summaryrefslogtreecommitdiff
path: root/docs/tutorial/layers.md
blob: eabc792b704fd4f64c70371989947a25170652ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
---
title: Layer Catalogue
---
# Layers

To create a Caffe model you need to define the model architecture in a protocol buffer definition file (prototxt).

Caffe layers and their parameters are defined in the protocol buffer definitions for the project in [caffe.proto](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto).

### Vision Layers

* Header: `./include/caffe/vision_layers.hpp`

Vision layers usually take *images* as input and produce other *images* as output.
A typical "image" in the real-world may have one color channel ($$c = 1$$), as in a grayscale image, or three color channels ($$c = 3$$) as in an RGB (red, green, blue) image.
But in this context, the distinguishing characteristic of an image is its spatial structure: usually an image has some non-trivial height $$h > 1$$ and width $$w > 1$$.
This 2D geometry naturally lends itself to certain decisions about how to process the input.
In particular, most of the vision layers work by applying a particular operation to some region of the input to produce a corresponding region of the output.
In contrast, other layers (with few exceptions) ignore the spatial structure of the input, effectively treating it as "one big vector" with dimension $$chw$$.


#### Convolution

* Layer type: `Convolution`
* CPU implementation: `./src/caffe/layers/convolution_layer.cpp`
* CUDA GPU implementation: `./src/caffe/layers/convolution_layer.cu`
* Parameters (`ConvolutionParameter convolution_param`)
    - Required
        - `num_output` (`c_o`): the number of filters
        - `kernel_size` (or `kernel_h` and `kernel_w`): specifies height and width of each filter
    - Strongly Recommended
        - `weight_filler` [default `type: 'constant' value: 0`]
    - Optional
        - `bias_term` [default `true`]: specifies whether to learn and apply a set of additive biases to the filter outputs
        - `pad` (or `pad_h` and `pad_w`) [default 0]: specifies the number of pixels to (implicitly) add to each side of the input
        - `stride` (or `stride_h` and `stride_w`) [default 1]: specifies the intervals at which to apply the filters to the input
        - `group` (g) [default 1]: If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated into g groups, and the $$i$$th output group channels will be only connected to the $$i$$th input group channels.
* Input
    - `n * c_i * h_i * w_i`
* Output
    - `n * c_o * h_o * w_o`, where `h_o = (h_i + 2 * pad_h - kernel_h) / stride_h + 1` and `w_o` likewise.
* Sample (as seen in `./examples/imagenet/imagenet_train_val.prototxt`)

      layer {
        name: "conv1"
        type: "Convolution"
        bottom: "data"
        top: "conv1"
        # learning rate and decay multipliers for the filters
        param { lr_mult: 1 decay_mult: 1 }
        # learning rate and decay multipliers for the biases
        param { lr_mult: 2 decay_mult: 0 }
        convolution_param {
          num_output: 96     # learn 96 filters
          kernel_size: 11    # each filter is 11x11
          stride: 4          # step 4 pixels between each filter application
          weight_filler {
            type: "gaussian" # initialize the filters from a Gaussian
            std: 0.01        # distribution with stdev 0.01 (default mean: 0)
          }
          bias_filler {
            type: "constant" # initialize the biases to zero (0)
            value: 0
          }
        }
      }

The `Convolution` layer convolves the input image with a set of learnable filters, each producing one feature map in the output image.

#### Pooling

* Layer type: `Pooling`
* CPU implementation: `./src/caffe/layers/pooling_layer.cpp`
* CUDA GPU implementation: `./src/caffe/layers/pooling_layer.cu`
* Parameters (`PoolingParameter pooling_param`)
    - Required
        - `kernel_size` (or `kernel_h` and `kernel_w`): specifies height and width of each filter
    - Optional
        - `pool` [default MAX]: the pooling method. Currently MAX, AVE, or STOCHASTIC
        - `pad` (or `pad_h` and `pad_w`) [default 0]: specifies the number of pixels to (implicitly) add to each side of the input
        - `stride` (or `stride_h` and `stride_w`) [default 1]: specifies the intervals at which to apply the filters to the input
* Input
    - `n * c * h_i * w_i`
* Output
    - `n * c * h_o * w_o`, where h_o and w_o are computed in the same way as convolution.
* Sample (as seen in `./examples/imagenet/imagenet_train_val.prototxt`)

      layer {
        name: "pool1"
        type: "Pooling"
        bottom: "conv1"
        top: "pool1"
        pooling_param {
          pool: MAX
          kernel_size: 3 # pool over a 3x3 region
          stride: 2      # step two pixels (in the bottom blob) between pooling regions
        }
      }

#### Local Response Normalization (LRN)

* Layer type: `LRN`
* CPU Implementation: `./src/caffe/layers/lrn_layer.cpp`
* CUDA GPU Implementation: `./src/caffe/layers/lrn_layer.cu`
* Parameters (`LRNParameter lrn_param`)
    - Optional
        - `local_size` [default 5]: the number of channels to sum over (for cross channel LRN) or the side length of the square region to sum over (for within channel LRN)
        - `alpha` [default 1]: the scaling parameter (see below)
        - `beta` [default 5]: the exponent (see below)
        - `norm_region` [default `ACROSS_CHANNELS`]: whether to sum over adjacent channels (`ACROSS_CHANNELS`) or nearby spatial locaitons (`WITHIN_CHANNEL`)

The local response normalization layer performs a kind of "lateral inhibition" by normalizing over local input regions. In `ACROSS_CHANNELS` mode, the local regions extend across nearby channels, but have no spatial extent (i.e., they have shape `local_size x 1 x 1`). In `WITHIN_CHANNEL` mode, the local regions extend spatially, but are in separate channels (i.e., they have shape `1 x local_size x local_size`). Each input value is divided by $$(1 + (\alpha/n) \sum_i x_i^2)^\beta$$, where $$n$$ is the size of each local region, and the sum is taken over the region centered at that value (zero padding is added where necessary).

#### im2col

`Im2col` is a helper for doing the image-to-column transformation that you most likely do not need to know about. This is used in Caffe's original convolution to do matrix multiplication by laying out all patches into a matrix.

### Loss Layers

Loss drives learning by comparing an output to a target and assigning cost to minimize. The loss itself is computed by the forward pass and the gradient w.r.t. to the loss is computed by the backward pass.

#### Softmax

* Layer type: `SoftmaxWithLoss`

The softmax loss layer computes the multinomial logistic loss of the softmax of its inputs. It's conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient.

#### Sum-of-Squares / Euclidean

* Layer type: `EuclideanLoss`

The Euclidean loss layer computes the sum of squares of differences of its two inputs, $$\frac 1 {2N} \sum_{i=1}^N \| x^1_i - x^2_i \|_2^2$$.

#### Hinge / Margin

* Layer type: `HingeLoss`
* CPU implementation: `./src/caffe/layers/hinge_loss_layer.cpp`
* CUDA GPU implementation: none yet
* Parameters (`HingeLossParameter hinge_loss_param`)
    - Optional
        - `norm` [default L1]: the norm used. Currently L1, L2
* Inputs
    - `n * c * h * w` Predictions
    - `n * 1 * 1 * 1` Labels
* Output
    - `1 * 1 * 1 * 1` Computed Loss
* Samples

      # L1 Norm
      layer {
        name: "loss"
        type: "HingeLoss"
        bottom: "pred"
        bottom: "label"
      }

      # L2 Norm
      layer {
        name: "loss"
        type: "HingeLoss"
        bottom: "pred"
        bottom: "label"
        top: "loss"
        hinge_loss_param {
          norm: L2
        }
      }

The hinge loss layer computes a one-vs-all hinge or squared hinge loss.

#### Sigmoid Cross-Entropy

`SigmoidCrossEntropyLoss`

#### Infogain

`InfogainLoss`

#### Accuracy and Top-k

`Accuracy` scores the output as the accuracy of output with respect to target -- it is not actually a loss and has no backward step.

### Activation / Neuron Layers

In general, activation / Neuron layers are element-wise operators, taking one bottom blob and producing one top blob of the same size. In the layers below, we will ignore the input and out sizes as they are identical:

* Input
    - n * c * h * w
* Output
    - n * c * h * w

#### ReLU / Rectified-Linear and Leaky-ReLU

* Layer type: `ReLU`
* CPU implementation: `./src/caffe/layers/relu_layer.cpp`
* CUDA GPU implementation: `./src/caffe/layers/relu_layer.cu`
* Parameters (`ReLUParameter relu_param`)
    - Optional
        - `negative_slope` [default 0]: specifies whether to leak the negative part by multiplying it with the slope value rather than setting it to 0.
* Sample (as seen in `./examples/imagenet/imagenet_train_val.prototxt`)

      layer {
        name: "relu1"
        type: "ReLU"
        bottom: "conv1"
        top: "conv1"
      }

Given an input value x, The `ReLU` layer computes the output as x if x > 0 and negative_slope * x if x <= 0. When the negative slope parameter is not set, it is equivalent to the standard ReLU function of taking max(x, 0). It also supports in-place computation, meaning that the bottom and the top blob could be the same to preserve memory consumption.

#### Sigmoid

* Layer type: `Sigmoid`
* CPU implementation: `./src/caffe/layers/sigmoid_layer.cpp`
* CUDA GPU implementation: `./src/caffe/layers/sigmoid_layer.cu`
* Sample (as seen in `./examples/mnist/mnist_autoencoder.prototxt`)

      layer {
        name: "encode1neuron"
        bottom: "encode1"
        top: "encode1neuron"
        type: "Sigmoid"
      }

The `Sigmoid` layer computes the output as sigmoid(x) for each input element x.

#### TanH / Hyperbolic Tangent

* Layer type: `TanH`
* CPU implementation: `./src/caffe/layers/tanh_layer.cpp`
* CUDA GPU implementation: `./src/caffe/layers/tanh_layer.cu`
* Sample

      layer {
        name: "layer"
        bottom: "in"
        top: "out"
        type: "TanH"
      }

The `TanH` layer computes the output as tanh(x) for each input element x.

#### Absolute Value

* Layer type: `AbsVal`
* CPU implementation: `./src/caffe/layers/absval_layer.cpp`
* CUDA GPU implementation: `./src/caffe/layers/absval_layer.cu`
* Sample

      layer {
        name: "layer"
        bottom: "in"
        top: "out"
        type: "AbsVal"
      }

The `AbsVal` layer computes the output as abs(x) for each input element x.

#### Power

* Layer type: `Power`
* CPU implementation: `./src/caffe/layers/power_layer.cpp`
* CUDA GPU implementation: `./src/caffe/layers/power_layer.cu`
* Parameters (`PowerParameter power_param`)
    - Optional
        - `power` [default 1]
        - `scale` [default 1]
        - `shift` [default 0]
* Sample

      layer {
        name: "layer"
        bottom: "in"
        top: "out"
        type: "Power"
        power_param {
          power: 1
          scale: 1
          shift: 0
        }
      }

The `Power` layer computes the output as (shift + scale * x) ^ power for each input element x.

#### BNLL

* Layer type: `BNLL`
* CPU implementation: `./src/caffe/layers/bnll_layer.cpp`
* CUDA GPU implementation: `./src/caffe/layers/bnll_layer.cu`
* Sample

      layer {
        name: "layer"
        bottom: "in"
        top: "out"
        type: BNLL
      }

The `BNLL` (binomial normal log likelihood) layer computes the output as log(1 + exp(x)) for each input element x.


### Data Layers

Data enters Caffe through data layers: they lie at the bottom of nets. Data can come from efficient databases (LevelDB or LMDB), directly from memory, or, when efficiency is not critical, from files on disk in HDF5 or common image formats.

Common input preprocessing (mean subtraction, scaling, random cropping, and mirroring) is available by specifying `TransformationParameter`s.

#### Database

* Layer type: `Data`
* Parameters
    - Required
        - `source`: the name of the directory containing the database
        - `batch_size`: the number of inputs to process at one time
    - Optional
        - `rand_skip`: skip up to this number of inputs at the beginning; useful for asynchronous sgd
        - `backend` [default `LEVELDB`]: choose whether to use a `LEVELDB` or `LMDB`



#### In-Memory

* Layer type: `MemoryData`
* Parameters
    - Required
        - `batch_size`, `channels`, `height`, `width`: specify the size of input chunks to read from memory

The memory data layer reads data directly from memory, without copying it. In order to use it, one must call `MemoryDataLayer::Reset` (from C++) or `Net.set_input_arrays` (from Python) in order to specify a source of contiguous data (as 4D row major array), which is read one batch-sized chunk at a time.

#### HDF5 Input

* Layer type: `HDF5Data`
* Parameters
    - Required
        - `source`: the name of the file to read from
        - `batch_size`

#### HDF5 Output

* Layer type: `HDF5Output`
* Parameters
    - Required
        - `file_name`: name of file to write to

The HDF5 output layer performs the opposite function of the other layers in this section: it writes its input blobs to disk.

#### Images

* Layer type: `ImageData`
* Parameters
    - Required
        - `source`: name of a text file, with each line giving an image filename and label
        - `batch_size`: number of images to batch together
    - Optional
        - `rand_skip`
        - `shuffle` [default false]
        - `new_height`, `new_width`: if provided, resize all images to this size

#### Windows

`WindowData`

#### Dummy

`DummyData` is for development and debugging. See `DummyDataParameter`.

### Common Layers

#### Inner Product

* Layer type: `InnerProduct`
* CPU implementation: `./src/caffe/layers/inner_product_layer.cpp`
* CUDA GPU implementation: `./src/caffe/layers/inner_product_layer.cu`
* Parameters (`InnerProductParameter inner_product_param`)
    - Required
        - `num_output` (`c_o`): the number of filters
    - Strongly recommended
        - `weight_filler` [default `type: 'constant' value: 0`]
    - Optional
        - `bias_filler` [default `type: 'constant' value: 0`]
        - `bias_term` [default `true`]: specifies whether to learn and apply a set of additive biases to the filter outputs
* Input
    - `n * c_i * h_i * w_i`
* Output
    - `n * c_o * 1 * 1`
* Sample

      layer {
        name: "fc8"
        type: "InnerProduct"
        # learning rate and decay multipliers for the weights
        param { lr_mult: 1 decay_mult: 1 }
        # learning rate and decay multipliers for the biases
        param { lr_mult: 2 decay_mult: 0 }
        inner_product_param {
          num_output: 1000
          weight_filler {
            type: "gaussian"
            std: 0.01
          }
          bias_filler {
            type: "constant"
            value: 0
          }
        }
        bottom: "fc7"
        top: "fc8"
      }

The `InnerProduct` layer (also usually referred to as the fully connected layer) treats the input as a simple vector and produces an output in the form of a single vector (with the blob's height and width set to 1).

#### Splitting

The `Split` layer is a utility layer that splits an input blob to multiple output blobs. This is used when a blob is fed into multiple output layers.

#### Flattening

The `Flatten` layer is a utility layer that flattens an input of shape `n * c * h * w` to a simple vector output of shape `n * (c*h*w)`

#### Reshape

* Layer type: `Reshape`
* Implementation: `./src/caffe/layers/reshape_layer.cpp`
* Parameters (`ReshapeParameter reshape_param`)
    - Optional: (also see detailed description below)
        - `shape`

* Input
    - a single blob with arbitrary dimensions
* Output
    - the same blob, with modified dimensions, as specified by `reshape_param`

* Sample

        layer {
          name: "reshape"
          type: "Reshape"
          bottom: "input"
          top: "output"
          reshape_param {
            shape {
              dim: 0  # copy the dimension from below
              dim: 2
              dim: 3
              dim: -1 # infer it from the other dimensions
            }
          }
        }

The `Reshape` layer can be used to change the dimensions of its input, without changing its data. Just like the `Flatten` layer, only the dimensions are changed; no data is copied in the process.

Output dimensions are specified by the `ReshapeParam` proto. Positive numbers are used directly, setting the corresponding dimension of the output blob. In addition, two special values are accepted for any of the target dimension values:

* **0** means "copy the respective dimension of the bottom layer". That is, if the bottom has 2 as its 1st dimension, the top will have 2 as its 1st dimension as well, given `dim: 0` as the 1st target dimension.
* **-1** stands for "infer this from the other dimensions". This behavior is similar to that of -1 in *numpy*'s or `[]` for *MATLAB*'s reshape: this dimension is calculated to keep the overall element count the same as in the bottom layer. At most one -1 can be used in a reshape operation.

As another example, specifying `reshape_param { shape { dim: 0 dim: -1 } }` makes the layer behave in exactly the same way as the `Flatten` layer.

#### Concatenation

* Layer type: `Concat`
* CPU implementation: `./src/caffe/layers/concat_layer.cpp`
* CUDA GPU implementation: `./src/caffe/layers/concat_layer.cu`
* Parameters (`ConcatParameter concat_param`)
    - Optional
        - `axis` [default 1]: 0 for concatenation along num and 1 for channels.
* Input
    - `n_i * c_i * h * w` for each input blob i from 1 to K.
* Output
    - if `axis = 0`: `(n_1 + n_2 + ... + n_K) * c_1 * h * w`, and all input `c_i` should be the same.
    - if `axis = 1`: `n_1 * (c_1 + c_2 + ... + c_K) * h * w`, and all input `n_i` should be the same.
* Sample

      layer {
        name: "concat"
        bottom: "in1"
        bottom: "in2"
        top: "out"
        type: "Concat"
        concat_param {
          axis: 1
        }
      }

The `Concat` layer is a utility layer that concatenates its multiple input blobs to one single output blob.

#### Slicing

The `Slice` layer is a utility layer that slices an input layer to multiple output layers along a given dimension (currently num or channel only) with given slice indices.

* Sample

      layer {
        name: "slicer_label"
        type: "Slice"
        bottom: "label"
        ## Example of label with a shape N x 3 x 1 x 1
        top: "label1"
        top: "label2"
        top: "label3"
        slice_param {
          axis: 1
          slice_point: 1
          slice_point: 2
        }
      }

`axis` indicates the target axis; `slice_point` indicates indexes in the selected dimension (the number of indices must be equal to the number of top blobs minus one).


#### Elementwise Operations

`Eltwise`

#### Argmax

`ArgMax`

#### Softmax

`Softmax`

#### Mean-Variance Normalization

`MVN`