1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
|
#ifndef CAFFE_LOSS_LAYERS_HPP_
#define CAFFE_LOSS_LAYERS_HPP_
#include <string>
#include <utility>
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/layer.hpp"
#include "caffe/neuron_layers.hpp"
#include "caffe/proto/caffe.pb.h"
namespace caffe {
const float kLOG_THRESHOLD = 1e-20;
/**
* @brief Computes the classification accuracy for a one-of-many
* classification task.
*/
template <typename Dtype>
class AccuracyLayer : public Layer<Dtype> {
public:
/**
* @param param provides AccuracyParameter accuracy_param,
* with AccuracyLayer options:
* - top_k (\b optional, default 1).
* Sets the maximum rank @f$ k @f$ at which a prediction is considered
* correct. For example, if @f$ k = 5 @f$, a prediction is counted
* correct if the correct label is among the top 5 predicted labels.
*/
explicit AccuracyLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_ACCURACY;
}
virtual inline int ExactNumBottomBlobs() const { return 2; }
virtual inline int ExactNumTopBlobs() const { return 1; }
protected:
/**
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the predictions @f$ x @f$, a Blob with values in
* @f$ [-\infty, +\infty] @f$ indicating the predicted score for each of
* the @f$ K = CHW @f$ classes. Each @f$ x_n @f$ is mapped to a predicted
* label @f$ \hat{l}_n @f$ given by its maximal index:
* @f$ \hat{l}_n = \arg\max\limits_k x_{nk} @f$
* -# @f$ (N \times 1 \times 1 \times 1) @f$
* the labels @f$ l @f$, an integer-valued Blob with values
* @f$ l_n \in [0, 1, 2, ..., K - 1] @f$
* indicating the correct class label among the @f$ K @f$ classes
* @param top output Blob vector (length 1)
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* the computed accuracy: @f$
* \frac{1}{N} \sum\limits_{n=1}^N \delta\{ \hat{l}_n = l_n \}
* @f$, where @f$
* \delta\{\mathrm{condition}\} = \left\{
* \begin{array}{lr}
* 1 & \mbox{if condition} \\
* 0 & \mbox{otherwise}
* \end{array} \right.
* @f$
*/
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
/// @brief Not implemented -- AccuracyLayer cannot be used as a loss.
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom) {
for (int i = 0; i < propagate_down.size(); ++i) {
if (propagate_down[i]) { NOT_IMPLEMENTED; }
}
}
int top_k_;
};
/**
* @brief An interface for Layer%s that take two Blob%s as input -- usually
* (1) predictions and (2) ground-truth labels -- and output a
* singleton Blob representing the loss.
*
* LossLayers are typically only capable of backpropagating to their first input
* -- the predictions.
*/
template <typename Dtype>
class LossLayer : public Layer<Dtype> {
public:
explicit LossLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(
const vector<Blob<Dtype>*>& bottom, vector<Blob<Dtype>*>* top);
virtual inline int ExactNumBottomBlobs() const { return 2; }
/**
* @brief For convenience and backwards compatibility, instruct the Net to
* automatically allocate a single top Blob for LossLayers, into which
* they output their singleton loss, (even if the user didn't specify
* one in the prototxt, etc.).
*/
virtual inline bool AutoTopBlobs() const { return true; }
virtual inline int ExactNumTopBlobs() const { return 1; }
/**
* We usually cannot backpropagate to the labels; ignore force_backward for
* these inputs.
*/
virtual inline bool AllowForceBackward(const int bottom_index) const {
return bottom_index != 1;
}
};
/**
* @brief Computes the Euclidean (L2) loss @f$
* E = \frac{1}{2N} \sum\limits_{n=1}^N \left| \left| \hat{y}_n - y_n
* \right| \right|_2^2 @f$ for real-valued regression tasks.
*
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the predictions @f$ \hat{y} \in [-\infty, +\infty]@f$
* -# @f$ (N \times C \times H \times W) @f$
* the targets @f$ y \in [-\infty, +\infty]@f$
* @param top output Blob vector (length 1)
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* the computed Euclidean loss: @f$ E =
* \frac{1}{2n} \sum\limits_{n=1}^N \left| \left| \hat{y}_n - y_n
* \right| \right|_2^2 @f$
*
* This can be used for least-squares regression tasks. An InnerProductLayer
* input to a EuclideanLossLayer exactly formulates a linear least squares
* regression problem. With non-zero weight decay the problem becomes one of
* ridge regression -- see src/caffe/test/test_sgd_solver.cpp for a concrete
* example wherein we check that the gradients computed for a Net with exactly
* this structure match hand-computed gradient formulas for ridge regression.
*
* (Note: Caffe, and SGD in general, is certainly \b not the best way to solve
* linear least squares problems! We use it only as an instructive example.)
*/
template <typename Dtype>
class EuclideanLossLayer : public LossLayer<Dtype> {
public:
explicit EuclideanLossLayer(const LayerParameter& param)
: LossLayer<Dtype>(param), diff_() {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_EUCLIDEAN_LOSS;
}
/**
* Unlike most loss layers, in the EuclideanLossLayer we can backpropagate
* to both inputs -- override to return true and always allow force_backward.
*/
virtual inline bool AllowForceBackward(const int bottom_index) const {
return true;
}
protected:
/// @copydoc EuclideanLossLayer
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
/**
* @brief Computes the Euclidean error gradient w.r.t. the inputs.
*
* Unlike other children of LossLayer, EuclideanLossLayer \b can compute
* gradients with respect to the label inputs bottom[1] (but still only will
* if propagate_down[1] is set, due to being produced by learnable parameters
* or if force_backward is set). In fact, this layer is "commutative" -- the
* result is the same regardless of the order of the two bottoms.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$,
* as @f$ \lambda @f$ is the coefficient of this layer's output
* @f$\ell_i@f$ in the overall Net loss
* @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence
* @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$.
* (*Assuming that this top Blob is not used as a bottom (input) by any
* other layer of the Net.)
* @param propagate_down see Layer::Backward.
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the predictions @f$\hat{y}@f$; Backward fills their diff with
* gradients @f$
* \frac{\partial E}{\partial \hat{y}} =
* \frac{1}{n} \sum\limits_{n=1}^N (\hat{y}_n - y_n)
* @f$ if propagate_down[0]
* -# @f$ (N \times C \times H \times W) @f$
* the targets @f$y@f$; Backward fills their diff with gradients
* @f$ \frac{\partial E}{\partial y} =
* \frac{1}{n} \sum\limits_{n=1}^N (y_n - \hat{y}_n)
* @f$ if propagate_down[1]
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
Blob<Dtype> diff_;
};
/**
* @brief Computes the hinge loss for a one-of-many classification task.
*
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the predictions @f$ t @f$, a Blob with values in
* @f$ [-\infty, +\infty] @f$ indicating the predicted score for each of
* the @f$ K = CHW @f$ classes. In an SVM, @f$ t @f$ is the result of
* taking the inner product @f$ X^T W @f$ of the D-dimensional features
* @f$ X \in \mathcal{R}^{D \times N} @f$ and the learned hyperplane
* parameters @f$ W \in \mathcal{R}^{D \times K} @f$, so a Net with just
* an InnerProductLayer (with num_output = D) providing predictions to a
* HingeLossLayer and no other learnable parameters or losses is
* equivalent to an SVM.
* -# @f$ (N \times 1 \times 1 \times 1) @f$
* the labels @f$ l @f$, an integer-valued Blob with values
* @f$ l_n \in [0, 1, 2, ..., K - 1] @f$
* indicating the correct class label among the @f$ K @f$ classes
* @param top output Blob vector (length 1)
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* the computed hinge loss: @f$ E =
* \frac{1}{N} \sum\limits_{n=1}^N \sum\limits_{k=1}^K
* [\max(0, 1 - \delta\{l_n = k\} t_{nk})] ^ p
* @f$, for the @f$ L^p @f$ norm
* (defaults to @f$ p = 1 @f$, the L1 norm; L2 norm, as in L2-SVM,
* is also available), and @f$
* \delta\{\mathrm{condition}\} = \left\{
* \begin{array}{lr}
* 1 & \mbox{if condition} \\
* -1 & \mbox{otherwise}
* \end{array} \right.
* @f$
*
* In an SVM, @f$ t \in \mathcal{R}^{N \times K} @f$ is the result of taking
* the inner product @f$ X^T W @f$ of the features
* @f$ X \in \mathcal{R}^{D \times N} @f$
* and the learned hyperplane parameters
* @f$ W \in \mathcal{R}^{D \times K} @f$. So, a Net with just an
* InnerProductLayer (with num_output = @f$k@f$) providing predictions to a
* HingeLossLayer is equivalent to an SVM (assuming it has no other learned
* outside the InnerProductLayer and no other losses outside the
* HingeLossLayer).
*/
template <typename Dtype>
class HingeLossLayer : public LossLayer<Dtype> {
public:
explicit HingeLossLayer(const LayerParameter& param)
: LossLayer<Dtype>(param) {}
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_HINGE_LOSS;
}
protected:
/// @copydoc HingeLossLayer
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
/**
* @brief Computes the hinge loss error gradient w.r.t. the predictions.
*
* Gradients cannot be computed with respect to the label inputs (bottom[1]),
* so this method ignores bottom[1] and requires !propagate_down[1], crashing
* if propagate_down[1] is set.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$,
* as @f$ \lambda @f$ is the coefficient of this layer's output
* @f$\ell_i@f$ in the overall Net loss
* @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence
* @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$.
* (*Assuming that this top Blob is not used as a bottom (input) by any
* other layer of the Net.)
* @param propagate_down see Layer::Backward.
* propagate_down[1] must be false as we can't compute gradients with
* respect to the labels.
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the predictions @f$t@f$; Backward computes diff
* @f$ \frac{\partial E}{\partial t} @f$
* -# @f$ (N \times 1 \times 1 \times 1) @f$
* the labels -- ignored as we can't compute their error gradients
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
};
/**
* @brief A generalization of MultinomialLogisticLossLayer that takes an
* "information gain" (infogain) matrix specifying the "value" of all label
* pairs.
*
* Equivalent to the MultinomialLogisticLossLayer if the infogain matrix is the
* identity.
*
* @param bottom input Blob vector (length 2-3)
* -# @f$ (N \times C \times H \times W) @f$
* the predictions @f$ \hat{p} @f$, a Blob with values in
* @f$ [0, 1] @f$ indicating the predicted probability of each of the
* @f$ K = CHW @f$ classes. Each prediction vector @f$ \hat{p}_n @f$
* should sum to 1 as in a probability distribution: @f$
* \forall n \sum\limits_{k=1}^K \hat{p}_{nk} = 1 @f$.
* -# @f$ (N \times 1 \times 1 \times 1) @f$
* the labels @f$ l @f$, an integer-valued Blob with values
* @f$ l_n \in [0, 1, 2, ..., K - 1] @f$
* indicating the correct class label among the @f$ K @f$ classes
* -# @f$ (1 \times 1 \times K \times K) @f$
* (\b optional) the infogain matrix @f$ H @f$. This must be provided as
* the third bottom blob input if not provided as the infogain_mat in the
* InfogainLossParameter. If @f$ H = I @f$, this layer is equivalent to the
* MultinomialLogisticLossLayer.
* @param top output Blob vector (length 1)
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* the computed infogain multinomial logistic loss: @f$ E =
* \frac{-1}{N} \sum\limits_{n=1}^N H_{l_n} \log(\hat{p}_n) =
* \frac{-1}{N} \sum\limits_{n=1}^N \sum\limits_{k=1}^{K} H_{l_n,k}
* \log(\hat{p}_{n,k})
* @f$, where @f$ H_{l_n} @f$ denotes row @f$l_n@f$ of @f$H@f$.
*/
template <typename Dtype>
class InfogainLossLayer : public LossLayer<Dtype> {
public:
explicit InfogainLossLayer(const LayerParameter& param)
: LossLayer<Dtype>(param), infogain_() {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
// InfogainLossLayer takes 2-3 bottom Blobs; if there are 3 the third should
// be the infogain matrix. (Otherwise the infogain matrix is loaded from a
// file specified by LayerParameter.)
virtual inline int ExactNumBottomBlobs() const { return -1; }
virtual inline int MinBottomBlobs() const { return 2; }
virtual inline int MaxBottomBlobs() const { return 3; }
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_INFOGAIN_LOSS;
}
protected:
/// @copydoc InfogainLossLayer
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
/**
* @brief Computes the infogain loss error gradient w.r.t. the predictions.
*
* Gradients cannot be computed with respect to the label inputs (bottom[1]),
* so this method ignores bottom[1] and requires !propagate_down[1], crashing
* if propagate_down[1] is set. (The same applies to the infogain matrix, if
* provided as bottom[2] rather than in the layer_param.)
*
* @param top output Blob vector (length 1), providing the error gradient
* with respect to the outputs
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$,
* as @f$ \lambda @f$ is the coefficient of this layer's output
* @f$\ell_i@f$ in the overall Net loss
* @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence
* @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$.
* (*Assuming that this top Blob is not used as a bottom (input) by any
* other layer of the Net.)
* @param propagate_down see Layer::Backward.
* propagate_down[1] must be false as we can't compute gradients with
* respect to the labels (similarly for propagate_down[2] and the
* infogain matrix, if provided as bottom[2])
* @param bottom input Blob vector (length 2-3)
* -# @f$ (N \times C \times H \times W) @f$
* the predictions @f$ \hat{p} @f$; Backward computes diff
* @f$ \frac{\partial E}{\partial \hat{p}} @f$
* -# @f$ (N \times 1 \times 1 \times 1) @f$
* the labels -- ignored as we can't compute their error gradients
* -# @f$ (1 \times 1 \times K \times K) @f$
* (\b optional) the information gain matrix -- ignored as its error
* gradient computation is not implemented.
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
Blob<Dtype> infogain_;
};
/**
* @brief Computes the multinomial logistic loss for a one-of-many
* classification task, directly taking a predicted probability
* distribution as input.
*
* When predictions are not already a probability distribution, you should
* instead use the SoftmaxWithLossLayer, which maps predictions to a
* distribution using the SoftmaxLayer, before computing the multinomial
* logistic loss. The SoftmaxWithLossLayer should be preferred over separate
* SoftmaxLayer + MultinomialLogisticLossLayer
* as its gradient computation is more numerically stable.
*
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the predictions @f$ \hat{p} @f$, a Blob with values in
* @f$ [0, 1] @f$ indicating the predicted probability of each of the
* @f$ K = CHW @f$ classes. Each prediction vector @f$ \hat{p}_n @f$
* should sum to 1 as in a probability distribution: @f$
* \forall n \sum\limits_{k=1}^K \hat{p}_{nk} = 1 @f$.
* -# @f$ (N \times 1 \times 1 \times 1) @f$
* the labels @f$ l @f$, an integer-valued Blob with values
* @f$ l_n \in [0, 1, 2, ..., K - 1] @f$
* indicating the correct class label among the @f$ K @f$ classes
* @param top output Blob vector (length 1)
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* the computed multinomial logistic loss: @f$ E =
* \frac{-1}{N} \sum\limits_{n=1}^N \log(\hat{p}_{n,l_n})
* @f$
*/
template <typename Dtype>
class MultinomialLogisticLossLayer : public LossLayer<Dtype> {
public:
explicit MultinomialLogisticLossLayer(const LayerParameter& param)
: LossLayer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_MULTINOMIAL_LOGISTIC_LOSS;
}
protected:
/// @copydoc MultinomialLogisticLossLayer
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
/**
* @brief Computes the multinomial logistic loss error gradient w.r.t. the
* predictions.
*
* Gradients cannot be computed with respect to the label inputs (bottom[1]),
* so this method ignores bottom[1] and requires !propagate_down[1], crashing
* if propagate_down[1] is set.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$,
* as @f$ \lambda @f$ is the coefficient of this layer's output
* @f$\ell_i@f$ in the overall Net loss
* @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence
* @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$.
* (*Assuming that this top Blob is not used as a bottom (input) by any
* other layer of the Net.)
* @param propagate_down see Layer::Backward.
* propagate_down[1] must be false as we can't compute gradients with
* respect to the labels.
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the predictions @f$ \hat{p} @f$; Backward computes diff
* @f$ \frac{\partial E}{\partial \hat{p}} @f$
* -# @f$ (N \times 1 \times 1 \times 1) @f$
* the labels -- ignored as we can't compute their error gradients
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
};
/**
* @brief Computes the cross-entropy (logistic) loss @f$
* E = \frac{-1}{n} \sum\limits_{n=1}^N \left[
* p_n \log \hat{p}_n +
* (1 - p_n) \log(1 - \hat{p}_n)
* \right]
* @f$, often used for predicting targets interpreted as probabilities.
*
* This layer is implemented rather than separate
* SigmoidLayer + CrossEntropyLayer
* as its gradient computation is more numerically stable.
* At test time, this layer can be replaced simply by a SigmoidLayer.
*
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the scores @f$ x \in [-\infty, +\infty]@f$,
* which this layer maps to probability predictions
* @f$ \hat{p}_n = \sigma(x_n) \in [0, 1] @f$
* using the sigmoid function @f$ \sigma(.) @f$ (see SigmoidLayer).
* -# @f$ (N \times C \times H \times W) @f$
* the targets @f$ y \in [0, 1] @f$
* @param top output Blob vector (length 1)
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* the computed cross-entropy loss: @f$
* E = \frac{-1}{n} \sum\limits_{n=1}^N \left[
* p_n \log \hat{p}_n + (1 - p_n) \log(1 - \hat{p}_n)
* \right]
* @f$
*/
template <typename Dtype>
class SigmoidCrossEntropyLossLayer : public LossLayer<Dtype> {
public:
explicit SigmoidCrossEntropyLossLayer(const LayerParameter& param)
: LossLayer<Dtype>(param),
sigmoid_layer_(new SigmoidLayer<Dtype>(param)),
sigmoid_output_(new Blob<Dtype>()) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_SIGMOID_CROSS_ENTROPY_LOSS;
}
protected:
/// @copydoc SigmoidCrossEntropyLossLayer
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
/**
* @brief Computes the sigmoid cross-entropy loss error gradient w.r.t. the
* predictions.
*
* Gradients cannot be computed with respect to the target inputs (bottom[1]),
* so this method ignores bottom[1] and requires !propagate_down[1], crashing
* if propagate_down[1] is set.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$,
* as @f$ \lambda @f$ is the coefficient of this layer's output
* @f$\ell_i@f$ in the overall Net loss
* @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence
* @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$.
* (*Assuming that this top Blob is not used as a bottom (input) by any
* other layer of the Net.)
* @param propagate_down see Layer::Backward.
* propagate_down[1] must be false as gradient computation with respect
* to the targets is not implemented.
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the predictions @f$x@f$; Backward computes diff
* @f$ \frac{\partial E}{\partial x} =
* \frac{1}{n} \sum\limits_{n=1}^N (\hat{p}_n - p_n)
* @f$
* -# @f$ (N \times 1 \times 1 \times 1) @f$
* the labels -- ignored as we can't compute their error gradients
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
/// The internal SigmoidLayer used to map predictions to probabilities.
shared_ptr<SigmoidLayer<Dtype> > sigmoid_layer_;
/// sigmoid_output stores the output of the SigmoidLayer.
shared_ptr<Blob<Dtype> > sigmoid_output_;
/// bottom vector holder to call the underlying SigmoidLayer::Forward
vector<Blob<Dtype>*> sigmoid_bottom_vec_;
/// top vector holder to call the underlying SigmoidLayer::Forward
vector<Blob<Dtype>*> sigmoid_top_vec_;
};
// Forward declare SoftmaxLayer for use in SoftmaxWithLossLayer.
template <typename Dtype> class SoftmaxLayer;
/**
* @brief Computes the multinomial logistic loss for a one-of-many
* classification task, passing real-valued predictions through a
* softmax to get a probability distribution over classes.
*
* This layer should be preferred over separate
* SoftmaxLayer + MultinomialLogisticLossLayer
* as its gradient computation is more numerically stable.
* At test time, this layer can be replaced simply by a SoftmaxLayer.
*
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the predictions @f$ x @f$, a Blob with values in
* @f$ [-\infty, +\infty] @f$ indicating the predicted score for each of
* the @f$ K = CHW @f$ classes. This layer maps these scores to a
* probability distribution over classes using the softmax function
* @f$ \hat{p}_{nk} = \exp(x_{nk}) /
* \left[\sum_{k'} \exp(x_{nk'})\right] @f$ (see SoftmaxLayer).
* -# @f$ (N \times 1 \times 1 \times 1) @f$
* the labels @f$ l @f$, an integer-valued Blob with values
* @f$ l_n \in [0, 1, 2, ..., K - 1] @f$
* indicating the correct class label among the @f$ K @f$ classes
* @param top output Blob vector (length 1)
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* the computed cross-entropy classification loss: @f$ E =
* \frac{-1}{N} \sum\limits_{n=1}^N \log(\hat{p}_{n,l_n})
* @f$, for softmax output class probabilites @f$ \hat{p} @f$
*/
template <typename Dtype>
class SoftmaxWithLossLayer : public LossLayer<Dtype> {
public:
explicit SoftmaxWithLossLayer(const LayerParameter& param)
: LossLayer<Dtype>(param),
softmax_layer_(new SoftmaxLayer<Dtype>(param)) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_SOFTMAX_LOSS;
}
virtual inline int ExactNumBottomBlobs() const { return -1; }
virtual inline int MinBottomBlobs() const { return 2; }
virtual inline int MaxBottomBlobs() const { return 3; }
virtual inline int ExactNumTopBlobs() const { return -1; }
virtual inline int MinTopBlobs() const { return 1; }
virtual inline int MaxTopBlobs() const { return 2; }
protected:
/// @copydoc SoftmaxWithLossLayer
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
/**
* @brief Computes the softmax loss error gradient w.r.t. the predictions.
*
* Gradients cannot be computed with respect to the label inputs (bottom[1]),
* so this method ignores bottom[1] and requires !propagate_down[1], crashing
* if propagate_down[1] is set.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$,
* as @f$ \lambda @f$ is the coefficient of this layer's output
* @f$\ell_i@f$ in the overall Net loss
* @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence
* @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$.
* (*Assuming that this top Blob is not used as a bottom (input) by any
* other layer of the Net.)
* @param propagate_down see Layer::Backward.
* propagate_down[1] must be false as we can't compute gradients with
* respect to the labels.
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the predictions @f$ x @f$; Backward computes diff
* @f$ \frac{\partial E}{\partial x} @f$
* -# @f$ (N \times 1 \times 1 \times 1) @f$
* the labels -- ignored as we can't compute their error gradients
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
/// The internal SoftmaxLayer used to map predictions to a distribution.
shared_ptr<SoftmaxLayer<Dtype> > softmax_layer_;
/// prob stores the output probability predictions from the SoftmaxLayer.
Blob<Dtype> prob_;
/// bottom vector holder used in call to the underlying SoftmaxLayer::Forward
vector<Blob<Dtype>*> softmax_bottom_vec_;
/// top vector holder used in call to the underlying SoftmaxLayer::Forward
vector<Blob<Dtype>*> softmax_top_vec_;
};
} // namespace caffe
#endif // CAFFE_LOSS_LAYERS_HPP_
|