summaryrefslogtreecommitdiff
path: root/models
diff options
context:
space:
mode:
authorEvan Shelhamer <shelhamer@imaginarynumber.net>2014-02-25 15:46:08 -0800
committerEvan Shelhamer <shelhamer@imaginarynumber.net>2014-02-26 12:37:46 -0800
commit04f61b320de7434fb1516330f7297e0d465ccf98 (patch)
tree9f54e08376e55ea4a0577788fba142c1ff66f026 /models
parent4fd2fa20d44a0abfa449145c87ec09926404b3dd (diff)
downloadcaffeonacl-04f61b320de7434fb1516330f7297e0d465ccf98.tar.gz
caffeonacl-04f61b320de7434fb1516330f7297e0d465ccf98.tar.bz2
caffeonacl-04f61b320de7434fb1516330f7297e0d465ccf98.zip
everything in its right place
Diffstat (limited to 'models')
-rw-r--r--models/.gitignore0
-rw-r--r--models/imagenet.prototxt25
-rw-r--r--models/imagenet_deploy.prototxt355
-rw-r--r--models/imagenet_solver.prototxt14
-rw-r--r--models/imagenet_val.prototxt277
-rw-r--r--models/lenet.prototxt122
-rw-r--r--models/lenet_solver.prototxt27
-rw-r--r--models/lenet_test.prototxt123
8 files changed, 8 insertions, 935 deletions
diff --git a/models/.gitignore b/models/.gitignore
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/models/.gitignore
diff --git a/models/imagenet.prototxt b/models/imagenet.prototxt
index 5db585b7..62579140 100644
--- a/models/imagenet.prototxt
+++ b/models/imagenet.prototxt
@@ -1,17 +1,8 @@
-name: "CaffeNet"
-layers {
- layer {
- name: "data"
- type: "data"
- source: "/home/jiayq/Data/ILSVRC12/train-leveldb"
- meanfile: "/home/jiayq/Data/ILSVRC12/image_mean.binaryproto"
- batchsize: 256
- cropsize: 227
- mirror: true
- }
- top: "data"
- top: "label"
-}
+input: "data"
+input_dim: 10
+input_dim: 3
+input_dim: 227
+input_dim: 227
layers {
layer {
name: "conv1"
@@ -356,9 +347,9 @@ layers {
}
layers {
layer {
- name: "loss"
- type: "softmax_loss"
+ name: "prob"
+ type: "softmax"
}
bottom: "fc8"
- bottom: "label"
+ top: "prob"
}
diff --git a/models/imagenet_deploy.prototxt b/models/imagenet_deploy.prototxt
deleted file mode 100644
index 62579140..00000000
--- a/models/imagenet_deploy.prototxt
+++ /dev/null
@@ -1,355 +0,0 @@
-input: "data"
-input_dim: 10
-input_dim: 3
-input_dim: 227
-input_dim: 227
-layers {
- layer {
- name: "conv1"
- type: "conv"
- num_output: 96
- kernelsize: 11
- stride: 4
- weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0.
- }
- blobs_lr: 1.
- blobs_lr: 2.
- weight_decay: 1.
- weight_decay: 0.
- }
- bottom: "data"
- top: "conv1"
-}
-layers {
- layer {
- name: "relu1"
- type: "relu"
- }
- bottom: "conv1"
- top: "conv1"
-}
-layers {
- layer {
- name: "pool1"
- type: "pool"
- pool: MAX
- kernelsize: 3
- stride: 2
- }
- bottom: "conv1"
- top: "pool1"
-}
-layers {
- layer {
- name: "norm1"
- type: "lrn"
- local_size: 5
- alpha: 0.0001
- beta: 0.75
- }
- bottom: "pool1"
- top: "norm1"
-}
-layers {
- layer {
- name: "pad2"
- type: "padding"
- pad: 2
- }
- bottom: "norm1"
- top: "pad2"
-}
-layers {
- layer {
- name: "conv2"
- type: "conv"
- num_output: 256
- group: 2
- kernelsize: 5
- weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 1.
- }
- blobs_lr: 1.
- blobs_lr: 2.
- weight_decay: 1.
- weight_decay: 0.
- }
- bottom: "pad2"
- top: "conv2"
-}
-layers {
- layer {
- name: "relu2"
- type: "relu"
- }
- bottom: "conv2"
- top: "conv2"
-}
-layers {
- layer {
- name: "pool2"
- type: "pool"
- pool: MAX
- kernelsize: 3
- stride: 2
- }
- bottom: "conv2"
- top: "pool2"
-}
-layers {
- layer {
- name: "norm2"
- type: "lrn"
- local_size: 5
- alpha: 0.0001
- beta: 0.75
- }
- bottom: "pool2"
- top: "norm2"
-}
-layers {
- layer {
- name: "pad3"
- type: "padding"
- pad: 1
- }
- bottom: "norm2"
- top: "pad3"
-}
-layers {
- layer {
- name: "conv3"
- type: "conv"
- num_output: 384
- kernelsize: 3
- weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0.
- }
- blobs_lr: 1.
- blobs_lr: 2.
- weight_decay: 1.
- weight_decay: 0.
- }
- bottom: "pad3"
- top: "conv3"
-}
-layers {
- layer {
- name: "relu3"
- type: "relu"
- }
- bottom: "conv3"
- top: "conv3"
-}
-layers {
- layer {
- name: "pad4"
- type: "padding"
- pad: 1
- }
- bottom: "conv3"
- top: "pad4"
-}
-layers {
- layer {
- name: "conv4"
- type: "conv"
- num_output: 384
- group: 2
- kernelsize: 3
- weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 1.
- }
- blobs_lr: 1.
- blobs_lr: 2.
- weight_decay: 1.
- weight_decay: 0.
- }
- bottom: "pad4"
- top: "conv4"
-}
-layers {
- layer {
- name: "relu4"
- type: "relu"
- }
- bottom: "conv4"
- top: "conv4"
-}
-layers {
- layer {
- name: "pad5"
- type: "padding"
- pad: 1
- }
- bottom: "conv4"
- top: "pad5"
-}
-layers {
- layer {
- name: "conv5"
- type: "conv"
- num_output: 256
- group: 2
- kernelsize: 3
- weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 1.
- }
- blobs_lr: 1.
- blobs_lr: 2.
- weight_decay: 1.
- weight_decay: 0.
- }
- bottom: "pad5"
- top: "conv5"
-}
-layers {
- layer {
- name: "relu5"
- type: "relu"
- }
- bottom: "conv5"
- top: "conv5"
-}
-layers {
- layer {
- name: "pool5"
- type: "pool"
- kernelsize: 3
- pool: MAX
- stride: 2
- }
- bottom: "conv5"
- top: "pool5"
-}
-layers {
- layer {
- name: "fc6"
- type: "innerproduct"
- num_output: 4096
- weight_filler {
- type: "gaussian"
- std: 0.005
- }
- bias_filler {
- type: "constant"
- value: 1.
- }
- blobs_lr: 1.
- blobs_lr: 2.
- weight_decay: 1.
- weight_decay: 0.
- }
- bottom: "pool5"
- top: "fc6"
-}
-layers {
- layer {
- name: "relu6"
- type: "relu"
- }
- bottom: "fc6"
- top: "fc6"
-}
-layers {
- layer {
- name: "drop6"
- type: "dropout"
- dropout_ratio: 0.5
- }
- bottom: "fc6"
- top: "fc6"
-}
-layers {
- layer {
- name: "fc7"
- type: "innerproduct"
- num_output: 4096
- weight_filler {
- type: "gaussian"
- std: 0.005
- }
- bias_filler {
- type: "constant"
- value: 1.
- }
- blobs_lr: 1.
- blobs_lr: 2.
- weight_decay: 1.
- weight_decay: 0.
- }
- bottom: "fc6"
- top: "fc7"
-}
-layers {
- layer {
- name: "relu7"
- type: "relu"
- }
- bottom: "fc7"
- top: "fc7"
-}
-layers {
- layer {
- name: "drop7"
- type: "dropout"
- dropout_ratio: 0.5
- }
- bottom: "fc7"
- top: "fc7"
-}
-layers {
- layer {
- name: "fc8"
- type: "innerproduct"
- num_output: 1000
- weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0
- }
- blobs_lr: 1.
- blobs_lr: 2.
- weight_decay: 1.
- weight_decay: 0.
- }
- bottom: "fc7"
- top: "fc8"
-}
-layers {
- layer {
- name: "prob"
- type: "softmax"
- }
- bottom: "fc8"
- top: "prob"
-}
diff --git a/models/imagenet_solver.prototxt b/models/imagenet_solver.prototxt
deleted file mode 100644
index 7921d32d..00000000
--- a/models/imagenet_solver.prototxt
+++ /dev/null
@@ -1,14 +0,0 @@
-train_net: "examples/imagenet.prototxt"
-test_net: "examples/imagenet_val.prototxt"
-test_iter: 1000
-test_interval: 1000
-base_lr: 0.01
-lr_policy: "step"
-gamma: 0.1
-stepsize: 100000
-display: 20
-max_iter: 450000
-momentum: 0.9
-weight_decay: 0.0005
-snapshot: 10000
-snapshot_prefix: "caffe_imagenet_train"
diff --git a/models/imagenet_val.prototxt b/models/imagenet_val.prototxt
deleted file mode 100644
index fbc4c325..00000000
--- a/models/imagenet_val.prototxt
+++ /dev/null
@@ -1,277 +0,0 @@
-name: "CaffeNet"
-layers {
- layer {
- name: "data"
- type: "data"
- source: "/home/jiayq/Data/ILSVRC12/val-leveldb"
- meanfile: "/home/jiayq/Data/ILSVRC12/image_mean.binaryproto"
- batchsize: 50
- cropsize: 227
- mirror: false
- }
- top: "data"
- top: "label"
-}
-layers {
- layer {
- name: "conv1"
- type: "conv"
- num_output: 96
- kernelsize: 11
- stride: 4
- }
- bottom: "data"
- top: "conv1"
-}
-layers {
- layer {
- name: "relu1"
- type: "relu"
- }
- bottom: "conv1"
- top: "conv1"
-}
-layers {
- layer {
- name: "pool1"
- type: "pool"
- pool: MAX
- kernelsize: 3
- stride: 2
- }
- bottom: "conv1"
- top: "pool1"
-}
-layers {
- layer {
- name: "norm1"
- type: "lrn"
- local_size: 5
- alpha: 0.0001
- beta: 0.75
- }
- bottom: "pool1"
- top: "norm1"
-}
-layers {
- layer {
- name: "pad2"
- type: "padding"
- pad: 2
- }
- bottom: "norm1"
- top: "pad2"
-}
-layers {
- layer {
- name: "conv2"
- type: "conv"
- num_output: 256
- group: 2
- kernelsize: 5
- }
- bottom: "pad2"
- top: "conv2"
-}
-layers {
- layer {
- name: "relu2"
- type: "relu"
- }
- bottom: "conv2"
- top: "conv2"
-}
-layers {
- layer {
- name: "pool2"
- type: "pool"
- pool: MAX
- kernelsize: 3
- stride: 2
- }
- bottom: "conv2"
- top: "pool2"
-}
-layers {
- layer {
- name: "norm2"
- type: "lrn"
- local_size: 5
- alpha: 0.0001
- beta: 0.75
- }
- bottom: "pool2"
- top: "norm2"
-}
-layers {
- layer {
- name: "pad3"
- type: "padding"
- pad: 1
- }
- bottom: "norm2"
- top: "pad3"
-}
-layers {
- layer {
- name: "conv3"
- type: "conv"
- num_output: 384
- kernelsize: 3
- }
- bottom: "pad3"
- top: "conv3"
-}
-layers {
- layer {
- name: "relu3"
- type: "relu"
- }
- bottom: "conv3"
- top: "conv3"
-}
-layers {
- layer {
- name: "pad4"
- type: "padding"
- pad: 1
- }
- bottom: "conv3"
- top: "pad4"
-}
-layers {
- layer {
- name: "conv4"
- type: "conv"
- num_output: 384
- group: 2
- kernelsize: 3
- }
- bottom: "pad4"
- top: "conv4"
-}
-layers {
- layer {
- name: "relu4"
- type: "relu"
- }
- bottom: "conv4"
- top: "conv4"
-}
-layers {
- layer {
- name: "pad5"
- type: "padding"
- pad: 1
- }
- bottom: "conv4"
- top: "pad5"
-}
-layers {
- layer {
- name: "conv5"
- type: "conv"
- num_output: 256
- group: 2
- kernelsize: 3
- }
- bottom: "pad5"
- top: "conv5"
-}
-layers {
- layer {
- name: "relu5"
- type: "relu"
- }
- bottom: "conv5"
- top: "conv5"
-}
-layers {
- layer {
- name: "pool5"
- type: "pool"
- kernelsize: 3
- pool: MAX
- stride: 2
- }
- bottom: "conv5"
- top: "pool5"
-}
-layers {
- layer {
- name: "fc6"
- type: "innerproduct"
- num_output: 4096
- }
- bottom: "pool5"
- top: "fc6"
-}
-layers {
- layer {
- name: "relu6"
- type: "relu"
- }
- bottom: "fc6"
- top: "fc6"
-}
-layers {
- layer {
- name: "drop6"
- type: "dropout"
- dropout_ratio: 0.5
- }
- bottom: "fc6"
- top: "fc6"
-}
-layers {
- layer {
- name: "fc7"
- type: "innerproduct"
- num_output: 4096
- }
- bottom: "fc6"
- top: "fc7"
-}
-layers {
- layer {
- name: "relu7"
- type: "relu"
- }
- bottom: "fc7"
- top: "fc7"
-}
-layers {
- layer {
- name: "drop7"
- type: "dropout"
- dropout_ratio: 0.5
- }
- bottom: "fc7"
- top: "fc7"
-}
-layers {
- layer {
- name: "fc8"
- type: "innerproduct"
- num_output: 1000
- }
- bottom: "fc7"
- top: "fc8"
-}
-layers {
- layer {
- name: "prob"
- type: "softmax"
- }
- bottom: "fc8"
- top: "prob"
-}
-layers {
- layer {
- name: "accuracy"
- type: "accuracy"
- }
- bottom: "prob"
- bottom: "label"
- top: "accuracy"
-}
diff --git a/models/lenet.prototxt b/models/lenet.prototxt
deleted file mode 100644
index e1049f73..00000000
--- a/models/lenet.prototxt
+++ /dev/null
@@ -1,122 +0,0 @@
-name: "LeNet"
-layers {
- layer {
- name: "mnist"
- type: "data"
- source: "../data/mnist-train-leveldb"
- batchsize: 64
- scale: 0.00390625
- }
- top: "data"
- top: "label"
-}
-layers {
- layer {
- name: "conv1"
- type: "conv"
- num_output: 20
- kernelsize: 5
- stride: 1
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- blobs_lr: 1.
- blobs_lr: 2.
- }
- bottom: "data"
- top: "conv1"
-}
-layers {
- layer {
- name: "pool1"
- type: "pool"
- kernelsize: 2
- stride: 2
- pool: MAX
- }
- bottom: "conv1"
- top: "pool1"
-}
-layers {
- layer {
- name: "conv2"
- type: "conv"
- num_output: 50
- kernelsize: 5
- stride: 1
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- blobs_lr: 1.
- blobs_lr: 2.
- }
- bottom: "pool1"
- top: "conv2"
-}
-layers {
- layer {
- name: "pool2"
- type: "pool"
- kernelsize: 2
- stride: 2
- pool: MAX
- }
- bottom: "conv2"
- top: "pool2"
-}
-layers {
- layer {
- name: "ip1"
- type: "innerproduct"
- num_output: 500
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- blobs_lr: 1.
- blobs_lr: 2.
- }
- bottom: "pool2"
- top: "ip1"
-}
-layers {
- layer {
- name: "relu1"
- type: "relu"
- }
- bottom: "ip1"
- top: "ip1"
-}
-layers {
- layer {
- name: "ip2"
- type: "innerproduct"
- num_output: 10
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- blobs_lr: 1.
- blobs_lr: 2.
- }
- bottom: "ip1"
- top: "ip2"
-}
-layers {
- layer {
- name: "loss"
- type: "softmax_loss"
- }
- bottom: "ip2"
- bottom: "label"
-}
diff --git a/models/lenet_solver.prototxt b/models/lenet_solver.prototxt
deleted file mode 100644
index d0edc0f0..00000000
--- a/models/lenet_solver.prototxt
+++ /dev/null
@@ -1,27 +0,0 @@
-# The training protocol buffer definition
-train_net: "lenet.prototxt"
-# The testing protocol buffer definition
-test_net: "lenet_test.prototxt"
-# test_iter specifies how many forward passes the test should carry out.
-# In the case of MNIST, we have test batch size 100 and 100 test iterations,
-# covering the full 10,000 testing images.
-test_iter: 100
-# Carry out testing every 500 training iterations.
-test_interval: 500
-# The base learning rate, momentum and the weight decay of the network.
-base_lr: 0.01
-momentum: 0.9
-weight_decay: 0.0005
-# The learning rate policy
-lr_policy: "inv"
-gamma: 0.0001
-power: 0.75
-# Display every 100 iterations
-display: 100
-# The maximum number of iterations
-max_iter: 10000
-# snapshot intermediate results
-snapshot: 5000
-snapshot_prefix: "lenet"
-# solver mode: 0 for CPU and 1 for GPU
-solver_mode: 1
diff --git a/models/lenet_test.prototxt b/models/lenet_test.prototxt
deleted file mode 100644
index 38f1a5e9..00000000
--- a/models/lenet_test.prototxt
+++ /dev/null
@@ -1,123 +0,0 @@
-name: "LeNet-test"
-layers {
- layer {
- name: "mnist"
- type: "data"
- source: "../data/mnist-test-leveldb"
- batchsize: 100
- scale: 0.00390625
- }
- top: "data"
- top: "label"
-}
-layers {
- layer {
- name: "conv1"
- type: "conv"
- num_output: 20
- kernelsize: 5
- stride: 1
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- }
- bottom: "data"
- top: "conv1"
-}
-layers {
- layer {
- name: "pool1"
- type: "pool"
- kernelsize: 2
- stride: 2
- pool: MAX
- }
- bottom: "conv1"
- top: "pool1"
-}
-layers {
- layer {
- name: "conv2"
- type: "conv"
- num_output: 50
- kernelsize: 5
- stride: 1
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- }
- bottom: "pool1"
- top: "conv2"
-}
-layers {
- layer {
- name: "pool2"
- type: "pool"
- kernelsize: 2
- stride: 2
- pool: MAX
- }
- bottom: "conv2"
- top: "pool2"
-}
-layers {
- layer {
- name: "ip1"
- type: "innerproduct"
- num_output: 500
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- }
- bottom: "pool2"
- top: "ip1"
-}
-layers {
- layer {
- name: "relu1"
- type: "relu"
- }
- bottom: "ip1"
- top: "ip1"
-}
-layers {
- layer {
- name: "ip2"
- type: "innerproduct"
- num_output: 10
- weight_filler {
- type: "xavier"
- }
- bias_filler {
- type: "constant"
- }
- }
- bottom: "ip1"
- top: "ip2"
-}
-layers {
- layer {
- name: "prob"
- type: "softmax"
- }
- bottom: "ip2"
- top: "prob"
-}
-layers {
- layer {
- name: "accuracy"
- type: "accuracy"
- }
- bottom: "prob"
- bottom: "label"
- top: "accuracy"
-}