blob: f4472678c69750c69bb097532cb0ac3229843034 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
#ifndef CAFFE_INPUT_LAYER_HPP_
#define CAFFE_INPUT_LAYER_HPP_
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
namespace caffe {
/**
* @brief Provides data to the Net by assigning tops directly.
*
* This data layer is a container that merely holds the data assigned to it;
* forward, backward, and reshape are all no-ops.
*/
template <typename Dtype>
class InputLayer : public Layer<Dtype> {
public:
explicit InputLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
// Data layers should be shared by multiple solvers in parallel
virtual inline bool ShareInParallel() const { return true; }
// Data layers have no bottoms, so reshaping is trivial.
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {}
virtual inline const char* type() const { return "Input"; }
virtual inline int ExactNumBottomBlobs() const { return 0; }
virtual inline int MinTopBlobs() const { return 1; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {}
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {}
};
} // namespace caffe
#endif // CAFFE_INPUT_LAYER_HPP_
|