call to the underlying FlattenLayer::Forward
vector<vector<Blob<Dtype>*>*> flatten_top_vecs_;
/// flatten_outputs stores the outputs of the FlattenLayers
vector<Blob<Dtype>*> flatten_outputs_;
/// bottom vector holder used in call to the underlying ConcatLayer::Forward
vector<Blob<Dtype>*> concat_bottom_vec_;
/// the internal Concat layers that the Flatten layers feed into
shared_ptr<ConcatLayer<Dtype> > concat_layer_;
};
} // namespace caffe
#endif // CAFFE_VISION_LAYERS_HPP_
|