summaryrefslogtreecommitdiff
path: root/include/caffe/filler.hpp
blob: dad9ad46b3bf28de2e691d155902f8c5d066a324 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
// Fillers are random number generators that fills a blob using the specified
// algorithm. The expectation is that they are only going to be used during
// initialization time and will not involve any GPUs.

#ifndef CAFFE_FILLER_HPP
#define CAFFE_FILLER_HPP

#include <string>

#include "caffe/blob.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

/// @brief Fills a Blob with constant or randomly-generated data.
template <typename Dtype>
class Filler {
 public:
  explicit Filler(const FillerParameter& param) : filler_param_(param) {}
  virtual ~Filler() {}
  virtual void Fill(Blob<Dtype>* blob) = 0;
 protected:
  FillerParameter filler_param_;
};  // class Filler


/// @brief Fills a Blob with constant values @f$ x = 0 @f$.
template <typename Dtype>
class ConstantFiller : public Filler<Dtype> {
 public:
  explicit ConstantFiller(const FillerParameter& param)
      : Filler<Dtype>(param) {}
  virtual void Fill(Blob<Dtype>* blob) {
    Dtype* data = blob->mutable_cpu_data();
    const int count = blob->count();
    const Dtype value = this->filler_param_.value();
    CHECK(count);
    for (int i = 0; i < count; ++i) {
      data[i] = value;
    }
    CHECK_EQ(this->filler_param_.sparse(), -1)
         << "Sparsity not supported by this Filler.";
  }
};

/// @brief Fills a Blob with uniformly distributed values @f$ x\sim U(a, b) @f$.
template <typename Dtype>
class UniformFiller : public Filler<Dtype> {
 public:
  explicit UniformFiller(const FillerParameter& param)
      : Filler<Dtype>(param) {}
  virtual void Fill(Blob<Dtype>* blob) {
    CHECK(blob->count());
    caffe_rng_uniform<Dtype>(blob->count(), Dtype(this->filler_param_.min()),
        Dtype(this->filler_param_.max()), blob->mutable_cpu_data());
    CHECK_EQ(this->filler_param_.sparse(), -1)
         << "Sparsity not supported by this Filler.";
  }
};

/// @brief Fills a Blob with Gaussian-distributed values @f$ x = a @f$.
template <typename Dtype>
class GaussianFiller : public Filler<Dtype> {
 public:
  explicit GaussianFiller(const FillerParameter& param)
      : Filler<Dtype>(param) {}
  virtual void Fill(Blob<Dtype>* blob) {
    Dtype* data = blob->mutable_cpu_data();
    CHECK(blob->count());
    caffe_rng_gaussian<Dtype>(blob->count(), Dtype(this->filler_param_.mean()),
        Dtype(this->filler_param_.std()), blob->mutable_cpu_data());
    int sparse = this->filler_param_.sparse();
    CHECK_GE(sparse, -1);
    if (sparse >= 0) {
      // Sparse initialization is implemented for "weight" blobs; i.e. matrices.
      // These have num == channels == 1; width is number of inputs; height is
      // number of outputs.  The 'sparse' variable specifies the mean number
      // of non-zero input weights for a given output.
      CHECK_GE(blob->num_axes(), 1);
      const int num_outputs = blob->shape(0);
      Dtype non_zero_probability = Dtype(sparse) / Dtype(num_outputs);
      rand_vec_.reset(new SyncedMemory(blob->count() * sizeof(int)));
      int* mask = reinterpret_cast<int*>(rand_vec_->mutable_cpu_data());
      caffe_rng_bernoulli(blob->count(), non_zero_probability, mask);
      for (int i = 0; i < blob->count(); ++i) {
        data[i] *= mask[i];
      }
    }
  }

 protected:
  shared_ptr<SyncedMemory> rand_vec_;
};

/** @brief Fills a Blob with values @f$ x \in [0, 1] @f$
 *         such that @f$ \forall i \sum_j x_{ij} = 1 @f$.
 */
template <typename Dtype>
class PositiveUnitballFiller : public Filler<Dtype> {
 public:
  explicit PositiveUnitballFiller(const FillerParameter& param)
      : Filler<Dtype>(param) {}
  virtual void Fill(Blob<Dtype>* blob) {
    Dtype* data = blob->mutable_cpu_data();
    DCHECK(blob->count());
    caffe_rng_uniform<Dtype>(blob->count(), 0, 1, blob->mutable_cpu_data());
    // We expect the filler to not be called very frequently, so we will
    // just use a simple implementation
    int dim = blob->count() / blob->num();
    CHECK(dim);
    for (int i = 0; i < blob->num(); ++i) {
      Dtype sum = 0;
      for (int j = 0; j < dim; ++j) {
        sum += data[i * dim + j];
      }
      for (int j = 0; j < dim; ++j) {
        data[i * dim + j] /= sum;
      }
    }
    CHECK_EQ(this->filler_param_.sparse(), -1)
         << "Sparsity not supported by this Filler.";
  }
};

/**
 * @brief Fills a Blob with values @f$ x \sim U(-a, +a) @f$ where @f$ a @f$ is
 *        set inversely proportional to number of incoming nodes, outgoing
 *        nodes, or their average.
 *
 * A Filler based on the paper [Bengio and Glorot 2010]: Understanding
 * the difficulty of training deep feedforward neuralnetworks.
 *
 * It fills the incoming matrix by randomly sampling uniform data from [-scale,
 * scale] where scale = sqrt(3 / n) where n is the fan_in, fan_out, or their
 * average, depending on the variance_norm option. You should make sure the
 * input blob has shape (num, a, b, c) where a * b * c = fan_in and num * b * c
 * = fan_out. Note that this is currently not the case for inner product layers.
 *
 * TODO(dox): make notation in above comment consistent with rest & use LaTeX.
 */
template <typename Dtype>
class XavierFiller : public Filler<Dtype> {
 public:
  explicit XavierFiller(const FillerParameter& param)
      : Filler<Dtype>(param) {}
  virtual void Fill(Blob<Dtype>* blob) {
    CHECK(blob->count());
    int fan_in = blob->count() / blob->num();
    int fan_out = blob->count() / blob->channels();
    Dtype n = fan_in;  // default to fan_in
    if (this->filler_param_.variance_norm() ==
        FillerParameter_VarianceNorm_AVERAGE) {
      n = (fan_in + fan_out) / Dtype(2);
    } else if (this->filler_param_.variance_norm() ==
        FillerParameter_VarianceNorm_FAN_OUT) {
      n = fan_out;
    }
    Dtype scale = sqrt(Dtype(3) / n);
    caffe_rng_uniform<Dtype>(blob->count(), -scale, scale,
        blob->mutable_cpu_data());
    CHECK_EQ(this->filler_param_.sparse(), -1)
         << "Sparsity not supported by this Filler.";
  }
};

/**
 * @brief Fills a Blob with values @f$ x \sim N(0, \sigma^2) @f$ where
 *        @f$ \sigma^2 @f$ is set inversely proportional to number of incoming
 *        nodes, outgoing nodes, or their average.
 *
 * A Filler based on the paper [He, Zhang, Ren and Sun 2015]: Specifically
 * accounts for ReLU nonlinearities.
 *
 * Aside: for another perspective on the scaling factor, see the derivation of
 * [Saxe, McClelland, and Ganguli 2013 (v3)].
 *
 * It fills the incoming matrix by randomly sampling Gaussian data with std =
 * sqrt(2 / n) where n is the fan_in, fan_out, or their average, depending on
 * the variance_norm option. You should make sure the input blob has shape (num,
 * a, b, c) where a * b * c = fan_in and num * b * c = fan_out. Note that this
 * is currently not the case for inner product layers.
 */
template <typename Dtype>
class MSRAFiller : public Filler<Dtype> {
 public:
  explicit MSRAFiller(const FillerParameter& param)
      : Filler<Dtype>(param) {}
  virtual void Fill(Blob<Dtype>* blob) {
    CHECK(blob->count());
    int fan_in = blob->count() / blob->num();
    int fan_out = blob->count() / blob->channels();
    Dtype n = fan_in;  // default to fan_in
    if (this->filler_param_.variance_norm() ==
        FillerParameter_VarianceNorm_AVERAGE) {
      n = (fan_in + fan_out) / Dtype(2);
    } else if (this->filler_param_.variance_norm() ==
        FillerParameter_VarianceNorm_FAN_OUT) {
      n = fan_out;
    }
    Dtype std = sqrt(Dtype(2) / n);
    caffe_rng_gaussian<Dtype>(blob->count(), Dtype(0), std,
        blob->mutable_cpu_data());
    CHECK_EQ(this->filler_param_.sparse(), -1)
         << "Sparsity not supported by this Filler.";
  }
};

/*!
@brief Fills a Blob with coefficients for bilinear interpolation.

A common use case is with the DeconvolutionLayer acting as upsampling.
You can upsample a feature map with shape of (B, C, H, W) by any integer factor
using the following proto.
\code
layer {
  name: "upsample", type: "Deconvolution"
  bottom: "{{bottom_name}}" top: "{{top_name}}"
  convolution_param {
    kernel_size: {{2 * factor - factor % 2}} stride: {{factor}}
    num_output: {{C}} group: {{C}}
    pad: {{ceil((factor - 1) / 2.)}}
    weight_filler: { type: "bilinear" } bias_term: false
  }
  param { lr_mult: 0 decay_mult: 0 }
}
\endcode
Please use this by replacing `{{}}` with your values. By specifying
`num_output: {{C}} group: {{C}}`, it behaves as
channel-wise convolution. The filter shape of this deconvolution layer will be
(C, 1, K, K) where K is `kernel_size`, and this filler will set a (K, K)
interpolation kernel for every channel of the filter identically. The resulting
shape of the top feature map will be (B, C, factor * H, factor * W).
Note that the learning rate and the
weight decay are set to 0 in order to keep coefficient values of bilinear
interpolation unchanged during training. If you apply this to an image, this
operation is equivalent to the following call in Python with Scikit.Image.
\code{.py}
out = skimage.transform.rescale(img, factor, mode='constant', cval=0)
\endcode
 */
template <typename Dtype>
class BilinearFiller : public Filler<Dtype> {
 public:
  explicit BilinearFiller(const FillerParameter& param)
      : Filler<Dtype>(param) {}
  virtual void Fill(Blob<Dtype>* blob) {
    CHECK_EQ(blob->num_axes(), 4) << "Blob must be 4 dim.";
    CHECK_EQ(blob->width(), blob->height()) << "Filter must be square";
    Dtype* data = blob->mutable_cpu_data();
    int f = ceil(blob->width() / 2.);
    float c = (2 * f - 1 - f % 2) / (2. * f);
    for (int i = 0; i < blob->count(); ++i) {
      float x = i % blob->width();
      float y = (i / blob->width()) % blob->height();
      data[i] = (1 - fabs(x / f - c)) * (1 - fabs(y / f - c));
    }
    CHECK_EQ(this->filler_param_.sparse(), -1)
         << "Sparsity not supported by this Filler.";
  }
};

/**
 * @brief Get a specific filler from the specification given in FillerParameter.
 *
 * Ideally this would be replaced by a factory pattern, but we will leave it
 * this way for now.
 */
template <typename Dtype>
Filler<Dtype>* GetFiller(const FillerParameter& param) {
  const std::string& type = param.type();
  if (type == "constant") {
    return new ConstantFiller<Dtype>(param);
  } else if (type == "gaussian") {
    return new GaussianFiller<Dtype>(param);
  } else if (type == "positive_unitball") {
    return new PositiveUnitballFiller<Dtype>(param);
  } else if (type == "uniform") {
    return new UniformFiller<Dtype>(param);
  } else if (type == "xavier") {
    return new XavierFiller<Dtype>(param);
  } else if (type == "msra") {
    return new MSRAFiller<Dtype>(param);
  } else if (type == "bilinear") {
    return new BilinearFiller<Dtype>(param);
  } else {
    CHECK(false) << "Unknown filler name: " << param.type();
  }
  return (Filler<Dtype>*)(NULL);
}

}  // namespace caffe

#endif  // CAFFE_FILLER_HPP_