summaryrefslogtreecommitdiff
path: root/examples/cpp_classification/classification_profiling_gpu.cpp
blob: 3c5e04ad34bc3f67e3f928f86200d9da18d905ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
#include <caffe/caffe.hpp>
#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif  // USE_OPENCV
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#ifdef USE_PROFILING

#include <iostream>

#include <time.h>

#define REPEAT_TEST

unsigned long get_cur_time(void)
{
   struct timespec tm;

   clock_gettime(CLOCK_MONOTONIC_COARSE, &tm);

   return (tm.tv_sec*1000+tm.tv_nsec/1000000);
}

#endif //USE_PROFILING

#ifdef USE_OPENCV
using namespace caffe;  // NOLINT(build/namespaces)
using std::string;

/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;

class Classifier {
 public:
  Classifier(const string& model_file,
             const string& trained_file,
             const string& mean_file,
             const string& label_file);

  std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);

#ifdef USE_PROFILING

#ifdef LAYER_PERF_STAT
  void  dump_perf_stat(void);
  void  dump_single_layer_io(int idx, Layer<float> * p_layer);
  void  dump_single_layer_perf(int idx, Layer<float> * p_layer,uint64_t total_net_time);
#ifdef REPEAT_TEST
  void collect_layer_stat(vector<vector<perf_stat> * > & all_stat);
  void dump_all_stat(vector <vector<perf_stat>*>& all_stat);
  void reset_layer_stat();
#endif
#endif

#endif //USE_PROFILING

 private:
  void SetMean(const string& mean_file);

  std::vector<float> Predict(const cv::Mat& img);

  void WrapInputLayer(std::vector<cv::Mat>* input_channels);

  void Preprocess(const cv::Mat& img,
                  std::vector<cv::Mat>* input_channels);

 private:
  shared_ptr<Net<float> > net_;
  cv::Size input_geometry_;
  int num_channels_;
  cv::Mat mean_;
  std::vector<string> labels_;
};

Classifier::Classifier(const string& model_file,
                       const string& trained_file,
                       const string& mean_file,
                       const string& label_file) {
//#ifdef CPU_ONLY
//  Caffe::set_mode(Caffe::CPU);
//#else
  Caffe::set_mode(Caffe::GPU); //For ARM GPU (the code is in CPU_ONLY mode, just set caffe mode to GPU)
//#endif

  /* Load the network. */
  net_.reset(new Net<float>(model_file, TEST));
  net_->CopyTrainedLayersFrom(trained_file);

  CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
  CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";

  Blob<float>* input_layer = net_->input_blobs()[0];
  num_channels_ = input_layer->channels();
  CHECK(num_channels_ == 3 || num_channels_ == 1)
    << "Input layer should have 1 or 3 channels.";
  input_geometry_ = cv::Size(input_layer->width(), input_layer->height());

  /* Load the binaryproto mean file. */
  SetMean(mean_file);

  /* Load labels. */
  std::ifstream labels(label_file.c_str());
  CHECK(labels) << "Unable to open labels file " << label_file;
  string line;
  while (std::getline(labels, line))
    labels_.push_back(string(line));

  Blob<float>* output_layer = net_->output_blobs()[0];
  CHECK_EQ(labels_.size(), output_layer->channels())
    << "Number of labels is different from the output layer dimension.";
}

static bool PairCompare(const std::pair<float, int>& lhs,
                        const std::pair<float, int>& rhs) {
  return lhs.first > rhs.first;
}

/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
  std::vector<std::pair<float, int> > pairs;
  for (size_t i = 0; i < v.size(); ++i)
    pairs.push_back(std::make_pair(v[i], i));
  std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

  std::vector<int> result;
  for (int i = 0; i < N; ++i)
    result.push_back(pairs[i].second);
  return result;
}

/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
  std::vector<float> output = Predict(img);

  N = std::min<int>(labels_.size(), N);
  std::vector<int> maxN = Argmax(output, N);
  std::vector<Prediction> predictions;
  for (int i = 0; i < N; ++i) {
    int idx = maxN[i];
    predictions.push_back(std::make_pair(labels_[idx], output[idx]));
  }

  return predictions;
}

/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
  BlobProto blob_proto;
  ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);

  /* Convert from BlobProto to Blob<float> */
  Blob<float> mean_blob;
  mean_blob.FromProto(blob_proto);
  CHECK_EQ(mean_blob.channels(), num_channels_)
    << "Number of channels of mean file doesn't match input layer.";

  /* The format of the mean file is planar 32-bit float BGR or grayscale. */
  std::vector<cv::Mat> channels;
  float* data = mean_blob.mutable_cpu_data();
  for (int i = 0; i < num_channels_; ++i) {
    /* Extract an individual channel. */
    cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
    channels.push_back(channel);
    data += mean_blob.height() * mean_blob.width();
  }

  /* Merge the separate channels into a single image. */
  cv::Mat mean;
  cv::merge(channels, mean);

  /* Compute the global mean pixel value and create a mean image
   * filled with this value. */
  cv::Scalar channel_mean = cv::mean(mean);
  mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}

std::vector<float> Classifier::Predict(const cv::Mat& img) {
  Blob<float>* input_layer = net_->input_blobs()[0];
  input_layer->Reshape(1, num_channels_,
                       input_geometry_.height, input_geometry_.width);
  /* Forward dimension change to all layers. */
  net_->Reshape();

  std::vector<cv::Mat> input_channels;
  WrapInputLayer(&input_channels);

  Preprocess(img, &input_channels);

#ifdef USE_PROFILING
  unsigned long tstart=get_cur_time();
#endif //USE_PROFILING

  net_->Forward();

#ifdef USE_PROFILING

  unsigned long tend=get_cur_time();

  std::cout<<"used time: "<<tend-tstart<<std::endl;

#ifdef LAYER_PERF_STAT
  dump_perf_stat(); 
#ifdef REPEAT_TEST

   reset_layer_stat();

   vector<vector<perf_stat>* >  all_stat;
   int rep_number=10;

   for(int i=0;i<rep_number;i++)
   {
      net_->Forward();
      collect_layer_stat(all_stat);
      reset_layer_stat();
   }

   //dump stats
   dump_all_stat(all_stat);

   for(int i=0;i<all_stat.size();i++)
         delete all_stat[i];
   
#endif //REPEAT_TEST
#endif //LAYER_PERF_STAT
#endif //USE_PROFILING

  /* Copy the output layer to a std::vector */
  Blob<float>* output_layer = net_->output_blobs()[0];
  const float* begin = output_layer->cpu_data();
  const float* end = begin + output_layer->channels();
  return std::vector<float>(begin, end);
}

#ifdef USE_PROFILING

#ifdef LAYER_PERF_STAT

#ifdef REPEAT_TEST
void Classifier::collect_layer_stat(vector<vector<perf_stat>*>& all_stat)
{
   vector<perf_stat > * p_stat;
   perf_stat * p_time_stat;
   const vector<shared_ptr<Layer<float> > >& layers=net_->layers();

   
   p_stat=new vector<perf_stat>;

   for (int i =0;i< layers.size(); i++) {
        p_time_stat=layers[i]->get_time_stat();
        p_stat->push_back(*p_time_stat);

   }

   all_stat.push_back(p_stat);
}

void Classifier::reset_layer_stat(void)
{
   const vector<shared_ptr<Layer<float> > >& layers=net_->layers();
   perf_stat * p_time_stat;

   for (int i =0;i< layers.size(); i++) {
        p_time_stat=layers[i]->get_time_stat();

        p_time_stat->count=0;
        p_time_stat->total=0;
        p_time_stat->used=p_time_stat->start=p_time_stat->end=0;
   }
}

void Classifier::dump_all_stat(vector<vector<perf_stat>*>& all_stat)
{

   struct new_perf_stat {
        perf_stat stat;
        int       idx;
   };
    
   vector<new_perf_stat > layer_stat;
   perf_stat * p_stat;

   uint64_t total_time=0;

   layer_stat.resize(all_stat[0]->size());

   for(int i=0;i<all_stat.size();i++)
   {
      for(int j=0;j<layer_stat.size();j++)
       {
          p_stat=&layer_stat[j].stat;

          p_stat->total+=(*all_stat[i])[j].total;
          p_stat->count+=(*all_stat[i])[j].count;
          total_time+=(*all_stat[i])[j].total;
       }
   }

   total_time=total_time/all_stat.size();

   std::cout<<std::endl<<"----------------------------------"<<std::endl;
   std::cout<<"STATS for "<<all_stat.size()<<" reptitions: ..."<<std::endl;
   std::cout<<"Total time: "<<total_time<<" per forward"<<std::endl;
   std::cout<<"Each layer stats: ..."<<std::endl;


   for(int i=layer_stat.size()-1;i>=0;i--)
   {
      p_stat=&layer_stat[i].stat;

      layer_stat[i].idx=i;

     std::cout<<"  "<<i<<": used time: "<<p_stat->total/all_stat.size();
     std::cout<<" ratio: "<<((float)p_stat->total)/all_stat.size()/total_time*100;
     std::cout<<" enter count: "<<p_stat->count/all_stat.size()<<std::endl;
   }

   std::cout<<std::endl;

   std::cout<<"time cost top 10 layers are: ..."<<std::endl;

   std::sort(layer_stat.begin(),layer_stat.end(),[](const new_perf_stat& a, const new_perf_stat& b)
       {
          if(a.stat.total>b.stat.total)
            return true;
          else
            return false;
       });

   uint64_t  top_total_time=0;

   for(int i=0; i<10; i++)
   {
      p_stat=&layer_stat[i].stat;

     std::cout<<"  "<<layer_stat[i].idx<<": used time: "<<p_stat->total/all_stat.size();
     std::cout<<" ratio: "<<((float)p_stat->total)/all_stat.size()/total_time*100;
     std::cout<<" enter count: "<<p_stat->count/all_stat.size()<<std::endl;
     top_total_time+=p_stat->total;
   }

   std::cout<<"Top cost layers occupied: "<<(float)top_total_time/all_stat.size()/total_time*100<<std::endl;

   std::cout<<std::endl;
}

#endif

void Classifier::dump_single_layer_io(int idx, Layer<float> * p_layer)
{
   const LayerParameter& layer_param=p_layer->layer_param();

   std::cout<<std::endl<<"LAYER IDX: "<<idx<<" name: "<<layer_param.name();
   std::cout<<" type: "<<layer_param.type()<<std::endl;

   const vector<Blob<float>*> *p_bottom_vec=p_layer->saved_bottom;

   for(int i=0;i<layer_param.bottom_size(); i++)
   {
      std::cout<<"bottom "<<layer_param.bottom(i)<<": ";

      Blob<float> * p_blob=(*p_bottom_vec)[i];

      for(int j=0;j<p_blob->num_axes();j++)
      {
          std::cout<<p_blob->shape(j)<<" ";
      }
      std::cout<<std::endl;
   }

   const vector<Blob<float>*> *p_top_vec=p_layer->saved_top;
   for(int i=0;i<layer_param.top_size(); i++)
   {
      std::cout<<"top "<<layer_param.top(i)<<": ";
      Blob<float> * p_blob=(*p_top_vec)[i];

      for(int j=0;j<p_blob->num_axes();j++)
      {
          std::cout<<p_blob->shape(j)<<" ";
      }
      std::cout<<std::endl;
   }
}

void Classifier::dump_single_layer_perf(int idx, Layer<float> * p_layer, uint64_t total_net_time)
{
   const LayerParameter& layer_param=p_layer->layer_param();
   perf_stat * p_time_stat;

   p_time_stat=p_layer->get_time_stat();

   std::cout<<std::endl<<"LAYER IDX: "<<idx<<" name: "<<layer_param.name();
   std::cout<<" type: "<<layer_param.type();
   std::cout<<"  ratio: "<<(float)p_time_stat->total/total_net_time*100<<std::endl;


   std::cout<<"time stat:  total: "<<p_time_stat->total<<" count: "<<p_time_stat->count;
   if(p_time_stat->count)
    {
       std::cout<<" average: "<<((float)p_time_stat->total)/p_time_stat->count;
    }

   std::cout<<" start: "<<p_time_stat->start<<" end: "<<p_time_stat->end;
   std::cout<<std::endl;


} 

void Classifier::dump_perf_stat(void)
{
   uint64_t total_net_time=0;

   const vector<shared_ptr<Layer<float> > >& layers=net_->layers();

   std::cout<<"Input/output shape for each layer ... total: "<<layers.size()<<std::endl;

   for (int i = layers.size() - 1; i >= 0; --i) {
     dump_single_layer_io(i,layers[i].get());
   }


   for (int i = layers.size() - 1; i >= 0; --i) {

     perf_stat * p_time_stat;

     p_time_stat=layers[i]->get_time_stat();

     total_net_time+=p_time_stat->total;

   }
   
   std::cout<<"Time for each layer ... sum of all layers is : ";
   std::cout<<total_net_time<<std::endl;

   for (int i = layers.size() - 1; i >= 0; --i) {

     dump_single_layer_perf(i,layers[i].get(),total_net_time);
   }

}

#endif

#endif //USE_PROFILING

/* Wrap the input layer of the network in separate cv::Mat objects
 * (one per channel). This way we save one memcpy operation and we
 * don't need to rely on cudaMemcpy2D. The last preprocessing
 * operation will write the separate channels directly to the input
 * layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
  Blob<float>* input_layer = net_->input_blobs()[0];

  int width = input_layer->width();
  int height = input_layer->height();
  float* input_data = input_layer->mutable_cpu_data();
  for (int i = 0; i < input_layer->channels(); ++i) {
    cv::Mat channel(height, width, CV_32FC1, input_data);
    input_channels->push_back(channel);
    input_data += width * height;
  }
}

void Classifier::Preprocess(const cv::Mat& img,
                            std::vector<cv::Mat>* input_channels) {
  /* Convert the input image to the input image format of the network. */
  cv::Mat sample;
  if (img.channels() == 3 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
  else if (img.channels() == 4 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
  else if (img.channels() == 4 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
  else if (img.channels() == 1 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
  else
    sample = img;

  cv::Mat sample_resized;
  if (sample.size() != input_geometry_)
    cv::resize(sample, sample_resized, input_geometry_);
  else
    sample_resized = sample;

  cv::Mat sample_float;
  if (num_channels_ == 3)
    sample_resized.convertTo(sample_float, CV_32FC3);
  else
    sample_resized.convertTo(sample_float, CV_32FC1);

  cv::Mat sample_normalized;
  cv::subtract(sample_float, mean_, sample_normalized);

  /* This operation will write the separate BGR planes directly to the
   * input layer of the network because it is wrapped by the cv::Mat
   * objects in input_channels. */
  cv::split(sample_normalized, *input_channels);

  CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
        == net_->input_blobs()[0]->cpu_data())
    << "Input channels are not wrapping the input layer of the network.";
}

int main(int argc, char** argv) {
  if (argc != 6) {
    std::cerr << "Usage: " << argv[0]
              << " deploy.prototxt network.caffemodel"
              << " mean.binaryproto labels.txt img.jpg" << std::endl;
    return 1;
  }

  ::google::InitGoogleLogging(argv[0]);

  string model_file   = argv[1];
  string trained_file = argv[2];
  string mean_file    = argv[3];
  string label_file   = argv[4];
  Classifier classifier(model_file, trained_file, mean_file, label_file);

  string file = argv[5];

  std::cout << "---------- Prediction for "
            << file << " ----------" << std::endl;

  cv::Mat img = cv::imread(file, -1);
  CHECK(!img.empty()) << "Unable to decode image " << file;
  std::vector<Prediction> predictions = classifier.Classify(img);

  /* Print the top N predictions. */
  for (size_t i = 0; i < predictions.size(); ++i) {
    Prediction p = predictions[i];
    std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
              << p.first << "\"" << std::endl;
  }
}
#else
int main(int argc, char** argv) {
  LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif  // USE_OPENCV