summaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
authorEvan Shelhamer <shelhamer@imaginarynumber.net>2014-09-05 00:07:53 -0700
committerEvan Shelhamer <shelhamer@imaginarynumber.net>2014-09-05 00:07:53 -0700
commitef042f6def43626734d2943feb073c0d8743692c (patch)
treec2063db6048ba3e50498e989b283a5f9ca92ba5b /examples
parent46aa65ec0c1163f263a18dcf3e89b30828b442f0 (diff)
parent51dd4b2628cef4891992ddebf4728818425351dc (diff)
downloadcaffeonacl-ef042f6def43626734d2943feb073c0d8743692c.tar.gz
caffeonacl-ef042f6def43626734d2943feb073c0d8743692c.tar.bz2
caffeonacl-ef042f6def43626734d2943feb073c0d8743692c.zip
Merge pull request #1039 from sergeyk/dev
[example] HDF5 classification
Diffstat (limited to 'examples')
-rw-r--r--examples/hdf5_classification.ipynb946
-rw-r--r--examples/hdf5_classification/solver.prototxt14
-rw-r--r--examples/hdf5_classification/solver2.prototxt14
-rw-r--r--examples/hdf5_classification/train_val.prototxt59
-rw-r--r--examples/hdf5_classification/train_val2.prototxt86
5 files changed, 1119 insertions, 0 deletions
diff --git a/examples/hdf5_classification.ipynb b/examples/hdf5_classification.ipynb
new file mode 100644
index 00000000..2059e6ff
--- /dev/null
+++ b/examples/hdf5_classification.ipynb
@@ -0,0 +1,946 @@
+{
+ "metadata": {
+ "description": "Use Caffe as a generic SGD optimizer to train logistic regression on non-image HDF5 data.",
+ "example_name": "Classification with HDF5 data",
+ "include_in_docs": true,
+ "signature": "sha256:c3b84add3bb83e91137f396a48f46d46bf7921b242fc42c58390b30806e5a028"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Classification with HDF5 data\n",
+ "\n",
+ "In this example we'll use Caffe to do simple logistic regression on a simple binary dataset, showcasing HDF5DataLayer functionality."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import os\n",
+ "import h5py\n",
+ "import shutil\n",
+ "import sklearn\n",
+ "import tempfile\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import sklearn.datasets\n",
+ "import sklearn.linear_model\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "X, y = sklearn.datasets.make_classification(\n",
+ " n_samples=10000, n_features=4, n_redundant=0, n_informative=2, \n",
+ " n_clusters_per_class=2, hypercube=False, random_state=0\n",
+ ")\n",
+ "\n",
+ "# Split into train and test\n",
+ "X, Xt, y, yt = sklearn.cross_validation.train_test_split(X, y)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Visualize sample of the data\n",
+ "ind = np.random.permutation(X.shape[0])[:1000]\n",
+ "df = pd.DataFrame(X[ind])\n",
+ "_ = pd.scatter_matrix(df, figsize=(9, 9), diagonal='kde', marker='o', s=40, alpha=.4, c=y[ind])"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAImCAYAAACB54oCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWmMXOd57/mrfd+33vdmd7O5kyIpkRJJiZKdyLKvk2sp\nUZwBJmPMnQBBYCeTDJB44JkAjpMbw04ugmCQwcxFPiS5jpNJcm3HjmRbJEVRIsWdTfbC3pfa96pT\np6rONh+q2WKLpERKbC5S/YBGV51T55y36lSd83/f93n+DzRp0qRJkyZNmjRp0qRJkyZNmjRp0qRJ\nkyZNmjRp0qRJkyZNmjRp0qRJkyZNmjRp0qRJkyZNmjRp0qRJkyZNmjRp0uQTwHeBE8Cfv2+5Ffh/\ngJ8Bf/GgG9WkSZMmTZo0+XSwC/jr1cd/Bey5ad3vA88+8BY1adKkSZMmTR459Bu4733Aa6uPfwo8\nedO6Q8DngTeAlzawDU2aNGnSpEmTR5yNFCNeoLT6uLD6/Ab9wA+BF4H/HTBsYDuaNGnSpEmTJo8w\nGylGCoB79bEHyL9v3XGgAkwDkfdvPDIyogHNv0/R36FDhx56G5p/zfPe/Gue9+bfhv0d4w4Y77Ti\nPvA28J+A7wPPAf/1pnWngO3ABaAHSL5/4/HxcTRN28DmNXnU0Ol0zXP+kMgvLrJw/DiyKAKgN5lo\n37uX8Ojohh/7k3beU9eusXz6NKokAWC02eh+5hm83d0PuWWPFp+08/4gqBYKzL3xBpXk6i1Tp8M/\nMEDX009jMG7k7fz+oNPpDt1p3UaOjFwAqjSyaWTgLPBfVtf9KfBN4CTwf6+ub9KkyUNA0zTS4+Nr\nQgRAlSRS4+NINy1r8uFIokjy2rU1IQIgiyLpZueqyX2guLz8nhAB0DTy8/Prlz2mbLSU+ur7nv/2\n6v848JkNPnaTJk3uAlVRqJdKtyxXqlXkahWTzfYQWvV4IlerKPU6ZpcLnV6PVKmgShK1UglVljGY\nTA+7iU0eY+rl8i3LVElCqdcfQmvuL4/+uE6TJo8BqZTAzEyOcrlOW5uL3l4vNtvjceMxGI242tsR\ns9l1y60+HxaX6yG16vHE4nJB6yCTV6OIokRXZwd+TwV3S6gpRD6FFApVZmdzpNMVgkE7fX0+PB7r\nR96fIxRCp9ejqeraMpPDgfkT8DttipEmTT4mqZTAT386S6nU6J3MzeVIJgWefroLg2EjZ0LvH8GR\nEaq5HOV4HE1Vsfn9tO7ejf4xmId+lEikRN6dqLE8lkKqCFwfj7Pv2S0MbtnysJvW5AEjCHWOH18g\nHm+MZszN5VleLvLss704HOaPtE9XRwfBzZvJTU8j12qYHQ5aduzAHgjcz6Y/FJpXmiZNPibz8/k1\nIaJpGtVimWtnc/S0GOjoDWO0WD5w+2o+T3FlBblaxREO42prQ294sNnuNq+X3qNHqaTTa2LEbLc/\n0DZ8EpiezqIYbIS2jCIJAuh0ZGQPFdnE7frDqiwjJJPUBQGzw4EjEnng5/5eqFcqlFZWqObz2AMB\nXO3tH/r9/rQSi5VJJNZPq8TjZRIJgb6+uxcjkihSWFqiuLyM2enE292Nf3AQpVrF7HRi8/nud9Mf\nCk0x0qTJx6RSeS9YsRSNUlhaQqeqJAYMKEsTdB44cMcbeyWTYf6NN9amSPQmE607d9KyY8cDafvN\nGM1m3G1tD/y4nyQEYTWDxmzGaG7ccFR01OvKLa9VZJmVM2fITE6iShIGs5nA0BDtTzzxSI5ISaLI\n4ptvUlhcBE1Dp9fjHxig88CB5hTUbahWZd4fs6xpjeV3i1yrsfDmm8z9/OeUYzH0BgORbdvoOXKE\n8JYtj7RwvVcejzHkJk0+AE3TiMVKXL6cYGIiTaFQfaDHb2tzodfrqAsCxeVl1LqEL+TGplXIz81R\nWFi447bZ6el1sRo3sliq+fwdt2ny6NLZ6UanW7/M47Hg8906LlKOxchMTKxl3ij1OumJCcrx+Npr\n8nmR8fEUly8n1ob7HxallZU1IQKgqSq52dl17W3yHoGADYtlvViwWo34/XcfEF6Ox4lfvIiYTqM5\nfBQ1J7PXFsnHM1TS6fvd5IfKoye/m9zCxMQEb7zxBg6Hgy984Qt4PJ6H3aRHiomJNGfOrFCrNXqf\nfr+Nw4d7CAYfzDRDd7eH0dEQV8+V0etUgh1+9uxpQytFAaikUjAycttt3x80Co2MDEkUsXq9t9mi\nyaNMX5+PTKbCwkIBWVbxeKzs3duOxXLrpbZWKKDK63vJqiRRKxYBSCYFjh2bI5+vAWCzGdm3r51N\nm4Ib/0ZuQ61U4v1dfVWWkSqVh9KeR52WFie7drUyNpZEFGVsNiNbtoSJRBx3vQ9JEKiXSlQNLqYn\nMohCo6Nl37SCobWXwVvsQh9fmmLkEaZcLvO1r32NH/zgB3zuc58jm83ye7/3e/zd3/0dzz333MNu\n3iOBINS5fDmxJkQAslmRyck0wWDXA2mD2Wxk//4OulvNRLtVzHIZtbiCXGvcRKwfMKfrbG2luLS0\nbpnJbr8liyWTqSCKMk6nGa/XSiolMDubo1Sq097uoqfn8cneeRQQRYlsVsRg0BMM2jEa788gsc1m\n4uDBbkZGKkiSis9nveN5MTmdKKpGJiWQzYoYTQYirS5MjsbNanw8tSZEGm2WuXw5QWen56Gca5vf\nj85gQFPe+60ZzGYsbvcHbPXpRafTsXVrhM5OD5WKhMNhuqtMmuXlInNzOSRJpT9kwuz2Eb0YRxSq\naIDeaEJUjVy5lqFvtPuxCZL/MJpi5BElm83yi7/4iwwODjI1NYV79Qd/7NgxvvSlL/HDH/6Qffv2\nPeRWPnwEQbrtHGwq9WB7azqdjtbuMLpCnOJCEc3jQdM0zC7XBzpv+vv7KcdilKJRNEXB7HTSumsX\nZqcTAEVRuXgxzvh4mlpNxm43MTgYIB4vEY3eiNLPkUg8Xtk7D5N4vMTbby+Ty1XR63V0dLjZv78d\np/P+BGLq9TpCoQ/v/bpaW7F09mOUVvA5FAr5KiWDn6rB1TCiS9/6HRZFmUpFeihixNXWRnB4mMzU\nVCPGxWIhNDqKIxx+4G15nPB6rXi9d5fOOzeX48SJBWRZJeQzkdAUvJuGCMymyefK1GQdbTt3sJAx\nokoCu5YK9PQ0A1ibbBDVapUXX3yR/fv3893vfhfdTZPQhw8f5q//+q959dVXuXLlCvZPecaDy2XG\n4TCtGxkBaG11PvC2aIqCUq2Sm5+nkkph8/kawavOO7fF4nLR++yzCIkEiiRh8/mw+f1r65NJgfhy\nFodNj6LoKZXqvP76DMPD7w3VaxosLOQZGQkSiTz49/04IUkK774bXSdWZ2dz+HxWdu9+sMG7ialZ\nZs9eoxJbAU2lbcc2TIPbmZgu0NLhp6XFSSaz3gHX4TDjdDYCY+VaDZ1e/8CCRw0mEx379uHr7UUS\nxUb2TziMTt8UwPcDTdMYH09Tryt0hw3kLr/DlFile7iNLZ85xODzR5ldqrCSN7AYk+jyGZiayhAK\nOT5yqvCjRFOMPGJomsZXvvIVuru7bxEiN/jiF7/I97//fb75zW/yzW9+8yG08tHBZjOxc2cr77yz\njCBI6HQQDjvYtOnB592XYjFS165hslrxdHYCkJ6YwNPdjaulZd1rVVVjfj7P7GwOaMQadPd41o1s\n1IpFlk69Teb0OEablbaREbIWP1NTGSRJQa/XoaqNOXxJUpGkWzM2mqynUKiRz98a4Ly4WGDXrtbb\n/t42gmqxyNKZd1mZT6EoJgwGHZl3phj2tKP6G9+d4eEgqZRAKlVB08DpNLN9e4TEcobFsxfJLywQ\nCLnoe2IroeHhB5KBozcacTUzrjYERdGoVCTcbgu1lUmcdiOVXIbZ164S6Qpj3bSduNzC2GySlhYn\nw8MBYrEy+Xz1nsRINisyPZ0lk6kQiTjp7/94Rmz3i6YYecT4y7/8SyYmJnjzzTc/8ML4p3/6p+zY\nsYOvfvWrhEKhB9jCR4/+fj9er5VMRsRk0hMOP5yegpBMUo7FUCSp0WO1WDA7HNTy+VvEyNRUhlOn\nllAUFb/PwtyVLGrBTddQB0arDTSV5dOniV++QmIxg8moJ7eSYOizzxOJODCZDGu1TqrFIk4LGMQ8\n9bLhA0di7oVsVqRUqmE2GwiFHPctruJhYrEYMJkMiOL6qT2n04ymqgjpNKosY/P779kGX0gmqWQy\n6I1GnC0tH+heWy8W0ctVfF4r4uo0o6pqlGIxtj2xDUkUsShlDh9oI1tSkWWVYNBOJlPh0msnmHn7\nIgBzBh2lZIpt6HH2DKyNmtwtqqqh16+/zlQLhbXvsSMcxhn5BEVJ3kc0TSObFRHFRjaU12u758//\nZoxGPZ2dboSigM9sR1xJomllpGqO0myeYiLDs7/+P9PZ5cVo1JPP1zAYdJjNd5/eWyxWOXZsfm0K\ncGmpSCxW4tlnex96zFlTjDxCXL16lT/6oz/i7bffxvYhF8LOzk5eeeUVvvOd7/Ctb33rAbXw0SUQ\nsBMIPLwpK7lWo5rLUVxepl4uU4pGMVqteHt66D50CEWWG+l5gNnjY2oqjcmkp7/LjjB1iYXJWWJG\njatBP6GdT+AJulg8O0mhUKNalciJMj6fSmF+lr17D+B2WyiX6+SWY+iELEPbwyTfOUHB7ab7mWc+\nthHSxESac+eiCIKEyaSnt9fH/v0dWK2P9yXD5bIwNBTg/PkYitIQczabkS2bXMwfO9ZIzZZlrF4v\nHfv3425vv6v9ZqeniZ47h95kQgfk5+dp27173ZTbzRgsFopllWRKYGmpiKZptLW52T3Uht9QZvrH\nJ6iVShhX4zLCo6OIVZmVmSip6QW8kQAmqxmhKDBxLYlifRfdkAmbzcSOHS0f2tNdWMgzMZGmXK7T\n1eVhaCiI221BSKVYOH58LcvLaLXSvm8fwaGhu/+QPwUsLOR54415ZmezuFwWXC4zNpuJzZtDa5/l\nR2Fk0MPUzy+Tu3KGzPXrmOx2WreMsHjyJHazjUoqQb3eQi5XRaeDwcHQPWUNxmLlW2KRbpizPezY\nk8f7yvIJolar8eUvf5k/+ZM/YWBg4K62+d3f/V3279/PN77xDazWhz/M9mmmHIshVSr4+vsZ/6d/\nQlMU6oJA6969VAsFrv/bv1FdvcCbfQE6gwM4xSzK5CLR4ycIdLYRT9epFgVqdQ1h226uXEngsEIk\n4qRalbFajXR1uhl9oh2bzURLyErsShFjVUYrRZGrVWRRJDs9TfsTT3zk95LLiVy4EFsz8JIklevX\nM7S1uR7K9JemaSiKitF4fwyetm6N4PFYWVwsYLEY6OvzocWmyc3MrL1GzGRYefdd7MHghzqMSqJI\nYmwMg9lM7Pz5hjmVyYSQSDD8S790W8M72exC8bZhNEZpa3NRryt4W4KEejuJnn4bSRRRjHakmkp8\nfAqb34/qCKAzGOgeaid7fRoxtoQnGMHpa0eSFCRBYnGxSL2u8OyzvXcMZo5Gixw/vrAW+J3JiOTz\nVY4c6SU9MbEu3VyuVklcuYK7s7PpyLtKLFbihz+c4t13o2QyFVKpCrt3t9La6sLlMlMu1zl8uOcj\nTflVY4uULr9DdmqKxOXLmB0OzHYbvc89R2lpiVDEic0VJJ+v0d7uprvbs+44xWKVcrmOwaAnELDd\n8pu5XbC/qmrU6+otyx80Gy1GvgvsBs6zvoLv/wH8ByAH/PfV132q+fa3v01HRwe/8Ru/cdfb9Pf3\ns2vXLr7//e/z67/+6xvYuk8XN6Y/7nQxqddlFhYKLC0VsdmM9PX5oFRCEkVcHR1s+tznqGQyOEIh\nfAMDxM+fR6pU1kYrtHqV0oWTZLIy9eUZ5FSM5YUZHJ09VBJVbAaJ6sBWRIMLtZQhkSgzMtIotCZa\ngxw/Ps/gYJAWt0I8Po10U7l6aEwXfBzK5Trl8voqoJoGiUR5w8TIwkKehYWG0Vt3t5eursZFdmmp\nwPh4mmKxRlubi5GRID7fx6sibDTq6evzNc7bKpNnlm55Xa1QoFYoYPyQbJG6IKA3GklcukQllUJn\nMCAJAotvvUV461Zatm+/ZZtisYbo7WXkRT/lWAyLy4nB30ohJyBV6wh1A3MnTlFOZXGGfJjcXoZf\neBa/18T4+Bjz71wAIJe/xJYjT9B24ItcjTfOWTxeJpcTCQZvn9EzN5e/5aa0slIina40PHHeh1yp\nIFUqTTGyyvx8nkxGRJZVSqU6mgYTExn6+nwUizUURSOXE/H77/7zUmWZ3Ows8UuXWD59muzUFHK9\nTmllhVqpxPN/9mcUlqMEOloY7Lt9zM7SUoGzZ6NcvpxAUTR27Gjh8OGedSZroZADs9mwzhHYbjfd\n1pTvQbORYmQX4ACeAf4K2AOcXV2nAb8L/GwDj//YMD8/z3e/+13Onj17z2r6N3/zN/n2t7/dFCP3\nAblWIzM1RW5mBp3RSHBoCF9f3y2WyxcuxLlyJbkWPDo3l+OZ7bZGXZp8nvz8PEabjdz8PM7WVkrR\n6Lrher3RSOn6VZxtg8gBD+kzGSqlCkanE01vI70Uw6PUMfaM0uvMYhyfp26w4uwaYKlkR6iUiMcF\nnjnQjq2jB7FYwaRVqRfyaIqCYzWGqC4IjV6uToc9ELjrGAiz2YDFYrzlhvVRh57vhp//fA5JavTO\nZmZyPPVUJ16vlePHF9bs9rNZkVxO5OjRvtuaiH0cbhdnYzCbMdxF3RWzw4HF7aa4uEhhaQmj1Yoj\nEsHm9VJYXLytGLFYDBQFlYxkxxYcpqSoiAmZrlYbdYudq//6I4qxhqgsp7NMvH6c8OhmXEoBg8VK\n+3A39Wyq0VM2q2i69zLKzGYDmsZqYKMJk2n99/fG53wzqtoYfXK2tNzi7Gl2OjE77t6o65OOJCmY\nTPp1sTaSpGAw6HA4zMiyes/X8VI0SnpyEnQ60hMToGkYbXZURUWuSYj5Aj1HP0PVePs4JFGUuHAh\nxg9/OIVOp6OtzcXERAqv18Kzz/atva611cnu3Q0jtmq1YRWwY0fLXaWibzQbKUb2Aa+tPv4p8CTv\niRGAP6UxMvK/Apc2sB2PPF/96lf52te+Rk9Pzz1v++KLL/KVr3yF+fn5j7R9k/eIX7pE4tKlNZfJ\nSjKJpmkEN21ae82NSPQbQgSgXJZIVrwEOjqwuFzkZ2eplUpYvV5MdjuOcBjTzdNomoZBr8Pv0mNq\n6yV/OYRxJY5Jp6K3WbD1DZGLpynWPRT9I2z+wlauTeXJ13WEK40bjt1u4tpkjnzcTGJiAX/AzrbN\n3biMVfyDg5TjcZZOnaKSyaDT6XCEw3QeOHBX1T1DIQf9/T7Gx9Nr7zMUstPdvXHOvzffICVJZW6u\nkW57c90faPT6U6kKHR3312grMDREaWVlzU1Up9cT2LQJ6x3cjrPZ90zN9AYD9VIJIZVCzGbRG43I\n1Srujo47BhMHgw4GBnxcu5ZeG4UKBu209LUzMzuxJkQAbB4nZVGlGE9iMUJri4OsaEEy+VEUlWw0\nRY9SxWSyYzYbCAbtnDy52DDashvZvj1Cb997572ry8PMTHYtZgbA57MSCNhRbcOUk8nGCImmYXI4\niGzffs/BvJ9kOjs9+P1p/H4bpVKNel2gp8eL12vDYNATiTjuylekVpPJ56vYbCbSU1Nc+fu/Z+ur\nr+IIh0ldvYrF48Xq89GycxeaBoo7wvj1EpH2wC1TcIIgMTaWxGw2MDDg59q1FMlkhWRSIBJxMjra\nGN27YcTW1dUwYnM6zbhcG9fJUGQZTVHuqpjiRooRLzC7+rgAjN607r8A/ycwAPy/NEZPPpWcOHGC\ny5cv873vfe8jbW8ymfjlX/5l/uEf/oHf//3fv8+t+/RQK5XIz86us7tWZZnM5CSBgYE1L4V6Xblt\nzzKeqrH1+X3MTcZxHwlSmJ/DYQPvwCCOngEu/9sxdJqC12vFYTQS3rKlEVdSyNN94CkKS0u42jvQ\nu/wkczKaScdnPjPAykqJ2ZUql8Yy+Owa1WQcf8CB19XBsWPLbNoUxNLeS14QmMzY+fwX92Fx25l9\n/fW1Hq6maZTjcZJjY/QcOvShn4Ver+OJJ9pobXWRSJRxucx0dnoeaPpfva5Sq92+B6+9v/rYfcDd\n1kbv0aPk5+ZQajXcHR14biPuazWZ8+djzM7mkGUVn8/Gnk1mZFGk58gRpv/935HKZVRFQanXCQwO\nAo1pmeXlIoJQJxx2rAVcd3a6yWZFuro8bNkSxuOx4uvtJTLUR61QwOJyYPIFKYgG9HodznCEWqFA\nPdc4tzpNw+v3U81l6WgL4fbaGRtLItVlyvE4QjLJ/LsOPv/L2wi1+dGbTHR2etmzp42JifSaoNqz\np60RnGz103/0KEIy2cgqCgQ+EeXp7yednW5GRoIUizUcDhNPPtnB3r3tqKqG02lmdDR825GRVEog\nGi2h04HRaGBysjH92NXlxnDpKkIiQfb6dUa/9CXig4PUhQqRbVup12ScXX1cy9qQlMb00PvFiMmk\nQ9MaU5xvv73M0lKjpIBer+PkyUWCQfs6DyKPx7qhv2dVlslMTZGenESVZbzd3YRGRz9wm40UIwXg\nRvfFA9xc+Su3+n/6g3bw1a9+Fe9qfY7h4WH279+/1vufn58HeKyfa5rG17/+db7xjW8Qi8U+8v5+\n5Vd+hT/+4z/m5ZdffqTe30d5/rDQFAVVuU1lVUlC0zRuXFq8Xisej+UWh9feXg8zMwVOnUmjKEbc\n/i0IZgNyyU6hUMWxZT/FxQXKFiMDmzbT/oSD6NmzJK9cIXHlCr7ubmShTPStt4ns3MHAoaMIkkQc\nFaNOYfeQjQuvvwNeGy3uThYmNKxGI9msSDpdxWAwouWhKGqYjI3pGZ1ej85gIJsqkkwK2NIKcssQ\n7V2BD03jM5uNt8RVPEjcbvPqZ5pdJ/58Pus9FRq7F1wtLbekYMP63t3iYoF4vIzFYqBWU4jHyyzZ\n9KixOFKpROuOHeTn59dGFBRJolCocvz4PJmMiCSp+P1WNK0RKGww6LHbTVQqEhcuxKlU6nS3+ujZ\nu5Pk/ArZgkKhqDC0vZNQbycWp4Pwli3Uy2UkQcAWCNC6cyeKWmV0Z4DllIKiaJQTCfJzc2iqRjyb\nZeJtyNtFbH4/FpeL4b17GRjwU63KeDxWjEY91UKBermMyW7H19d3m0/o8eCGYL1fbsSaprGwUGB2\ntvFd9HgaI3b9/T6MRgP1uoSiaASDNsJh521tBZaXixw/Po8gSIRCds6fj2GxGAmHHRTyVQIGA9Vi\niav/7b8x8h//I672dmqCgKbX0/3cUaaFAMl0mS1bwredovR4bOzb186VK8k1IWIy6Wlvd6FpjRHF\nB2mImJ2ZYentt9dKB8RzOeTqBxcw3Ugx8jbwn4DvA88B//WmdS6gBAQ/qA1//ud/fsedv39K4nF8\n/tprr5FKpfjyl7+M4X1xCfeyv2eeeYZXX311XSDjo/D+Ps7zj4okNW4Q+XwVl8tMa6vrruILLB4P\nzpaWdRkV6HT43xczYrUa2bOnjfHxNIJQRxAkOjrcdHa6+elP55Dlxo2zUKhRqdS5eDHO9u0tzOUs\nOFu3UAOWSzaeGG6l97nnEDMZrD4f5ViM6PnzBAZ66dy1g8LlMyyPLyCIJvr27sYcNGO37OPs6SWi\neQO9I17Ks0mWlmREUcFg0CMIEvl8lUjQgzncTiEnkc+LVC0uarpl9JqZS2Np4qkaBw50PTCDr7uh\no8NNItGwtw+HHWzb1oLPZ2Xfvg6uXUtSrSr4fFZ27Wq9bx4y1apMLFaiXK7j89loaXGu81JZ17tT\nFDybt3PuUoUrY2nsdhObNgUaQYyyAZsGC8ePo9br2INBVFluVOV1OlE7zKhqY2rN4TBht5v44Q+v\n097uIhCw43ZbeOedZQqFGkcOtjB35hpGnQ2r3YpbEnBuGcE1sgXVZMdgMq1NuaFp6PR6asUiJocD\nu8uOPtMYlRESCbTVKTZVqmNyuBDECm67ndzsLCabjc6nnsLhMKNpGsmrV0lcvoxUqWC0WgmPjhLZ\ntu2xcleVZZXp6SxTUxkURaW/38/QUOBjxxfNzuZ4881F6nUFVdUYH0/x9NNd2Gwm5ucbwcCplEip\n5OLixQRHjvQCGsViHbfbTDjsZGwsuZadBg1xYrMZ8fmsKPUaztY2/IObyF2f5No//RN9R48yePAg\n5mCEpaUCdau2VpDzTjz1VCc6HZw6tYSqarS2OhkY8KPTNaY+BaH+wPyXMlNT62oYARSWbg0Sv5mN\nFCMXgCpwYvXxWRrTM78N/BmwBdAD/9sGtuGR5lvf+hZf//rXbxEi94rBYOCll17iBz/4Ab/zO79z\nn1r3+KEoKmfPRhkfTyPLKnq9jt5eL0891fmhIwE6nY7W3btBa/QqdXo93p4eAjf5KyiKysREmvHx\nFOVyo/DVU0910NPjo1aTb0mPq9dVKpXGyIqqahSLjaJn2WzD4rteLhM9f57omTM4W1pwRiK0bNvG\ntX/8R2yBAJrBRm6mhFWp4Nv1FKd+dAZFbyFXL9EVNpLPVGjrCJJLFqkUBDYP9SFXq4h1D1diFq4c\nv0p0MYus6njm+RE6tnUzGZOoVPIMD9+bP8FG8/zzfWQyDafRQMCG2dy4NG3eHKK310u1KuNyme9b\neq8oSpw8ucjCQgFV1TAa9YyOhtizp22tR31z787iD3Dy51OcOFekKDXmvxcXC7zwwgA11UDftu3k\nJ66Rn58HnY7wli0UFhfxbN/HyZ9PcfnMHBYTuIMentjXzZM73FjtNiz1LJpYpRBLEewMoSXmuPiT\nt0gkKzx1eAiDz4WrpYXFrJ5AtMTQUBB/fz/FpaW1+Ba9yUR4dBSTzUZLC3i8VuKrM1l6mwOrx8/i\nUoGlqRTbTJ0MhDsorqwgiSImmw0hlSJ2/jyy2PheSoJA7MIF7OEw7sfIbXV6Ostbby2uxcKk0xVq\nNZknnrg7r5jboaoaExPptewTVVWx200sLxeZn89z7lwMWdbYtatlTZy+8UajU6IoGgaDjt5eH+/X\n/SaTgXq94ZpsqFXRTCqOoJ9KshGjlJubwxWJ0N7ejrWa5cCzT+Hz2z/w+2+3m9m3r5NkskIiIWCz\nGRFFiXSn7nLUAAAgAElEQVS6QiolMDOTZWDAz9at4bXf10agaRqaeu+pwhud2vvV9z3/7dX//8sG\nH/eR5+LFi1y/fp2XX375vuzvpZde4jvf+c6nWowkkwITE+m10QlV1ZidzdHT46W///bmUzdj83ob\noxW5HHqD4ZbgxaWlAqdPr6ztv15XuHIlSXu7G5vNRHu7a53VuNVqpL/fj16vQ6d7LxylpWW1CJ4k\nEd66ldjZs5RjMcxuN4nLl1ElCb07gN5gY+CJTqrlMgvLAunFODodmPwmpk/E2PHSZ6iJdWoLSbr6\nQkT0KYSpKhPydlay4B8cQmCFak1hoWAjrLqQ5dJqT2njrOMVRaVeV7BajXc9+mIyGWhpuX2mgM1m\nuu/ukDduJjfOiSw3hGZ3t2etHdlYBtXXjoU6stnB3PgMXoebck5B1RkQBInFxTyHD3fjsqmERkdx\nd3Y2RkUSCWyBAEvxGlePnUVI5ojFExitVnS1/ewcsmGXNMbPTOIaGCF+7RpP7T2EOL+Ex21BECTS\ny0l0eh1ipYZv37NrTp/ujg76X3iBwtISqizjbm/HtWrO5vPZOHy4F5sqsDSxgMUfQMkluXLsHLZw\nK5fOzCFtibBn1Id+taZNNZdbEyI30FSVarGEySfd03l8WCiKyuRkmmpVplaTMRoNWK1GZmZyjIyE\nPrIzqqqq69x6jUYDvb1ejh1bwG43oqqNjkY8XiaZFHA4zJw4EWuk4ht0KIrG3FyOgQE/fr+1EUzu\nMLN5c4iZmSxGnUo4YGXhBydQy3k6n38RGRNqPkFqchLfpk1E+toJhe/s5nszTqeZo0f7GBtLkkwK\nQCOOJJWqUK024p1umLNtFDqdDv/AAJVUap0ocbW2fuB2TdOzh8Rf/MVf8Fu/9VuY7lORq+eee45f\n+7VfI5fL4fuY7puPK+Vy/Zbg0hspjneLTqfDfgfXzIWFwpoQuUEmI5LJiLS1udi6NYIoykSjJQC2\njvgI2WssXo/h8tsRdE6sDiv9/avnR1UJDg4y+vLLZKancbW1YfV6kdq28tbbswjlIoHOVp48uhtE\nGy29bWjlHGoxjRLsIZ8uMuQv4/XnsDkMCCtlJmI25LSbd99N09XlITjQy+Jigflole2rvTuvd+Pi\nLhYW8oyNJSmX64RCdrZujTwSaYPvJ5er8v442FpNWRvJGh9P88aJGPlYGm/AyY6nWrHYzNTLZYaG\n+8jmJep1hUjEwchICL3iwdPZyfwbb1CMRtEbjQy+9AV+9m6cQl5ElhXMdhtisURybhHnnu0kz76N\nJ9yKzaxy6MXdpNIi+ZkcicU8Ho8Vf8BGqVTH4TTjclvX+YY4wuHbVsutFgrY6nmOHOmmuq+NN14f\n58p0DFukHZvPS61UYnkxz4EXtmFYrWVjtFjQ6fVrNw6j1UrV1cbJc3mkS5P4fDa2bQvfUSw+Ctyw\nZr96tTGlZzDoaG9343CYUJSPbuhlNBro7vasjWZCw/bdZjNiNhtxuy1YLEYiESfxeJn2dhcOhxmD\n4T3xpigaOp2OdFpkZiZLMGhn//4O9u/vIJ8rY1XjtIwOsZJW+enrk8Rmlgl1t/KZV49QXFwkNDJy\nT20OhRwcOdJLKiXwzjvLJJPC2miRpsHMTPaexYhcr1NJpVAVBZvP94GlDgD8g4Mo9TrZ69dRFQV3\nezstO3Z84DZNMfIQyGaz/PM//zMzN8cnfEzsdjvPPPMMP/nJT/jVX/3V+7bfxwmn03yLoY9er/vY\nJlk3uF1tFr1ex41pdbfbwpEjPWSzIjpVoXjtHOWJKG4ZKjmJSFc7gwefxupoDPM7wmEK0Si2PUfR\ndRykbtbhDli4/Ff/SmIpTSWVInp5HFmBz/xPLzF8cAfF5RWMlq0YLFYCXiPlyUuIK1GMlq2MT+So\nKXr279iPzyYj5nKU8mZAT1ubG0VRUVWVlhYnb7+9RDYrYreb6O310dvrxWQyUMlkUCWpkZZ8j+mc\niUSZEycW1nqShUKNQqHGCy/0P3JVRX0+K6JYJ5msUCrVcTrNdHa6cTjMxGIlzpxZoapaEIUqlZKI\nhIneLT2MX14hEHYTiugwGHQ88UQ7VqsJMNH/wgu4u7spzM9j8gXJiGaU8hK5dJl6qYTDacEf9hIM\n2PAFXaibt+Boa8NlUTlxReb82WV2DfYRX0wiywpGvUbIrad/ay8OTxV9OUlVtHJtPM3ERAa73cjw\ncIihoQA6nY7c3Bwrp09TK5XQGwwERjZj9EZo2+ekLlQQ4nHMbi/29k4Umw9RlLDZTDgiEVzt7RRX\n5/RVd4TT5zIYQjZM1trqeazywgv9j0RBtdtRqUiYzQZKpTqqCuVyjYWFAt3dHpLJ8pp4gIZp4dxc\nnnS60kjdD9oZGPDfcQpkZCSEomgkEmWKxRqRiIMnn+ykUKjS1uYklxPJZquN1OwWJx0d7wkXRdEo\nlWokk2XK5TrBoB1RlDl7NsrBg51s39FG9koCoW8f16bGsA/tYNvWrSxenuTidJU9vUa87xu1uluM\nRv2aCdvN3Gtgb61YZPHUKcrRKKqiYHG76XzySTxdXXc+ttlM686dBIeHUWX5Q8ULNMXIQ+F73/se\nn/3sZwnc55S5G3Ejn1YxEg47GB4OMD7eSFm8MV/b1nZ/enTd3V6mp7Nr5lLQ8N8QRZlTp5Zwuxsp\nsKGQg8LiIkKpSkwOEIsW8XjduFQ9tVwaq6MDAL3BwHItwL/8f1dZnEliMJvo6Q0ycuhpUtFsQxT4\n/chGO/Vigf1PDzA+7iWfzNHa6mTXsJ0LP5vG7vGRTZUoZfJs2txGxCFhrWY4dXyKtq4g3bu30N7u\nwuezsrRYYOxyHB0q755P0t3tQSjXMShVTOlZ8gsLjdosHg/t+/bddW0WgGi0dEsBunS6QjpdeeTE\nSDBox2w2Eo2WkCQVUZTYvDmIw2FiaipDva5gD4dQFRkhkSCXzHHghW1YAiGiiSrlskRnp5taTaFQ\nqOLxWNEZDBQWFqgViyREOxPji7SFLQwMR5i8JFIpV+nsaWf/C7u4Op7h6oU4Dm+FruFO7CaF1oAR\nW9cAL/yPQZSV61TTCbq2DbL05gmSk1O079mFPHCAN84LFMsKFoPKpYtRvvTyVgZ6nETPnaNWbGRS\nqLLM/NnL+Hv3MDYp4XQ6sHf1kUoLWH1+roylsM/m6Oz0Eg7b6Xr6aXKzs4iZDEk1iD5gX+eNk8tV\nSaWER1aMZLPV1RiuTs6fjyEINUZHQ/j9Nt59N0qpJLFrV2Oa4OLFOPF4mbGxFPPzeUwmPQcPdvHZ\nzw7c0nFRFJVkUqBcrmM06tm2LUJrqwubzcj4eJpaTSEQsOP1Wjl4sBOr1UgiIXDlSgK73UShUKOn\nx8ulSwmi0RKRiJNCocr0dJa+Pi8eLUe8bOJf/+UyE2MxqvkcLe1+jn7uMMvj81S7g3g/YnC/12ul\nq8vD+Ph7JnZGo/6eXZQzU1MUFxfXnldSKRbefJOhz3/+Q0XGvXRommLkIfA3f/M3fOMb37jv+33x\nxRf5wz/8QxRF+dhBsY8jBoOePXva6ez0UCrVsdmMtLQ475tbZ0eHm2ee6ebatRSVikR7uwuTycDP\nfz631vsIh7McOdJLVaxxcUJg6moUh8tKdCnPypIdf18Png4orqwQnZrnx38/TjZapKWtnbJqZSUu\nYDLpaBvqIeVwYrBY0WQZfVUg5IH6cBtL1KnmcsxeL9L/i79IMZ4kO1egrSvI8IEdJFcybNvRxtCW\nViqFMh29NuYKdc6eWUZMxHh7IsfI5hC9AQM9gTq6+fMspzTK4+fxd3dicbmopNOsnDmD7bOfpVYq\nIZXLGCyWD6xme7MR3M1sgC3IxyaXqxKJOPjc5zYhitKac2YiIaxVQTUYjXg6O1er1mqEu1sYCdga\noyZVBUGoc+rUEi0tTp57rhcllyQ/NweqSsHqJr6SJRhoYe8OH1t3tCOWKozu6kZCz/i1JGavn9jE\nBKlYjv4dmwi2+qkqRozt3Wi1Mv5whOs//THzp86g0+lpe+ZZ/u3v38LbP4C5lKeUziHMG7jYZqQz\nuJl6qYTBYsHg8pEp60jlsoRKaZ7c183khRnysTSj/X4GW2VSNYl//dcZnE4zW7aE2bYtwuatW9Hp\ndFSuJjHP1G/5zB7F83gDg0FHJiPi8VgZGQnR0+OlWKyRy4no9XquX88wNNQIME2lKszN5deybioV\nOH16hdZWF4cP96zb78REei1OLJsVee21GQ4c6MTpNLFpkx+Hw4LTaaalxUGhUOP11+cwmw3s2tW6\n6pUj4/fbOHlyEU2Dyck04bADnQ68dtCqIhd+fhGDpCEkkzhCQTJFmVhOw+OzEd66lbo9uCZ47wWd\nTseuXa3Y7Sbm5vKYzQaGhgL09nrvaT/F5eW1x+VEguLyMkarFXswiH9gAH9//z3t7040xcgDZnJy\nkoWFBZ5//vn7vu+Ojg4ikQgXLlxgz549933/jwOKKGAV4hjrVeyeEGbz/XUN7e310d3tRZYVisUq\nr78+t1aG3eez4nboySVzyJKZclli584WjGoVq9uN4vCRLhuIFAosvvUWBdlOOpqlmCpRFUSCIyPU\njA6qso6Ax002VcZotdDWHcKmE4nGdSzXK+QFEAsqizNJPv/KbgZGKnh2Ay4/7xyb5OqFGWamswxt\nbuPpA63Mn3oH346ncLW4UVu6MLk9GHQqAyGFqX//MW39HdTFJLpMGp1cJzgygtFioZrPk56cpByN\nUoxGETMZAoODdB48iPM28QptbS6uXk2ts5H3+22PVNYONGzy1Xwcr76MoNkQVG11yB5EUaatzY3H\nY6FQaGQ/GcxmWludhMMOkvEiWi6Okk7jdjhwhgKsxPPMTyxjSV9HzOXIz8/j2B1EEkWujSXp39pF\nR1cQg0FP60ArP31tGld7O5VUisimfoKdrYS6I9jMGg63A4Mqkjc78LV5WBAaGTMGA8hKo6demJkm\nmxVQtIZomrk0jfhMBHswSKZm4+y7UeKxMm0DbdgtYXxmie29eqbLAuWpZcamFPRdIyiKnXS6Qi4n\ncv58jFDITjjceJ8Oh2ldKqrbbSEUerTO482EQg4iEQdLS0UmJzMIQiNmyeu1kUwKmEx6FKWRvWKx\nGBqVmreEMBj05HJVMpkK8Xh5XfprrSYzOZlBllXqdZmlpQKRiANBkFZHQCps2+Za8+I5fXplzU3X\n5TJTKNS4eDHGc8/1EQzaSaUaU4J9fT6G+xz0hDSKC2lChjz9ezrZtecwb/xshkTJSKmisuPQPtI1\nO5d/urAqJIJs2xa57XTxnbDbTQy0aIS1KqgqLqsVHfcWU2jxehGSSWrFYsMUsF7H7HQiCQLL77yD\nxePBEQze0z5vR1OMPGD+9m//lldffRWjcWM++ueff57XXnvtUylGxFyO+ePHqawWijNYLLTu2kVk\n69bbvl5RGrn3VqvxrlPdCoUq2YyAVJepiAr1ukJrqxO/pUp1+hz5t6dZ7G4jvPcAYb+R6Jl3WJzP\nEF/O0DbUy+5X/gP2movs9evo3X7aW+1USgJiRaSeyxKvWDh0eBs2xUNNgZ4eL32ddpRSHsEYInp1\niuz0NFavh9z8POd+IrOj34CldwvLBZWrl1dQJBmX08TiTIxLDhjtCqAZVC6fnmHh+gpFzU2k1cVo\nT4hKMo1t+yZCw3sQsoMYjDr0LhM6uYqqKNRKJaLnzpGZnAQgeeUKtVKJLa+8gvGmYXxNVQn5zRw+\n3M3Fi3EEQcLns7FjR+QjZzJsBKVYjIU33yR2fYmJyTTBvm5adu5nIdmoFxMM2vD7bRw+3MPERJps\nVlyrVmwyQvryOcb++RgaOqRqFU/AjW/7HpYvJvBVl2jdtQtJFKnOjzM4PMz1hSrLeRP6kJ2dO1vx\n+gwEQk7Eheu0hJ0MDoVQotPUx84T6OtCM/Xyw3+5zPLFa3RtG2J097OEKwK565Po8nG6BrqYuXid\neg3MFj0Wm4m+Xi9LV6Zx9gzy4//rGLGlDMN7hzl9OsrrxxJ0h1S8RoHNW1pJRWNImkpxbIJw/5Nk\n8o0Kr6Iok8tVCYedhEIODh7s4uLFRuVmj8fK9u0teL2PpiW8KErIssrBg11MTmZQFI16XV4rXGcy\n6env962KCAO1msyJEwtcv57DYjGwY0eE7dsjWCwGTKb3bvT1ukKt1hDWlYpMd7eHmZkcFy7Eb5r6\n1XA6TYRCjnWB8pKkYrMZqdVUMpkKzzzTTTxewuez4XYY8No16skVMmMX8LmMLL3+I3RmM7905BDX\n8l56Rrvxhdxcv96w7a/VFC5ciOHzWentvXsxkZuZYfHkSZR6QyStiCItO3bgam/HEQrdsdzBzQSH\nhylHo5RWVlDqdYxWK5Ft25BEEUkQEDOZphh5HPnRj370gWZuH5cXXniB//yf/zN/8Ad/sGHHeFTJ\nLyysqzqq1Gokx8bwdHXd8qOLx0tcvJhYDeI0smVLhIGBD07/nZ3NcuzHV1icSTK/UKCrx0/XYAQx\nI5JdOUfx2nmqmpWzJ6fYuZIDp59cWSORljDanaRX0kjJZeK2MInL1zAZNEaGD1JIGliJCtTEKi1u\nC3algsFk4tAvbMOlr+ILOBCVdk7+wyXiF6+Qm5uje+coQ09tp7XTg1xdwJhPIIjwC5/fhhhdQENH\nuqgxO5Nl6NlnuHwpQSEWR85nae/3ozPoGZ9IM/zUVnTeMOcmKyy+ew1NltjyzE6e3NuBzaggiyIG\ns5nI9u0UFhao5vMkrlyh5/BhvN3dQMPMKHX1KrVSCXsoxOF9m9HZPdjtpvvmgnk/UGWZpVOnWHzz\nTeR6nYDFTvTCJWxeL22Du+jp8a65VEYiznWOleVkksU3x0i8c4pybAWdxU6tVKK4tERwoBd/0IdS\nlqkWCnQceAajw4EsK2x7to2yYqPNXUedfZep69cJ2oLUe9oolGWm//01Zk+cpLPTw/JbJzEE23n2\ni6/wg0SC9Pwy1+QQu57YT3FuGnF5liOvPE9FqJG7ME8uL7K5J0JmOcHFjIFNLaOkFRfDT7ayGKuz\nFBOxWIyIigNdTSNfNdIy2EHs2jRyFcxGaG11odPp0Ot1WCyNkZa6IGDOzrHZnkP1WAn1ePG1P3qZ\nNPW6zNhYiunpLIqi0t7uZufOFrZuDXPtWoqpqQwWi4GWFg+zszmuXk3R0uJkbCyF223FYjGgKCpT\nU1n27+9gdHS9/0Zj+sVJqZTF5TKTyVSYnMzgcpk5fXqFZFIgl2uYK/b1+Rkc9KOqGjodlEp1PB4r\nQ0ONa8qNVPJ4bAGllOc3/odRXBRx+H0osSSugIvpt88jxKM88ZWv0Le/k3/793lEUcZsNmA2G1AU\njVisdEcxUhcEyrEYcq22ZuOfunZtTYjccOUVkknadu9GU1W6Dx1aK6x5J1wtLfQ9/zz2UAhHJIIj\nEkFTFKr5POh06O9Tx7opRh4g8Xic2dlZnnzyyQ07xqFDh3j55Zcpl8s471Ck65NGKRajuLJC9vp1\n7MEgcrVKvdRIr5WrVaRKZZ0YKZfrnDy5SDZbXXv+1luLOBwmWltvf9EVhDqnjl9n6eo00Swsz8SZ\nHZvnl351N4GwjktvXqU7YiO6UKBSrhEdv87IM3spCxJ1TYfLYsbrMiEszRNTZOyhCOmzp3CrGgeH\nR7B+7gC6YAf5eJoz//hjJKOdzb/wHKPbuunudpB76xTt7U6mjhXoGOzA7PUzPlujUBOxSBae2zFE\nMJbl3f9+AipFlJqItyXEZ754CDWf5PrPjhG7Mou7NYLPLqPXFTGavAzt282bx+cpZisER0aQymVS\nBY2cMYzTnGHs7/6O1LVrOFtb6Tp4kPTkJCarde0CJ6RSLJw4gSQ0PA2quRzVfJ7+55/HYLCsVTLW\n6fV31QvbSGqlEsmxMaq5RjUKh1miv9WBT02z86k23L7b/14USWLl9GlUWUbNxenu9hGNC1TEMk6v\nh5DPiNOicu7kGUwOJ7JQxGg2M/KFl0hNreDv6WT69AQunUBuOUpeTpFVnGzeN8KJvz2H1WYGoxmr\n20ZqcRklvUKkM8zy5CKiKNFx+CihiKuRUhn2cPRQBwN9HqS6zPLkIud/tsS+X3mJsbE0uaoFyeon\nX1wmlyoSDNqpl1Ti596BXJRfemUnttEeZEeQ+YqCbbV0fFubi0jEiaZpRN99l8zU1Nr7r8xNoj9y\n5CMHUm4U169nOXcuuhbLMjGRRlFUDh/uYc+edvr7/UiSwptvLlIsNr6v1arC+HiKTZuChEIOstkK\nZrMBp9N8S2dEp9OxY0cLoihTq0lEo8W14o0rK0WMRj2LiwXGx9N4vTYKhSpXr6aQJIXNm0NYrQZe\neWWUZLLCP/7jtYZ3TLLIkX1BWsx5Fl87Rub6FHK1iqe7h71feJb05CTmSgIxn2diIk2pVMdsNtDe\n3jg/d4p/q+bzLJw4QTmRaBTitFga1aJX/WGUep3i8jJKvY5UaWQRidksubk5pEqlkYIry3h7e/H1\n9WF4n+WEIxSifd8+lHqdciy2lgZuDwZvm2L+UWiKkQfIT37yE44ePbphUzQADoeDvXv3cvz4cV58\n8cUNO86jQm5urtHTrVYpLC5SyWToOXIEg9mMUq9jstluqZyayVTI5dZ7j9RqCtFo6Y5ipFiskV5J\no6kqhVyVUjqHKktMXpyn/akQsiSj2SMsRJOYLWZqqglZVmhtdSHVZRxGCa1SxOrxMHt5huee24yJ\nOmImg7maoSNo4NS5S1z4+UVURWXboe206BIk3xzDvuDG7HKxY9RB8Lc+TyJd5crlGP8/e28aJMd5\nn3n+srLu+z66+r4PoNFA4wYIHiABUqYl0RqNLVvhmRiNx+uYWdmxduynCX/b/TJryzEbnghvxEg7\nY8tjWaKsGzxEiSdA3EADfd9d931fWZlZ+6HBFimSNrUiAFmjJwIRlVVdeN/o7Mx83v/7f56nv0tP\nbHUTxexkJapgjq6TiuaxWnV4PF7qlTrKzhK6oJljJwcYG3GiCFps3Q4EjQZrwIertwdJjaDRaNBo\ntfinD6C3mElECvSOaOg6epRqKkU1kSC9sIBndBSTx4PpnpdNORbbIyLvoJ7JUM9mUWWZxPXrVBIJ\nBEHA0ddH8OBB9OaH03vw0wF7iiSBJKFHwmT88IbvRqFAI5/H2tVFYHoaT6tF/34tsbuLGAxawgMB\nYnOL6MwW5GKGwnaEdktG7ogMnj+PrlUid+0tmnYTotFMOlEkEdti5lA3FpOIXgOl7S0Uqx5NR4vZ\nakBoJmnk8wSGenaP3W5soRDL1xexe+2YNG1iy6vUKypjZ08zH9NgLBSYmQmQydSw2g043FZ0Qhuz\nARS/G1/ATmXpDj2PPo6trw/DnRgdp4Fwv4+BARcmk456Nvs+22613Sa/tvYLRUY6nQ5ra/n3NdXG\n4xWKxSYulwmXy0QiUdlzPr73TcxmPalUlakpP+F7FZ+BARcazfuN3VwuE+fODVIoNHG5zGQyDS5f\njuJ2mzCZdLjdRiRpdwtFoxE4dCh4L4NIYXjYzcCAm2KxRbMpUy63OHWyh19/xMj68/+D7MI8HUVF\nkVpU4zG8oyMIg72oikouXSEctjM3l0KSFDY3iwQCVnp7P5jQFzY2qCaTe8dKq0VmcRH34CDVRAJF\nklDvxYXYurroqCoanY56Ok1mfn7vs3I0ilSt0jU7+74xjHY74aNHyS4uUstksAaDeMfGPpJs96Pg\nV2TkAeLChQs888wz932cc+fO8dJLL/3SkxFVlknfvbsXwGT2+WgUi2Tm5wkcOEC7ViM4M/OBF4sg\nCPfCtHZL1O22+j7L5nfDYNBiMukoi1rCXVZ0SpB6XcLhNKGa7BhcLqrlOuVCjU6ng8Xnxdw3ij1R\nwV2q0UhlCY8NoA32M2B1snlrHqvdjdPjxWi10CoVaJWqqIrKsfOz9LpkYj/8Dk6fk9W4iVKpwdSz\n5/GGfWi8erYiNSLJGv2z+9FZbJRzJfTNOgcOBCiXGthsBhzdZmxqiUosT/XOKrLeSXi4m2b0FsUa\nWEsO9KMORk4dIhktgkaDqEjklxexe1RW1+bRaLWMf/rT7Lz5JhqtFt/kJN7RUcz39og/zPZZEEUS\nN26QX/tJFmZmfh6dyUTo0KGf46z//4feYiF44ACVWGzPSt3odOKbmnrfSvDd0IgiFp+P0vY2xUiM\n9PomRo+PvqOHENU2WpOJSq5AR2oQn19GltqYXU6Udpvc0hJSV4hKKoNSM1IvlfGPHyQWAb3bR3i8\nj1vf+A56ox6zaEdr99AqlejfN0BXv4+xo5NITRnFFiJ6e4HVS8vILRnrwCDDTz7Ba5dyXLteQavP\nMTrmIxj0Ew7b0YkdLFqZVjYFrSqDhyaZGNSSn38b4/omFruRPmuF3uMH7qmFdqF2QHZ2ozq1GI0C\nOrmGlN8llr9o+CDyYDTuuqKmUlUMBi06nYhWq9kzQ5QkhZmZIFtbhb3vBINW+vo+XGGSTNaIREq4\nXAaGhpwsLmbIZGq43UYeeaQPnU7Dvn1+mk0ZVVXJZHYN2DY2Cjgc+r1elFDIxumJDko5T+zKFZr5\nHOq9HoxWqYSo1+ObmEAw29jIdRgddeP1molESjgcRo4c6fpQA8Hau7an34HcaGDy+bD39lKORjHY\n7Zjcbjyjo9QzGQxOJ+VY7D3uuh1VJb+6imd09APvmxafD4vPtxse+jG78v6KjDwgyLLMyy+/zJe+\n9KX7PtZTTz3F5z//+fs+zsOGfK/k+A50JhPe8XE0ooh/chKT2/2BJUSfz0wgYEaWO/ea1BT8fgs9\nPfb3/ew7cLtN7D8ySGJxjfrGJqWdAsH+IMePdxOviEw8cYryxgoHT2uotgR6T53k5TmVoaEjPPO0\niXZLoq2zEllPIZVLXP/RImaLnpnjQ+w/OEt1e4OJPh39+84R9OiZ+9rXaRYKRBa3MFoMGEL93L24\nQODUo1y+tE3H4KYm6vi7b+9w/GQvwwNWTHYrumYet9jGYgbR6sDkcrDz9hUEg5Hw5ChXv/oNDGYj\nfb6+QyYAACAASURBVMdmKUdiRK9dY/r0OYyCgiK3qVc7OEaD9LvbpF7YfQhp9XqGnn4aAeh79FFM\nDgfNUol6NovWYOA9XvfsPuA1Oh3Ve0nU70ZhcxP/9E/cPx8ktAbDboy5IFC555JqCQTwjIx84L53\nu9Ggo6qY3G4QRaK3F4nmVNqyC02yCfEKE7/+a+gNuyvvbCJPuSxRr9QQMlWGzz5GcXMD78gQRrcH\ntd1E7ojIzQZDR6bYyBvpfeRRqqkMrXwat99J36OPITfr9IY9JLMpbn1tGddAH0aazN2IEQi5qZTq\n1DI5hESS8GAXeqsFm03H2JifdLrCk08NICU2GH+ul50VqMRUXDboFNJs7aTpPt4hcfUKXY88Traq\nodgu7yllri9UuHalSCRWRe3AkSNhwu4upoYGHui5+qcgCAIjI549d1FBgEDAgtNp5BvfWKDRkPF6\ndxuoJya8bG+X9hYgo6NuHn20j0KhiSCA32+mUmnuKXDebX62vp7n4sUIjYaMTqfhyJEuvF4L6fSu\nBHxnp4her+X5519hdjbEqVM9+HwmenvtFAotXntth3DYxrFj3ahqB0N7mXqlhMFiIbe4uFvBbbWw\ndXejs1pxDQxg6h3khX9Ikk6n8fvN9Pc7MRq1/2gkgsXvp7S9/Z73tCYTZo8Hx5NP0shm6T52jFIk\nsrvN0ulgcjqRm03k+nsTyFVF+SfJ5/2IB/gVGXlAuHz5Mr29vXQ9gOCpgwcPks1m2dnZofcfccn7\n5w6dyYTZ66VVKu29p9XrcQ4M4Bkb+9ALxmzWc+BAkOefX2RpKYteLzIy4mZoyI3P9+F9NhMDJuQn\n+tjwCwinwevU09ye48CRE/ztl2/RPT3KxG+cAr2Zt6+nqNUk2gE93/rmPDajjGtgiCsv3ERs1zn2\n+c/iCvkJ9gfRhUOMH9hHZmGBuinA0htXScZKNMtVKpUWwz3dTD5xnFZLJnXrNrMT3awkRez1Dsl0\nlJs3k3z6U4/SSbVYvjiH2CwRHvBhsFsx2AKUJR2KxUs5mcaoA1FQKefKmDw+1pdTBI5UWF7JcvNm\nErMBDkzYqSVzDEwcpHTnKrV0mu4TJ3BOHiBVUKmubaJmIpCLIIgi1mCQVrmMIAgYHA5CBw9isFgQ\nPsDrRqN9uDkn7qEhNDodZr8fAbCHw9h7et7zM7IkkZmfJ7+2RkdV8Y6N0a7VqHQsLC1vU28qCFo9\n6/ktpO4Ep0+HsfQO4RxIsz23gkbU4hsewOjvor2VoJivE3j8GQxSiVxdS0vvomdohHobkpEOY598\nFp0q0WnWSM3fRRS1INVZuXSXhmjF3RMgsbyM0+2j2VJpKSKKLBMWKgQPhrlxI47fbaTVkhBQuH0j\nSo/XQGlxiY4k0T0SZv0H38XZN0DP4YOYzVrykRaRtMrqwg4ajUBXl5Vw2MHKSp68bGYrkkCuN6jV\nJM6eG8OS0xAYeTjn7MMwPLzbMLq8nMVq1SNJCt///iqxWGXPDt5qNSBJMrFYBVlWGRpyUSw2mZ9P\n43Sa6HQ6fO1r84yPe7Ba9fh8Fk6d6sFs1pPL1VhezmEyadHpNMTjFTKZGuPjXvx+C9HoLsF56aV1\ntraKhEJWtrZKtNsyi4u5e1s5Iisr2V01kl2Hq+mlsV2i59RJ6tkMpe1tBEFP6NAhnH19tKpV9IKe\nVkulUGhQKDTY2ipy4kQ3er1IMlnF6zW/T97rGhigHIns9Yy8o3jRW62UIhFqqRQ6sxnv+PjuNXCP\niOeWl0lcv/6e/8vs9WKwf/jC7H7hV2TkAeFBbdEAaDQannzySV5++WW+8IUvPJAxHwYEQSAwPU2r\nUqGRzdLpdDB7PAQOHPgnH3iJRBWLRc/0dACzWYfDYWBzs0A4bMNmM3zgd+rJONZ6gpkxM7nNLeI3\ntsgn8vgnJgiMDZHMq+y8kWJywsfGcgp/yM7c9R3a2TzeYyMsLmaRDC5mTk2zURVQ1gWCtRpHTHUG\nDodxWf2s/+g2O9tF/CMDrFy8TnBsiCOfOc/aq2+gMZrpWILc+t4qY6cPMXp2ApvNwOxsiOW7UeZ+\ndJvRvjF8bg0dhxNHf4hqpUZF42ThepIjx/vIlxWCXQZ8QQf5qoTXaWR9o8hbL99FUiBbq5NZkXji\nsT7Kbj/BQ4cQtVqsEzO8PVcmEY+RujuPQZA5frIPh5Sg0WrhHR/HOz6O3mLZqzK4hoZI3ry5VzUR\nRBHv2Biah2jIJ2g0uPr7cf0j/Q+55WXi167tzTu7tITSbtNWBQxmIxIq5YqExtRhK1LlQLVDJp7H\nPHWcJyanqKZSVDJF8ukS+//lc0TWM+RXV+ib3U+5reHWSpO3v3aRM48N8ZufPUV+J0KrVia7fh2j\n1YPNbaVZbxKeGEDr9uMf6UduNFlezXP9eop6vU0gYObA2aN897uLIEvUS2a+//dXGT80RL9X5dvX\nb/PkuXFWX/4hLreFR3/3U5gtOor5GoooY+m30RZNaLUdTCYdzabC/HwaWVbJFdpY/UGUtkRTFDF7\nPWxtl9m3/8FF0H8UaLUaJid9jI662dwsMj+f2QuHU5QOBoOGq1djSJLK4cMhisUmCwsZhofd3LqV\nolqVGB/30m4rrK0VOHYsTDpdY3OziMNh4Mc/3uS113aIxcq43SZGRz1cvhzF6TSi14vEYhW++c0l\nMpk6Q0Mu/H4LX//6PP39Tl56aR2NRuD3fu8QbreZFy+scmKggeCD3PwyrqCX4aefRpHaGOw2/NMH\nSC8u7hKEbI0jR7rw+y2kUlVsNj2BgJVbtxKUyxLd3XaOH+9+j2TeeC/ks5pMorRau1XhQID8xgal\nrS1a5TJqu43e4SAwPY1Go6GRy2ENBvFPT5NfXaWjqlh8PrpmZx/KNXq/yciXgFngBu9P8BWAm8D/\nDfzX+zyPh44LFy48kC2ad3Du3DleeOGFX2oyArt7mEPnztHI5aDTweT1fqQGyXS6RrvRwCBICJKR\ny28laHc01GoSp0/3vi8UrFBokC4o3Lgew2rREwi4GDhoxj3QIDDSz2+O6ail05RrCorNjsE0zvJi\nhnxJi9HuoFmu4PS6MdvNrEQkfAEH2Wiepbsxlm5u0CgfYHzCT6WtQ28yYeua5KmD41jcLtbefItK\nIkk2lqZaVTj4uecorq9RFNzcvLyJx6xw6dVFPGaRjViL5ZUa8dg6n/mdo0weG6MkGSgW6ggGI86Q\nF5kOhVQOndzAMf0IGwkJWQWl2UJnMVNMlqm3oVpVGB3vxTM6SjTbIZGo0m7sqpOaLYmbNxM8dsyF\nkk1Q2tkhODPznu2OwP79aI1GCmtrCKKIZ2zsY3NrvF9QFYX82hqqLFPPZmnkcgiiSNeRIzitIvmd\nKIKoxePxED44QbYqUpINjJ2cYenSbXDZCOyfwlxuY+ntJxvfYv57L2JxWnnl9hr23n5CI0f5xCcC\neANWNrbKJCMya4tFThx/FLdDxmWGF//yqwQnR+lUK9SiUUzhPuT5FFJbRWrJdHQm8oIXRS5iMeuZ\nX8zR0RkR6JDdiVPMVFlazmHzeImsrFPLZmlm2jz/n/6ayf3djJ89xcDsEcy6EunVVSxuJzpLiNw7\noXLCrtnbOw+8TucX14FVqxWpViU6nQ56vbjXH2Kx6FlbS/HYY/3EYmWuXUsgigJer5nRUTeXLsVY\nWMhw5kwfb78d5cKFNXK5OisrWQ4eDFGvtxFFyGTqxGJlbDYD+/YFSKer9PY6abUUNBoBvV7DzEwA\nSVLo7XVgNGrp63OytJRhc7Ow25sm1TArNbbfXkYpF9AadJgcTgS9Dq3JTL0mIWo0mLwBYmWFdFrC\n77cQClmYn8+wupojHLYjSQobGwU8HhMHD743BVdvsbzn+mpWKsQuX2bx+eepJhJY/H76zpxBbjRQ\nZZlmPo/WtOvyOvzssyj1+u4Wzb1/D5qQ3E8ycgiwAGeA/wIcBq696/NfB9LAL+if+MeHByHp/Wk8\n9dRT/Mmf/Mn/FNbwerP5Z1ZouO0iN5eW6R4K8O2/e5tyoYp/dJBtvwGNRsP587vhblKtRilf5dU3\n41hNJkweL8mtOOVKi+FhF5pwN9Vkivnnv8nG3AaKIDJ19iShI+dRR1yst+t09w0R9mgYHfNQlIy8\n8VacpcUUb7++TsBvohBp8A+o/MHvH8LZyaN49IQCFjquEHd/9CbLl7Zo1mp0h/1Q3CK/ME87NIkd\nCX0tTTFtZfXWJtp9IXSVBHpPgHKxTq7YYiclM/TUk5x57hRKvcyhJ4+wenWBdjFHuMuKb3iQ1763\njdlhp1TPoLRlrMEgNr+f/gk34ekgRrebiy+s796g9HpEgwGlJVEu1JAIoAGMDgei/r2rZq3BQGDf\nPvxTU8D92Wf+eaEquzlDGlGkVGpSKbfo2H2019f3VotStUq72WT6c58nJ1mIrMXwjY5Qdw4xHvIQ\ncig0MkWchjYrP/oxnQ7s+41PoxFFrrx4Ha2/F7vPTKqaIhPPcfQEvL5cJZ8tQlhH2G+i57F+vn9h\ng+OnBxjoNoIjQC26zfbVOboOH0YzMEPX7CznRpvEsgpGf4iryy1sLhPdYQcbOzVkrQmdFtqSDDoD\n1aqEx2TA6HTQzKQQdAYOnN6HfyDM3bkEqfILNKxhXGZIvH6ZiUeP4HP58HrN1GoSGo3A1JSPdlul\nt9eBxaKjuLOzG6gnCDh7e7F3dz/kM7gLp9NIpwOjox5u3nxHVSIwObnbL7K2liMardBqKUiSytmz\nA5hMWpxOI/F4BUlS9iS7AwNO4vEqfr+ZwUEXc3MZEokqy8tZnn12lP5+J3a7AVlW71nC6/nEJ0Z4\n6aUNNjcL6HS799upKT8Gg45KRWJ80E4rvYpOr2fik89Qj0VQWg0cvX2Y/X6KLR3BmUlEg4mtqJ5O\np0y53KJSaRGNlnnqqSHq9Z844u7slPbIiKoouw6ppRJasxlrMIhWr6cSjbJ24QKVe3bu1WRy1wBN\nlnEPDgK7Ta655WVEnY7MwgKtchmNVouzv5/w0aM/c1jmz4P7SUaOAS/de/1D4ATvJSOfA/6O3QrJ\nLzVefPFFzp49i+4f6dj/uNHd3U0oFOLatWscO3bsgY37zwUhm0T/gJOdSJ5cIofJYsRratNMxUgY\nNCSjLuydIrVUiqqsJbcSJYKRidkTuAaTNApFArMjaKw2Fr78VyxcXiKXraPVa7n6nVf5xNQ+dnbM\nOGwi7fXbVGMS21sabD3dHJ4Y5vpbRbrD1l2JsE7DyLCL5Zd+hFzMks62aSSjGN1xvF1eNswmkhtx\nhI5Kb5cP2i1cPhtyB3TtCoIs0TMUQFY6mHRazDYTozMDdPd6MNstZBYW+cFbVyjEkhgsJh557hHG\nzj1O7EcvYM+mCDigZfSwLWioF8v0DPoYOzTM/tkuquuLJOfm0BS1pOdTOPsHsIfD5JvrWGwm9Mho\nrFZ8U1MfSjZ+EUmI0m6TW1kht7KC1mwmrwuzGpVptVXkQhWv6sUaCFJLxGk3GhhtNkrLC+x/bBbn\nyCiNhsTJIyEsVNn5/jdZ+YdvYvL5GJk9TrnSInnxVfZ/5jnkQgZVb6RpFdEobbwOLdVylcGwh+03\nrnLp1RjFbJXHnt7Hs48dYznVwGKA47/1aySXNzCPzBAeCbO0UWdxfofh2XEcbgsrawXGRi2YzRrU\ndpvhES/5bB2dwUBHb6DSFBib7qW2XsXXG8Tq87J48RZCucDGlRzWQIDsxiZNn4HVgsSJQwOoqQ2O\nPTnA8HiI9fU8BoMWg0GLw2FgejpAbmWFyMWLezLQ/OoqvadP/0JUu7q6bCQSFZxOA8PDbqLRXVKh\n0Qh85Su3yOUaiKKAKILDYWBrq7DnrDs3l6LdVrl+PcGxY2HqdZl/+IdFenocSJLM44/3sbKSY2Ym\nSLnc5NKlCJVKi099apz/+B/PEImUuXhxd/um0ZAxGnU0Gm0mJrwcOhSkUmnR1WfC5+qlnU3ygz/6\n39CoMo6Aj+4Txxh45tcQHT2UVCMWW5ADBzQ0m/KeY6zL1fseRRDs2vPDrvolcfMmmbt3USQJQRRx\nDQzQc/IkrXIZ+V2Jv4JGs9u4LYrorFYEjYYOYLDbiVy8uFf6UhSF3MoKFp8P3+TkAzuH95OMOIGN\ne69LwNS7PjsHvAoo93kOvxB4kP0i78b58+d58cUXf0VGPgBKJsKBIR16i4/YTC8GUYFiFEKT5NfX\nKG0bmP/6f6VZKmEbnsLStmJwdbO0mMHbE0YX7gWfD7OUIb2dpFJpoSgqOjpYXA7uvnUXa/9pPNUt\nsvFtknID2WMkFc8x/HQ3T5ybIJMsEduxo7aaBA1lMrdWMZl1+F0WajWJ7Ss3OPIbT2G2GPD3+qjm\nyxgdXnpmJtGOjvDKj3fIrO9QDlt47PERUjmJxJ0SzqCbJ8/sxxOw0SqVqKwvk0sVyaXKWIxVNi9e\nocupMH/hR/TOTHJ41s+ArpvUdC9Go5b9+/0MDrqoRTZJ3boFnQ69gQEiNi2FzQ18U1N0H5pmZtJJ\nV5cOi9e7J/V9UMjl6qTTNURRg9+/q6L4WZBdXCR25QodVaXj6+f2/AL+kJOg20nF5GZrLsPsxGE0\n4g0CBw4gN5tkl5cx98iI2SoBk5b2eoObr7wMjSrWQID89jbl7W1GP/VponeWMQgS0/v9FLJVXHYQ\n/CKFYg2r30fy1jo7CxvodSLlcpMrbyzj8toZPXIarU7g7RsxXv3qRZRWG29vkP/1//gdRqa6qKSy\n+FpJeic1hKZsRCMVErESU4MOHNYhSsUaBu8g+w71IFazqGg49anT6ASZwtoaBoOWQrFFrVBm37kz\nxHUG4hsxHK5uTOUMmnKG2dNjzM52Ua9LqOquE6ncarHzLj8KuOdlMT+Ps6/vY3Ph/Hmg1Yqsr6dp\ntVRGRz0cORJiaSmHz2emXm+j02nwenedcYNBK/v2+e+l9Ha4cydNMGjB5zPx3e+uMDHho1RqsrSU\npVBoMjDgpNGQ+d73Vjh2rJtsts6FC6s88siuQKCry4bPZ8Js1nLzZpLubjsDA05cLhM6EZLxKuP7\nwrz1t/+NVrGA0aChtNMAQcDWN0DwTBeb8QbJ+U0eeaSXM2f62N4u0el00Go1LC7uSnf1ehGHw8D4\n+G7ybi2TITM/v2dC2FEU8uvrOPv7MdhsOPv7qWUyKK0WCAImtxv38DCNXI7EjRuosox3fByTx4NU\nLv9Eqt/pUI5Gf2nISAl4pyXXARTf9dkXgN9ltzryofijP/ojnM5d/ff4+DjHjx+n/17j2dbWFsAv\n/HF3dzcvv/wyf/zHf8zW1tYDHf/48eP8xV/8BX/6p3/6C/P7+KeOHxSsPh+pWy/jM3pxqlkK8RyW\nQACpWiUYstBYvkF6bg4EAXMghM5mJeA3Uku2iccr2O0GvF4LupaMPeDD6U6DpgFtCZPdChYnXruA\nKZfFrqnTkCWs3jC2/Ud440qKVFXH3LUdjhzvY9gnYzFKLKbq5HYSIEtYe/oxCwqy0sHb7aOjygQH\nQxx65jD+iTGWc2ZKVZXQUIhmLofbMcHsI2M0np7CZDUS3S7g9ltpZVPo2yUOHAjSGnag1Co0MimK\n8RSh6Sny2xHCU2YOPTOBigadTtyrZMS3tn7SfJqPcuZYkEJLjznsoXswQChkfShVj+3tIm+9FdkL\nJXM6DZw50/e+Pp8PgyxJ5O5twWi0WrQeL11BmUo2h1TMoVVaDPZ7ENxuek4YyN/L9wgfPUp1Y4nQ\nwCCbb13Cc/4pmpkkJqcT0ddNYGg/UnSDVrGAIxRAFrSET5xCuniZSnyTrlCAyadmyJqt6JsFXA4D\nkZ0iAh2sVgPZRJaTow7SZRGbp8Fz/+E55l69yeC+fq5cibG9EkdRVLwOHaPhNjs/fJGrW1rowKB/\nmCeOdZMsuUjsZHHadTht3fT0PYHFbmH79ddxBT2ozQZCScLksODq72F7qYQot9AZdLuJv0bjnoeE\n2fyTbbdmtUE+XaJebGC16vZs09uNBkq7/dDJyPJyjtu3k3Q6Anq9yNZWEVlWcDiM9Pc72d4u0Wwq\n7OwUmZjw8fjj/djtu1s7J070UKlIVCotNjdLjIx4GBlxYzBosVr1iKKGkyd7+MEP1vj856eZnPSS\nyzWwWPTY7Qbm59P88Ifre6qXz352kkZDpt1WeOWVdT73qR4cqoJUqWP1unF3+ZEbdQStDlmS6Mht\nFK2JWKaO3WEklapx82Zyz5jRaBSZnPSh17RRcyl0cg4xryLZ+pBqNZRWC41Oh95iQdBqkQQj8XQT\nT8hD8PAR5FaLWioFgsDA2bNojUaWvv1tVEkCQaB4z4XV0du7504MoP+YzMw+Ku7nneQg8PvA/wL8\nJfAVfrJNcxNIAuF7c/gMsPJT3+/8tGPiP0dcvHiRP/iDP+D27dsPfOxGo4Hf7ycSieyRul9kvOMD\n8HGi0+kQiZSIRMoIAvT2OgmHbbTKZTZfeYXYtWu03YOsRproAt1YqTE9E2brm39DdmkJ39FHSEhO\n0nU9mBwMHJ5CFQ14PLs9KoODTpqrt7nx37/K9lKUcq7MoefOw9QZTA47moVXefPCTcweN5PPnufC\nyxEKhSbegR68Pitqo8rZx3twm1Re/s9fprgToZrJ4R4dx+Cws+/scdbm44wfn6Srx4MiaLi7UKBr\npBunw0g1nUavhWu387zywgINWYvTbeXcJ8Y5sM+FoRzn0le+RlvQU25pqZcq2CwCn/j950iuxzDW\nUgw/9QSDZ8++5/emyDKJa9coR6M0SyU693or9HY7g089hcXj+djO0c9y3iVJ5sKFNVKp97q+Dg66\nOHt24CORI7nVYvk736FZKGAKdXM3aeD5v/wetVqL8Egvx04NYqfE2COHqd96g8LmJp6xMfRWK6nb\ntxF1u83Kgelptm4vk9IEWb0TRTRb8YccPPHJWfQmHatRhdW5TQaGA4yOeTE6HWQLMka7jRvffplr\nL12h0VDQakUmp/wMTPYQeuwc/+n/usL6Wpq+Pje//duTNFsq3/zqNbKxDIJGoHfAy+Mn/XRJ64jd\no1y7leX8E72Qj4LZjmQNMrcDvf0eKok4PX0ehNgCLreZYiRGLlvHEgzRUkWWN2vodFpmQjWUQgpb\nVxfho0cJHz68RzDy+Tq3b6coXH+TyNwyFouO4SE3NrsBz9gY/Y8++rOfdD6+612WVb773WUymff6\nZSjKbk/HykqetbU8kUiZUMjKk08OsrFRQFU77OyUcLmMjI56UNUO7bbCtWsJSqXWvfTpDt3ddp54\nop9Uqk6j0WZgwMncXAqdTiQWK3PjRpJAwMrychaA/fsDHDsWxmAQsVh09NglGvEt+vtsbL74ItFL\nl+h0OrRrNUSzhYkv/HsuZbr49g+22b/fx759fkRR8x6/E5dDx2y4RmHhDnqbDa3BgNnnwzU8THpu\nDkWSqMTj6Fw+sPuIFPXUBAsjPQZ82hKNTGrXU2d0lPWXXiJz9y7teh291YrR7aZVLOKbmtrL9tLb\nbAyePfuxWb2/g3vX5wdepPeTzt4EmsDr915fA/4z8EV2iQrAvwJE3k9EfmnwsLZoAEwmE6dOneKV\nV17hM5/5zEOZw4OGqnbIpCuUsiX0gky9LfL29Qzy7rOU1dU8p0/3MjTkZviZZ3CPjFCORhk7bEZj\nstBMxmiU0kiqiGN0ioWEluVbdzD5fBiCfTjKMv6Ahe99bwVJUhgd9TA4EOT4F7/IxMYqWqMJa08f\nKzGVoE9PJDNApniN/ccnWd+qsjAXwRUKkIzmSW7GGA5pWbxYxBOwM3L6GOuvtqgkUpiNGibOnsDV\n182k00PP9BitRhtZ7jA666NYVogkmhyd6ef6lW2u386RKQk0m03y+SZrS2nM7TwjfhWzx8321ev4\nxye4E5M59dzjyKoWY6eJozuE3mqlnssh6yzEYhWaqRi1jSW0rQpKtYh7eBjYvZGY3G5Q1fviwPhR\n0GjIexWRd6NQaCBJyodmd7wbWoMBz+goxe1tKgY/t9+6hKAR0Or1FHI1Ll/a4tlnBnA49HT6R6mr\netqCASmZxGCzUY7FdvOPajXk7mne/MqPQKvDP+QhmhdYLtgYD3gRbBX2PeahGd/ie99fIb6dxzsQ\nxmVROfvrpwmEXUiqFlGjUIyl6D92kG9e2MRm06E06mwu1dnZ6aUmdcjlalSrLcwGDSs3V+kJGQn1\n6RCqWZ59zMfN//4V2qUcBocDvcvLE1/4N9T1Bux+LxaPm7YhQDkaxdsdQLQ2SUYLdM0ewjxoxW9q\nktyOsxrTIG50kP0F7D0pHOEwAHNzadbXC/SNTBGsN2hlU5TzRdzhYTxjYx/3Kf6ZIQjv70uq1SS0\nWs2ua3K5idNp5ODBEBoNXLoUpdFo02rJlMsSsViFdltBp9vdoiyVWvzgB6sEg1a6uqwcOBDA77dy\n+XIMjUbDzZtJrl6N87nP7UMURcxmHRaLlsOHu6jV2oTDNo4c6WJjo8DSUpaF1BZesYhV48McDGKw\n28mvr2MLhxl45llqjn4uX4iiKB1kuUOlItHf78Jk0tLpQDJZJb6VprvTwOX3U0kkKGxsIGg0jH3q\nU0i1Grf/+q8RdQYSa9tYA0Gmfvt30Ot9LG668J7sxWk1U45GKe3soBFFbD/ld2Xo7cU7Pk7N5UJn\nNuMcGPgnA/Q+btzv2tpPy3m/+FPH/+0+j//Q8YMf/IA///M/f2jjP/3007z44ov/U5ARWVa5di3G\nlR/eJL26jSPgITAYxmYWEexORK1IrdZmfj5DX58TnclEYP9+vOPjtMpltEYjaZOJ9M1lPAcOU8zV\n2HxhCYPTjcHpwRLupS3Da69tYTBoqdXa7GwXkKpV3LYeAtPHkQUdQqfBoeEa2baZa8sSpz7/Scp1\naDdVAoM9lJsiYqXOzp0Vup7Zj8WoIbMZJ50oMv3UMwRmZlD0dpZv7/CJUR+5Rptv/M3V3Sa5oJvZ\nw2GcXicarZb59RqY7IgGA9V6m0ZNItTtIpvI0fJbyVWT+HsDuLufxWjScfL3DpPO1Onk1xHqU109\nXgAAIABJREFUeZoaiXomQzFb5ta2gNdnY/uVl6lVang9Fnq7dNTzeQxWK4WNDfQ2G4XNTXwTE4Q+\noh+BLEmokoTOYvm5CYzZrMNq1VOrtd/zvtttQq//aKqxjqruZhltbbFWKe6uCj1GZK2FVltFo7ax\nOGxsr6Sp5SosvD6Py23GKufRyA0C+/dT2N5GqjeJlQWsg6NYzFoEm4dcGb765bc5fiSAy2tjdLIL\n1erg9vU7GPRaOguLFDQCwcE+SkIXa3c3kVtNDp85SBkHHTnHsZN9jI17uPbjBaqVBhq9CbPLQS2X\nR68TMJqcmGxm+g8G6Qha1r/zLZRqgY7ezNZWCWUtj9b7AvrDTzPcZ8ZezxI4cYL03ByVRAJPwIFr\ncpqlnTbZWJJtDTQzZbZXYth9Lq5eTWAJ93IwHKbZlEmna6hqh1hBZOL0SVo7y7SqNToaLfGrV+k5\nceKB9wy9G6KoYWTETTZb37OCf0dtsrSURZIUxsd9PP/8Ar29Tubmkng8FpLJCkajllZL4fbtNO22\nQixW5sSJbtxuI4uLWc6fH0arFbhyJYYoalhbyxONlrFYdKiqSjpd49atJDqdhoMHQxw6FGRgwIUk\nKSiKSq3Swu9x4NdJvPxXf8fjv/kko5/8JKgqtnCYtn+Yb/z9/G5WlFXH/v0BVFXlwoVVOp0OOp3I\nwYNBzBYdpWKRZmmH7I3Le+aBmcVFcsvL2AIBYjfnqGYLVPNlAnfnaNq7mXziUbZf+D7Zt1+lWSgQ\nmp3FPz1NKRJBZzbvuiWLIq7BQXwTE9jCYZRm81emZ79seEfSe/LkyYc2h/Pnz/OlL33poa1kHyQS\niQo3394gs7ZNR1FQOgK5gkxxo0w0GccdcDI9HUQUBSRJ2XMxFHU6EAS233yTzbvrdKplnOEgrskT\nhBImJNGEIxwkmlboMuloNGQymRobq1ncdg31LhOBoJVMoogs6Dh8rA9du04lkadUVXhzI8e+U/tY\nXNigu9fNeqRBJZdGoxHweMzYzSpOg4l0osjKRgVFNiLnoxyb9VMXbNy4scnd9SZtVWDxdhSHzcCQ\noOX67QwmvUAotLsSq+QrpPNt7HY9Vn0bpZghvnKJ5J15+k8cpeEN4Ng/SzYv0XvgEJbJIwjtOu1W\niZIssn51DsO4i8TCCoJGQGm4CHUNYHY6ya2vY3K7qcTjJG/cIHb1Ku1mE9/4+IeWcjudDvm1NdLz\n88iNBmafj+CBAz/XikunE5mZCb6vZ2Rqyv+R/74riQTZxUUMdjt+uxfrTpP25iZ2iwat0YKIjNag\n585ygUaxTizZZHUxybFZHw6jgKWri+DMDLVsFt3NBti8+A+M8tqLd9lZjRMI2qhkdMy9PsfE/n+J\ntp5hf7dK1/5hFq8uc/DJI9y6lcRo0FAuVClkKkT//hq/9W8f5/qVHb77/Q18fhuTUwMEez309Dh5\n62IEd28PBqWKWs0zM+Vi+43X8Y8Oo2nXMVpNxFJtcrk6FrOWVi6DUCnw+g93OH/CgcmRpO/MGaR6\nnUi0xsXLcUrZGvW6wt1rGzz++AAnHlHJbkaxGGrUy7sPdp1OsyvpLTaxWHREr90gMreE1arHvt+P\nrBNJzs0x8PjjD/X+MjTkplRqcvdummpV4vDhEIGAjXS6htGoRavVMDLiwes1Uyo1SadrlEotjEYt\n8XiF6Wk/Kytl/H4LX/nKTc6c6ScYtJJIVHA4DJhMWjY3iyiKit9vxek08K1vLXP8eDeBgIVcbrcy\nZ7MZmJ/PcPFihGSyypFpF0GXnvpqBm+Xn4v/798TDNkw2a0IWi2hf/HvkOs1enp76O50sFp1zM2l\n6KgqkZ0CuXyLYrHJH37xCI6mho2XbtJqSMiVNBafD1GrpbS9jcXvp6O0EXV6VFWlls4g2row1tPc\neull1NQWnrExohcvsvXaa4x/+tPUczl07Tbho0fxjI2RvHWLzOIiiiRhcDgIHz78QKXbvyIj9xEP\nQ9L70xgfH6fT6bC8vMz4+PhDm8eDQD7foFGpod7bk/GHHLz4WgStCO22QqXcIra8zb/6N4eR0jFU\nd5B0tk4xXyfy+o/JrG5gbJcp7WwhaPXM/msfjpCPdFlAwkA6ncbtNmCx6Mjl6gQCZoyaNvFUg1S2\nxVquSLNYxixlCepLNEQ34wMmfrRSo1WtUq4qGC0tfvtz+1iZs+EwjTLgVnj1by/gCbl56tOn0IcH\nKMcSOMzduJwG1isaam0t9XINjcaATuywtV3C6bFQyZURTJBS2yhSi4E+G225jMmk4eCxPtylRXZi\n2zRKZdILi4z9i/0Uc1V6x3q4tpjnzZfuYLKamT0Spn/QTLtcRKroABW5IVFNtVGFIaRGg44sU9re\nJnb5MlKthiCKBKanKSUzTPza0+gt7w/wqsRiRN56a6/TX6pUaNdqDJ0796H+BaVIhPzaGkqrhaOv\nD9fg4G7+zbvQ1+fEatWTydTRaISfWU3TKBT25uT3C4R7XLsVHkGDRhSYOTqIxmblu8+/jlbs8Mjx\nWaRMlMCREdz6BrmFRQorKwSOn+KR3xgi+j/mKRQaxDdTNKpNxsaHiG1GqaSzZKJZrKU8a6+/jbae\n4+nf/S1SxQ7Xry7hdJqQW220HRVR1PL2W5sEgzayxTKpeIFaQ+HUI/24nHpmZ0OIYgiLXKQ7OIGh\nuE3yzh1sXheWYIhcardhUyNq0OlFHEMj3N1qsbXdYGxmEF2mhM68g9xqkVgpIKoCZqcNndnEMbcD\nc2WV/NoS0eUYgnYNjSqxf7YXezDA5KSPXK6BUZTJptKIWg1dYRvae34a9UyGdqPx0NKYFUXlzp0U\niUSFoSEX2WyDdLqOLO9WFkZGvGxuFkgkKsRiFQ4f7uLSpQhdXVbq9TYazW7Ozfx8mu5uO9evx7l9\nO8nIiIf19QI9PTb27w8Qj1dYWcnymc9MYjLpyGRqvPVWhCeeGERROgwPu9jZKRGPV0ilqnjtAi9/\n/Q1+67cPYdBpqdUqiHo9cqNBPpPGPTSIQ6wzOBZkLqLS3W2jWm0hyk2CbpFmUSDksRMKG6jFoyRu\nvolYyhGY3k9lawNRr0fQarGGQqCqaLUiRpNIo7kbe5CTZNRGHaFeQms0YnQ6Wfne99CIIumhIWzh\nMKJej8ntpp7NEr9+fa83rJ5OE3n7bUaeeeYDr+37gV+RkfuIh9kv8g4EQdiT+P6ykxGLRY/WYNjN\nRFFVBFFLo9agq8dNPlullc9icJqRqlUSy3kW0wkEq5P0VoLIq/MEnBpK0QiNYhWrVc/aK68xfvwx\nHBUdqwmJ4WE3hw+HkRotXnmlTaNpoFqq0N/toNloQ7OOySjQrlQQvdCJrpC9FePR432o1Pj3XzxB\nta6STRY4/egQ5nqcF//q69TrEr1WIy6XgcjFl8gvLqJOTqIfH6LRMlPMllHbEm21g91pRe2oqB0B\nk1ah3VKwGYz4HQJHjo5yqiThsGlx6VskXklh9nrps9vxjI7iHR1FsjpZWC7y49eimEQL8Y0cgtFM\nGz2+bh+C1YnD56EQT9I/PYwn6EJrMGDv7SW/vo5Uq0GnQ1uGQrpEYTGO6h+ie2rkfYmipWh076H/\nDt5xNdV9wIqruLPD1o9/vCtDZJeYtMpluj9Amu7xmPeaiD8KJEkmkahSKDTRyib0viBSNoWSi3N0\nX4jcoBPRG8bjtaDTKNy+m6PQ0NJp1fnOd5Z4/NcOgFbP2uIm6UQdg0FLrnWdiSctfPIT/SytV6g8\nNozVpKEQTZKJ5TAa9YS7HWRXIxx/dIx8oU4iXiWZk3C5zbTrDcp1lVBPCIfdgCq1MOvhsbOD5HMN\nPD4r+XSRjtTk5MkeSoUq7o5Ke/MO2bmroCisvvIGj/yH36NebVKqrGDo99I7ewDT2EFu/PUaFoue\nufkMFsyUFi5QqbR4+3KM3hPHubkmcOV6hj/61/0k3ryDy6IwPOanUJbpFFJkF+bRGvQMDLgwGETi\n0SLaHi+iV8Tt/gmZ1JnNaH/K8E5VFJqlElqD4b4/zN7pzRAEAadToFxuEY9XGBvzMjjoJJGoMD+f\nZmurRK0mUa1KPPPMMG63iVpNIpWqkUrV+MIXDnHpUpTeXicHDgRwOAzU6236+1202yqnTvWyvJzj\nzp00n/3sFI8/PoAkKUQiZQwGDWNjbpaWslSrEmaTiNusUDTqiWyk2DcSxusxUL57jdyd2+itZkIn\nHmHt9Yuc/o3nGJ/ZdWHtaI2U40kWl3N4XXosRhASy6gJP3IuhdVpJ7+6wtBjj5JZWqKRyzH+qU8R\nu3IFayiEUZIIzBzC7PeiF/S4urvwjw1RicepxOOIul3VVLvRYPv11zG5XHs+Me8QkXfQKhZp5PO/\nIiP/3PFOSu+f/dmfPeypcP78eb785S/zh3/4hw97KvcVXV1WBifC1LIZaskUAh2CfiO9ISMBjx6p\nZkDfaaHvNCg1DcRWtlFcKn67nsGwHiWXwu41UdJpEKRdD4BadIeDJw8THrWjSBK1rUWKW5scdenw\njQ0huIf51nfWScZLeM0aAg5wCUW2XrmM3mLmiacP8+YPFxg9th+/voKYyeBxiaCxIXv6+ez/+b8j\nSlUsDgs6uUr86hWMbg8aRaJY6ZDJ5ugd7UKj07NyN4o94ObQ8UEiOwWsJgGd0YKxmaW+tIYukGTY\na0cqKhQqMvbDZ6l1Hcbp0OP36NE7XWyULMwvJlicTzE44IBGlfhKBL+pzpnzsyzejdP3yClGlQpi\nKU7y8kUsXd1kN7aw+7z4DswQv34T59Q+Uptx0Okolppsv7XD+fPD6DQqCML7Hk7vwYeU83PLy3tE\nBIBOh8L6Ot6xMYw/hxpMlhUuX46xspJDUTqochuXxsikP4BSKUA5S18oRO/pAa5djfE3/88bPPbM\nfhw+F4WclkfPzXD2mSlSi8uo7h7kdIPYRha5XkUqfAvzzEn2DfUTsozw0jfeIh9L0TcS5PBj+3AJ\nRcShPqy2FJ7x02SNbix+Aa3ZwsJyHlu5SrVQ5uDMKF6/hZuXt/n/2HuvIEnu+87zU5nlvfdd1d7O\n9HT3eI+ZwWBIDEASAkiKkERK1F5QsXtxoVhdSKd7udi4h4t72FjFRUgrKk6hoKSTyAUIkoIjMBgM\n3Hg/3dPed1eX9zbL3kMBQw5AOAEgIAW/T52Z1dm/yMyu/zd/5vttJTexKvXk4hLrhTgXVyK4B/p5\n7BvbKdyZo1GrYOnuolnIkEvlmb0+h2XPMR5+9FGKlSbZpo7nfnoXu7zMg6fGqNWbXH/hTUa6VMRS\nNRxeKzPTMVbniuwZC6Ipx1i/cYeIvIXTqqLrwC68vQHW33qL+NQUnn37ycqd5Ap1jCMTZBbnqcry\nqKgiV6txjIzcN9pbiMUIX7tGOZVCUCiwDwzgGBlpl0M/ZSwtpXjuuXmuX287RAeDZvbt8/Ozn80S\nibRLLBsbWZxOHbVak3q93edx7VqIJ54YJpEo4vUaCARM5PMSx451YTKp6O42k89X2djIcfVqiFAo\nz+nTffzZnx0km60QjxfZu9fHpUubzMwkGBy0oVCIDAy0FWCdDg1CMURXj40jj+zCIyapppr0bP86\nPPkN8tE4uXwNe0836eUVbr0xjVyhoO/AGFaXGX20hpTP4jDI0asrrP/8X6gmY6gHuzA4HUiFQrvR\nNBjENTGBweul68QJ6pJEOR5HY7ejd7vZOH8emSAgiiL+AwdIzs9jDgapv53tVJvN7ReGXzHVJBPF\nX6sk/G/IyGeEK1eu4Pf78b3dkf554sSJE3z3u9+lUqmgVn88cah/S9BqlTxwrJuuLjOR9ThOR9tC\nO56sEJ+eRiiWMDpNuKxyovESrWYTi1lJK7VGqwUb00u4LCJmtxNrIIh/716qhTw6i4mFC2lKi5Nk\n19fx+kyo5DVayS3kCgGTUUmz2sKmqXLrqZ/hOh5AioTJSRU0Bi0nH+yiJmV47f95mUxWwh7woPV1\nsl53Ick0DAw5OLxPyeI/P4V/ZJhyS8nqhcvIdVmuntlg7OgOdn1rF+nkMFaXCYfXyrPP3KGsrKKR\nVUhcuc7o4R6m/+779Dx4gt5HvsrajShv/eANBFFEUGvo3jOGwVgmHEnQ1W3l9RdvEwvD8HA33UEd\ngz16OjptOAxNysUqRp2LtZcXaLm7uDOfQVYz0EgX6dxzAHP/COHFDSKTsww/fJJiU0toNcb8pTLV\nmUsoDQZco6OYAoH3EAydw4H2fcaCa++yMgdo1us0arVf8emPjkikyOJiikaj/YUryBWkqgZa7g60\nqmUEpRJrXx/lmsCZV9dYW01z/uVbHDoURGvSotRqeOrHcyxfuoZCaHH4gV5G3BZCFy+i0QSwIjF9\nY5lgwMiJRyfIlVo4vWYszSTJG5cI37lLvZCjEA7T7D/A+dkWOouZng4t+YKSriNBhjoEwuEMOnmV\nhevT9O2fwBt0UoiESSxvsP/kOH//g1s8+Ug3Ji1UCwXkAmiSWRQWG5EbVykYtbjGJojOLtBlKmMf\ntrF67lUmjo/TcttoKRqUQ4u4x8cplk3s0uro6dOyObdGYDBAbGEJk9WKxapj4cwr6LwdpJMFsvk3\naDm6mCm6WVrO4DBq2D7gZPc2IyaPE4PnFx4pdUkidOkShUjk3r6t69dR6vX3prI+LUhSndu32+qp\noiij0WixtpbB4dBw8mQ31WoDh0NLLlchl5NwOLQsLaVRKkVEUeSVV1a4eTPMd787zrlzq9y5E0Gp\nlLN7t5dise11k0yWcDp1GI1qpqZiyOUCp0/3cfNmBK/XyeOPD7N9uwuNRo5KJdwT4YvGJfTVBmPb\nzOiyy7z5N/8dWTmPXK2k59Qp/AcOokJDtZBl+uWLRCMlDGYdokJOj0+F3eIjF9PQ022iOpfmztVl\ntPImmeVFKknTPbl2Ua1m7qc/pVGpUIzHsXR1oXO5KKdSbJw/T3ZtjUajgVyrJR8Oc+jP/5z5554j\nHwqhNBjw79uHlMth6emhks1SK/5iZN7g9aL9lEd7Pwi/ISOfEb4IJZp3YLFY2LZtG2+++SYnT578\nvMP5TKHXKxnZ5mZkmxuAQH+FubkkM0IFVSNPb6cBkpuYjV4aoopej8jP/vkCnSNB9v6n71Eu1qjU\nRQzbekg1ZagsSmoqE157nlpWRr0p485Lz5NP5hjb38PgyQd44rHjTE1FKM5NQq2KpcODeTjA6muv\nkZydJXBgPzMvvkIhV8bstJNKVbj42ktMPH6a6ekyucVpTNqj2HUa1l5/nc6Hv4LW7qDVqmI1ynnp\n78/wwFd30+GQM387StqqYt9AD3JDF+nFRTS2fnLXXoOaRCESJpWusBwq07V3Ao1exdpmmZ/+eIrj\nxztZvr3IztOHGBoL0KhIPHKyg0pZYmE6QibfZGQsgF0j0cimEY027txNs7KSoV6rs65o4NhrQBIa\n1MoVhk49gHX3YW5MpYhPTxOVqSlcu4BcraYQidDz0EMEjx4lNjlJrVRC53TiGh1F/j6E2NzZ2RZn\n+iWorVbUFssneiZKpdp9UtoA1WKRrcUCHpLUKxWKkQjG4QkaLRk6p4vFpSi1co0vP3mIv/rrG+j1\nKqxuOyu35zl7ZoE/+M44ldoF3MODFMJR5OhJxUElq6OtFBCTaWx9bqKxKCavi0IUZDoTd9+8zeHH\nv8bthSKh9QQDI27Gxz2snnkRi9/NE09OsDRsxqCTYXcpWbNYCM+bqUkS+wbl1NfnWHrzDYRaGYvL\ngn14G5GshLpZIbWWIn73Lgq9gc1ra2RtJgLHTrK0XiRbNZMK53AP70Rj0OAoRaknE6gsLlxeCwrv\nIeTUsXfZiC6uIeiMLK/mkOrQKTexMXMH1YiedLpCJgPxHAzsGsTvub8ZuZxKUUom79vXajTIrK9/\nbDJSrdaJRosUizWMRhUulw5RFO67r+VyDYNBhdutJxIp0Gi0WF5O43BocTp1FApVfD4j6+sb2O06\nJKmB3a7FZtMwPR2jq8vClStbvPLKMgaDkkymPdb76KP97Njh4rHHhjh/fo1CoYrLpWPHDifLy2l6\ne61oNHJEUaBUqpJMljEalRSLVR5/fIibN8P0d/Wyu09g5u//BrnYQtBp0NlsrJ0/j7Grh6ajk9xG\nmKXNEtW6jH3Hh4nPz6OS1WiGtrDrNcy/sYjFaWb45BHmnvkxCpXinj9UfHYWSzBIan4ec1cXgiCw\n+vrrOIaGsA8NEZ+bQ2ux0CwUEORyCpEItXKZ/kcead+jZpNSMolMJsPgdmPq6CAxN4eUzWLq6MDa\n14f4axSz+w0Z+Yzwwgsv/Fpdej8MDz/8MC+88MK/ezLybphMavbs8TE2bCI6OUlqaQkAp0PDngc7\nEQpJAn4dKqOBt66maSj1hNbjVM5EmDjYj9OlI3ktRSlbYFBT5/JPz2LWi6AXiS2uQ+U5dvaN0tdv\np6Zwos30oZK3uPkP/0CzKkGzSXJuHqQS7m4flWqL+HKESqGElM/R1e2hmUsQXo2y65vfZfXuGpOR\nIoYdD+F3KDndm8b84g22VuPUVP0M7OuhUcwyt1ZGV1zCo8xSmbuOXK1C1OlJLy3jrjbwebQoymnW\nbyyibSn48uEA5VIBk6xIbivKt35/N4Z6hs3FEBfOTCEr54jOGQmvxXjom0cY3NXL1vIW0egmjUYT\nmSBQE5WsJOXITX3s/497CedEplbyZDa3MGtaiLl2qrxeqZBdXyc5P8/AV7+Kye+nUat9qOmWrb8f\nKZcjs7pKq9lEY7W23/4+4ReiwaBELheQpDqiKNBqtShFIxh73DQy7Z6WerlMYnqK4YF+1tfzyFVK\nctUCoY0sUqkC+QRanRL/QJBSOoNgMHHsj56knMkhS0bRFVaxKJzYJ/bSrJnRyBuk8y2StnGK5Sb+\nQwfQChI9pipzcwleeTWCnDrVcgUjOSxNCVkpT/LqW0SvLaLs97I5l8c30Mu3vr2TltVDbvIak88+\nR2wtTEtQYDGGySUy6Ed2EQ2lMNrNyGkSD8UxqJo4gx7C6RaL86v4h3tYvbXEus3GwfE62dkp8mUN\n02+F0CjBNbGHwS89iMVpJHRjkmQ0TTaTQOd0kMlIlIo1tG/zgFarTQSi0QLDw/eTEZkgIBOEd9+C\nj12ikaQ6Fy9usrycpl5vYrNp6Ooy09nZlliXyWTodL8Y835nf7lco7fXSkeHiUSihF6vxG7XYrX2\nMzMTx+PRc/hwgNnZOEajmsOHA7zxxtrbfjUZVCo5lUqdy5dDnDrVy1//9VWWljJ4vXoEQc/8fJru\nbjNra2laLXjppbYAnyjKcLv1HDwYYGkphUIuo6NDT2VzkvDVa+3RXZeT2N272AYHaNRquIJ+slsx\nIutxjjy6h9i1KxSaKpZv36CQSGNzmtDZLOTCUbxH99Kxfz8yUWTo8cepVyrUJYlms4kpGKSUSDDz\n058iyGRUUimUBgMak4lWo0EpkbiXqeo6dgxLTw+phQWy6+uojEYCBw9i8HoR5PL7sly/bvyGjHwG\nCIVCrKysfK4jve/G6dOn+eY3v/mFIki/Tij1evx797bfzlotNFYrQUEkuqykub+PZMvC4uoquZKM\nxGYUjaeDy5e3ePRrQ5x/fRZvwMZoAOrFIvm6iMWkRKMWaMrk1NJR3rixxviQEXeni61r15FKEmqt\nCr3NgsqgRyYDn1vDxlYRuayFUq2iY7iH8nyCUEoiUG/yzA9vMj2dwN3lZfXVKaxWLcdPdHPsyYew\n2HSsbFZ44V+mWJ0L4w+Y2b/dQ2UrRrVUJLcZgkaDjkOHsTj0iLdnmTl/g0pNxvrcJkbbFF/5k+/w\no5deRuV0MzJwkMr8GteWQygbRVApqKRShC5f4ZrdgPexYTzD/ejeWiefl1BpVfTtG2M1q6bXqUPj\n9pKPRtGqBAYGHThpkrp04971rlcqNOt1aLUQ5PKPJBeu0GgIHDqEY2iIZqOB2mJ5T+9JLlehWm1i\nNqvuU6h8P7RaLSSpjkolcudOFK1WQYdPR/+gHYOsQLX5i4yJUmgw0GNgY8vG5maBRl2DL2jDbpKT\njjRIlksgKFHpnViDHSjlUJ++RosaiUwOa8BH9NJ5NCYdkTLciWiZPfsmlUwWUank+LcfQWv3Eb6d\nxePWYxGLrF24jDzpYv+ElfWfPEPP8QdQ2Z28dnYRpdDAHZI4/h+eQNYokc4lSa6sojaYSacr5OUy\n/AoRg0GFbt9OmqIKpBJXzv4zap0SW38fC5MpjFYjMkGGf3w7pUyBZL6Fvb+P7GISi8eIvBAh6NcQ\nWYlSzFVwjI6x/Ozr6N1ulFotMpkMT08HoVybZMhk4HBosVjUv7jGuRyCKKK12zH6fKSXl+9dV1Gl\nwtLV9aH36pcRCuVZXEzRbLZwOLTEYkUuXw7R02NhYMDOxIQHo1HF+Hh7zDufr2KzabDZbAwP27l5\nM0Kt1iQcLlCrNXG7dRw6FMBq1ZJOVwgGzVy8eJdGoz2+nEiU8PuNZLMVmk2R/n4bqVSZbFbCatWQ\nzVaZmopSLjcwGpVks1U2N3M0Gi3UahGTQUkyWeaHP5zi8EE/87MxymsLnD7mod6UkZpfoJyIY+vu\nolmt4h4eQshHCIz0curxPbjcBmYuzeI88ADhagOZIJIMJ7AF/aQ3NiknEwQfeIBKJgOtFgvPP09y\nfh5bfz+mQIDAwYPYBwcpxePIBIHs+jrlVIpCJIKoVGIKBqmV2qXpUiyGY2gIx9BQu6dnaOhzl/OH\n35CRzwQvvPACp06dQv4FuMHvYGxsjEKhwMLCAn19fZ93OJ8LZILwHo0Ld7cfoTJB5PwGRreTRrpC\nZ68LmVIglanSajSpSzVEAWRWL56BLorRKJ5OJwajhnxVoC7VGRh0E85VmNg1gbQ+j95iRKnToHe7\nyayt4x4bI7URpjNoxuIwUVLaKEqQjJcIrcd5NLifH/y3F8iWIF+RoaLC8o11+oNaJJcBqd5idT6O\nTK6g1FSyGpb40ldH6d9uotBtQxAE9D4vcrWGZjJCIGihJe5l7voiHUMKDKoGucVZHH5Twd0uAAAg\nAElEQVQn3f1OxHyU+MoGlUKZJgKNWpNEKIHRakAqFMnG06jdXTz8J99lYyFEMl1jLSnQQqC/30ZH\nhwmv10ilUiUzfYfIzeX7ekMUOh22/v73jOV+6D2SyX6lgFat1uDOnSjz80nq9SZWq4Zdu7y4XPoP\nPN/aWpZz51bR6ZQcPRqkUqnT2WnCKxNJ3Ln5zh9FY7Wi0OlQNJI8dsxKngB6owaDGhYPdPDi0xGy\n4RQGq4EjX9qFLB9jMtTi1OEJ1pEQzTZEtRKp1kQ0u0g3BHKZCBqbnapUpVZtsLUWo7e7n0IhiVpo\nUCtksbtNFFJZ9K5BGlYr67dmKTmH2AgVCPgNrK8kWNso0Ntvxze2jfzGAQrhMBpNEZVGjtQQaZo9\n6HxBrv7op/QM+Bh68BCV2Bb2gAdxbo1kosDc1RmCnRbsXQHqciXxWIxWvUa2AB2+TpyDg5i7e2hV\nytRVBvY++RgLF25RrVTpGAqg6d7Gyqvhtxd8Ld3dFjo6TFSyWcI3blAIh5EJApaeHty7dqE2m8ms\nraHU6bAPDn5svYp0ukyz2UKrbWucvPXWOvV6E4VCIJOp0Gg0OX68i0DAjMGgIpEoIYoCDoeWt95a\nZ3Y2weJiitu3o3g8erq7Lfh8Rg4fDvD666sUiwJKpYjRqGTXLi8Oh46trTyzs3HUajnj4y7S6RI9\nPVbOnl2hWm1gNKrI5yVsNi379/u4fHmLDq+WpdkMTalOaDWD0WpAr1fSG1BhaRaQyhV2fud3yIdC\nhG9cR9Ro6Pvyl1EYjJRKVWqZJO7de9HWMlh7e7C4rZjddhbeWkZvMSJTqejaPYZv924QBKRslo0L\nF4jeuYPe5UImisSnp6lXq2jsdjRWK0q9nuVXXmHbN79JfHaW1Nwcnp07sfX1sXXtGmqTiVKiLV1v\n8Pk+UXP4O6jXGzQarY+kgPx++OKslv+O8Pzzz/P1r3/98w7jPshksnulmn9PUzX5SITcxgatZhOj\nz4fB5/tQ8aVyOk0mXaZYlaEx6HD0DdKdlXPl5R+TiqRYmw8jarSMnjyA26HCZ6phFIpEC1aCRx8g\nszCD1iAjHU2i6+knr/Vx9UIUQQZWl43eR79GvVggsbxKQ8wQr6gJ+LZhODBGORFn3G8mlZZYj9QY\n2O5n25CFerFAPieB2kg+W6JzVzfRRJWF5QyrW2X2G80UsgVGRz0MDzuoV2tIpTKrdQ3+3lEUpQRS\nNsfW5Ss0FFpunb2KZ/sIo/v6Sa6FUAp1zC4bx785gFnIs/zCszT0DtwuLWvTKzSbLZotAUFvxj/Q\nwY2rW4QTK1gHh9Hr7bj6lOi9dRwOLX19NmQyGXK5DL1eTdPno5LJ0Go2SS8tIddq6Tp2DOfIyAfe\nh4+DlZUMN29GaDbbTaihUJ5GI8SpUz0f+AW4uJiiVmuSybRNx0RRxvJymu6DXrRbG5SSSbQ2G8mV\ndRLRDPEcqJRyth3aTlMnJ16pstOSx/6NPsKpBjazCp8hS2Q+itHsYe75nzP92jVsgwPYHXoknZtQ\nREEiXSNTqKOwOAj29FKv1qnpzTjcFnQmHfpmHVGuQKaxoDHpqdaa1DVmCrEERWUJgRZKjZKenaMU\n0PPimQ3U9QyuwXFKVQGhukUqW8JzZDuC2c3F63HGHz6BmNzA87WTWJ0mKpUmtmCDjdA8Uh2yxSYd\ndhtma4tr59bw2JQopBoOj49SLMztN6fwuLTEEyXMHR30nXqQfKFOR5+HjoAZo8tOKJTDbFbT12fD\natWweu4SqcXFe9c7cusWcrUa765duMfH22Wbf4UYmsmkRiYDrVbOjRtxyuU6mUwFi0XN5maOUqnG\n0JAdr9eIxaJ5230XNjez3LoVob/fRjRaoKfHQq3WIBAw0tNjRaEQOHIkyPR0nG99axvLy2lef30V\naJfz/vN/3o/RqOLGjTB9fVZyOQlJqiMIMnw+PUqlmY2NLDIZGPUKXptcp1hqELAb0WgK7Byz47Qq\n6NBrSV2+zJ2nN7EJaVR6Hf2nH8YQ6ERhdzN9dZ5KKsHY8Z2QkcgXakg6J8n1LXr3bENZzVAvFdHI\narSktk6R1m7HNjREJZPBvWPHvd6r6OoqdUnCu2sXsTt3sA8Oonc6aTYayJVK7ENDaB0ORLUajdWK\nXKNBodOhczrxTEx8ojJovd5kfj7J3FyCer1JIGBi2zYnOt0HTNO9D35DRj5lVCoVXn31Vf72b//2\n8w7lPXj44Yf5/ve//++GjGTW1lh74w3q5TLQtoX3HziAvb//V36+1WoRn5lheSHOzGwSvaqF3qCm\nc8iPCYnuLiOVZAKrTYfKoGffLifa7ApuTYmNm+usXRf5yncfZGK0F8oZVHKQRC3X724hFWsUYnFe\njiT4ym9tx7tvP6JOT0Z0kK3pmNxSsHBpGbFZ46GTemxWI8O7TGiXU5z50RvUWgKO7g4W5xOI5hbh\nWJGRsQCHdttYX8+ysZ5heGcvN69vcOapC1jsRh77vT34lTnO/39n2H1ijKmfvEC9JeLePoyo1nL7\nlcsc+QM/a/Ob+P1GrD4H6y8+S1Eqou8IsjqfZvDgGCrdbhbuhui02Oka7aFeKXP97DWc20cBGel0\nhd5eG16vHqtVc5+bK4DR57uXCWnUaqjNZvSfsq/F2lrmHhF5B8lkiVSqjMfz/u6ijUbzXdtt/w+Z\n1kTPqVMU43EK0TiT5+8SidcoptIU43E270zzlf/1O5RTEeaf+QlSuYLe5GR5q8Bmo8KB//l75Go1\nlE4fGVuFWxcjHHtyFxdfm2X30W10jxiJJiS8pjpWTZ1quY65187W7ApWs4Lbr97GatUx2G/l+MlB\npPgW9Qf2o9KquXQpRPewH4PdgrxzG0//ZI5OnxavXU9Mbse808yODi35CpyfqpB/I84Dx3twdJox\niB1k1lZ5/m+eJTI5hXfPfob6Lfi6XVBv0NnrwmuucfBID6tXbyO32dG6fWxev0n/oA+z04q/v0V0\nPYpJIdG1tx+NRsHqaoZyucbAgA2Px4BOp6ScTpMPh++/4G+PYzu3bftEY6E+n4HOTjP5vIQgCGSz\nFRwOLY1Gi0ajRaHQ9pTxeu+XLS+Xa8jlAteuhchmJfbu9eN26yiX66TTFV5/fRW9XoXXq6daFZmZ\nSdwrtSiVclZXM/T0WOjrs+LxGDh6NIhKJadaraNUylGr5bz22ioDA3ZsRpG+ASfnnruJQqwzMuxh\nfNTFxnKEk/vN+JXbMZp2k5yd4c4//YhCLMXR//J/sLKUJLMVwePWUy0UCZ8/j2TwUdfakZOFVpXg\nwQMIcjnVQoF6Lo2UyaAym9G73VQyGSI3b4JM1v5fc7sxer3INRpazSaJhQU6jxyh2WiQXl6mFIuh\nd7nQWq10HDiAd/duaDZRGY2/sr/n42BpKcXFixv3JtXS6QqSVOfw4eDHJqG/ISOfMl577TVGR0ex\nfYqupp8WTp48ye///u9TKBTQ6z84vf1FQa3WYHMzRyxWRK9X0tFhwmhU0Wo278mMv4NGtUp8agpz\nMPgrywPFWIzY8gZz8yU0lTiL565CvUZ5rBu7U89Yjx6fOUgTOQabCSE/R6vRYM+Agt0H95JMFnGb\nWnj6gyz8yy0i0SiZmpZkqMT2fTt5YblFPprln384zR/+wSH6xg/xxlubzM7kmXkphFanYf9BP9fu\n5MimI5SkJgcPBcHsYmszw85dHehsVuqiloEuPT26FKtnX2FrK4vD76RqOYg/YGH/g9u5OxXDIG/w\n1jNv4nKYyJVhYyVGU64mJS0S3DaAw6pElosxPOqje+8E2UIT+0AfsmaDrZUIky+9hZwqu07tYWTb\nODpvgPBGghefvoYgiPdk3hUKkVxOYs+e9x9T15jNaD5iureSy0Grhdpk+sjPgUr13oWt7Wz63i/T\nXE5ifj5JOJxHpRIpFCT0+l88Dw6HDqtVg1wuotTpiK6GiSQk9HolapmOeiZBLpYgsRHBpFOh9XXg\ndVrJbm4hNmsYHF5cfhsutYYzzyVYno8yvr+XSrmG1WUh11Azd3WLEw/1c+epn3Jlch5/pwOxEEPX\nNYAoiZz88jD9E73oChss/svTLNxaxtrhY/zrj9J/4gjqnhRXbyXRFGRIlTrFUpXkZp5rm2XqTZg4\nNEginGYjXMFo1hDayJFKltjWKSd84w7NFvj6/EiRFZwuNwdPHUFlNDI9GSHaVKM22QgcOojUVCAq\n1cilPJtnf07GbkPv8eCfmMCgqmM0qjh3bpVQKH/v+gUCJo4eDb5vs6rsU9Cm0GgUHDoUIBotYjSq\nyeUqlMsNisUqMhn09FgIhXKMjrruy4xFo0XW1jJ0dVkQRZF0uszu3V4WFpI89dQ02Wxb1v7hh/sQ\nhDrJZJlwuO1RY7GoSSSKVCoN1tYyHDzYQW+vlbm5BF1dbi5dCrGwkMRub/vaTF2N8fCXuvjOH+6h\nUpTo3uYnk6tzaLuKlWf+iejtW2i1CjqPHObwn/4JGzcnSWwmePEvfoDJZkY2aEIsJXF2d1BXGYln\nm1i39SMkVlk4+zrxuXmoSujUoHe7qUsSM08/jW1wkOTcHNVCgWIsRvDIEby7d1OIRLD29qI0GKhL\nEvlQCFMwiG1gAN++fZj8fkydnZ+qUu7CQvIeEXkHGxu5t7NYH9yw/m78hox8ynjuued45JFHPu8w\nfiUMBgN79uzh7NmzfPWrX/28w/lQNJstrl3bYno6fu+BdzqTPPBAF3qN7L6Z+HdQr1SoVyq/koxI\n2SylqgydssnmpUlsBoFavkIptEqmqMM3Pkp58iJ1ScLz0ENEVpZo1BrounrJJGNk51ZoukTW3loF\nuQK9P8jm3S0UcqiGNzhwaJgXnrlJbAumrq/i7PZy/lqK828so9YoMTlViCotc/NpbCY1KlWNlZlN\ndh3spVisI7TqfOfUBEqVAml9gTd/dBOdRqSSzbORL+B269H1jjG8I0Cj0SC0EiG8nqBeM6E0ZxH1\nZoRaFVldYnExidNqQ9M5SGwlzsbMCtuO7yNNgaZUZev1u1i8LnRCmalnnsV/YD+1phyjrxtXfxKZ\nSovul3o3tNpPLlhVLZWI3LpFdm0NaGdUPBMTH+l3u7utrK5m37Z1b6Ojw/geFdZqtc6FC+usr+eA\ntoGe06mnWq2jUslxOnXs3Om5r/lV63DQuW8XszMxBIea0WMPU4hFabn8aCygts6yOb9G774xXC1Y\nuz3Dxp0ZnNtHiIbSHP/KBKnpO0RzFWSCjkvnZjA6LITuziOIMnY/MIJGKbCykaMan0YRHGL22gpW\nh474+gIVuRV9t4KteJHc/3iN/b/3GDqThq8dt2HW1/A84mD6bgxBa0ZbVpMvQ6PeYCNU4Ob1TXbs\n6ebO3RgKuUiP3cb01Tk6er0kUkaWZ1bJX9ugWBUJHjuGYHEQDodpLW9Bo47eYkIm5UlO3qJZr6NQ\nq6gtL4NMhnt0lHC4wNZW/r5rvLmZIxot0NlpwRQMEp+aundMJorYBgY+FZ8ajUZBZ6f57RFd6e2m\nVDUul55CocbCQgqvN0p/v7UtrV9vEokUGBlxcvbsMpLUIJ+volK1DTKLxSqHDwcoFtvu181m656d\ngEajQKdT0NtrJRg0cenSBlevblGptDMiiUSZ69e3UKvljIw4mZ6Og6hgYSZMPRUlthEnX9zP17+1\ng7WnnyW/OEthZZGSKJBd3+DI//7nOIYHSURS7PnSXlQKGS6Hmo0bd7ANDGBx2/CKKXKLBerxDbRG\nPbagD61WhUDb2NHg8TA5O0vk1i36Tp8G2tlelcHQHqePRmlIEs7RUQxeL0avF2Qy7MPDuHfs+Ezk\n+t+drWzH1I7r4+KzJiP/DdgJ3OB+B98/A74MaID/ArzwGcfxa0Gz2eQnP/kJr7zyyucdyvvinb6R\nfwtkJJEosrCQuo95x2Il1tczjI660TmdVNLp+37nnQaud6NardMS5SiEJnqNiFaQiM/MIpXKlB1W\naiYR745tOLdvRyaTsfrGGzSrVaR8nsU7S/gOHaVvrIfQhQukV1aolCRUdgfW0d3cevYmqxsljv3h\nOHK5iEEjQ2vWI6tVeeRUgGSqzOpmmZaoIJaoEOi0o2oUSM4tEd+oQk3iS799iCvnl3n6H69i8Vix\npafRahUUskUSqQoarRIqBWy6OnK7jhd/nCCfkLPv8AjpzTCLs2H6Dx8geusmGquFu7NpBnbv59yZ\nOSrpFIf2e8nM3UXr7UBudbJHZyY3fRukPBlRzcbsGuYyOFyd9O4cYnV+i2qhgFKvR6dT0N39ybQ+\nAOJ37963cCVmZ5F9xHq132/kgQeCzM0lKRSqdHaa6e+3IQj3L3rxeImtrcK97VSqjE6nYOdOL8Gg\nGaNRhSDIqJXbCrsKtZpcU8eZC0lW7qyA3sYPn5rlt797EEupxk/+7hk8TiW1ksTkT54jeHA//sNH\nufA/XmaPRk/Xth4Kc9eIzK0weHqAFFYyMytYHAY2FjZZmUoALXweLUaThrWVDA886Mfqc2E0ybl0\nN8Lc3S1kMhlDQ3aKsQiJxWUsKoHom2fIatVEKnrEYouuEydo1OrUSmW2dwoMBwPs3+tF57Dzyqtr\n7Byzki21CPT5aDZbFHIVLB4bVp+D4K4dXJ3KsXenl1xCh6C1UI5HCHrMFDdWMHZ0tBVTRRGZINCs\n1xEUCorp2nvEOZvNFuVymxR6xsdRaDSkl5cRFQps/f335MU/LWi1CoaH20aI0WiRyckojUaL48e7\nmJqKkc1WOH68Pa1jNmu4dStCsVhFqZQTCuWQyWTEYgX27vVx+3aUGzfCjI25efDBbjQaOWq1SH+/\nncuXNykWq6ysZNBoFBgMSkKhPLdvR9m928ujj/bz7LPzbGxk0euVSGUFex8Y5NqLWboHPew90ou6\nUaC0sUytWESp11OIx2nWaoRv3mbnH32PyD/+hKUzr+F0aAhnknjHx3EO9LJ8+Tbx1RDB3TtoinJE\nuYDJaacQ2qCazaA0GNi6fIUd3/42S2dfJTI1g72/h3q5jLmzE7lWS+DAAfQeT1vtVqmkViwiqlTo\nHI6P3Uj+UdHbayMWK91HSrxew8fOisBnS0YmAB1wBPgrYBdw7e1j/xX4v98+/hL/TsjIpUuXsFgs\nDA0Nfd6hvC9Onz79b8bFV5IaSFL9PfszmfbUhnP7dqRslmI8TqvZRGuz4R4bu69WXas1mJlJsLCQ\nxGIU0TfAFXCwVikhFcuICgWCKEdtNLTHf/fvJ3L7Ns1GAymbZevmbZJbcdyFDK1YGVGjQeewE729\nRCu5gsnnZ2hHkGwZltbLPPDlEXxWGbGrb9GyaqhU6jz5UDfzmSDTs3GOHvYzd2WWQnwLT8BBoyVi\ntGgRRZHXzi4QW4/Tu6Mbi1NJLithMeuwWIrYbWqWltL0nbYhSSUCPj1f+cYEdlWJ1fMXufLqJLmC\njvHv/A4thQZbNItep8S6GEVjtSGTK6gjsLWRoDW9gMdrRrF9mGw4iVKTI7u8jFDOoKrmCFoUeHa7\nWFmM4/ZZ2baz7WD6SVCXJDKrq+/Zn1tf/8jnCATMBAIfXApq9xTc3ydSLNYolWqYzWpq5TLR+UU2\nNrOEQgWCI51cncyTbZkI7p5gbiaGwd/BzGqZTnuTza0CgsKM1tqBVKkzc22R3Z09WPUyZJkwHf5t\nTF4vUpGaTJ99i32/8zh7D/UQipRwdQeILGxQKtVQ6zRUKjX2Hu5DbdCj0tUoVGs0miAT5RQLFZbm\n4wz3m3B6Lcy89CqRW1NUKxLbv/Yo6VQZv7mKzFFlcNcA1USMteuT9Jh0pDf1PHykH4NVx8bSOvsP\n7mDlwmWya2vUkTNwcIx4RcX5F66hl1UY6jdjHdiDtDaHz2+kmqhTs9sx9/RSK0vIRdDY7bSabX0P\nhUK4TzROpRLvjfUqNBo84+P3SPxnJR/e19cWGTt3bpXhYQdud9vk7p1sSDpdxm7X4XbrSKUqiGJ7\n6sZkUpNMlrFYNG2fnjtRQEa5XKNQqLJnjw+XS8eNG2HkcpFmE2Znk4RCObZvd9Lfb6NabWdYRked\n2O06UqkStVqDHd8cRqNscerJI/T0WDFWwpSTGVq1KrV8FpPPi8ZiQZC1cAwN0KiUya0u4vKZoVyg\nEE+SmJun6+FHuPD8FZqNBtFUlT0nd6JWQHJ2BlEhx9DRgaBQcPX732f0d38XU3cfC+dvIIWLBPp8\nWLq6cO3YAfBrNyvs67NSrTaYn0/SbLbweg2Mjbn/VWvLh5GRIeCrwDvF4k3gX4CZj3DuvcDLb//8\nCrCfX5CRd1YYLZD5qMF+0fHUU0/xxBNPfN5hfCD6+/tRKpVMTk4yOjr6eYfzgdDrleh0yntW8dDW\nOHC52sZNWquVnoceophI3NMOebep0/x8kitXQlQqdZaXawQ8dvYOmBk+sY+WlEcuiBhMGjzbh1Fb\nrRj9forRKNm1NSrpNNa+fnZ0D+Ea6SeyuMHFKxG2D9uxdRTZml8jEwrjHd9LsKOf63czjG+zEr50\ngcjMAj0PbScvypFimxzbZWPbcD82ZYkOt4KQ4OGNl6eIhtLsPjKIyrrMth1+No1KRJ0Wz4iPzNo6\nAi2atQrLizn2fO1BUhUVEzuDGOxWrp2bJJMuMDS2k2/8n8dIhmIk62auX1nn0E4rubkpLHYDK4tR\n7GY5yUyL+dt30SvrpKduY91/ghuzNTamQ3QN9dHZ08XiuTeJTM+y+9g29u/ciSDGcdg/BXL9PgvV\nJ22gezcsFjUmk/re9AyAXC7g9babXJNzc9y+GWZuLo5aKaeBnPmZCptbRTqDRkp1BVuhDHK5nPyQ\njWSmRqBbAQIUsyXKJQmxVkGoFilKLfoCVurjPeQ2N2k1qtQWr3Jk92GuzwoYgzYcwUXcTi12pwFE\nOR2jQwjyFnWVhZtTaQydXRjjRRotGd5+N2OPTGB2mrFrqtTtWmoNLTplE62ljiIyS9DmJb4e4eLf\nP00pnUep09G/axCPVc7mmgWdRk4mVcC3axcnt+2m2lIiyTRMXl9Do1MBLd588RZqtZyTj+2k90gv\nxVSGW8+eZe7uJuVUEqNJw+7+IaKTk7h2jDE66mJmJkG5XEOrVTAy4sTpvJ+cftZKnTKZjI4OE4GA\niVAoRyJRupexkclkCG8/R3p9u9QSibT7QEKhPLduRfje93aytJQmGDQjijL6+qy43XpeeGGBRx7p\nJ59vC4hpNCoajfbouAwZer2CWq1BKlXhZz+bw+XS8ZWvDCC06li0LWZvrrC+kkBT0HH+rUuMHB5j\n4PGv00Agt7JMqyZh7u/DOTJCJZPF6PGQWlpCpZSj0qrReHxIxTImq4HoyialdJ7X//F5Hv/T76B3\nOankcuQ2N5l79lkqlQalTA6L2cLBP/o2lZqIzGjF4Pd8bo7JCoXI2JibgQEb9XoTg+Ffn4H5oCfo\nz4BvAT8ELr+9rwP4Z+BHwP/1Iec2A+8o32SBd8/5/RXwGPC7HyPeLyyazSZPP/00P//5zz/vUD4Q\nMpmM06dP8/zzz3/hyYjFomFszM3Nm2GKxRoKhUAwaCYQ+EXjo1ytxvQ+Ggb1epPl5TRKpUAmUyOb\nlTgzlyBdaHFq/wFsHd62K6XBQK0pkM1K2FpKjIEAtXPn2q6jDj0NjYVQVs7KVoNEpsHcYpq+gW56\nHQ66D+6hqPOzHpbYNt6Jw9KiqIWR39pDq5glu7FKrSRR1tWxj+ylUZTocCqYWijg7/bg9xkhEyUT\nsZDNNAl2WVlaSrEQ0uM7cBhTM0FJbsC7bZjJDehsNFmaXOfs02+xePkONpeZTrPEpStx3GawO+38\n9ukhonOLVDcXsDoc9HxtDw6/g431LJ6+DtLJEoae7bz03F1Udhc1uZ6VpST5isDYoBmTXiR66xYN\nScK3eze1cplCU0Gp1Jbe1uv/FWN77/i/pFK03hEak8k+db8Sg0HF/v1+rl/fIperolSKDA878PuN\nVEslUtEMlWoDaytNan6dTM7DxNghQtEyBqMamVxEoVER6HXi9NuxOQ0o5AKFooR3xzaMqgbFfBHN\n2BFCkprMpWV6ens59HCBzOI8pXic1YtXmThylKwk8lv/y9dJT90kubiExaZDnlzBHAgQlxk589I8\nO3b0su+3e+hwy2kkNiEboxFrIlJFp1OiMZtQqQTKxTpKgwHJ6mHt9WskVrdoNZrQarC5sInZIGPs\naB+paIbkwhpTFSMbGSWzC2lqtQZjuwI8+e1dzN5YJB7Lo1LKkYsCRp+P5biAfGAPlqIMjcmAKRAg\no3CjLiWJ3bnN+KlTBIMmyuU6Wq0Cm01LXZLIbm1RSafbEx0ez4cq7H4a8PuNLC+n7ysd+f1GLBY1\n5XKNGzciDAzYSCRKZDJl5ueTaDRystkKfX1Wtm930mi0KJdr/MM/3ObEiS58vnbvkctlIJutoNcr\nMRrVIGuRz9e4di3M+noWn89AOlXGZFRy7KifpalVXvynNxgc9RNbzaI0Gll+4wJWsxL/rp3oT38Z\nrdWCqFKxdfs2SoeXYiKJZ6gPmjVc20doCQrMLis7T4ySDPmYvb5AYn2LUiZHZvouifl5GrUaWrsT\njSCgNRtZe+01UKiZu7OGY3CQoX2f3gj9vxYazSfvKfsgMvIfgGHg3S5V/xWY5sPJSBZ4Z+7KxHsz\nIP8R+N+AM7SzKO/BH//xH2N+u0N/cHCQffv20dnZCcDq2ynfL8r2z3/+c7q7uxkeHv5CxPNB26dP\nn+Yv//IvWV1d/ULE88vb78bwsAOXS0cuJ6FSiTiduo+kvPkORFHGlSshtrYKOJ06hoedrK9nKe3p\nQWVIUqtILM9HqTSU2MZ38fKZVXZss9Fx4ABSsUSibqTQ0CBTOvHsttBotpDVKhhMOpQdHuI1A6nZ\nFXq7rfgcOQS1imQrh6wCS6+80lYhFUWi1/L02IxgdiFa3Ey9eY5mS4ZJKyCngSfgRO+UsXr1FvnF\nDcLVNMFH9pMqaym6nfz4bITtOzwUc0VkyRRz52+hU7fYsdPPnR/+GJlKQ2u4g0+L4B8AACAASURB\nVGo8TOruLRomP7liE4WuhLKaRW8MkL7xPOV0Ho3VDdYxmsoQokYLKgNKnUCm0EBQa9G1itSlBqV4\nHJXFyuxSgZmZBJVKezEaH3fT3/9eYbIPg31oCJkgkFpYoNVqYe3txfY+Y9ifBB0dJpzO9jOjVsvv\nva01ZTJErY7szAUWL96iWm2gjOfZtXMPAb+BYrmBz2eko8PI0JCDly4kGH3oEOWNFZSCnIrWwNHf\nO0kilqOynqI+N0P45nkSl9TsfuI0al8nlUKZos7H3/+/F7CY1WQ7W5iFIq1MjKXLd8mHQuz4zh8g\nWbvYM+HkR0/PcPrRQdILk9QzMUZ71cz87DzmQBBbXx/5RIp0KIZ3dARzTy9rSQGzRY8MQACVXk8+\nXaRWktBplUwubNIxMELs9gojfjm79wyzHod0ooDXb+St5xM4PWZ27Axg81qpVussLKRIxlpI2MFg\nIrxcRBtb58RBB618nnqlgt3+i0xIvVpl8+JFUouLbWIpk2Hu7CR4+PD7+g59WujqMtNoNJmdTVCt\nNggGzQwPO5DJZKRSZSKRAq0WOJ06Dh7sYGLCSyxW5Ny5FU6e7OHo0SDXr28xOxtHp1MiigLr6+0e\nkAsXNrBatej1SuLxIkeOdDA/n2RxMQW0hdgEm4Zzryxy8kSAra0cao0CrcVMcMhEZW2OqtaC0Kgx\n9dpV7EEfh//TH3Lzx8+zuJgiOCRHbzOz9OZlvKPDVOslzMEgS2fOUi0W6RjqRe+0k0luQ2uzIvT3\nI9do2Lx0GZ3LhXt8nNjcIhqXm9k3LiMo1ZTjUcqxKKIyQDLZniy02zUolf/2ZlM+KOIG7fLM6rv2\ne98+9mG4CHwPeAo4AfzdLx1TARJQAd43T/sXf/EX73vydxaxL8r2q6++ypEjR+7Vyj7veD5o++jR\no3zjG9/AaDR+pM9/Htu/DJtN+56piY+CVKrE7dtR7tyJIUkNQqE8mUyFxx8fZCNW54HDR4ivh0kZ\nEsjqKjbSDWq1Kleuxzi6cxj3w1ZC18MIKgOvnF1DrdfxxKMPIc+HMSjr6CxGarU6wuICG8/McTca\nY/d3v0Pn0cPM/OMPqJfLyJVypGwag9VE+OJbbP/9PyQjN9G7vZvblxco5Jt0DAaQq5VMuMqYCwY0\noge9RkaXOkbL5cNgNVKrtR2GncYWVlHB//SnD5MLbSFvSuSdakp1AYNJg0ZZJXxrmsEntpNNpAit\np8mkiuhcLiJrEbRCnValjJRKYuzqQUKDfcCI8v9n702D5LrPc79f9+l937fpnp6efcfMYAcIEgBJ\ncAFpWhQlWVdW6ZaXG/uWJd+qVPIpNzdVzoekEldyXZWqW7E/JM61XaZoSaa4k+IGgiAG6wyA2dee\n6X3fu08vJx+apESL2kjRoFT8fcE0CoN655ya7uf83/d9nnaVWmQHrdAkl8+idzjQ2O2IJh835uM0\n6k3ESoVyTs682P5E90RQKHBNTOAYHQX4TOPJ1WoFTudH396UWi16vYJStOuNIZOBa3SEp//Lq/zu\nnzyGwWGlVGqgUinY3sohIWcpZ0FtGKNvWIfOqGU3BTrk7L/zNqn1TbQWE8mNXZ77z/+Vh7/zTba3\nIzgPjrC/m6E/GGL14jyHpq2kbt2knsvRrNVIr6+jGDQwO+JB/2+nGelVsfFsBIe2TTmSBr2NWlvO\n4Jn7Se/FkFptVD0h5DKwKitoh3s4ef4wsUiR/UiRYjKD3nOM8F4Jc8CPTmgSfvtNmnINHYWOvoOT\n6MwhBLWa3//jk6jkoDSaKbb1yOWy7nq0XCCbLJLf3kIml6MdCSKXddBYrSj/RQugkkiQ29r68QmX\nJFHY3aU0OPgr277/qgiCnJERBwMDNjqdzocfuisraba3cxQKDba3c2i1SqpV8UM7+Eqlyd/+7SJP\nPTXGk0+OMz7uIpXqpjnv75fQahU8+OAAyWTl/bVvOclklXZbolRqADJUKgGNuom/xwgygTo6LMEg\nQzMDWMVNLn3v76mm0hh7PASPnaTcgOTaFjduxEhECphVIgaNxMTvPIRnbITs1jabr75KdnMLSWdi\nrqeHgcOTpLb3yd6+iXVggImvfQ3/sWNk1taoFkq0myIKk43ohTexBXz0Tg5STOe4st4mFusObrtc\neo4fD2CzffYnVb9Ofp4Y+Q90Zz02gL33/y4ADAF/9kv83zfoio233//6KvBXwHeA/xMYpStK/rdP\nUvjnCUmSeOaZZ3j22Wfvdim/FBqNhvvuu4+XX36Zr3/963e7nM+MWKyMXq9ieNjO3l4BSeqelFgs\nGlQqgViyRiQjZ2lPQqn88QGgKLbJZyvsxNugNuDT15jxlBiYdFDY3mJnYYmgAwxGPZHLFzE77SRX\nN6mWqyx87zmO/Ol/g/vAAer5PHq7DbfTSS2fx+R109aY+dGLG8w+cAilzUWpIqI1GrBpW2y+eQGT\n08p9B43EdhMsvvgW9/+738PsM6Np5Aj5NRTCm5RrWa4//TyCUsHwvceI3Fhg7P57sNl0lPYzVPMF\nasUKib000Z00ckkkePIkkw/fT/TKPAadgNMqwyd3cWejSinXYTRkxaasYjcrMJ06hVKvZ/Chh4jU\nFeRjScRSiVajgdTpUI7HSc25PpFAhE8nQlqtNvF4hXJZxGBQ4fEYPtZr5GdhsNsYGPHQqInUqiIG\nj4fxI24SqTrff3GRAwfcSJKMhYU4r7+2gcOhZ3bGRT6d4PHzgzgMEsqOjE6jitbuoFgScY2NoVLK\n0ChBOzDF0nKaf/MHJ2nVa7RqDpTyJtTK6I0aTDYT7pAftddAYu0axw8fQSxmSS/dQTLLyRVTNGQa\n7MEelitV4uEUCjnMfcXF+qU3aTbbJCsqLD4nQw47OncVe++9aL0edrJtXCY1iduL6Dw9bG+kEIQq\n4VurzHxpkHazzcD4ILsJkd1oiZMnTUhSd/vhxuUtOnobGkcZsZBloN+CRqdGOzhFpdr6SGuuWal0\nT/x+AqnToVEsfuw1lySJaiZDs1JBodGgczg+tRDt3vPufc/laly/HqNWazI25qRabVIsNiiVugOq\n8XiZ3d08jz8+hNWq5fnn1wGJt94K0253cLv17+fXdFfAW8027XYHlUpgaMjGiRN+FhcT2O1anE4d\nh4/6SSVLDIz5CO9k8RhF4q9dQ6VVIxl1tEolihtrDD75NRpiG5tZhRmoxmNsLizQM9pPz/QkC3/3\ndxT2Y5jtZrxz06RvLZBbuYNKp6VZLmMJ9VMVwdA3QD2fxz46SrsjsTN/DYtdj9NlwGTWkqsK7O0V\nP2xdRSIlFhcTnD7d96mu8b82P0+MvASMAEfonpBIQISuqPjpFYeP5z/8i9ffef/PP/0Vavzcc/Xq\nVVQqFVNTU3e7lF+aD1Z8f5vFiEwGGo2Cvj4LarVAuy0hl0OzKbGxkWZjI4fZrGZ9PUt/vxWNpvvr\nIAgyjDYTznyZyMWrPD+/TihoJnNxDUGtZnyyF00jg6AWyG9u4vTYMNsNSO0WvqFeOqKIZeYY5UqT\nZhuWlqLozE4Cc6fYTCu4vlKh0k5w6HAPEpDNi2i0cm4tRKhWd/GHnPR49fQO+xErJbavLJFc3SUS\n22HizFEEZRO1WKCcb6FQK5g8ewxlp0Ijk6BSETENjrC3todJI5E3arC6veQqEhatDvfoMDuRKuuv\nrzD91CiZisDQoAWfV8fhqWmUhX06gwHMvb2Y+/rYeXuZzOoq2c1N2o0GBo8XS28P7UoR+NdN+BTF\nbprq+nr2w5ySkRE7hw/3oFT+ch9uBreb4IER1CoZ5UoTx3SAOy/ssXwlxvZOmf39EocP9+B06hkb\nc2DUQCe+RbGYon1Ug1hvYBocpCo3sJ3MoNNq2dopYnMYUBkMhBdyvPTPtzh00Mvjj/TRNg9T2V5F\n73LSyKYwB/wo1ErCr72IvneQjX/+J3xzs8w9cJDMrRvIFUbS0QyuwCwdg4PK/CL3/em3aOWz1NJp\n8vEUGneAWqSGOjTAkS/dz/5GlHCkyna2g3lUT7XWQWfUo9ZXaLWhWmqgUbTZDZfYDpfoHfBw6lSQ\nnh4jV65EiOzl8LuUbG2DY2KSQ+M6HFYlV9cqtFMplMosIyN2pqZcXaM4oxG5Ukmn+WMBLxOEj804\nkSSJxOIiicVFWrUaglqNbWiom7XyKWg220QiRZLJKq1WG51OSb3eIperMTvrQS6XEQxaKJcbCIKc\nvj4LMzNeLl3a5803dxgctDE35yGfr3HkiJ+RETvf+94yt24lefDBfjQqgVisjCDIePLJMe65J0in\nKWKzaRgYdpFLV3jumetMHuxDno+RWlqhns9Tz+eRCQrKsShqtYwiekx6GTdeWyA0PYTBYsQ1NoJS\nr0elUqIzG1AYDWitFrZ/9Bq+uVm0NhtqTw9vPfMWnqNN8h0Dc6M2CjdvojfqsFvVyFUqXP0BHJMH\n2KhqkKSPei4lEmWqVfGn3JI/z/yixlKbbrvlC34OzzzzDE899dTnflX2J3n00Uf5j//xP9JutxE+\nw+Pyu0nXtlqJ06lDoZCTy9Xw+020Wm0EQf6+OJHjculJpyv4/WZksq7DpK/PhRjfY3dhDbUCdhbW\nmJp2U9vfxDzmJ76yzdDpU1jdVmr5PFaPHc/UBMmqkvJOFUx6nGNHSCysYhk0IFicXN5RERpsoRVE\n3DqR8Bs/whjs40fP38H0zZN4B4Ncu7BC7HIY0wNDNGVNNHsZ7rx5lb4BJ/uFIvt31hgY9uDqdWOr\nVWnFd5l54hyxxUVaMhWagIve2Sku/sMLGA1axu8bw9jXz82re5w+7qYgtnH3WLGonVyej6JTyxkN\nWBj0NoldfJt2o4LFpKEci1FJJrGqlaibBcqRCNB9Ku4bcqERc7SbTer5PG1RRGM2f6y/y6+TWKzM\n2tqPHR+bzQ6rqxl6ey34/aaf+X1dX4wmarUCQa3G6PeTWV9HWctCs47YkqPRqPD5jCzciCI/7KNU\nrNHj1WOQ1chvFXn4G/eTyBVYWa9x0i1gtFkxpOrEE2WUCjkGlKRFLT1+iYMn+qlVWyzutHA5xhh5\nYAB30EcpHsfs72HvvUuoVQLyWg6jJFK4/DrDjz+Gsp6jVaviHOxn+KEHCd/ZYPaxs3Q6Esk7d4jf\nWUJCTlmUIxcUqKQGWZOBmszB8nYWhaxMT18f4dU2PrcGvd5HPlfB4TSiN2h46YVlvAM9qA0Ghoft\nJJMVVlYyVAslyuEo/W4jSimJUT/AtbeXWby8jv/EPRjcbq5fj2E0qhkctGHweHCOj5NeXqZZr1Op\nSZhCfVRkRrSN1kccUSvJJImFBVr17nZTu9EgvbyMqednu/n+IiTpo2aI+XydalVkZsZLMlkhne7O\nTgwO2jh0qAeXq4BOJ6DXK7Fa1RSLdS5c2KW318wjjwxisWhYWUnjcOj42tcmeOutXdRqgelpF0tL\naSbHbByaMrO9uIGhkUeKFdnblcjEMvT4JhBkaTLr63imJ2hks5QTCVR6Hba+Pt76/jKTR49SSGRQ\nCHDfd/4dCEqyW5v03XcvWz/6EQqtFq3FhNHjwuT1Us4V2b2ziNZsRm9Us3YrRTQ0zfjJ+2iXcvgO\nHUJlMGANhdB5e1h8aeunrpFGo0Cl+s16X//Nm3L5nCFJEk8//TQ/+MEP7nYpvxK9vb14vV6uXLnC\nsWPH7nY5nwlOp55Tp3q5dSuJUa9ketzCyKiLtc0CDocOkJAkiVDIDMgwGrt280NDNnQ6FTpVh/Ep\nL6lYnkRFhlqjRK5oITUbNOodqvUWE1/9Ks1iHkmuYG27QqaupL7b4NryOmOTHkbHDmK3G7j47j6X\nXprnj//9MR48YSd+dZ5SsYrW48Osgys/usmhs3OEagqy0ST+8QEUDg9XX34PkJOMl9AZVOiooTIa\nESWBZqVGI1+gsLeHe/oASoePTDxLNlVAFRym78gkmaaOmwt7TJ+aptSucmVLhqBXMHsmhCNeQyqk\nyd5cY+1KjEIkztgjD6D2+KjWJRI7cTwDPcyGwGWeIZOp4vOaCPXJEFMxYjdukFldpS2KqAwGfIcP\nY+vv/8zuZ6HQ+Cnr6Waz835P/+OJx7umVbFYGUmSGAiZMIjgOXgIuVxGUduDwVyDBpjNKgxaP9G9\nNOceHqFcrFJLJxk+/zBXfrRI7PYy+ZochdGGZWyOgHIduS7K6KSX/tkx5LImQZ+G40cP0WpJNNoC\nrUyUfLqC5J1h8IyP0u0raM1WOkBybRNLX4hOW6SUzCC3ODF5lejcHmQmB/1ne6lEdth5+wLWvl4K\n21vEt/ZQyzUUWhoCc25aGiOptAxVo8DkqQPY7DqyRg21YpnEToyJcQ9Ks47dG0t4xCyjXi9KrYL1\n9Uw3cLHVQaHRoLVa6NAmnOwgW69SV1mZefAYsUiGjsMBCOzu5hkctCEXBHyHDmH0+wmvxygXJLZF\nDTde3SEUsnLiRODDU8bG+wOwP4nUbn+YGvtJSKWqrK9n6XQk7HYtDoeWbLaORiMwMGBlb6+ITCYh\nSfDaa1vU6y28XgM6nZLV1QxPPDFKNFpiZsbDwkKc7e08CoWMra08Dz88SChkoV5vY7Xqus6ulRKp\naAup1UZsNyikRBoFicBoP1qlhM7pYOjcA2y++ho6qwXn+Dj+Y8dQaLWMz4aoV8rovH6cDh0Gj5ul\nZ5/H3t9P4OEnMIxMISZiuMeHESsVIteugsqATBAoxlMcCLhRhdusr2c5/uijOC0CnXb7I1EK4+NO\n3n1370MvmA82yH6VQf/PA1+IkU/JBy2az/ua7Mfx6KOP8vzzz//WihHoGmWZhAq5/RJSLU/p1gZq\nyc6lBbGbSaFVEQpZcDi6IVw7O3l6e02olDIEtRq700C7mEVlk5DyCZyjI8gNZsqCmZX1AhOPnEVF\nh045z9iYwOVrKS6+HaYhGHn7jQ38QRtyVRuHRYm/zwmSDIuqRbFdxN1joG/cwdrVFZqNJq+/voPa\nM447OIFytJ+FK1uItTpSs0U6XmFs2Mfu0hrOQ0dRBoZBoULtcNIoltCLItf/378jfGuZua88wclz\ncxTkNhr7FcYGzcg7Ii9+7zqlGmQSCZbupPjWnz/M8o3b5KQyUiNKMRZn67IT/ZyV6/NhBEnkpMEP\n+QSm6B52rZZ2pEVNCCIMBcmur3+YDdQoFIheuYLO4UBj+tmnFJ8Gk0mFXC77iNujQiH/qVXjer3F\nXjhPLlXi8tUYjabE1laOYlHkilbG8WktwX4HlTrEVxMgEyil0ohtOaERN+VCFbtFwCrVGD8xxNWL\n64QvXkTSGCkV2lTyeZb2wOkdZfjcOI3oFj/8mxcY8Cmp5rLIHz5JPpmhx29hJynjlX+6TLWtxhbq\n5dw9TrKZCjJBSV7lo5JqMnDwAEWFk5paRG6xofWG+Lv/6yW03gDDg1bMXj9lUY7/zP0UK69QzhVw\nTo6jG5zANTWNTdAjnZ7E41RTWlvENzWGyWGjZzpMu1xmZ3WP2t4OnYqcpWef594/+Api1YFOp0AQ\nZICAbzhAeHEDdXGf9KVV8rkKwycPMzIZIFbtgCB85ElbLgjUBBML+2mq1RbQ9QLa3MwSDJoZGLAB\noNRokCsUH50xkck+1Slao9Gi0WjhdOpZW8uwspIilarS32/l3nuDaDQCoZCFZ565QzRaZmDA9n7Y\nowWZTMbly/sEgxai0RLXrsWYnfVSLrcQBDnr6xnGxpzs7haYn49QKtSo5Ao88cQwqUQJrclIKNjD\nmEdOqCkhxDdoGIzI5HIGH3yAWjaDzuVCZ7dTzeXYffmHjJw7S82iJba4gD3gxjQ0Tts7yFtv7VJK\n5bFbzXhdQez9CWqpJLGlVbwHj6F0+YlvRQjNTiHKtSiUwsdet+FhO1qtgnC4gEwmo7fX/HNPCj+v\nfCFGPiVPP/00X/3qV3+jWjQfcP78ef78z/+cv/iLv7jbpXxmFFNZrl1YZW053o0B9xqIrd3ArvVw\nZWkfUaai0wkxO+tlYyOLy6Xn6nu7ZPciuO0qhs/eg1o7T92qpN0U8Rw9QVXvpRMUsB6Y5q//6xbb\nW2mGx30YVG3MBjUWg0BZJge0GFQdLK0UUmWdrzwWpN2ugqyDWqvE3eeBepmjj51gZTlBsaEkUWzR\nG3IT3c8xMOhCE7iXaiKGStYivLrH1OPn0HkDBF1e6sVJ7HY9uxcusPLiqwgKFce/+RSVeIzE5XeR\n27wcHBtAZXDw1//7S6Q295DrTbQbIqLYpJbLIol1rF4jYkRJx+Dg+sVVZnxjyAU59YbAjZtxDh0+\nSznyt9RyeTS+IHWTn2JDSXgpgtdr+HCjoVEs0igUPjMx4vUa6e+3srWVo9OREAQZg4PWj7jDNptt\nLryxzvzzl3AGnLzwzCI2vwdfv5diEfKlJmqTh8vX01y/FqVZLDJ37xh6u4VmukRiP8u5B0L0ejRI\nUoP84hVy+w1sg4M0OwKFZpZiWWJ82kut0WH/9iLRGzcJ9BhJxIsYNQrE2A5Oh5O2So/CrOPQ/bMk\nIzl8oz4C0/3YLUoW3rlDo1zAM9aLcvQIYnyPdq3GxvUl1LsZpk5Oc+XKPtdyFR4+P86tFy9gcDiY\n+qM/wWTRE81JaIO9/N9/v0Wt1qTXLkOW3mF6SIsQX8Xu96DyBpl/5odUKk2y6TL+A2MURDWV8Bah\nIyZMhu7129rKozXq0IoZdhaWsFmUFItt3vm75/n6f/pD8jI1MpmMUOijkQBdZ9t/McgqdS34P3CE\n17vdWPr6yG5u8sGEpdHnw/QzvIF+GYxGFTablmKxzuJigkKhjk6nxO3WE4kU6e+3srycptHoUKu1\n2NsrYDarSSSqnDwZIJmsUK+3EMU2Pp8Rm03L7dtJtrfz+P3dFtaFC7sIclCpFcTKLcoNOVpvgB/+\n41XUr21z7wNjhLwKmqUCW5dWqcTiNPJZFCoVlVQKhVqDTKXGqmrQ3F+n9+QxJh45Qy2yS3J7n9V3\nf4i9L4BeaeKNf3iNXFXGyUkdgZMnCZw8iczk4ubFZZTaCvKAFoWgZG0tQ7HYIBSyfmRouytAfrE7\n8eedL8TIp+CDFs1zzz13t0v5RBw/fpydnR2i0Sg+n+9ul/OZsHgzypsv3qbzvkX4lTeWOHQsSMAp\nMDLiIJerYVI1qdWaWK1aYrECiswuRFbY348ydHSKoYPTVHs9lNNpsrt7JAwG9kp61t7a5tr1GB2x\ngd6Yw+3UkE43GZkO8t6lMCODduy6NrWdDUhtY7S2aPumuLOa494HTpFbmCeysYF3eoKx3x1HaXOx\nGWmyvlXAb2mwuZ0jmW/Tappx2jQEzowSyYtEE2rMjQiv/tXf8uV//xirL72K0eXENjxMNZVi6/JN\nVE4vZSHD7WtbzD50gpnT04RX99EqOliG3LRVBnR6NX6fgYX31pid8YCuSjUaoVZrIlMqsPoCqMxm\ncBuY/uY3yezFqSgsaIPD5Io5wrsFms0Og4Pdp2BBpUJQfnrzo5+FWq3g5MkAoZCFYrGBxaLB6zV8\nOLwqdTokEmWuvjJP/NYtzOZDNIpFNm6UMVt06PUG6nUZcp2e9dUtGqJEo9Hm2vUEWjXc/8AQ2WQe\nuVhm6aXr6JspTDo5gUCQ5Zs7WAdG0PQNs7NXpbKa4Pd+f4ZwZQFN0EgsWkQpSAz0aHnvn17l9Hf+\nGJ1agS6yQ8itYWq0D5neyrPfvYl/wEPbN0ZgyoTG7aGT3ebO95+lWa2h0mnI7kZxOPQoVCrkRiu7\nsTr9YwES8QLvvHIb/72nUZst3L6c5PLFHUYGLWSKaRS1HLeqBX73K6dY+fv/j8FHrKilBoJWjswk\noGwUcJqcBII27Ooaa7diXLqU6Ppz7MuwWxwERwMUdnewmnXU9RqqsX2Gjw7T02P6qadtnU6JSiUg\nij92epDJwGL5sdeIoFTiP34cUyBANZVCY7FgCgR+yin5V8Fi0XLggIdnn12l0WjR12ehXBZ58cV1\ncrkG3/rWAaamXFSrTSKRIvV6i0aju/o6Pu7gsceGWF5OMz3tJp+vs7aWYXjYhtGoYm7Ox9pamt3d\nPO1WB6NJzcGjfRRyNdbWM8h1BppiDbEucvW1Rb781QMUr2xi6vGhHAhRy2aRyeS0Gg3KqRTF8A7V\n6B4Hhgao7cVZ/uHzVKstjHIlses3sIT66D88yeqFq/g7boytDPbRUSQxiqaewj11HLVHSbmtYXk5\nzdpahkajxeSk+xNfv88rX4iRT8H8/Dw6nY7Jycm7XconQqFQcO7cOV588UX+8A//8G6X82unWhXZ\n2MzRed8Pod0UaTYaLN+J0z/qxapMkS9lqMbaKBSTyGVtlM0KzZ0lwjcWQSbQfvk1tl5uMfs797P2\n1mU6Vj85QxwZWvbDpe7qnsPcTYT12UjHsgyNunH1OhkLqshfv4i2UUXSqrj4ym1GzlrwOy3sX1+A\nZofgeJDN119h/dlncU5P4ZudZebRI9yY3yW5n6Gt1LG0lEZtNCAz2NCbjER2szhGQkzffwyZDGyh\nPorpHD0jITKROFqnG41RR3Q7g2AVWLu6ytCjj9A7M04uW6bWUeEO9qK02Kk0BRpNiVimSWCgB1fT\ngsLbh86iQm81I5PJcIUCjIzMcPGdbUrxGpFkg4DDicXrIJvNU6s10epUWIJBdE7nZ3pP1WrFTz2h\n58Ph7jBltUrdOUx2d59mo5sPEuhzsLGRo5jKYQ3qMbn0CAolKrMZl1ZPXq+lXJPYWkrRG0hg0cuQ\n6k3iK2sEB1xozAZktQSTcyG2wjmUFiXHjwfw9zvIxLI43GZyOwL2wwNYdLD39pvo3S70ditr33ua\nzZvrqCxWps4/gG5uGEmTpoWC6ytV2s0Sv/8HPtZ/8BaJ7SgqlUBjP47V60DMpggMjYPZg2/YRirq\nwuCWOP6QlVSyTKlUI7xbpFnM4fL4qa+to9SrqJs8pNtW0h0zzkwJ/8QAycVF5O0CJpkOg9GE1Sin\n2pTz+rubLK115zlkLQV3Fja49+QEYq2OUiHHZzMS6LUyfaL3Y++Fy6VnMTPaSgAAIABJREFUZMTO\n8nKaVqvz/gbLT7cIlFot9qEh7ENDv9K9liSJQqE7D/STAqdaFel0pPddYZtkszXeeWePcrmB329i\nfj6KIMjp77dw/LifjY0sSqWcYrGB2azhhRfWaTTaVCoiOp2SWq1JJlPj0UeHqFZFBEGOzdw1RMvl\n66QzVexWC1aTAkVTicHhplrvUC03aMrVKKbPsvLOdRxaE54+Fzv//DSeuTmyq2tUsnlc4yPUczm2\nXniOWjJBuQqVpgzPyDB1CXoGekht7EFbpBSPM3T+PPFbtxg9PEZRDjuvv47z+Gmgm720upphaMj+\nkUHh3wZ+u36af2V+k1s0H3D+/Hl+8IMf/FaKkXZbwuKyEpwI0SiWSO6n0GsFtGYjTZkai03H4YAb\nd58HvUpCoWzQElNceu11WnURa7AXWbtJLhanUa5Q7agxtqr0uJRU02r6BrTsxlvIZXLk7QadapFD\nh/xMD6mRSy2+9z/+JRafl3C4gNdvZX8/j2UvRd+cm9Wbm/QfOcDtt29STdegVkC+uoraHUCeqHBz\npUS8rEKrE0glSpyc6kUvlWhtrNCOFqg6R7BOH8RkLjB49j5qLYGE0s1edJ9UVo5Tp8feayBXlkCj\nI1uR88gfPcbijX129yrYvBa296vI+mbplXTQrCOzeQkN9rGw02FgwIRMJsNqVuJ1d/1E0hmRXK77\n4RXNyem55z46mSg2twJnfxBLX99namT2cRSjUXbffPPDIUlB50SlkFCoVOwtbXLkyDQOjwWT04bR\nbSXYb8dgUNEXsgIyNjezNJMVXH4bQ+M9qDsVOp0GOocTg1mHQqOhmslgzoU5OTuB3OHEaJQjd5tZ\nvLTKQLAX73ETCzeitAwa/Ocexx9ykbl5jdTiDXoGhtDMnOHdhTyFjQVaSgN+lZLJUTOvPruAsj5M\nWxSRyboBdHK5Hq1KwmFTI9c00Uph9haT7GaVRONlZEKCYMiGTiNn+oCHUqmBTq+i2oGypCcXLVAu\nN7AMDLFwZYvDZ2do1WpkN7fwzc1hDgapFQq0dH7ypRIAOq2ATK7A6XPQaMuwep3oVB16gzZ8k6M/\n89oLgpxDh3z4/SZyuTpGowqv1/jh8OqnoVwWuX49yv5+t0a/38TcnBedTsn8fJStrRzDwzYSiRKv\nvbZFsVjH6dTj9RooFuusr2dQKmU0mx3Onx+iUhFRKq1UKiKhkJXbC1GuX4uxtJRifNzJkSM9KJVy\nvv/9Zc6c6cPm0JOK5dFoFMg7TUJ+Lcvv7pKNpDAr/LTUvRw/f4S1zQKrb19FYzayvrzGyPEDHPuT\n75BduMLCP/4TwVOnGDp3jkp0Hzpt6pkMJqcbqSFQyWQRehxEUi0mHj+Hz5Gn6dCgdThwj49TrzbY\neGsZsQU9iED3d6vZ7NBsdviMgnjvGl+IkU9Ip9Phu9/9Li+++OLdLuVT8fDDD/Ptb38bURRRqX5z\ndtL/Ja16ndz2NsW9PZQ6HdbBQdoaM7WGxEZKiVpmpP+wF4s7wuTREfQ6OcpEm8h+nnI7T6vdIaBM\nYzQo6DSatOo1suEIrgO9KBtF5IKc/oMT5DbW6dUVGf/qcbJVBSbHNqlYDrdVQCjE6VVIVBf2cc/O\nMXP2ENcubVPMVekb7sFkNSIYLeztZkGtR6VVk9iKYDHKie2lGP3dL3HpapKAcp/1lSRXL64zc3IU\nX9BOyNlh5cVXUdBkbyeDPLvP7LljKOwe9BYjqYKVleUUwek5tqLvkVovMTjiwhPQMnbPQTZyLeLJ\nOsFhHweOannlxWVWbmXp6THTUgY5fqafcLSGRaXjoYcsNCo11K0SDiHJ2j++i3NsjIFAkFSqgiR1\njeG2EzAxMc3YicBdE+T57e2PbGuoa2lOnJvh4gvXyEYShG8ucer8YaaODKP1BRGbbcxmDU6nnjt3\nkuh0SlqtDqGQBZtNQzZVRKXV4NE3UJe668xGrxcUarQBF1WVHvtggN35m7S2VogyxOpunbbaxF6+\nQ1RmwDkToFG8QCFdwnyklytX98lF02hGbEQLDTbeW+Br3zrCY1+epZQtMHX6IMpKilw8jcOpx2AQ\nMLpdRG5vEY7nWV9LceyJ0+zVZdy4sU0+H+C+0wMohA6zhwNEt6J4xoeJRgqcOTfKws0woaEZxkeG\niawv4xsdZ/CprxOO1Lk6v8rMg6MEPV6M9iY9rSzVRJz0Xh6L287odACbqECtEXCOjmL9BdtRSqVA\nIGAmEDD/3H/3q3LrVoKVlcyHrxcXE4hii8nJbpyDzablzTd3OHzYx/i4C4VCjr/HRDZbJZOpYtCr\n0GgU7O8Xsdv1PPnkKFeuREhE85QjYaYHu74weztpKmWRzc0cdhNMDuopRWOcOxMglnYT2c8zN24k\n5IKZKRfL7QadWhmvrkrvUD/v/PA9FCoFSo0G29AwhbqMmt6D1uVh4qkncY6OIpfDzltvYevvJ37r\nFvVsBnugl7qgxndkBlVeTnZ7m5s5NY9+6QFKkQiNfDc9xWLVUqhAo/Njke/zGT9RPtTnnS/EyCfk\nvffew2g0MjFx90OKPg1Op5PR0VEuXLjA/ffff7fLAbrT8tVqE4NB9UuZWUmSROTqVdLLyyBJ1PJ5\nEuubbIi97KdbtJETy8sot5t85al76TXViewVKMRTWG2W7lF8LsbCtXc5+uQ5Ju4/xsZ7N5ErVVh9\nLpQeA1i87C1sMzQ3x/ADJ9B7nYQvXOBbD7ooCj1Eri/QiWYpv/4yWwsL9N5zD4f/7M8QVTewroVx\nD/YQuPc+nnsljNWjY3hqnHq5hi/opJlP4R/wUlVaSUfDyKIlBvstrN7SsLsW48v/5hDZ1SsYdTIy\n8QpWPYiJfXav3mBg5itEbkS4fn2fHBZaKi8j586SXN3A6DNz9NFjvPBehZXVXYrFGgemPRw44OF3\nvzxNMl4iuRPFZLJh99gQpTK9vWYOzznJ3F4gv71NJZGgFI+TuHmTkS9/hfFBH/vJ9odx4VNT7rt6\nMviTxlsA1WSSkMtF33ceJRNJopR3cLkNOH02TD0/bh9YrVoCARPVajeJVqhm2bx0HV08jdXrJHhy\nmkrMTiEcRiaT4ZmdQ+YdoNqA8MVLPPs3LzN6IMDmcoS95X16pkYRTDZqpRoLtxIcnpxF/eobyJ0B\nYu/cRN5u4dYLNBRars8nCW8lkeoVjszNUL6xyMz500Ru3aHdkvCMjVAu16mnk4iVNm6HBqla5MDM\nMJIMpGYDXafEzkqMU08cR3fKTyWTQ64xcOvaFuG4yLuXFxk7PMwjDz+O3Sbxj3/1HJVqE9vgIDt5\nLdaajF6fjuTiIpVkFpXegMkgYNd36DtyFJPPh+IuPXpXqyLhcOHD14lEmf39IpFICbVaIJOpIggy\nVla6sfWzM262NtM06k0UCjlKBRw65CGTqWM2q1lZSRGP+xkZsaGopnn9zg71msjBk8M8dJ+H9XAN\nq65NJRrjzMlBXvvna7y0kkBjd3D6dB9SKsz/8hc/4Mj90xw71Y/ZpGR0wke1miZ29QqCWo3B46Ga\nyVDY2yPVp0GdzFCMRLH09xNdvIPnwAHQmTj63/73pG8v0qiLTD36OHmFg+iVi1TyNRpyAx1HL4pa\niQbQqLfQGTXoh4a4vVFDEORMTbk4cOC3b14EvhAjn5gPWjS/DXzgxvp5ECObm1lu3UpQqXTFyOys\n5xdOiVczGfLb2/C+7XR2bQ2twsrKnTt0jC4ENDid3QAsuaDAPzXKRmoTy2A3L6XdbNFpCFRLDeLX\nrnDk4cMEQ1aqySRGpxnfqSfA6MB3YJKeAR8mn5dOu417YoJCJIKpvMPetRfI7+5Sz+dRW20UYjGk\ndofB+++l44khyjSoLVomZ9rkKmAdGsOjqyN6VGQXb6D3uImWGqjNJmSCCpO2w3/3P50nHisyPOKg\nJVhZv1Wk4zDSKohIHSWdep3s8hKrV1fJxhQkK2kkmYItdEwfPINnyEZNq6NcWcdq1TA+7qBYrHN5\nPkJ/2oLXa6B/wEKf30SiLjAz48ZsUhK7cZPV7/4DiYUFlBoN/hMnAMivr9I7p+fA+Tk6nU432fQu\nY+7tJbu5idT+iSFKSSI0PYC/340kSahNJrRW6099bzdfBwp7e6x8//vUsll0JhNSrkX8Wp2Bc+dw\nTU3RbkssbZTZuRyn1ynRqeQ4++Xj2D0Onv/BApE76zSrZcbuO4bRbaXeUWAdn2T40UfAYUOj06A2\nW1AZjQQcWrSPzDJ5eACbsoZaLiIOHaLRllBPmDFrQKORsfnGBXw+L1pNnZrGx15OQSSSJpUsc/q+\nXpRSDUEhI769z8EjvTQqGm4uxskVOkwcGcLXm+X2UprbK3a0cy60fUMYFApURiMKtYalxX0mQwJx\nUx1ZsYnL2ebQERdiKkYposT2GWfM/DwEQf7+yjEUiw22t/OIYhu7vTtw3Ol0yOW6K+Vra1nknRa/\n//UJUpkaDVGiXLJz82qYxaUsNrsBo1HNrVtxnDYt6USZB75ynNhWnMROjNmTw5x7dBapUmDnapzC\nyk1Onuwl19LT7kh4vXreeeEWZpOCrYU1hGoWjVeHsqdF7voSsnqJzM4O5Xic3hMn0Og0mO0m0psd\nRp58CtvYFKmVFfaKGlaursNanqHpewmFLCym1CzeSTF3z2F27+zQbrWQZAr6z5yhFI2yuRJD19HS\n0loJGrutvLExO81mm729wocJyr8tfCFGPgEftGhee+21u13Kr4Xz58/zjW98g7/8y7+826Xw7rt7\n1GrddcFKpcnFi3sYjWqs1p8d+tQRRTqtFpIkUY7FaDebyBQK6o0a+4kMhUIdU08PSrWS6enuU4XJ\nokNQvG//rlRQl9npPTSNGF8lNn8ZtdmMf3YK19QU5UgUtbxD36lTCCoV+b19tt+6wP78VZwjg2hN\nBsrxOEafD6XJSksU6bREkhvb1OU6ZIKVne0c2VtZRoctnDnrJLUbIZJqEgwOozKZqeyHGRzuvgnq\nesw898MVkt9dZXjUhctlYGB0mPh2jGisRKfWwW7XMTgRoLC7haJZ4qGvf4k7awU0Bh1GjwubRY3b\nrqSaL2CT5fAFHJSaEtevx7m1mCDUb2Vk2MY3vz6O0mzBqpVz506KXCyJGNlmKDiNemeHWirF/rvv\nMvDww0iSRD2XQ6cVkAufj2Nic28vvkOHSK+s0BZFtDYbvoMH0dpsaG22j/2eTkcilapQqYjIxCqt\n3WUi8/MAKDQabIODQNc91D40xOpqmtXVNF51iVKiyaWradaubzAyE6T3wBixSAGTQUEtFSe7fIeR\ne2aRC258955FY7JwpGVnay3O0vwqkkrHocM+DFRAY+Tadod4pERiP4NCkLj33hD6wg7IBbbXEoyc\nmOHtm1WiqQx5tZp8usSdhRiOM30UIit4TvVz68oOVxYy3FipkogWCPXb+OrXp0C1i6pZohDrUM9k\n0Fqt1FMJNBYLtUyGdFNEn7zDhFmLmNln7Xu3GXv4/n/1uZ9/iVqtYHjYwfx8hHJZRBTbKBTdgLx0\nusrgoA1JAqMxTbPZJp+vsXs9ytyJfjQOD//r//wjIrEa7WZ3m7hYbFCptHj7zWWmeyXCa1EOP3CA\n+x6bJRots71bxmXXMHBwlDu34lTrYNDKia5t885+EZO/B2s4gtRqoVR0cId8FCJRMpd+xOGj93B9\nXqKYK6NRyzj91QeRR5fQPPAIi0kl5p0O+YSOZ/76NRxeK3qjjs2Xtrjn0Vmu3k7x8vNLqJWzeA0K\nFDoLTp8VtdFI1dXL3q0W8XiZcHiHbLaO12ugWm1Sq7Uol0WMRhVHj/qZmena3/+m84UY+QS8++67\n2O12xsbG7nYpvxZmZ2cpFApsbm4y8IFBwF3iAyHyAaWSSDpd/bliRGO1ojGbqSSTtMWu+ZKyWcLR\n18PKW7vQkdBpFcxMWvBoiqTW1un1WAi7dIhiB53QRJJb8B98AGtzkkoiTqfVQiwWiVy6hMHjoVUu\nU47HaVTrrF28zuL3fkglU2B7aZsHv/1v0VitNMpVipkiSB00Fiu5TJVYLMK+6ObWzTg9E0NcuxYl\nn6vx5d8J4c9luPBf/hZBkGF2mJE2FpmYPsLzF1JISi0WrwqFVsvLL63xR398mNFjU5idYVTacdwD\nvchVGmI3rjN67iyvX42ytVfB4bPTq7eQjOWZfytDS6bEbjcyPmTn2Re2uXw5gsGgopCr8fabW0yN\nWbEYZbx3cRe1zUEplScXyZOPNpibmKNx8XXEahW5QoHB50PndN71D6ufRK5Q4DlwANvgIK16HY3Z\njFzxs9/W2u0ON27EuHMnRa3WpLyzydCABWMwRGm3O39SjES6OSvv+2JEIiVseonyTpibGw2i8Tpi\ntcLCa1c4+pSFQw8dJbsTprCziS/gZLxXwcbb72KePcnFt9eZmfOTiWUYGPUhl0uMzA1z43aUnkEn\na+EsFpuLYZeNO+/c5JWXVvnaN2bxmwwkXrtCSjTSUcvpO+CmIsowqTvkCw0i0TKnv3QCl03JlSsR\nbry3TUtjRtZpsbkaZ3HRzcERHbm1DexqPy6LDI8PBLUJjB2qSgPV3DadZpPkXoxOp41SrUalVWIO\nBv+1bt/PZGzMgUIh5/LlfQCGhmyo1Qqy2Rq1WouzZ/uw23WsrmZo12vUo0WsRiUby5s8/NAAF+cT\nZLIN7C4jJ0/6UakEegIWvIN6oltRBKWCF55dYf7CClqrlZGpHnp7jGTCNaLhDBqrBY/biVel5fLF\nNAfOnsakbuEf8uMIuEh8//9B0JuQdq9x+sgQuv7juAeDaPLLNFUy3r6eIJ2t4xQVbG3WUeoN5LMV\ndrfS9A56ubNexu0z4+11sh0ucfgrY0zNBnC4uq1ESeqeAkWjZaLRMjIZeL0G3ntv/0O3WUGQE42W\ncDp1v/aZnbvBF2LkE/Db1KIBkMvlPPLII7zwwgt8+9vfvtvlfASZjF+o+pVaLT1HjhCZn+/2btNp\nzC47U0E/6XSdQqnNmXvsdHYWuf3POZrDDsxeJydm50huR8nux1AJ4NGMonZ6aTfq5DY3Ke7tUUkm\nqZXrmMamsbYk9hZXqVVEqrkSyGSI1Sbrl24w9Y1vsPPWBZrrOziHBtAH+7l9YQG5f5i1q8vUsg3S\nKjmlSpvE1j6njjjRJdfwmltUM1lSNzdICCpCniEsRjkHDwe67qu1ApVCk9s3wowErBx8fICVcItX\nF3M0M/uolW4mlG4q6StYhRZHjx/k1Tf2qBSriIUC7U6HhMPCwaN9pFNdUWc2qyjmqigFyGaqFPIi\n6c1tnCoNCq0WuUKgWpehCIzSNtxCYzRgnzqA1qDDMfqztyvuJiq9/pfyrkgmK9y+nUIU23TEJqVM\nnqV6g8MjY8j2w0jtNq16HYVWi87hAMBgUEKhQaktEN6Io7fbCB07SCWyTzKc4tSTI7gO6MluKFC3\nSrTXr9Jo6UmubrA8v0qP18CRg05qxQoao56XX1nEHvBREmUsLCTZ299gdMLL4SMH2dlKs5ZSU0jY\nCJx5GJvbzrVUjI4o0szEsRjUhEaCDI1YMaZuksqo2LidJ7+1iWN8HItNRz6eIZ0oYJr1YHU20YsZ\nBhxNrv7gWQSjFc/IIIcfOcbFpSwqew8WuZxSIo6zvwfX4ABKzc9vv4nlMqVYjGa1is5ux+D1/toF\nqlLZtTTv7TVx+XKE/f0ilUq3NWM2a7DZdASDViYmXNRqTSj3UI9sc6tQRFaXOHO6j2pThstlYGcn\nz87OPs1mB5XKwwO/d5r1lTgXXrmNXNbBb+iwenWDi8/neeKxQcRCBqPNSLWt5sCQnUIqy+ZWiqFR\nBw25BrVKTt/ZMyQ3tjA4XWiUHRTpbRQ9JmLLy7RNHnJJDRaPh0Q0RywpUlQ4CITMGFtt0qU2nUQV\npVZH/4iH8XEn04dCDA87Pvz5rVYtbreet9/eBUCrVSKXy9nbK1Iui3i9RpRK3v/Z8l+IkV+C/wM4\nCFznowm+/wl46P2v/wfg9c+4jl8bnU6HZ555hjfeeONul/Jr5fz58/zN3/zNXRcjJpOaYvHHWSM2\nmxaX6xd/yJj8frR2O57ZWQrhMG1RZGM1SX+vjuD0MK2NG+xGkljMGlRqgXI8TvG5H3ajzxMJHMeO\nEb38HpVkkkoqRXxhgeCpU5iPP8Q7r69QvX2TkYIVh1qHSlsndPoUTYURSQaNeoFyqcbMH/wB8a19\nBLWaN//6adK7EezuQeQyiWathlwhUMllcfd5KcciaKUWGqu1+8ZezFGudaBaxGYPUGs2yW+vkljd\nRKXT4T1hJ3l9hUKsl1dfvIPa7sE9MkQxleWdi/tMHRkkEq+RyYsk4kVyyTx+j5bs3v/P3pvGOHZe\naZrP5SV5ebnvO2PfMyLXUGZKKSlTUlqSJdvyomrbPRrUgmm0awboMQwU6tegFgxQmAGmMD2YqXKh\nqzHuKQNV3Xa5XJItW4u1K5XKfY+IjH1hcN/XS/Lyzg+mQkpJXiQrlbas908EGZHkiXuZ33e+c877\nvln0Oo1WvckdByMUy222Ngu0Gk1iI158PhmL1EVtKr3KgsuJ7HKTjadRBAuGod34ZyZZLLkZCzjJ\nLy1hMJmwhsO3TGn1VqJUUqhUFNLpGo1Gm24DGvUiHN6Nd3KSaiKBa3CQgWPHdto8g4MurmUzGPQ6\nvGEvudV1as0aFquEXjbRKFVJv/qv5BcXcY+N4erro7JawRlR2b8/xNyTP0JvNOB0m7nz8c9gC3bQ\nG/WcO73F5lqOekvgypU0xWKTzz40RCBg4/XX17m4IHDf/T6aHZFcTcTu6sPn0mM1donZm5z59n9j\n+J4jDAyPceXUEs1MClcsinPQzcy0n4C+QFkp0sy3yb7yUyJuO97JIGW1y/U3zrP7zl2cf+Y16nWR\n8Mx+9jxyL/mrF6gszzHx5S8jvU9y1yyVWH/5ZaqpFGgaOoOB4J49hPbvvyX3y2qV2LMniMmkJ52u\n3dA28WKz9YZr3W4ZkAE7StjDPb4Cr5+IU2kKaFqHeqVBNtNzsM1m6zz3XJ2QE6rFOrVcjsHpQeqJ\nBMlEm0K+hoYOrVFHJ+pROx3ERoGpYJs7947hsnSZe+lFfvaDFP1jYQ7/j99g+aWXKSfSxPoDFDc2\nQBR7wmeqD0VpUyppDI96mb+6TWutisVuotvRmN4T4tpCiWqtzeioG4vl5ranIAjMzoZYXy9x7VoG\nWdbT12dHUTpoGuhuCLCKoo5Op3tLrv3HjVuZjOwHLMC9wN8As8CZGz/7L8BfAA7gSX6LkpETJ07g\n9XoZHx+/3aF8pDh+/Dh/+Id/SK1Ww/JrqCP+ujh6tL83u1Bo4PWamZ727yw8vwwGWcY1ONhTe8xm\nOTKsceZSga7aIRdPI8sGorGekFdxbY1yPI5vaopqMklpbY301asYzWZESUJvMpFejSPKg2yvppCc\nbvJ5ha1CkcOHYqwtKlz4ySmUSoXxg5OMfXaKomJkK6ng9Js4/PiDPPu3/4jfYyTYH0RncYHVSrSv\nw659YZS1qxgmB1FqdbA48U756A8EGJ6dpLrc5vyLF8lcOo9okBge76N88SQmWSRfaKHW6iiNZVp2\nA1aHh3pNjyXgJ3nyJK6AE4NRj2yRadaaiKKOrY088xfX2H1onI3NMh63CZNBoz9q5o4pC7ZuCW/I\nhU6vR280Yh8cwjsYxRWSsAUeooKNxbNLFFZhb6zTmxvx+3sb9vvYxv8mQ5JENjdLbG9X0ekEPDYv\n5e11DDoN78QEwb17Ce7Z06Pz3oDPZ2H64CgZm4rkq/HKP61TqrfotoB6mbCjTUGno6V0SFxZQDTb\n8PdFaeoMbL7xBhuXFxEEgcBwjPAbp9kzMsVmXkRtVHE4TXTLKh63Ca1axGfvUrpyir39Vs6vw8pK\ngcOHo5RKTS6e2UCOuDky60K3fg5Z0hM/dYq9j42TOz7DdlrBHnIQirqY3uWhXqphCoTplPI4+vrI\n5es0OiLpTI3sXJbPHLiTQ196ALVeo1lrkrlymfLcRQwWC87+fiKHDr2HUVNYXaWaTO487rbbZObm\ncA4M/NwZnV8XXq8Zr/dm4bVms0MyWaFWa+N0mggGrUg2G+MzNpx+N8VEmtL6Ki++sko3nkMW7Qjt\nDpGQnrnXz7H7yDRqvYaotsitb2Jzx9C6MqLQQalUaJRK2F1utuaWeOWffsbdj85ybXWO+FYZyWJi\naUFPOfUMtpEJlLYd1R6gvb1C+tJVfDO7GR52M79eZnBskq1kk8ce30uh0MDpMHD3vQOkUzXQ9xKt\naNSOz/feQVSn08zRowO43TKaBhaLkakpH8vLBUSxl42Mj3vxeH5+C/u3CbcyGTkEPHvj++eBO3k7\nGVm78bUF3GzD+RuO733vezz++OO3O4yPHA6Hg9nZWV544QU+//nP37Y4QiEbwaCVTqf7K9F63w+i\nXo8tGMQGPBTxUSzUidcHaOdT6A0inWaTRj6P7HKhKgp6SaJVrVLd3sY7OYnJ6cTq91MVZLpKT/xM\nb3NgtFrpigaSBVhbLeIeH8dkNmKNBjl5scygN09pK87qi68wcGCCr/9vf4LW1ehrWjjz5hrlzTiC\nQ2K6DzzGEHqLBcfwOF13A4PZjHNymjNPv4bsCzG7x4VLHEcSu0xNO7n4j88wcGA34cEARl2H4vom\nVo8Tm0HCI5lQikWyWykKMQ+H7giylaizenUTQdSz/1AEpSOQzdfZO+Ohq7pxmjpYGin0yydRvR4e\n/uIe0i07xXILh8ONKOqo1VooikpqK0clkaCIE6G/tznV02mKKyvIt+hEfKtgMomEw3ZSqRqqqtEW\nZfY+dDdy2EXXoOEJWXfaM++ErGshC03cucs8+EA/ivkOsrkabq1A7uUfE7n7KE21519kdPkY+uz9\nXDgxT2ZlA0mWkPQQ8eiwCVUkXZ6azU8+UyEQsNI/ZEbWd6kXFIR6mbM/PYXaFbjva4+B2U61qnD2\nzXWahQIbokIi0GXA5sAWidJuNGhcOclnDsxS7HqRYmN0lCaXf/p4qjNvAAAgAElEQVQylXSO/hE/\nI26JZrFAcHI361loKSp6k4ntbAd3t0x1O0lT1eENhHBNqjSScRr5PNVkEue75kea+fx7rk2n2aRd\nr3+oZKTb1Wg02phM+p0N9pehXm9x4UKStbUS1WoLo1FkZsbPzISDeqGE0BWozZ2jkimiVWskF9eo\n1lVG7ppFUsuU4wl8Yh/HvzjL2noBrdslErZw+OgoueUVjHpwB9wMz8TYfm0Fk9dLt1kntbyBzRdC\nUXU36MerHJjegylgJ3H5KrJeY+j+Y5i8PqwtjaEj91BoGIj0t2m1OrjdJkIhG4GAhcOHTVSrLfR6\nHX6/5eeudQMDTlS1y/XrOVRV5StfmWRjo0Qu18DnsxAIWIhEfvsqlO+HW5mMOIGVG9+XgPcT5Phz\n4Nu3MIaPFN1ul3/+53/mueeeu92h3BI8+uijPP3007c1GYFeifLDJiLvhiTpCQTtSHcdYOO112jX\nagCYfT7cIyPE33yTbqeD4UZFRHa5eslIKITaENG5PRhyRpz9A4gGPSadDqPdTHT3OI16G6vLRqNY\npJ4vsHrlApdfvYjVbqaQziIZRKz77uH0hQRmoUV0XwybpBLfLLEtB5geGwG3Qmp1kcDABHNXk1z8\n8RuMHt6LrpQgYlBo16oULjqx9A9RVSUiQRfuWJj0tZ6misEk4fGZGRx08rX/+THWl7P0D9rYf7CP\nxV1B9EKXfKZMudTk7KvXuTZf4K67+5g6GsWh1NGVqoQPHMA1NMSkLFMoNHjjjU1++tMlSiWFWMzB\nnikXCbpEY3ZUpbxzbRvvszH9pqPT0ejrcxAO22g0eroUuWyVf/nuG5h1LSanQ+ydshPaNYnlhrS9\nUqmw/sor1NNpWsU81bU1nENDDO3Zw7X/9hMq+QoOwUYlcpByrYspHESR3IxM97P38ChKXcEmg0mv\nkry+wqDbxVDQy30PTvLGGxtEgxLp+QUCThOblxdoKwrBoI2xMKQ7On70k2WyiTzplU127Y4wd14h\n9MAAeqeHzOoF0qfnsF9d4rP/6//CWlGlqzfgjISJZ7pslmVmjs3iyyRRdSrUqshmO7GZ3YhWF5HB\nIE9fKXD59TlcXjNDAw7ufeA4mtalVa2+5/qZfT7yS0s3PWeQZQwf0oX3+edXyOcb2GxGZmYC9PX9\n4tmHdLrGG29sculSikjETiBgIZ2ucfrla6hxkfmXTtE3NcDmydNIdivDsTDXLkmkE2nahRwGWcfo\nqI/Uq89yV7Sfu48eoJgawEINQ6dI1mRnat8A4/fs40fPbdKWwlj9afRmE61ag+m7vKxtN4mvZRgb\njuKw6Tj1gx9TzpbR6QXUSoHpf/M4Vm8Mz/gQmUydF19cJZmscPlyB1Xtcv/9gzzwwCCxmIPt7QqL\ni1n0epFOp3tDQ0XE5zPT19ezmRgf9zI25gF6RpD9/U5yuTqSJBKJOG60qn77cSuTkRLwVsrmAIrv\n+vmXABfwTz/vBb75zW/ivFEGnpiY4PDhwwwMDACwtrYG8LE+vnLlCg6Hg8nJydvy/rf68ezsLP/x\nP/5HNE1jfX39tsRzq+Ds78dgNvdKzIJAu9EgfekS1kCAei6H2ukw+aUvoSoKjUYLzRVhYHaITTWI\nkxYmuVcR8HrNBII2cvne4tDtapQzBexyk/WFNTqtDvVqA7vDxfbiJrFYhq1UC52i0ey00JltdA0G\nrF2Fiy+eY2Q8wPgRK1euZdGatZ4fRrbK6Pgg688/iy9go1RuoQhWbC4/z/znp9h3/0Gm9vVTbYJ3\nbJTVc9f4/n9NUGsbCPklfvD3z3Hsy3dx4NgMTruBy2dr1Ast3nx9AbPPg9bV6CoKZpMOvTmEe3gY\nvcmEpmlcu5YhlaoRidhRlAIbGyWsFpF990wx4FJopd7eoCyB3z7xJafTRKfTpVpVCARsPPvsEpQz\nUEiis0pcObNGNDBB9/RpRh58EJ1eTy2Vop7JAGByu5ErFaqJBO6REcIHDmAYnOapJ+e5eGKhJzd+\ncA/JtptDBwKMHT1IdWme9QtzJLJFQv1+RKef4txZjt37IIoSRK/X4+j68FlV4peuMjXpI7OdJ75R\noOX1kErXQRNxuCzs2RsksbxFtd6hXr2hhVJrETl0iPObJq7N58jl6rRKBcJeBy8+fYlatcW//cpx\nTIJCeG8dU3SIjOalWOlwYaFKuiFj9riQrSKFushSRs++ARWT472JgXNggPLWFpV4HK3bRS/L+Hfv\n/tDturW13rZQLisUi03uuaePQqG5M6QZjdowGvU0SyWSmzmef26ZzUST7ULPo2V62s9gzMyVEwuE\nLX3k02WiYyr1YhGjWaK1epXHvjzL6TMJ3ANhpveEKZx+hcT8MtL6BiOSSMws0dWJlFIJwqEoer+L\nZgc6bZWXThWIBMfx7vWzX2yjq2aI2tvYdwXZ89ARslevklpPopfNeLxuJG+A9PIG9vAeBu0SJ05s\notMJeL291nel0uLixRQHD0ZZXi6yvl6gVGoiCDp++MN5KpUWo6Mejh7to1hsMjsbRhCEHWFBo7Hn\nzfRuf6ZPAm4lOXkf8O+BbwD/D/D/8nabZjfwfwCP0mvVvB80TfvN6uB861vfwm638+d//ue3O5Rb\nAk3TGB4e5sknn7wt5n+CIPBx3fN2o0H6yhWKq6tomoZ7dBTv+DilRJrrVzZpdCXqOiuaIFIo9Kh0\nwaCNqSkv7XaXl15ao1ZrU6u16NRrTLorPPt//38YjXqcATe5QguLy8HMFx6moPPw+uubHJwN0VHq\nbJ94nWsnriDqYHDUx9f++CE6Dj9nTqxhrW2ipJOMTQXQCxrZjTjGQAxddJLNrQrr81s4vA7uv9ND\nWxN55WKTyy+fp23xc/lKisERL0NRGUsghEXWcfdBLy//+BxbGyUMLi9mp4Mv/94M4e4m1WSSyMGD\nBHbvplxWmJ/PcPJkHIdDwmIxkExWqVbbuN0mHjnqo3D2dVrVKoIoYo9EiB05gmSz/dr34lbe93y+\nwfp6kWq1RTBopa/PQSpV5cKFFJWKwptvxjHkVjHSRCf02gT3PTRBwFBk+PhxzF4vmbk5Fp56ikau\nJ0+uE0UKKyvE7r4HpdmiIMU4cSbDyrVNgmND1EQHme08v/9HB+gP6KktXGD99RMEBiP4xkbZvnwV\nySQx9rnPcWJJpFlroCyc4el/eImAz4TTJqLqzez9yqOYw328+toGmxtFvvj5Ear5MpfObfLZL0wR\nJM21p58lcMdhrpec/Oina/iifhYWsph0HabGbHTyGSx2mYePBZkcc1BPpRD0elyH7mM72+GZZ5bJ\nZxt47F0o5+jUa5itEl/5t3cwuG/ifV2Y240GtVSKjqJgcrmw+HwfSoVXEAT+7u/O7Dyu1VpEoz1V\nXEVR0ekEdu3ysWdUZvPkSVYzIq/+bIFqXUVz+KjpesnSg/dFmHvpFNO7PLSKRayxAdZefZVcPIPb\nJeF36vCPjxA8cIDC6hqoHSSLmfzCPM1SiYG7j9DQjJhlA6lSlyvnt3GFvYzvH+HMxTxvvrrI+KiL\nvYMCpmqcxtJVzP0jqK4YGy+/TKNQwOJ2YPG6MFosmJxODv33/wbBKPH886v8y7/M3Wh5dohG7Rw8\nGOUznxni9OltdDqBQqHB88+vcPp0AovFgMMhsXt3gM99boxDh6J4vZ8cYbMbn5P3/bDcysrIeaAJ\nvHLj+zPA/wX8B+B/B/zAM/QqKF+8hXF8JHiLRfPb7kXziyAIAo888gg//vGPf2udiH9VGGSZyB13\n4J+eRtDpdgb1ipqdxaKNdruLpjURBHC5TNx1V4xw+O3e7IMPDhOPl2k0OrRaHRzdAv6+IAa9jvnr\neaxOG0abjeubbTZzSUZHPRgkA+1UlpWz19B3m6B2SaymWD0/x/3/bhqh1cLQddHZtrD4/EvY/D5C\n9x7nynyZ0nqH1HaTRqmO0WYFs4P50yuUyyYCuybJ5BS6apJUssqDX9hLvtQmeeo1lP7dzA7rmJkc\nQnbaGdk3gkOoUs8K9N19N66RESoVhR/8YI5z57ZZXS1RKNQ5dmyQXbt8eDwQDRjxhDx4Hn6Yei6H\nXpKwBAIfWC68Va9TyZUw2OzYnbd+SDqfr/PCC2vk8z1K6Px8lqkpH3fdFcPns7CyUqBYbFK4nqGR\nu6FPY9RjNeuhDbp3bMTV7W3q2Sx62UIlEcdgsVMXbSSzaRSLgqpqTB0/QmIjh1or0alViS9vs3S2\nyOe/uAejqKIDXvk//4Z2qYAt4KNUruPZdy9NXwx33904nBZyG3G66PDPzHAtLnAgBl/83DBz19Kc\nOZ9i7mqaYNDKayfTjI57OfD7f8DiUoGFpTQWScBAi0quiOC0Umro2Dc7QXlzA8x2OrXaDm3Z7TAQ\nGQyQTteJxyugdWnZTZhlkWDMS9cRJJ1t4veL75nlMMgyzhsVzY8SmUwdt/vtjbfb1UgkKrjrqyil\nEo1mL/E1GaGUy2COOihWVPR6kb139KEVUkihPtaWkgzdfQjPZpxCKkdwxIbVLrHy46ewuJ3YojG2\nzp4nH0+j14u8+eQrWPuHmH7sUU489VNatSYWu4zHqefwuMigI0SrKyILDfwjAxhGo7SKBRShi+HQ\nbpKLq1jdDhwOE0ajnsj+GTAYOXlyi6eeWuDEiS3abZWxMQ/z8zkOHYphNvfYM6VSk1qtTTpdR68X\nMBp71zuVqlKrtWm31fe9Vp9E3Gpq7zff9fg/3Pj68C1+348cp0+fxmKxMDU1dbtDuaV49NFH+au/\n+iv+9E//9HaH8rHAIN/cb63V2rRab1PlNA3y+SaVys0FPJ/Pgs/X21DPnt0mmbHyyDd/n/mXT9HQ\nbxOMeXGMT/PcWYX19SJ79gTo73dwda6EUi6jdlSMRhHZqKHWK5SXF4j/039BcvvoVCsMHT5AVxCI\nL6f4yXffILxnN7bBEbRihUq1Q6msIEf6kYUulaKK3w4TbSN6XRen20olGyc2HEJIrSKmVrBJEmJG\nwnfvCP5dh276W1ZWsrz88iqlUgu320Sh0OD11zc5fDCAmFqCYoHljIxraIjAzAz6X6JD8W5omsb2\nxctcfO5N0okiVo+TiWN3Mrx/HFl+78n7o8LqanEnEenFAcvLBUZHPfj9FkZH3eRydS7WyyjlMqIA\nU3tjWLQK7uFhTA4HWrdLJZEgcOAOrr/yJs1Wh65kx7N7L0o2TXnuEt47bLTTWzQNerLLCaqpNKOz\nExh0GplChWalhmewn9WfvYAr7CevEzH4Iqydm8dc0AjdeS/XdH6uF0IMjfej1iqcvlykUGwT9Rs5\nn6xx5P5xNhN19uwNgSBSqXd443Sa4fEZjB4Jp7vGxvVtuooJh81IrVzF6QoRHQ6SVBv4PTKN7BYI\nAs6BAcweD4IgsHt3gEKhSbPZwRfzo6oac4slttMKRqPI8LCLgwcjO3b17bZKIlGhVFJ2XHo/Kit7\nk0mPw2Ekna7f9HwlnUXXaBD0BzBKvc+Lyy5g95sYGXeydzaGsFWmmNdx9c15kq9fJH1KYvrRB7jz\n6EGKl88w/7PXWF1IUKt3ePAPHkZoNbE6zGznYXW7Tl97i75ECos/gC6dZNfsEIntKnM/eZHp3WGM\neh317U3e/E8/Qi8Z8Y6PM/Lgg4zf9zC5+Xkq29sA2CMRxNAQL7ywzupq/oZsux5FESiVFGZm/HQ6\nKna7hMEgYjYbKZUUfD4z1WqLWq3V001BQ6cTcDpvv+XCx4VPRc9+RXzve9/j937v926rKdjHgWPH\njvHVr36VQqGA6338PD7p8Hhk9Poed7+3YOgwGnXvqwDbaLTJ5xv4fGbsdolUSsJ/zwMYx4sYLFYy\nxQ59fRXsdiO7dvkIBi3o7hji6tNWGrUmdruR/j4nbpuud/LejmOUjGy98jJbr77EyOP/HZnl6xw6\nNslWUaNa62AdHOXQPg9to4rH72azkmImZkJrtxCVMh6PGSW5RcjS4I4HdlO9eILqDaqyPRJ5X8bD\n9naF1dUijYaK1WogEunZwJvUGrrSJma7EaXUInnhAjpR/MCaEpV4nDd/8DM2VrIAFNNFasUqosXK\n5N6BD3WffqX3rby3A9xqqShKT+XXaNRz+HCUgQEn6c1+DJ0qNqGO3e/BecOtVu10qGWyLFxLou+b\nwh9y00wn2JxfhHKOUqqEbekCd953mPPnE8T6vZRNXcYiIiN9Mn7Zz8aJE4SCZmqJbexeJ9ZgkEw8\ng0UCn03D2C7h9IZ56KER5t+4SHojg6iTmRo0cf6nr4E9wGWnmWKmQsTZYXD3KBoCrVYHWdIhBSwM\n91mYP68nsZmlr99NvqAwNmwnU2iz//49hFwVmvogzv5+3CMjKEqHfL6BwSDywAODrK8XAYEzZ7Z3\nqPStlsrCQo5w2MbwsJt2W+XUqTgLCzk6nS6iKDA46OLIkdiHTkj6+x0UCk1sNiP794dYWMju/EwQ\negJnTmOY/JU01m6Bg3cPcfVSgg46hsaDHLyzn4EBJ0pgP83nX2D78jyVahvBZOD0U69i6RSpbm+T\nT+bR6QSCQSvZy5ewBfw0slu4FJX+mRi4HYh0OPLILJraodtuUc7ViU0MUVy8jKC2uP7DH2Jy2pGd\nTnQ6HclLl+i75x4G77uvN8wtCFRViTNn4mxvV9jY6FVORVGH221EFAX8/t5aIUk9UbeVlQKNRpuJ\nCS+lkrIzVL1vXwiv10y1qtzShP03CZ8mI78CNE3j+9//Pk8++eTtDuWWQ5Zl7r33Xp599lm++tWv\n3u5wPnaEQjamp31ksw2Wl/NsbZXo73cxOFjF7e4lKtBzEj1xYpN8voFOJxAIWLnrriiVipPvf79M\n8loao1HE5ZLZvz/E4cMxJEmkmQnyhT+4n7XTFyin89hkAd/wINmlxR6Dp93GGg5T2tyiWa1RWt9E\ns9Z57H/4fSpSiBde2uDslRKCACsrm2iagCSJ7J208+CxKH0BHfV0iuZWhtQzZ3ry7QYDtlAI79TU\ne2irmqZhNusxGvU0GirVaptarcTsPh/GVhGL3fjOXya/vIxv164P1KLJrW+R2r55fr2QzFHYztCa\nin74m/VLEApZWVzM8c5xFKvViMPxduxGo56+PufPNWPUG43oXT4y25dQ1TyptRR9ExFcATfLq+sY\nJT06TcVvKHP3uIAQClLMGElcmiMXcnLq1DYjgw76QxGcfUk2T5zAOz5OKGhFlGSC+yaRvVZsu6Nk\n1uJE6tcY2D/B6deWuPjmKmqni33QTLerYXdIDIz5uHZxi5MvL9BstLj/4Skefmwauxk+89AYly6l\nMJok/uAP9+GSVVomD4GQHWffIO1hFVk2cHUhx7lzSSRJ3DmhHz4coVhUMJlu3hK6XY10usbwsJtU\nqsb167kdkS1V1VhZKTA46PzQA5XHjw/RaHQwmfS02yqVisL6eglV7RKJ2KhUWsTNNipNGf3iNpF+\nL9HP9GOODREeiSLLhp4/TblFvVTBPxQhWU2hKCqyXiC3vIJvMEpKEDGbDdjEJu2qAOEgSqlCenGJ\nVqnI8EMRNKuHp55cYHW1iMWiZ9++EPtGhrnw7E+QxTaVUp12o46m9P7Pi04f8bU02cUmwaCVaNTG\n+sUUuVwDq9XA1laRAwfCPPPMEg6HEbPZiN9vYWLCiyjqmJjw4vWaKZUapFJeHA6Jer1DX5+dWMzB\n5mYJj0fG5/twTKXfNnyajPwKOHHiBBaLhZmZmdsdyseCtyi+v4vJiF6vY3Y2zA9+MMfmZolarc25\nc9skEhW+/vUZpqZ8N/xNkmQyvXKyqmpsbZVZWSliMOiIRu2UywrVagtJEtm924/JpGd5OY8mQHBq\nFIvXib7bQegodHV6kvPLWO0WGtk0nrExRMmE7HJhtNvx7ZlmebvLYjJOJlNncNDF008v0u1qtNsq\nhw6GSVxfYzIUpbkWp7i4SC2Twezx4BoYQG02sQQCRA4efM9AYqulIggCjz02zlNPXadQaOLzmTl8\nZwxzd+0910fQ6XpH1g9yTY0G3q3oL4o6dKJ4Sw2++vudjI9Xd1xfbTaJ2dnwB3Ybdo5NEp5cI7W8\nSVft0lJFxh75HMbQAEaDgF5rs/jUUwjtKpHjn0PJNFnbLBM6ZKCSzXMhm8Pq93Lk6DHq2SzmUISG\nLUa+YUAwBPHKDjrlNnZjm/ziInajja3FTUwGgY7Wxe02oe8q3H80RjxZ56WfXgZBINLnJrm8xUv/\n2uIrX9/L0qVVrLNeZElg7ifPEhwbpeESqTU6LC3l0et1FAoNTp6M76gcj4562LMnwLVrWQYHnRiN\nIq3WzXMKdnsveavVWrTbN6t9drsapZLCh4Uo6rBaewmvXq/jnnv6mZiooapdTp3aJputk9UJ+Pv3\nY9LVsEatBAdDmD09Nls+X+eNN7ZAbdPerlGvtxkYcJHJ9Cj8gYEQXcmMPRqlnU3QyhVwRMP4p6bZ\nePMszVoTBAHvzG6eO5Nhc7NMvd7CYNBx6lQcpzlCdM80Qr3A5okTmIM+dF0Foy9MoqJHt9VgLdPk\n2rUMQ0NO2m2VM2cS7NsXxO+3YTaL/OmfHqFSUXYG4IeH365O9gTdzIBANGrHYBBRFJXl5cLO9fld\nwafJyK+Af/iHf+CJJ574xLdo3sIjjzzCn/3Zn6GqKuJvkCnax4VEosqlS2nm5rJkMnU0rTf8+Nap\nplJp7fD83yppC0JPjOnq1Qz1epuxMQ9Go4iqdkkmqzidMufOJfB6zMgthaUXXqNZLOKPeokdnEWO\nDKDr1nGYTaDTccc3/j3y4CSWA/exkNLzL/+yiM9n4dix/necTLs4HBI6sSfCVC7WiHoNNItFVEVB\n0OuxBIMYLBZEo3GHtfLOz7HRKNJudxkZcfPNbx6mVuuJSEUiNnztNulLuR3DOAShRwM2fjDHXs9g\nP/1jYeYvbexIHPqH+/D2h9Drb93ny2TSc+RIH+PjXlqtXp/e4fjgPXhP2Ivv8L04xnPoBIGaZiLb\nMeDy2cmtbWBoVXF4bWgdEza3g+TJVSYOTdMwumiLJkySyPZ6jsqEg4kvfZmVioNTLy1QrdQRNlIM\nzpjZY2lRTdew9/ejZeNMHxhi8eIKRlnCEQlhstvYPdtH6icLTO+JQLdDp1qlnC6yVK+iPXEHsZCJ\nysY8+VKNkb3jFKQwc3MZdu3ykcv1ZmfOnk2wvl7E6TQhCAJLSznGxtykUlX27QsyPOxifj67c8sD\nAcuO74nNZsRg0N2UkPTmGj7YIPMvgl6vIxSykUxWdhKmblcjmW2REgzo3FaGbiQimqZx/XqOQqHZ\ni7VvCHEtST5fYaDfgaAXce3ah85goFZqYOyP4vaYEY0Sy6+9SXDPbvruuhNJNtK1eMmnU1gsRlS1\nSyJRpVhsMjXh4ejMNOVEktHPPkr8wgWCQReaO4J3ZJpqV8br7VFv19aKTEx4d1yhR0ZcOBwmTp+O\n75jaFYtNDAY9sVjv761UWphM+h3hs7fuE4DDIREK/W5UReDTZOSXQlEUvv/973Pu3LnbHcrHhv7+\nfvr6+njxxRc5fvz47Q7nY0e93rPofucgXbvdq34UCg3MZgNms4FqtbUj2mS3Gzl8OEaz2eH8+SSy\nrGdw0InbbcZuVyiXFfR6Hc89v8L+cTs1OUBbs7NWVCm/cg6r183U5x7CZjdhDQYx+YK8fjLBWqFD\nqdZg9+4gNpsRUdQxPu5he6tEq9FElnRoOhXv5CDhqJHK6hKtSoV2s4lnZITE4gbFShu330X+X3+K\nxazHPzaKZ3wcgywjCAIzMwEuXdymUm3T6XQRhN6JLeTfg95gIL+8jKDT4R4exvshnKrNXi+HvvYo\nzug5EqsJ7JEIg7O76Rvxf5S37X0hijoCgV9vQTca9eyaCbG2oFLP5hh0dhAaWaSgE12rTiGh4b7r\nM0SnhhG1FnfYB3jjbIbUhRTeiA99p4Gm0XOCdnpZmFdYKVopFBtUqwo5JYlJMjAUsGMfGqeR3GLK\nZSMydIRCSyI8Ncqe2X7CMSde9zql9fWbqNB2txWDpKfsHUM3YqUWrzK/pmCzNTh4MMK1axnW10vc\ndVcMVe2iaaAoKiaTHk2DSkXB57MgSXoOHowQDttIp2vY7RKxmH2nMuL3Wxkf97CwkKPd7s2MDA+7\nCYV+fXr3++HddG9NezsvbuTzJK7Okzy5iMvlReeLUldD7Hr4PtLzCwiCgGdsDGN0iOERD7ZYj2Uj\n66vUFy9Rz2aIr66hNFvs/erjKA0Fr89OMldgZaVXlQh5DYj1PKV4gW4pz9Dx+xg9fhSLrKNmChBv\nONCJIufPJ9jYKJHJ1Pn858f4whfGOXNmm7ExD2fOxLFYJKxWA6VSkzfe6Bn2eb1mPB6ZZLJ6wxTQ\ny5EjfczPZ8lkathsRiIRG9vbPcn7UMj6ia+SfJqM/BL85Cc/YXp6mr6+vl/+y58gPPHEE3z3u9/9\nxCYj3a5GNluj1epVF97pf+NwGAmFbqaeSpLI4KCTWq2F3S7h9Zr54Q/nmZ/PIQi9U6PTKTM46ESS\nRGq1NqurRaxWI+GwDUHoLa6bm2VsVgP2UJQLP3qJRqXCkfsmcPT1obPY8U+PYbLb6XS6NBodgkEL\nQ0NO0uk6qtolm63hkDpMRbosXdqilVMwmc2M75+lb0gikXPT98CDdGpVtq8tUNOsOGIRNs5coNA0\n4nSZGCsUaNVq9B05QqtWo7M5jyezhK0r4h4dxzs2uDOwG9q/H9+uXSAIH7gi8k64YlEOfz1Kp9Nr\nC/22LaxGpYi0eR6dCoVraxRXV9AHYlSwYzJbcYxMcnmpzJC/C7UK9a113A43stOK3uxndNzP4L4o\nJdVK/MfnWV4p0O1qjAzYECtp4pfKeIdEghE3aU2gVqmye78P3/go3qGBnWrWrr0xZu4c59KJeQDs\nLgsPPX6IhmrkZz9b5tVXN7BYDHi9ZhKJPA6HDPQ+d4lEBbtdIhKxUa3eoDIbdPj9VkZG3Oh0ApKk\nZ3jYfVMr4a1qml6v4447IvT1OSmXFaxWA8GgFaPxo99GPKEErPAAACAASURBVB4zfr+lRzu+AYNB\nx8CAk2a5zNpLL1FOpEgvpajXrhMcG8A8fYiVip3RYw+zZ08ATWOnBeSYidBVmpSuraIU8/TP7mXk\nwQfpIKJ3+clk60T6Q5y9mAEEomGZPksVYy3Fj374M4b7rNiWtzj6776O0CjTlJ2oDYG5K2mWlwuo\nahdV7XLhQhK9Xsfu3YEbw+8ikYidubnsTjurx0ZqkkwaGRpyoWkaGxtl/H4Lx44NUCw2uXBhmzff\njKOqGq2WyvS0nzvuCGO1fnRVqN80fJqM/BJ897vf5YknnrjdYXzs+NrXvsZf/MVfUK/XMZs/OaI7\nAIrS4fTpOCsrb80SGJmdDe8swE6nicOHYzeGWAuYTHpmZvx4PDIWi5FksqcB4HCYGBx09obZRIFW\nS0VVNYaHXVy9mkHTNCIRO0NDLkRR2HHmXLieZ2Kkj+mvPIYsqgxPhfE5DTht+h0nXL1ex8yMn2vX\nMjz77AoLCzn8fjPHjw+TnV9AKia4/4ERavUOdruEy5Ln+ptpVq6kwWAiEnOimX1Ex0doZLOU2xKt\nVo9BUa0oSOvr1KemSF+6RG5hofeeQPXaGbx+K7gGd67XB9UT+UW4lW2ZW4WuqpK8eBGlVMLs87G1\nsoxSqVGqbZDWPKwsZhneaKDvm8DYKGCrrXP3vQNsJDsoSoeRCQ9HH7uj1yLKN5AkAxaLAb1eQCgn\nSWxuMxwZ59obC+SDVmYePkq1bcA5EcU3FLoploERP0/8T8e5fnSSWqmGfzBIOqPwn/7zRdLpGmNj\nHk6dipPPN/D7LTSbHYzGXuK3vJxndjbC8nIBTdNQFJVdu3w71ZB3o1hsMD+fIx4v43SamJz0EQ7b\niEZvvReKwSBy550xLl1KkUxWkSSRyUkfsZiDwvJST/PFIBIKWVldLZJe3mTX1C7ymozPZ36PC26r\nXqdy9QwXX72G3SxgMzSgmSJ091HKipFKw4TQ1Xj00VHW1oqMD8i01udYfPUUFpuMbDHSzmyz9Oxz\nhPbuYXB3kKZY49VXN4CeiV0kYqdUarK6WsTlkmm3u0Qidmq1Ns1mZyeWQMDCxkYZnU7AbNZz+vQ2\nuVyDZLLKww+PUCo1eeaZVZrNNpVKi2q1xeJinmazw8iIm9FRzy2//rcDnyYjvwC5XI7nn3+ev//7\nv7/doXzsCAaDHDx4kKeeeuoTN8i6vl5ibu7tvnippHDmzDZ+vwWbTcJo1DM15aNYbN7o2fb64hMT\nPjweM+l0pmc/39WwWo1omkY8XkYUe4vLyIiLiQkfBoOOgwcjO6ez3qBgmKWlHOU66C02JKlL34Ab\nj0tCJ4okzp9HL0nYIhEsFgNra0UqFWXnJHvlcpK7BvXQbeOkgNfSRa0rpJbyKAYn2+tZ8vkGmwsy\nTp8Dw6CZfLZNo9FbDLWuhtrV6KoqrXKZ8ubmTdem226TX1rCNTjIp+ihXa/TLL7NBuqqKhoa+WSB\nmmymK4hogp5ksoYiNLh7zIVDqjNwwENXE7Da2zutDrdb5t57+0ina3TqNUpLJe59YBJTt4zJ70A0\nSSRW4sjj+3GF3mvYBzAwEqBvyE9qdYurJxfIrxcZi9qYm2uQzdaZmfFz9myC/ftD+P0Wut1eW0DT\nBKamfNx9dx+tVq9N4/NZ3neIWFE6vP765k5lIpdrkErV+Mxnhnb0dW413G6Zo0f7qdXaGI0CzUya\n1MULNIpFLH4/zWLxRmVGJJtt4HLoGT04uDPj8k7UMxkMrTJDQ06ymTrJKuRyFeRphWTXQaPRQZYF\nwmEb7bZKyNXh3NOX0apFwkEr5k6RXHILTZtBNVppCUZ27bIwPZ0hk6n3qPAmA9lsDbdbJhCw3Ghf\n+TlxYhNJElFVjaEhF8GglQsXUhw8GOHVVzdYXy8BPYbeK6+s43RKxONlZFnPtWsZBKFXyW02O5w5\ns43PZ8bp/GT40bwTnyYjvwDf+c53eOyxx3b8cX7X8MQTT/Cd73znE5eMbG9XeLf6eKXSolhs7rRr\nPB4zDz88QipVQ1E62GwSLpeJVKp6Q/9AYnLSy8mTW2ga2O0mYjEHHo+Zzc2emdyuXb6bpJyDQRtf\n/eouLl5MUi4r+P0WZNlAw2Ags7lKdekaqD0zLcwOTOMHaDQ6jI97EQSBclmhVG6BO0xpo8K1pIGh\nAQc2MUdHaqMzylQqLTStx3zw+DrUOiK4wmhrcQRNw2wxYrEYsPj9GCwWtO7N7AjoJSSf4m3oZRmj\n1UqrUkHTNGzhMLmlZXSSREsFg2TAMTTI6qqGRTIhB3x0cklauTRoGuahO24aGj54MIIgCHSbDSpr\nJqROGb1tgPnFEsliE6fNy8xM4BfqS5Q3Nzj//R9z7uQq6XQNs8PG1x85xrf/cZNg0IbHU8ThMOHz\nmclm60xP+9izJ4jNJtFodHA6Tb/QYC2TqZFM3myUV6222Noqf2zJCPRUoa1WI+mrV9k+fRq11aJZ\nLNIoFokePIiayeD1Wgj1+RjeOwhmM9ev56hUWni9MuFwz9tGU1XQNLxeC16vhVKpSaul0mq04Ubh\nT6cTmJnx4/WaycYziHY3znCXoE+mkhfx3hHDObWXcluiVOp5Gx04EObcuQSqqtHtajeSzX5GRtw7\n98/tlpma8rG9XaHV6pJOV5mZ8WOzGXfWCru91+ZNpapIkh6HQyKTqaOqvYVKknoVxUqlRbmsfJqM\n/C5B0zT+7u/+ju985zu3O5Tbhscff5xvfetbLC0tMTIycrvD+chgs7139sFoFDEab24hGAziTkm6\nXFZ44YVVkskqnU6XVqvD9LQPt1smHq/Q12dn//4QpZKC3S4Rjdrp63O8h4EVDvcsxHO5njvu4mKe\nqFdH6rXXsRja9PU5WF8vksttM9i2kkhImEziDounUGhQqGikkxU2qzWW55Pc99Ak0UOjpHNtYuOb\nJNfTGE0SI3cdwBAKU+wU2fvgXRTXVjEZdVgi/YRnZzE5HJi9XspbWzvxCTodrhuCX5+iB1GvJ7B7\nN0q5jFIq9czxLBaMFY1WUmNgeJTNkgmj1GF4/xiWiEhWtKEh4PHb8YyN3fR6druJw4ej5DNVNjNX\naetdPPmjZTLJIjpRh2p2YwomeeCBofedrel2OqSvXCGXKJBMVimXFTY2yhhs5/nSF+/C57cyMDDN\nsWP9VCotHA4T0aiNxcU8ly6lgN6A8p49QQYG3v+g9dbm+m7cDnlypVIhfeUKaqtXHZQcDlq1GtVU\nCtnjQVNVgnv3oskOXn5pbeewIYoC4+Me7rwzhuzxINntKOW3Nn+J0Ykg5kiQbFrD7Taxd28Ih8PE\n2bMJ4tttBo7ey9orrzO3kmB8Vz+24XFyxgiBsAezuZdo9JIKiaWlHNlsHYfDxPx8lqWlPIcORQmH\nbTidMvv3ywwM1Emna0xP+3E4JFZXC/h8ZmTZgNcrI8t6ms02kiQyMuLeqWY6nSb27w/faLmJH5mj\n+W8aPk1Gfg5efPFFTCYTd9555+0O5bZBlmX+6I/+iL/5m7/hr//6r293OB8anY7K+nqJra0ysmzA\n5zMTCJhJpXpsGUGAwUHnLzzxXbmS3imn9iCQzTY4fLgnvOTxyL/yIiGKOrLZOqlUTwtBT5t6uUpN\n7WCWDSSTtZ6zbq2EzzfAwkIWp1PG4ZBQ1S4mq4x7fAKlVKLbVUkqdsYGoly4dB5TbISZXTPorA4s\ngyE6nS733DdCodDE4ozSaXdYF80IiQ7THj2Rw4cRzpyhnsmgE0Xco6M76qOf4m3suD6nUgiCQOzu\nu8nl6hjniyRyHWJab4OfnvYxP59ldamIBnjreuRoh9i7PloWixGLxY37cw/w5H89QyZdRWeUsAWD\npKsGTp2Ks2dP8H2ZQB1FoZwtoHW7yLKBZrOD2WygnC0w5DWye3/4hgX924nGxYtJ4vEKLleP0ru6\nWiC1lefOfQ6srQyOWAxHfz+ivrcluN0ydrt0k4aIwaC7ZcyZX4ROo0Gn2dx5LAgC9kgEyelk4OhR\n9CYTks3G/Hz2poFXVdVYWircYPw4iB05QuLcOVqVCnpZZuDYNKbIAGO1NjZbT5Rsba3A9XNLlJMp\nik4HndB+XJE2asDBU69tU24scfCQwhNP9Fpoen0vcVDVLoVCk2SyupMIXb2axuORKRabJBIVOp0u\nXq+FaNSOXq/DZOopAL9FTQYIBq1YrXpiMQfj4x727w/SbKrIski12mJ01P2xVqY+TnyajPwcfPvb\n3+Yb3/jG74y2yM/DH//xH3PgwAH+8i//Eqv1t5Pzfv58kosXUzsnPavVyMGDESKRt6zKrQwMOH+u\nAFer1SEeL9/0nCjqUBQVt1v+UNoVxeLbC1ALCavLTiGRpdFso92I0+j2sdsTQNM0rFYDAwNOhodd\nJBJVjBYzRouZdlslla5z9fQS4bCD/j4H1UoLnd1OOl0nFLKwsJDj+vUs4bAds1kmk6hRKvcs2j0e\nN0MPPEBqPUWp2qFkkDGWO3i9H54580mFxefD4vPtPDZ7NHQWB/JSgUajRbOp8vLLGwgCxEZCZLN1\nKpUW584lCAQsO6yTWq1FPN5jVHg8JioGN46xKTR0NDoCzVqHVKr2HvGxt2CQZQw2J/VGh/ExN8lk\njXJFYfLwCINjQfr7HTuW9W8hkahisRio1Vq88soGlWyBVjFPIT3GXYdCXHhujthkk4kDo1itRmw2\niSNH+jh7dptyuafMOjXlIxK59cOr74bRZsNgsaAqN4uruQYGbrofpVLz3f+UVkvdqTA4YjEsgQCt\narV3DW/4Ur2ToVLaTpJZuI7W1Wi0dWxni2wXBT7zkJ2RqRDxeBlN4z3tqqWl/I79gNNpQqcTWFzM\nY7UaSSQqxOMV6vU2/f1Odu3yMTMTwOEwcc89/Vy5kiafb+B0mpie9qPTCZw6FadUajI25qHT0dDp\netUci8XAxkaJSOSj8wT6TcEn66/5iLC6usoLL7zwOzm4+m4MDAxw/Phx/vZv/5Y/+ZM/ud3hfGAU\nCg0WF/M3lZyr1RaJRIV77un/lV5DFHXIsp5C4ebnjUbdTmunVmuRSFRp/P/svXmQXPdZ9/s5ve/7\nPvtopBlZ+2o5kiw7JPFCChPIUgnJLeAm5IbVcAPckPu+RfGmKhAIwQRC2F64EByomBCcgLFlvFu2\nbMnaR6PZ96339fTp093n/nFmWmrNonU0WuZT5bK6+/Tp35zfWZ7fs3wfUcbrtRAK2ZZVF/X7LXPl\nvpDMQ3jnDoRjxzCbQKvXEuxopWwPMTWVpbPTx86dIWw2A8ePT9VEp+bluP1WmVOTMeLTKXYc3ERF\no+PMS2+y7UP7+cEPLjA1lcPns3D69Cy7d0eIROwkk0U1r8RroX8gyVtvzSJJ6sPPZjNw6FDLqjx4\n7iQEQWB8PEMqVeT06RkuXIiRSBTnvGwWtm8PEY2qBomahKmjUCjx2msjjI+rD7VQyIrBoCddUKhW\nLxof8+GTM2dmMJv1hMO2OQXVIjqdhqZd2+k9Pcr08BTBkI2uHW2E778fq9u8wBABtfN0Pq8aRpIk\nU8yk8QVc9PWlyCZy+C0lTp+cZCol8P4PdGC1GmhsdBAIWMhkSpjNugUVKrcKvdlMeOdOJt5+m1Iu\nh6DRYA2F8FwW/vL5Ll5T85jNurqwrM5gQLdIfyYAWRTRZKM43DbS8SxaKuiMelx2BatVz9NPn0WW\nq5w/H0OrFejq8mE26ykU1HJ/Saqg1QqkUkVee22ESMSO223kn//53Fxyu4Hu7ii5nERLixOHw0Qo\nZCMYtCJJFYxGbW3x+9hjHTUjUBBUsbqBgQR6vQ6DQcvkZJb772+4q0I2K22MfAPYBbxHfQffnwf+\nX+BN4DMrPIZr5utf/zq/8Au/gMOxdjMG+J//83/y/ve/ny984Qt3nHdEkiqLrjDn1R2vhCyKpIaH\nCeiz9I6NobO7MLlc6HSa2s0ok5F47bVhpqZUF63BoGX79hDbt4eW3G9Tk5OODs9cg7oyWW+AB/6P\nn8ZhLBGcKDCV1jERUxNJ9XoNfX0JJiYyNSNHEFSPTShoI2DM0jekhpCy+TIX+mME/Q5mo3nicRFR\nlGsNuHp6YjQ3O+ey/3UUi2XOno3WDBFQjbXu7uicPsq97Rlcjni8wOBgCoNBy8BAAkEQkOUKyaSI\nLFe47z7/3ENIX0tmnJjI1gwRgFxOxuMxsXt3hP5+tWlaa6uL3bsjvPHGKLGJOIVEDH+Dj3DExcSM\nhNFqYuNGLzs/8QSTfWOUShVkvY28xsaW9sUftB0dHpLJouolqIJOq8EVcDHYPYpF7ybs1FMtVxgb\nTTI5ma2VjxoMOny+1V+zetrbMbtciMkkGq0WazC4oON2Y6ODDRu8DA4mkeXqXEl+sC6JfDkqsoy+\nmGT3zgBvv54hEx2nvXMrwbYQL786iixXMRg02O1GJiayTE3l0Gjg2LFJxsczjI9n2b+/iYGBZE3V\neHAwxfR0HptNj8VioFJROHcuOieUqHpUBUFY0BNIr9fi9arjfvnlIf7lX86Sy8kIgjqXO3eGiUbz\nRCJ3zzNqJc+ynYAVeBD4FrAbODb32b8DrwK/u4K/f11Eo1Gefvppuru7V3sotw2bNm3i4Ycf5pvf\n/CZf+tKXVns414TLZcLhMBKL1bclb2q68kWsKAqTx44R6+nBbLPxvu1+xqZF7KEAGzY30tKilhAO\nDSWZnLxYeVAqVZiYSKPVakgkClgsaojlUreuyaTjwIFm1q/31qp1VG+JgK2phGM8Qygt4XQaGBlJ\nMzSklpaOj2fxeMysX+9Bp9Nw7twsw6dma2qVglZLKlmgtTVErqi+Z7GoK0ONRqBYLKPRCGzYoMae\nU6kihcLC6pl0WqJSqd6RuiC3AklSQ3cXLsQIhWwUCmWMRi1Op3FOxVY91largc2bA7WHTSYj1a3c\nc7kSBoOGhx5qZefOMIKgdpZ9770p4lMJYj3nQWfgv09Huf/+BirFIuXGVk6cmOHBB1vYdGAbqZSI\nTqclELAueKjN4/Va2Ls3wsREhoGBJIZmI4VsHlks0dTkJJ+JYXS50BlNtTLy2w2zx7No1+l5jEYd\n+/c30dHhoVgsY7cb8PutV21QG+12NFot8qmX2NsaotLlxxksUQg6eDZbqiWbut1GAgEriUSB0dE0\niUQRi8VAMGglGi0gCLB+vQen08jUlJqALMtVqtUqhYKq+xKLqeXAodDyOTiplMi7706Sy6nXqKJA\nX1+CpibnkmG8O5WVNEbuB16Y+/eLwANcNEbiwK3PhLoK/viP/5iPfexjhEJLr2rvRb7yla+wb98+\nPvOZz9DYuHKdVm82JpOOPXsiHD06TiqlSrI3NTnqFCaXohCLkRoeBkWhlM1i0OTZ6LXhjkg0tF/s\nUnppPwlQy37Hx7N0d8dq+ST9/Ql+7MfaCQQuGiSXVutcitVqoLNTTZAbGUkyOJiqhXxU5dgCbreJ\nrVuDHD9ewRIIUhKLFBNJlIpMe1cEweKk0efgzJkZNBpVPVYQBJxO9XtNTY5a2aTaLVRGq1V7bJTL\nVQIB65ohsgTVqsK776pNC0ulCvm8jCSpDwuzWU9zsxO328S2bUHCYXtdEqrHY0arFWolmwD5vEww\naGPrVvWeMz6eUdvJJxJqBYnFQ74YJ5Eu49SVkLJZzC4XAwNJOjt9y5boXorHY+Hxx9fz1lvjzE6l\nSU7D/Qc78Lp0TOWMuJqa0GoFvN47t2xUp9Ned3hREATsDQ3YQiFSw8MIGg2KrgN/63oe3N9IMlNG\np9PgdBpxuUyYzXqyWakWGnI6TXi9ZqrVKhqNhnRaorPTS3OzA1Esk8/Lcx4TL5OTWXp64jz0UOuy\nInL5vIyiqAuJeV0jh8NIpVJZtCrwTmYljREXMDj37zSwaQV/66YwMTHBX/3VX3Hy5MnVHsptR0dH\nB1/4whf44he/yD//8z+v9nCuiaYmJx6PuRZv9/ks6HQacrkSGs1Fz8HlVMtlquWLyolKtYqUyVC8\nLHnE77fQ35+ovdbrtfT1JWhouGhvZ7MlBgYSdcbIUqTTRRIJkURCJJ+X6e2NYzLp5jQTVANBreCx\nsH17kFOnQGtYj6ZSYv0mP3t9Dk6fnsVo1HLgQDMzM3lCISsul4m9exvqqiz0ei07d4Y5e3aWVKqI\nokAgoFaFAJTLVYaHU4yMqB2J29rci4pK3e1IUpnp6VzNaIvHRTIZid27I/T1xdm/v5nBwSRer4W2\nNhctLc65hMYcZrMeh8OIoig4nUa2bQvS358gk1GbpG3a5Mfvt9ZaFIiiTCRiIz+lo2r1kspWSKTK\n6C1msoUqzjnXitW6tA7JUoTDdh57rINEQjWg47MZjh0bx2cLYTLr2LDBu6ga60oiSWUkSX24rnZY\nsJTP425vx9PRgQIolQrKzAD79mxmcFwNc5lMOjo7vRiNOgwGHTabek0mEiLptMTu3Q2MjaVJJESq\n1SqPPLKOqakck5NZGhsd7NkTmfOa6RkYSCxrjFitamuKWMxaa9EwNZXFZjOyiETQHc1KGiNpYP4o\nO4HUZZ8vLGK/jCeffLImONbV1cW+fftobW0FYHh4GOCmvv6jP/ojPvvZz9LU1LQi+7/TX//Mz/wM\njz/+OD/84Q/ZsmXLivzeSqGWUqpGRzYrcfKkWuqo0Qh0dHjYtMm/IDvd7HZjcrkoRKMX3xQEnPMt\nN+dobXUxNpapZdrrdBpcLtOChL+ryVPp6Ylx4sQU58/HSKXURmc7dgQ5fHiw9ltWq572Oc/M5s3q\n6lt196uueq1WQ2Ojk0xGwmJRm6GVSlXcbtOiQlparYbZ2RxjY9laLkpHhxePB86dm+XYscnaSn5o\nKMWDD7bQ1uZesJ+7FVGUOXJkjOHhFJWKQj5fwm43YrcbyOVKdHb6MJl0PPxwGz6fWS2bnSmQy6l5\nPBMTGfbsiXDmzCyzs3m0Wg2trW5CIetcqbm11qJgeDiNLFcQRZlgeyMnT01TFGUOPtRGMVugp3uW\nPQ/78Zh1dHRc2bu3GGaznoYG9TyIROyEG90UCvKyiqwrxfnzUc6fjyFJZXw+Czt2hK86x2MlcEQi\nxHt66sQATS4Xe/Y2sn6Tei6YTDqi0TyvvjpcM+I3bvTT0eFBliu0takVM7FYgaGhFA6HkZYWJ7GY\nSDwu8r3vnaNcVggELBw61LrseFSNkTAOh5Hu7ijHjk3i81mYnc3z8stDfOAD7Xg8d0e7jpU863YA\nnwf+L+DPgb/jYpgGoBX4XyydwKpc3rVxJTlx4gSPPvooPT09uN33zo32Wnn99df5+Mc/zsmTJwkG\ngzd13/Mt7lcSRVF47bURLlyIX/K7sG9fI1u2LPx7spOTjL/zDlIqhUavx93eTnjnzgX9WkRRZno6\nhyiWcTqNHDkyVqcfALB/fxObNi3dqTYWy/P88wMkk2p1RqGgCiB97GObiMdVXZKdO0N0dfmuGGu+\nWhRF4aWXhhgYqPf2hMM2Dh1q5rnnBuq0JkDNt3n00Y6btoq9FfN+I/T1xXnlleGLHWNFmeFh1SiL\nRi9q1Tz0UCuKAq+8Mlz3fUVRaGtzMzKSqu1Dp1PzROaNyu7uKG++OVr7XFEUyuUqDQEDyckodruO\nZKbMVFzhvm2NvO99jXd88qIgCPzv//1erToMVJ2NRx5Zt2plq5VymekTJ0j09VEplTA6HIR378Z1\nSaPU2dkc//VfAxSLau+hWKxAKlXkiSe62LLFj9+vhuVisTzPPdePKJYJh21MTmb4+78/jdmsq3mf\n9u5t4HOf27ms2q6iKPT1xfn+989TqaiNPOfLxPfujbB9e3jJ795uzN0zFr1xrOSMnwCKwGtz/z4G\n/Cnwq8CHgd8G1gHfAz62guO4IpVKhc997nP8/u///pohcgUOHjzIz/3cz/HZz36WZ599dtXdqtdK\nJiPVCSOBGu8dGEjOVT/UK17aIxHWP/YYxWQSrcGwZAKd2ayv8xbs3dvA0aMTZDISer2GlhYnbW3L\ntxVIpyXyeTVjfv6wSlKF0VFV2nvTJj/79jViMl27e34pSqXKgpwXUMNK2WyJcnmhL7hQUPvyaLV3\n1txfL4mEeFm5qNoVV6/XotWq3Wzb2900Nzvp6Ykt+H4mo7Ya0Ggu5oqo4a9kzRiZ96rNIwgC+XwJ\n9A5EwUw2XsLqcrKxwcq2bcE73hCZ51JDBCAWKxCLFVatrFyr09GwZw+ejg4qkoTR6VxQtVMolGuN\n74xGHQ0NDhoaHFgs+pohonLx+pDlCpKkeidlWS0BdrtN6PVqufZyxsh8tY3Xa1nQxmKx5PM7lZU2\nP5+87PWvzv3/R3P/3RY89dRT2O12fvZnf3a1h3JH8Lu/+7scPHiQr3/963zxi19c7eFcM4vZT6oB\nsPjDVWc0YrvGhOaWFhder4VkUsRg0OLzWRaV9r4Ug0E794BXty8U0iiKGmISRZmODs9NNUTmf9Pt\nNtWJsAG1NvRer4V8Pl33WXOz84p/y92E221eoF/R2Ohg82Y/27cH5+ZXDW/4fBYMBm1dpYPVqsds\n1i04xpeGQxbT8PB4zJhMWnQmMzqTmYqiPryvNmH1TkQQuKVhoqUwL7MoNZt1GI3aunJ4QVC1XC7F\n41F74wwMJJGkCgaDhtZWF16vqm5rsxmw2QwL2lAshtNpwm431oV6tVphVRRxV4rVLyBfZY4fP87v\n//7v89Zbb91xq/zVwmAw8L3vfY+9e/eya9cuHn744dUe0lXjdJpoaXFy9uzFPBCtVmDDBu9NvwnO\n32yulkDASlOTg+HhdE3jw2zWEQhY8XjMy4Z4rhdBENi8OVBLvgP14bltWwijUc+uXeE570kBjUag\nocFBV9fi3WTvVhob7bS0OBkdzVCtKuh0Gjo7vTQ1LTTKwmE7O3aEOHcuSrFYxmxWtS4SiQJTUxfL\nv+eTgedZt87N8HCqVlYrCHDffWoegiAIc00cDWzZEqzpT9wNXP5QDwZtt301j99vpavLx7lz0bky\nbjVJ/vJEVI1GYM+eBkwmHRMTGTo6vBSLarfkea2gOC4VSwAAIABJREFUdevcV/X3Op0m9u6NcPz4\nFNmsmh+2YYPnqiQK7hRu56fviueMpNNpdu3axVe/+lU+9rFVjRTdkbz44ot85jOf4d13370p5b63\nKnegUCjR3R1jaCiJTqdhwwYvnZ3eayplVRSFVKpItargdptvmiGTz5cYHk4xM5PH5TLR1OTA4TCu\neAw9mVRbxFcqVYJBW10SYalUJpEQ0WgEvN4re3iulds9ZwTUPJGpqRy5XAm3W1XOXE79MpkUEcUy\nNpseh8NEOl3k7NlZJiaymEw6Nm701QyNeWZn8wwNJcnnZRobHbS0ODEadXPt42WMRt1NP/aZTJFS\nqYrLZbzlpdyCINDfH6e7O4oololE7Gza5K9VjdzOlMtVpqdzJBIiNpuBcNi2bKhFFGWq1Sqzs3km\nJnKUSpW6Ob5a8vkS6bSqzHonesiWyxm5Z42RUqnE448/zqZNm3jqqadW7Hfudr761a/y7LPP8uqr\nr2Iw3Fjd+61+KElSeS7mf2034XlZ7dHR9Jykt409eyLX1aNmjTvDGLlZqOecBp1udcNcpVKZ06dn\n6OtLUC6roZ89eyIEArdOYXl+3iuVak0x9W5ldDTFe+9NkcmoxmxX10Jj9F5gzRhZuGN+9md/llQq\nxfe//3202jVxp+ulWq3ykY98hIaGBr71rW/d0L7ulIfSsWOTvPfeVN1769d7eOihVgRBoFAoMTyc\nZno6h8tloq3NdUes9laLO2Xeb5RKpcrYWJqRkTQ6nYaWFteyGhMryYULMV5/fbSuZ1MoZOPRR9fV\nKjVWmjth3uev5ZkZtb9Tc7Pzmhcd6XSR557rr8v3MBi0fOAD7as2/6vFalXT3JYoisJv/MZvcOHC\nBV566aU1Q+QG0Wg0/MM//AP79u3jL//yL/n85z+/2kNaUWS5wvDw5ZI5MD2dI5uVMJv1vPXWeF2p\n7NBQkh/7sXZcruVvYuVyldHRNMPDFwXG7rWb1d1MT0+Mo0cnahVK/f2JVdNsGRlJ1xkioFYNpVJF\nBEFgcDBJNlsiErHT1uZaNgRxt1IuV3jrrXGmpnLYbHrOnYsiCPDggy10dnqv2mhLJMQFGkOlUoWZ\nmdza9X0J95QxoigKv/7rv86bb77J4cOHsVjunkSw1cTpdPLss89y4MABurq6OHTo0GoPacXQaAT0\n+oUudo1GmBMPyzMyUl99Eo+LjI+nr2iMXC4wNjiY5NCh1loH1zXuXERR5vz5aF2ptCRVOH8+SkuL\n65ZXkBgMC89hrVZAFMu8/fZ4LZl5aCjJ7GyOgwdb7qkKKlBzeMbG0jidJl58cahWDRWPF3jkkQ7u\nv//q8uS0Wk1Nzv1SFruP3MvcM0dDURR+7dd+jSNHjnD48OGasusaN4f169fzne98h0984hMMDQ2t\n9nBWDK1WQ2enry7mrzbG8mK1GpDl6qLaHPn88noA+XyJnp5YXc+S+YfVpa7s6eksr78+wn/8Ry+n\nTk2rWhRr3PZIUqWuamSefF6mUrmyrne1qjA4mOTw4QGef76fvr74oufZ1bJunQejUbvgvVisUCdy\npygwPJwmGs1f92/dqZRKVcxmPcPDqbqy7EKhzMBAkmSyXp9nfDzDK68M8Z//2ce5c7M1LRK/30Io\nVN8Gwm43rJqWyu3KPeEZqVQq/NIv/RInTpzg8OHDOJ33Xm+NW8EHP/hBfud3focnnniCN998E7v9\n7qmBv5T16z1otQK9vXEqFbVV+Lw097x+wKWdT7Va4Yo9aUqlypICY5WKgk4nMDub46WXhmv7npjI\nEosVOHSoddUTItdYHrvdsKhmS2OjY9mqnHn6+uIcOTJWEwkbH88gimW2br0+FeSmJicPPdRKT0+M\nQkGmtdVFZ6eX48enFmwry5UF4mT3Ag6HEbvdSDZ7Ua1ZoxFwOIzIcqVOS2Z8PMPLLw8hiqoBMjGR\nIZUq8r73NWE26zlwoJkLF+JMTGTxeNQE1rupRPtmcNcbI8VikU996lNkMhkOHz6Mw7Fmja4kv/Ir\nv8K5c+f4yZ/8SX70ox9hNt99iZtarYb1672sX+9d8JnHY2bXrjAnTqheC1UPwHtFPQCHw7jow6qp\nyVkzNEZG0gvau4+NZYjF8jdNHn6NlUGr1bBzZwhJKhOPiwiC2hfmvvv8V/xuuVylpydWZxBUKgq9\nvTHWr/dcdz5HS4uLlpZ6D3E4bOfChXhdSMHhMOJ0Gi//+l2Px2Oms9NDJiMxMJBAq9UQDFpxu021\nzr3zDAwkaoYIqB6loaFUzehwuczcf38jiqLccxU0V8tdbYzE43F+6qd+ikgkwn/8x39gNN57F9St\nRhAEvvWtb/HpT3+aj370o/zbv/3bDZf83ml0dvoIhWxksyVMJi1er+WKN6BLH1bzmh6RiL1OYGze\n7Xsp5fLiYaE1bj8CARuPPtpBLFZAqxXmukdf2StSqVTrVuHzyLJaEnsz7f3mZgebNvnp708gy1Vs\nNgN79kRwOO7NsvV167w4nSYsFj0TE2kMBh1ut5k9exrq9EEuNUTmKZerCzxKa4bI0tzOR+aGSnuP\nHz/OT//0T/OJT3yCr371q2g0a27sW4ksy3z84x8nl8vxzDPPXFVo7E4o9Vtp5lfOWq0qMHZp+GVw\nMMnLLw/V5ZV4PCYee2z9AjnxXK5EqVTG4TDd9iGce3XeC4USxWIZh+PKgmNvvTXGmTOzde9dWk5+\nM1EUhXi8gCRVFu0+fbO4k+a9WlWIxQqUy4t3v7680SFAMGjl0Uc7rluwMJ8vIUllnE7TXZM8fE/p\njJRKJb72ta/x1FNP8Rd/8Rd89KMfXYGhrXE1lMtlnnzySV555RWeeeYZurq6lt3+Tro5rQblcoWT\nJ6fp7U1QKlVwOIzs2ROhqcl5yTZVzp2brbn1PR4zu3eHb6mY1bVyr817tapw/nyU7u4oklTB6TSy\na1ek1sl1MbJZiXfemWByMouiqA+6vXsb7mj9mrtp3iWpzPHjkwwNpeYMFjN790auK3wqyxXOnYty\n4YJ6Dft8FnbtCuP3L593didwTxgjoijyj//4j/zhH/4hGzdu5M/+7M9ovqTt8xqrg6Io/PVf/zVf\n/vKX+Z3f+R1++Zd/Gb1+8Rj33XRzWkmSSbG2ar1ctXIx78mNrtBWmntt3sfG0rz44mCdC38pD9el\nVKuqx0JR1HyG293jdSXuxnlPJERkuYLbbbpu8bj+/gSvvjpcdw3fakG6lWI5Y2Slz+ZvAK8Bf3LZ\n+xHgKJABTgN/ca07lmWZEydO8Fd/9Vd8/OMfJxwO8+yzz/K3f/u3/Pu///uaIXKbIAgCv/ALv8CR\nI0d47rnn2LRpE08//TSl0lpJ6vXidpsJhWyLymePjKTqbmKg3iATCXHBtmusDhMTmQW5BMlk8Ypz\npNEI+P1WAgHrHW+I3K14PGaCQdsNGQ3Dwwuv4Xi8QDx+d1/DK3lG7wSswIOAAdh9yWf/D/B/A2Eg\nDhiBHUvtSFEUBgcH+e53v8uv//qvs3//ftxuN5/+9Kd56623ePTRR+nv7+dHP/oRDz744FqS0G3I\n+vXreeGFF/jzP/9z/uZv/obW1la+/OUvc+bMmbtudbSaLCXIdju0ZV9DZTFDYm2O1phnsWtYq9Wg\n1d7d58dKGiP3Ay/M/ftF4IFLPtsMvAHkgSxgBxZqbAN/8Ad/gN/v59ChQzzzzDOEQiG+8pWvMDk5\nyblz5/i7v/s7fv7nfx6f795qa36n8sEPfpCXXnqJF154AUmS+PSnP40sLy8ItsbV09rqXiBmFYnY\n1zQNbiOampxYLPWhynDYXtcpeY17l/b2hddwQ8Pdfw2vpKn1JeA94Hngx4D3Af9r7rNXgUPATwD/\nH6rR8onLvq/Me0RMJhORSGQFh7rG7cDdGENeDUZGUpw/HyOfL9HU5GTjRh92++1b1n4vzvv4eIbu\n7ijZrEQkYmfjRh8u152bjHo93IvzfrUMDSVrgnQtLS66urzYbLfvNXy1rFajvDQwr/TkpN7zMR8w\nfRY1pyQBfBA4PL/Bxo0b18It9xiHDh1am/N7kLV5vzdZm/d7kvRSH6ykMfIW8Hnge6iekb+75LPT\nwAHgBKrBcgY1r6TG+fPnV91qzmYlBs+OkJqcRqPV4W9roH1jw4plNCvVKkMvvURycPDim4JAw549\nhLZvX5HfvJ1YWyndm9yp816tVMjPzFBMpdBbLNjCYXSXCStmp6YYeOEFKtIl7ePtdjoeewzzMv2x\nYrECJ05MEY0WMJl0dHX56Ory3VV5JSsx72IySSEaBcASCCx7jFeK5NAQwy+/TLV8UQjN4vOx7tFH\nMSzTnHV8PMOpU9Ok0xJWq56tW4Or0tF5JREEYUnBqZU0Rk4ARVTPxwngGPCnwK8CXwP+E2gFhoFG\n4LkVHMs1oygK/cfPc+IHh8nEUiAIeBr86D75YTq2rVuR3yym0+RmZi4fCMmhIYJbtyKsCbetscZt\ngaIoTJ04QfTsWSqlEoJGg7OlheYDB9BfIomam56uM0QAStksYiKx5INSksocOTLG9HRO3UeuxNGj\n41it+gXy7WtcJDMxwejrryNlMgAYHQ6aDx7E0dBwy8dxqSECqpFUTCSWNEZSKZE33hglk1HPlVyu\nxJtvjmGzGe4KfZGrYaWLlp+87PWvzv1/Ati2wr99Q6STeQbefEc1RAAUhcT4LP1vvUfb5rYVUcQT\ntNpFDQ6NXq+2hl0CMZFATCbR6HRYA4G6m+FylPJ5BI3mqrdf49YjyzJ/+Zd/ydtvv83Bgwf57Gc/\ni1Z7ZQnxNW4uUjZLIRYDRcHs81EuFol1d1OZK1FXqlVSw8O4WlrwbthQ+55mMU0dQUBz2RyWJYmq\nLGOw2YjHRWKxQt3nslxldDS9ZowsQbVSYebUqZohAiBlMsyeOYMtFFpwvFcS7SJzLmg0CJeMYX6+\n9VYrgiAQjRZqhsg8hYLMzEz+phgjdeev14vpNmwWe2crqKwg1WKBQiq74H0xFkMpy6C9+clEJocD\nd3s7M6dPM68rrNHp8HV2LhlbTQwMMHH0KKVcDkGjwRoK0XLw4LInWymfZ+bUKdJjYwiCgKejA/+m\nTQtczGusLsVikSeeeIJqtcqnPvUp/vZv/5bDhw/zL//yL2sGyS0kPzvLyOuvIyYSAJhcLnwbN1Iu\nFus3VJTaNvPYw2GMTidS+mKo3BYMYvGrDfKqlQqxnh6i58+jlMvYwmFMLZ1otQKXLa6XW4/c85RF\nsc4QmaeYSlEuFjFYb513wdnSQry3l7J4URfEHolg8ftr8x2/cIFKqYQtFCK4bduS4bebMee5mRlG\n33hDPTcVBZPbTfP+/dhvs6KQNb//Ejh8LsLN9R01BY1A4/pGtCvY+C20fTuN+/ZhDQSwNzTQfPAg\nnnWLh4VkUWTqxAlKOdWdq1Sr5CYniff2LvsbUydOMHv2LFI6TTGVYvL4ceIXLtz0v2WNG+O3fuu3\nsFgsPPfcc/zcz/0cL730ErFYjK985SurPbR7BkVRmD59GjEeVxcIikIxmaQQiy28DwgCJnd9jN/i\n9dJy6BCe9esxe70ENm+m+cCBmrs+NTTE+NtvU0wkkDIZ4hcukOk+ybq2eg+I0ahd84osg85sxmBf\nKL1udDrRmW5tkz97KETbww/jamvD7PUS2rGDpgceQKvTkRoeZuLoUQqxmDrfvb2MHz1KwGfC46kf\np91uIBS6sTYOiqIwe/bsxfMXKCaTTJ08SbWysPniarLmGVkCncHAtkfeh1zIMT44i0YjsG5TMxsO\n7F7RDHCd0UhwyxYCmzdf8XekTAY5n1/wfm56esnvFDMZMmNj9W8qComBAfz33YdGt3ZK3A689tpr\n/Nu//RunT59GNzcnBoOBp59+mq1bt/LJT36SDZeEA9ZYGcqiqN7IL6OUy+Hu6CDR10dVlhE0GhxN\nTTgaGxdsaw+FsIdCi7aPTw4Oolz2UBBjs3Ru2gIaP1NTWcxmHRs3+ut6EK1Rj0arJbh1K1ImQymr\nerQNdjvBLVtuaYhmHkdjI47GxgVznhoaWpBPkp+ZQZByHDzYwtmzs8TjIk6nkc2bAzesLVIuFtXw\nzGVI6TRyPo/R4VjkW6vD2pNnGQIbOnjo/3SRmZpGo9Vgj0RuWXb21Rg8eosFndG4IEHO7PEsvd+r\n+G1FUZidzZNIiBiNOoJB64p17lxjIYqi8Ju/+Zt87Wtfw33ZSjsSifDbv/3bfOlLX+Jf//VfV2mE\n9w5aoxGj3V4XZgGgWiWyZw/u1lbEZBKD1YotHF42/2rRa3qJ69xiMXDggB9JKqPTaW5519ZSqcz0\ndI5cTsbhMBIMWtHrb+/QoLOpiXUf+hD5WbW7sS0YXPZeeCuYn3NZrhCLFYjFCqQTqrExP6eCICAA\nwaCNQMBKqVRBr9felMoprcGA0eFYcP7qLRZ0t1mu4JoxcgUsPh+W20zdVVEUpEwGrcFAcPt2Jt5+\nu5ZIZ3K76xLoLsfocOBqbWX2zJnae4JGg3fDhppX5Pz5GMePTyKKZQRBvUgefLAFl+vWujvvVb7/\n/e8jyzKf+MTlOoAqv/iLv8jXv/51zp07x6ZNm27x6O4tNFotgc2bEZPJmhdSZzYT2LIFvdGIfm4F\nfL141q0jMzZWXwYaDKLR66nIMkbj4k0lVxJJKvP22+P09yeoVBT0eg2dnV727m287XviWLxeLF7v\nag+jDlmucPToOAMDSRosXvqHTuJ26Glvd6PVqnl+5rkxC4KwoKFlKZ+nWqlgug4vRu38TSTqzt/g\nli2LJtquJrdzStQ1de29VyjE40y88w7ZyUkMNhv+jRux+P3kpqfRGgzYGxqu6L0pFQpEz50jNTys\nGiLr1+PbuBGtXk8mU+Q//7N/QWb37t0Rdu4Mr+SfdsfqTdxMFEVh165d/N7v/R4f/vCHl9zuq1/9\nKhcuXODv//7vb93gVog7Yd7z0Si5qSkURcEWCmELBm/KfpVqlXhvL9GeHqqlEnqrFb3VSnZyEqPd\nTnDbNlxX0fRTURSkdBqNTofBdmN5BkNDSV56qb7zs16v4UMfWkdDw81z698J834zGBtLc/jwIOVy\nFafTgLsaJ95znpZGC40b1xHYsqVWcFCtVGoLTY1Ox+yZMyQGBlCqVeyRCOEdO64rtLJS5++1sloK\nrGvcZMqlEr0//CFjb71FtVxGb7GQnZyk8yd+gvCOJfsMLsBgsdCwZw+BLVsQUynkTIb06Ci2UIh8\nvoooLuwVMzu7MDdljZvPa6+9RqFQ4PHHH192u8997nN0dHSQSCTwrLIr+l7A6vdj9fuvvOESlCWJ\n3PQ0pVwOk9OJNRhEq9cjaDT4urpwd3RQiEaZePddEn19oCjIuRylXA6j3Y7ZvbT4lZhMMnX8OLmZ\nGTQ6HZ6ODgJbtqC7zkT7TEZa0DVWlqtks2udtq+HTEaiXFZFx9PpEkWjC8e2B4ls8eCxC2TGxykm\nk+jMZqZPnqQQi6G3WjHabCQHBmqhvPiFCyjVKq0PPXTNeYs3ev7eCtaMkTuI5OAg40eP1txtFUki\nfuEC8d7eJStuliPR18fUe++pOSeCgC0cxr9rHyaTDlmuv/H4/Xd3k6bbhW984xs8+eSTaK4gcOfz\n+fjwhz/MP/zDP/Dkk5fL+axxO1GWJMbefJPk0BBKpYJGr8fX1UXD3r215EqtToeYSJC/LPm8lM1S\niEaXNEaqlQoT77xDemSk9t70iRPoLRb8Gzde13gdDiMajUC1etEg0ek02GxreWPXg91uQKsVagae\nJFVQbDryQ70kJwapyjLVOQ+R1e9HzufRmUyMvP46Wr0eayBQ21d2cpJiKrWscXqncnsHAO8ySvk8\nyeFhkoODFC9PiLsKpFSqVp41T6VUonIdXW+LqRSzZ89eTH5VFHKTk0jTY+zYEap1jVRzRqy0t999\nJ//tRn9/P2+++Saf+cxnrmr7z3/+83z729++J1zdt4JCPE5iYID06Cjly5LCb4TsxERd1UxVlon1\n9JC/TG153jARNJr6xNZlDFMxmawlbM6jVKskBgaue7yRiH0un0Edg1YrsGGDh1Do3lACvVmUCgVS\nIyNYK1lam6x1x3NdSIM4NkB17t4tZzJMvvMOSrlcE0cTNBoKl1VyCYJw1ypxr3lGbhGFWIyRN95Q\n+yYoCkank+YDB65JqlhntdZE0UxuN/rG9chmD5VQJ6IoYzZfOSGpLElUSiWkfB65UFjweSEWo/MD\n23G5TMRiIkajlnDYvrYqugX86Z/+KZ/97GexXqVA04EDBwA4evQo+/btW8mh3fXE+/qYfPddVTxQ\nq8UeidC8f/9NKX0splIo1Wrde1VZrukDzWMNBtFF2knnquj0WmyaArpqaVn3ukajWdRlr72BEn2j\nUcf+/U20t7vJZiWcTiPhsB2d7vauprkeKpUqMzN5crkSNpuBQMB6U5J0C4kEo6+/rhqKikJjUyuN\nezopCSYcDiOW4iyjlTKVUgmlWlUNEEVBTCbRWyyUslm8GzYwffJk3X6dLS23pXrqzWDNGLlFzJ49\nS+GSFYyUTjN98qQaO77KG4fV7yeweTMWv5+YZOWddyap2iqM6dOMxod44IGmJduQX6r0WJVlHC0t\ni25n8fkQBIFQyE4otFBEaI2VIZVK8Z3vfIczl1Q5XQlBEPjUpz7FP/3TP60ZIzdAKZdj6r33LooH\nVipkxsZIDAxcUy7WUphcLgSNps4g0ej1dYmmuWiUC6fHePPdFFO9w2j1Otbv6uJDP7l32YePye3G\n0dxMvKenbt/LVdRdDUajjtbWu1tkTZYrHDs2SU9PDFmuotdr6OrysXt35IbLmGPnz9d5vnJjw1jL\nEhsfeQSdwUB6Ik8hFiM1MoJSqWCcyyMyu92Ucjmq5TJGp5Ouj3yE/MwMVVnG1daG7zpDb3cCa8bI\nLaCQE5kZGkfKl+r0OoqpFHIuh/YqtUvsoRCVzZvReUO888oEhkgLgbYGGv06yEwyfraAZcf6RaWP\n0yMjTBw9WishzAwPY/Z4EJNJlHJZzRkJhXC3t9+cP3qNa+Jv/uZveOyxx2i4xqZen/rUp9i/fz/f\n+MY3auJoa1wbUja7qJdwOfHAK6EoColYFjEWxYCMxecjNzuLgNriwdvZWcsFkEWRidPdvPXSGLNj\ncYwOBxqdjrRsYDJWIbz4ugFQDdLIrl0YrFZSw8NojUZ8nZ24Wluve+z3CjMzec6fj9WSS2W5yvnz\nMRobHdclMJdMihSLZVxOQ925I2g0aulupcLsmTM4GhqolsuYvV6Sg4OUi0Wq5TIN+/YR2LyZaHc3\nepsNX1cXrpYWlEoFRVFuu1Lcm81q3r3uB/4YqALvAr+ximNZMcbHM5w/HyUbqzJ9fha/30JzsxOd\nXovebL5m4RlXczOS0Y3Br9DcaqTFFGf81ZcoJNLkwkEMmUmaHnhgQYJTdiZKxd1IBQ1milQycbQm\nEy0HDlCRZXRGI7Zw+Jb2cFhDpVwu881vfpNnnnnmmr/b0dFBW1sbL774Io8++ugKjO7uR282ozOZ\nKF2We3W9gln5fInzZ6eYOf4uoye7MRsEtu3vwtfVhcnlwux2YwuHa7o+YjxOLiORTuRRqgpyvkCw\nwUOrSyI3cJ64I6/2EdEbicdFqlUFn89S06MwWK1Edu2a63GiuWtzCm426XSxZojMUy5XSaclmpqg\nWCyTSBQQBAGfz7Kkt6RcrnDixDS9vXFKpQoNDXb8wkVNJrPPR7S7m8z4OIH77sNgt2O023E0NmLx\n+5FzuZoImSUQoL2hgfzMDFI6TXZyElsodENhtzuF1fwLh4GHgRLwHWAzcHYVx3NN5KaniV24QDGV\nwtHQgHfDhgXxZVGUOXp0nFSqSPO6TpLjM0xMprC7LLR0Bgls3boglnw1WCwGrDYjrd4qvd/9AbHB\nMZq2bcRqVEgND2Px+Wjcu7duHCf6ipw9MkhJknH7ndx/fwPaUgyjy4XtkmztNW49P/jBD2hqamLP\nnj3X9f2f+Zmf4emnn14zRq4Tk8uFf+NGpk6cqCUUmj0ePB0d17W/3t44qfFJBt89Q0UuUyoKnD/W\nR2chy/pHH1mYJyYI6IUyFpuJQlbEG3ThNxcYeuVlGttCDGeGsHRspi9pI56SURTw+Sw88EBjXUfX\nyx9Y1UqFsiiiM5uvKIleiMeJ9/aSn5nBGgzi7ezEsoQxVojFyM2FIGyh0G0nMna1OBzGuioXUJNL\n7XYDs7M5jhwZI5Eoqkn8AStbOwyIA90AeDo6cLe3o9HpGB3NcObMDGazHr2myshQEktLBLMxgZYq\nUiZDoq8Pd1sbWoOBiiQxPThIaPt2xHgcndmMLIqUi0UqksT4kSPq8VUUNHo9oe3bbyhcKIsiuakp\npGwWk9uNPRy+Lb0sq2mMXJpKLgPlpTa8XqpVBVGUMZl0N1VOuRCLMfTyy7UeCPmZGfLRKG3vf39d\n59tkskg6rdbsT+dNND38Y5jJ49RLVHJxpo4fZ3YyQbZiwezxEG5w4fNduYTWYNCye3cEcaSXYipN\n+/3biZ56j9mZMUxWM6nhYUxOJ77OTgCGhlIMT0iIooxSqRCdTPDuMYHHf3wDFo+HcqlEbmqKYiqF\n0eHAHg7f8uZS9zJPPfUUv/Zrv3bd3//4xz/O//gf/wNRFDHfZhLPdwqBLVvUUMrMDDqTCUdDA6br\naP1QLleQ5Qpmo4CvrRmdUqISG0ecHGG6Eiew6b4FxojF58Ni0bF1e4i3siJNzU7KqRLeLbsxeS0Y\nW12cOx+nf2gEncWCRqNBzDoxm3V84APtiyawZiYmmDl1CimTweBwENq6taYUW60qZDISBoMGi8WA\nlM0y8uqrtR4m+dlZctPTtH/gAxgvaz6XGh1l7I03avk1BpuNlgcfvCEV2ltNKiUyPZ2nWCyzZUuQ\nRKJANFpAkiq0tbkJBKy8+uoIs7MXQ3c97/UjzZrZEDajZKKMvPEGFVkmsGkT8XieRmuB+PlzKKKI\nv7GZ0XEfDz54CJMiMvXee/jvu69usaozmdDc98sNAAAgAElEQVTo9Vj8fsqFAggC3q6u2rGfpyrL\nRLu7cbW0YPZ4UBSFQkHGaNReVUKxLIqMvP66WvqtKAhaLb6uLhrvv/+260N2O4xmK+AHeq604bUw\nNZXl9OkZkskidruBLVsCNDdf+81lXnpdo9fXOm2mx8drhsg82clJCtGo2hypWkUWRbQatT6/XK4i\nimVmBT1hTZHhM0cxSAl07dt46z9eQbF5MXs8NNzXwYEDTcuOc2goyfnzMbrPzRC0lWh+6CGqU/3I\ns2PodRqqlQpKpcLM6dNYAwEqksTg+WkMDieejg5y01NUZRlZa8EQaUMBJo4eZeKdd8hMTFAtl2na\nt4+Oxx+/ZX147mWOHz/OyMgIH/nIR657H8FgkJ07d/LCCy/wxBNP3MTR3TtotNpac7N5FEWhEItR\nymbRmkxYAwG0Oh2lQgExkUDQaLD4fOgMBsZGk7x3pJdsLIUr6CU6I3Khv4jXIdDkCiD2DyDqJfKz\nsySHhnA2NVGWpFp/qcju3ZiHhgiEXVRNDv7rX3Nkx5JoemNEUxWmYzKZyUn0ZjNlsYjBZsNm1ZPN\nNuBw1C8cxESCkddeq92jpEwGKZ2m45FHyFdNHD8+SSxWQK/X0tXlo8EuLighnfd+XGqMVMtlZs+c\nqasCKuVyTJ8+rYadVqEh3aUoioJcKKAzGpd80M7M5Hj11WGSySKxWIFstsTu3REiETttbW4iETvF\nYpl4/KIhIhVLTE7nyWaKmI1eink7bQGHqu/U0YFZjHLyv55FyKcABXG0n8j7DiKXW2i8r5OyJNU9\nL5RqFbPbjT0S4cIPf4iUSiEIAvnZWfQ2G1Iuh/GS5OZysah6N6J5Tp+eIRotYLHo2bTJz7p1y4cS\nsxMTNUME1OTseG8v7vZ27OGVVdS+VlbbGPEA3wQ+ttiHTz75JK65B2JXVxf79u2jdS4xa3h4GGDR\n1+l0keefP0Y2W8Jo9JHJSExOjrF3bwPbtnVd8fvzr6VsFv3sLPmZGWLFIo6mJrY/9BAVSSImSQga\nDZFAkKpGTzyXYnR8nBatlmh3N5PRKAaHk7C3keFJKBZj2M1aCoPdFAbOkXI7GTvWy9CxUfybtyBY\nq0RnDJw+bSQSsTM+PrZgPIlEgfFxLS++OEBDQCRXytLgM6EPhrHt3UN6eBivwYA9HGZ0fJzUf/83\nzkoFOWlltm8MR0MDgc2bUapVdIY8yWwCx1iezPg4s/k8eUnCnE7T//zzZE0mwtu30zaX0Ho1x+tm\nvL7XeOqpp/jlX/7lG04+/ehHP8ozzzyzZozcRGbPnmXm1CnkQgGNXo+7rQ3P+vVMHD1aM0ZsoRDW\nzffzo39+h/EzF1i3tYNnvvsedpcVh05Hz3sXmHCaef/e3QQ8eqRCkbGjR8mMj5OdmMAaChHcsgW5\noOYmeBxa+kdjJAYGkMQStnCYQqFEJi1iCYYp53MgqEaAUsgs6GMCqvT35YulUjZLLpHiaI/M5OS8\nMSHz7rsTsMmKRqut7yarKFRL9cKH5WIRKZNZ8HulTIayJNUWa6tBbnaWmdOnEefUSwObN+Nua1uw\nXXd3lFRKIhYr0Nsbp1JR0GoFdu2KMDWVpb3djaIoGI1a8nk1ZJecTRG70Iel0Ub81BAGt5dpx3q6\nWtxUKxWIjkBijInuQaqVChaXneauJoyyWvnibm0lPTpKbmqKiiyTn57Gd999RLu7Ucpl7A0NVCSJ\nUi6HLRwmNz2NoNHUjqfeYkExWHnzzdGatyaTkUgmRcxmHZHIRY9LMZ2mIsuYXC60Oh3FRbSpqrJM\naZFu76vNahojOtRckS8Cs4tt8Cd/8idLfrn1smzxS1/HYgVKJQeXRExQFBdarXvR7Rd73dzUxOB/\n/zfJuYekAxBGRkgODGCPRIh4vYhmP8d6kiQTKQKNHto8zcR6eijE4yhDQ1QtFtq3WAjtaWdi2kmT\nDyZ73yA+O4XT7SE9lqUsihRiUdytLRj0HrJZCVEsLzo+SYoxPNxPa8SI3HeO06d6mXBouK8RIu0N\nNM5JTBtsNuyZDG6NBjGZpDnsYeCCkeJMAatTi6DTct99HUQMBS786EeMvv46equVts2biV+4gFwo\nYMlmCVyyKlrqeI2PZxgYSCBJFVpanJRKZQwG3RWP75Ve3wtMTU3xwx/+cNnz/Gr5yEc+wpe//GUk\nScJ46Ym/xnVRiMdrhgjMCZXNXRvzuiFKtapud36MxOgEJrORqs6IkRIzpwcwro/gb2tBZ9Tj3b2N\nVH8vx/7zPbw+K1t+vAXB5mYiIdD/ry+RHh7G7zUiTk8wnTOxeU8H7xw+SaKvD7vfw64H1pGYSZGZ\nzFHQ2hGUKh2t1kWNkaVI5xViMbHuvUpFYXymRLvXW1eKqjObMV/WIFRnNmNyuRYYOia3G/0qhnVL\n+Txjb7xRCzNJmQzFVAqd2Yw9FKptVy5XicfVv39mJl9rAmg263G5jExP50gmRdxuMxs3+jl6dAJJ\nLDFzoZ+KmKcl4mPoRDc5sZdHvtDCzKTIyNkfUIzO0rhnL0arnWhvLyaDgDQ5jFJShfOMDgdtDz9M\nbmqK3Ows+WgUg9nM6JEj2EIhLvz7vyMmEmi0WnybNtFy4ADFOaNvviljVhIWzJ0kVRgfzxCJOKjI\nMtOnTpHo66NaLmNyu2nYswezx7OgrFxrNN5w/6KVYDWNkY8Bu4Gvzb3+EvD26g2nHjGZXKCQOK9s\nGDr4foybHuDUq+cZHowhaA3oS2bGh2K4MkmSfX1oTSbSo6Mk+vrY8bnPseXRbZRLJcTjYaJ2O5V8\nGl+glelBtSGWzmxGazDgdBpr4mWVSpXBwSR9fQkURcHtNhEIWMkOjHPi7ACCVksiW6Ggc5ONxmh9\nYC+J3l5KuRzBbdsQ43FQFLSpSd5/qInpNJgaHDQ2unBq0sS6L2B0OqnIMunubqqyjLeri2R/P0a7\nvZbMtxSjo2leeWWYYlFdUY2MpEini+zde+fEj1eTb3/723zyk5+8Kb1lwuEwW7Zs4cUXX+THf/zH\nb8Lo7m1KudyCcl+5UCA9NobBZlN7Q1mtmFwuxMw0Wza6sHvdSForx0p5tBqBQiyGTikhaLTkshvp\nOz1MLp7BGQ7TN1KgWNJSSU0x/fZrGJ0e9DoXGlGklBGxywUat3YhV7X4AnbSiTwFsYzG6mDbVjdN\nTS7cDl3N+L8UayCgto2/xIthsNsxOe0IQr0hAWB12Qk0b2Xq2DHkQgG9xUJw27YFie0arZbg1q1I\n2ayqBg0YXS6CW7euagVPIRZbEGYqiyLZiYk6Y0Sn0+D3W0gkRCqVKk6nkZYWF9msxLvvThKJ2JEk\n9V7W1eXDajXQ1z2BJh7EuTdA9OxppqYLNHU2k37vTU5PFEilJbylccolifDOnYTlLOLECGaHDdMl\nFY1aoxGt0Ugpk0Epl6lWKoR27CA3OYnOYsFhsVAplSjM5Yyse+QRDFYrJrcbayDAxMTFuZSyWaRM\nBkGjodSpliCnhoeZOXmyZnTkRJHxt9+m7f3vx71uXU0BWGsw4Nu48bbsU7Oaxsh35/676fh8Ftxu\nE8lksfae1aonGLx6a3AxZcOyXGF6pkD/G2OcPx+jVLSy5QPvI56UaAkbiR99hd4jL1JNzWJ0OGh9\n6CFy09PkJieZCrQzNpYm6d5C5CNe8ideY1PQh2y6n7LRidnjweEwsqnLjZRKgMNB30CaI0fGatne\n/f0JWlpciMpFI8FsNaKz2nH4rNjmYtqCTke8pwdXaytyLqdKvs8O0bVuHZE9QSbefZdzr75KbnIS\nWzhM+4c+RM8zz5AeGaHh/vsJ79iBweG4Ymljb2+8ZoiA6g3s70/S2enD6VxLgF2OYrHIt7/9bV59\n9dWbts/5UM2aMXLj6OYeHpVLZOE1ej1mrxc5n0drNKLR6+l//nk0ngbQmBh+/Xka9h+A5BQOqw1n\n0EdVEjFqqlgECYPZSNPWTgRPhFSyyMBIjt2dRoKbNpFR7EyWFZo6gjQnx5ieHqeYNuDrWMfwaA4x\nF6U80U+1WmW2x4H7o7so6to49Vw/O3eG63QxzG43zQcPMnvmjJqU7nQS3LIFa9hHQ0OOwcFkbVuD\nQUtbmwtPs1pVJxcK6K3WJUMujoYGOj70IfLRKAgCVr//jlIEve8+P/G4iM1mwGTS8/zzA/j9FioV\nhUgkSyRiJxCwodVqaG11EbBXMI2f4MSRXrJZGY3JTMv6EJnRbhIpE+m0hD/sh6khdFoBxR0iHPTS\nuG9f7YFfLZeZeOcd4j09pEZGyM/OEn7/jyPaW+ifmMHQvA2mLlAVRXwbNpCPRjE6HHjXrwfURbBN\nX8FpExgfmCU5MEilVMJiM2EpOMlOWUmPji6ozBQTCUr5PE379+Pp6EDO5zE6HFiDwVXP71mM1c4Z\nWRGcThMHDjQvSGC9tAzuSpjcbhyNjcR7e9U3BIFMUUATDDE9nSebLdHfn0ARNGzdGqA83UduZrbW\nV0BKp5l8911aDh0iqTh56/AgxWKZYkainFJ43+OfJmQtsv6QCVHvwuRyYyolqQyeYlwU0TncnBo2\nUKlcPGmMBg2ZVIHtBzcxfPQYGkEgHLLS6NeSm5pidmSKqaEpLFYjxqqIbnoao8OhJuAZjXg3bCA9\nPIyUSqmJcMUiqaEhtAYDnU88QXp0lPDu3VRlGavff8WeJ/n8wi6e5XKVUqlyVcd4XmzKYLPdc/om\n3/3ud9mxYwddXV03bZ8/9VM/xe/93u8hyzL627B0706hlMsh5XL/P3tvFiTHfd95fjLrvu+7qu+7\nG2g0boAHSBAkBUoiacvWWDP22Duy17G7sfOwYUdo7Y1wbNiOVYTtJ9t6mJjwhNY7trzWTck6SJEA\nCQIgDgJoAN3o+6r7vquyMrNqHxpqmeYhSsvLlL8ReChEITOR1fXvb/7+3wOtyUQ1HsfgcKDV63H2\n9eEaGSFz6xaWUIjk1auIOh3hsRir5y+TW1nFZtHx2ONTbOy0MEZCuD0WhvssmB1mZj/zaWqtLouX\n72L3auhICjpXhBvnN9hcjWMy6bD1KsweCHLi9CyjGieiM8CL/3QHjV6l4/PRQ6RWa1OSTQRMFkqb\nOS5e3OHsWcMbhKz2SARrMIjSbu86N+6vS8eORbDZ9OzsVDGZtExMePeIjN5ieVffQ6PT+XM5jd4v\nmL1ezB7P3jYN7LpVbOHwm97r81k4ciSMx2Pi3r08waCVUqmFxaInFLKRSNTI55v4/bv3weh0Euz3\nM5zOsrFRAsGJ32+lXHfTSjYIDYfx9Tsw7RvBNzaC3m7HrFRwDg1hdDh2p+GFAoWlpb3tE8PAFK/e\nKFMqZ1AkhdJKhf0HDhGw3UNutYgcOoTtvpC6VS6TvHqVVqHAVHCI1mYF1aHHbLYyOeFGzK6TvdN+\nwxTmxxA1GkRRRKvX44jFaJVKVHZ2KG9uYg0GscdiHymL78eSjACEQjYsFi31uozbbcZo3P2vKopK\nu61iNusQxbevYRYEgfCRI/R0BrKJIk3BSsNqQu5ZMJu72O0GDAYN8XiVkydjSAYDholD2AaHEXOb\nlG9fRZYkHKNj3MlCu6OgygqNTIZaIsHFap5Th+0Ep8YZmI6x+eKL3P3BD1DbbWyRCOGHHqGwtY3g\nCiOIGqqJBK1CHrffge/IQX7td8+QX99CLWdRFQlD3yiXv3eNcraILRQkFHUzPWjDNzWF3GrhHBig\nqpi4dmWBzGYVj7MPx6SW5uYyglaHd3qG8JEjVLa3aVcqFFdWyC8tETt58m1zSAYGnGQybxRCud1G\nXK53nor0ej3yi4tkbt/ey0EIHjjwM37C/3rR7Xb5sz/7M/7yL//yPT1uNBpldHSUl156iSeeeOI9\nPfYvCjrNJluvvEJ1ZweT2413fBxVlgnOzqL1hulp9eibIjubWcp4UTQdGrUWnWqJgdEgSA1cnRRW\nRxurz4ZBV0LftKN1DbP58mXa1Sphv4/QuB93xE+uJKHa/KhCiUqtg9EE27keJ2wBcl/7Mt7Hfont\n8y+htCUMTiemcD+GyDAbWQFZiDMUNCELWioV6U2uGlGjeRO5sNkMHDsW5dAhFVEU33ENfDu0WjK1\nWgeLRfeGROkPC3qLhdgDD+wKWAuF3cbimZm3dYuUSm02N8v3tYUqLpcJg0GDLKuoancvCO3H+r3Q\n4aOIRjM94wL5soI+OoJeEXhyn53S0l2yV19F1AgYbBZGxobxBkYoS1qe/6c7ZLNNXG4z0eGD6HOr\nWIJBVjIiq6+9TCObvU/sXCwtpvEfiKLvlBl87DH0JhO9Xo/U9euUNzYAMGp3GNQk6I/p6TazNC9d\nptHtEjp4kNGpKfJGI0r7J7sB9lgM833dT6tYZOPFF2kViwDkFhbwTU8TPX78La3hHwY+lmREUVTm\n57MsLe12DjidRo4cCSNJCrdvZ2k0ZNxuE7OzgTds3aiKgqjRIAgCitJlYaVKU4jw8rrMynKBUlmi\nWGzz+ONDjI15kCTl/hSgx+uLdbL3VtAJCjaTgWOPPYOmsIUt2o9SkWlXJTqlAqJUx+q00dVoES0O\niisraA0GNs+doxaP01UU5FYLSyjM8NgEC6sVavEE2YW7mKxmjp44RSGewjM4Qmj/NOkbN9C4g1z6\n+o8oJnY1Lu1KhbzJhM4fITg7C0A+3+DKK6ssLpXotXvIXZWWLcrA6Unu3s6ytaol6FYJGGwIQpWe\nqtLMZsncvInlzJm33BMeHXVTLrfZ3q6gqrualiNHIj/V/97IZEheu7b3xVE7HRJXrrxHn/5HH889\n9xxms5nTp0+/58f+8VbNv5GRnw/1ZJJqPA7sLuCiTodjYJCsZCF9u0C73uL5v38JQYBaPIHXY+TJ\nMRvtloxG6BKIeFFaTfJ372Ky25CMRswuJ/EfPEct2aSYLaNWQ3gH++jg4d56gVrPxugDh9ELMqIi\noXTapFe36coq9cUbuNwWUps1BMHIxo0NXIMCoaiTr/7DXU4/NkI45tnrV4lGbW/SkMiySqUiYTBo\nsNl2xc0/b+nd2lqRmzfT1OsdzGYd+/YFGB/3fOi/0KyBAJbHHkNuNtEYjXsBcIrSJZGokk7XMZm0\nxGIOTAaBVLKGwaAllaohy11MJg0DA06cTiNOp4GbN9Pcu5dHFKG/34HBMYzngSjaqsROSaKq6adw\nfRWzasIzNI5WrqEVuuiVOnXCvPjD23zl/7nB+nIKg8XCqUeH+NxnxwhoyyTvLSK3WgiiSHFlBbPP\nR+z4UbyzURyaBsb72+NSpbKXOZLPN5DLIppqnfXnn8cVi+w9YKuShN5mo/+RR3YNCI0Gjv5+PGNj\ne+t2aWNjj4jAff3j6irukZGPjH7kY0lGtrYq3LiR2tNapNN1XnhhDbfbRCq1a2urViVqNYknnxxB\nq7bILSxQSyTQW614JyepCg42N8vU6x2+851Ver0esZidTkfl3LlNRkc9eDxmDhwIEo9XsPq8yJUy\nUrVCU1FJSk7O/vsHMPcP07l5j0Kuxqi9STVTxO6xEZoYwKRp0ajXqSWTu4K5dhu9J0AiL7H93asc\n+Z39xAY8LCW2cffHOHzmENvJEjevbGD3ZTj65CHsOgPJdANzpB9XJEM1X6TX7eEbjGIID+zdkxs3\n0vzDly/TqO6m8fkCdp74laOsJppURRddWcf5564wPOxmJizQldpoDQaahQJSvY7xLdpLzWY9Dz/c\nT6HQRFF2yci7Ufc38/k3MHjYFZz9IqDX6/HFL36RL3zhC+/LAv6Zz3yGo0eP8qUvfenfump+DnQa\njT0rpMZgQHFEeHWxy/zSLSZno6TWU9y+vonRZGByJsLm7UWWVyMMHDpEev4uZp+PwvIyvqkpggcO\nIDeb1FMpSou3iU1M4faEMI3M8tzfXyQ8d5C5/UG+/9XXyO2UsFj0WHwefF4b1fUFTFYL6QsvcuzE\nJ7gbDLKTauPyGzl2OEAmU8QfcHDxtSzixR32Hxlia6vCxISHEydieyGP8Z0SF3+0RHItgcGsZ/bo\nIAcO9yOo8p4+5F9WR7wdCoUmly/H9yyvkqRy5UoCp9PwkSjVFEQRvdWKqnZJJmu02zJbW5Xd7fTe\n7vabKFWZHTVjzS/j37efs2dHuHo1idmspb/fwYkTUXK5Jq+/nsJs1mI26/nWt5ZZWysSDts4c2aI\njY0Ki3fSyNsJtGqbU5+cYywkoG3mKK6soJEN3LmdYnUxAWqXdq/BhXNr7Nvvxz7QwufRI2pE9BYL\nVUWhnkqhlZsItRymwQjVnR2EXg9Rr0fUaKhW26yuFrF4YGx8CKPHS7nUwuO34Bnoxx6L0S4WcQ4M\n4Ozre8t781aWbLXTeYMm6sPGx3K12tmpviHiF2B9vYzV+kbLY7HYolys01q4QnV7G9h9Gmpks4gj\nh9BotBQKLWS5e//9bcbHPVQqEqK4u/8aDttYWytisJjxTowjVat0FQVN0Ifi6uPFFzdR1S4D5iJ3\nv/M8jWR81zFTGsE4PYnaUXAbDJhnTlD1zlBHT3C8h0Ujo6NDxG8j9uwhKuksN15fY/4Hr6LttjE7\n7dQaHc5+eh9OQ4ubr4PvwByhXgezz4c2NLi3yDSbHW7eSFGvNKHXwxoO05BlFleqnHooSkOv0iqV\nkGo17l5MEDnTj7x5D8/o6G6o0ztYRXd7G342vYdG/xaj3Y/IqPD9xiuvvEKhUPj/FXL2ThgYGKC/\nv5+XX375fZm8fNxhcrsRtVq6ikLPEeDVKxlW4go7BRCNJsrpKlabgcROBY/PgntskpbOyfCZw8RO\nnKCdidPqdNGazSRu38U32L9LvHUG8iUZUSOycmUVgwai/S5MQouZ/SFef6VEKZlGruT51KefRlpI\nYDU4kIoFqpd/wIGHHmdsoo/N9RxCNUup5MBst7Fwd5u5fW4EunS7PdbWSoyOeggErDTqEj/82hXu\nvXKdRiaDKssk7o6gaR9Hk7iDKIrozGb8+/bhn5n5qeS4UGjtEZEfo91WyGQaHwkyArsOxKtXd5t4\nHQ4DL7+8hU4n0hexkLx7j/hqGqE9itgss/GjHzH51CcYGZnB4zExMOAkGLRx8eI2itLF4zHxd393\nl/X1IlqxR3w9w+ZqjjNPjJBJ19HUVbQIdFsNls/dwIiEweWmNx9nun+MxdlBNlZzdOo12s0W2UIH\n8/Ew4XSW2WOjLN2J44xFsdmNPPbMQfT5Ne784z/iHR3FHovhm5rCOz3N2mICudNFqjdp1NsMPfEk\nKlqcbjMWm4l2tfpT01StwSDF1dU3ZI7oLRb0b/GQ+WHhY0lGDIY3jyC12re2nqm1MvVU6g1/p7Tb\nKKkEihijv9+JXi/S6XSp1SQaDSNTU16OHo3Q1+dEUVSMOkhlsvRUFZ3VisVnwxO0k0hUWVkp4LF2\nEQs7HJgLU/Xt1pNvvnSOriwz8MgjFLRBfnTuAtVGFxkdTpPKmdMDLH/1K5j7hghPDOGNRNn6b+dp\nlKsYDBqsOh3p+TtszkQYHfcyfXiQu6/cIrWZwuLrcDwU2xNhtVoKeoMWo81Ks1ACRUFnMiF3xV0O\n0OtSjcex+P004k3UnkA5XcDg9TNydvodycjPA2sohNnrfYPgzPIL0o/zxS9+kd///d9H8z6q2T/z\nmc/wta997d/IyLtApdKm0ZAxm3U4nUZsoRC+mRlKa2vkmiLFfB2zK0AjWaXRkKnLWjwRP9l0HVnu\ngdLB1Gtw64evYtUpuMcncIxNc/G/fJmuLDN9SiY8M0ElX6FZrmILRug/8ijxwq52YXFpjWatyelP\nzhLyaEheuUpvZ4HAyAClxTt4x8fJ3rmD5u5tGuYCnboGy75D9CptJEnG6TLh9lr2CjclSd1zuGXi\nebbvrNIqFlFlGQQBWepw58I8I9YCFo9nN0H1xg0sfj/WQOAd75VOt7te/Etd+8+SdfJ+I52us7iY\nQ5a79HpQq3XQaASsI1bCQ2E8ET9Wt5FiJkE5k0Go5NB4B8hkGuzfv2sD1us16HQijYbC8nIem0mg\nXihjsluIxyuUym20GgiN9WHu1imv3MNnEllfr2Ks6NAZ29RWaoyPzZDeziM6ndj0XbxO/Z7de8CY\nZ+iTE9QLAaxGMJQ2ef1v/gZHNLq7Vd9okLl1i4HTpxl+5CGw3EHUaonOTbL24ktkltfoxDy4wn7C\nhw4haDQ0crldMv0Wa4tzYIB6KkV5a4uuLGNwOAgfPvyWE+8PCx+dn6L3EAMDTlZXi7RaP7Gdzsz4\n+ZeyB4/HjMWkofAWZXU2ixZRErBYdDz77ATPP7+OKApEIjZOnRogFNp9EuhUysQsNVbzScqFGjqL\nmb7940xMDBKPVxkbddPM5bhzL4NJLhEJmHFHAmhFP66BfkyxQV54LYMYHsXaapK+u0Sh3uPW6zsY\nMkV0Fiul2xUcs3poVHC4rZg9brqKRKPSopQt8dLyFoVql+jYGM9+4giaVhmHuQSqDDoN+p6Ez6oy\nMOwhqdfQrjdxOE08+ugALaWHKtVR2m00Oh1DJw9jtDcxju7HOrmPkujFpXbf024fw/39zeLyMo18\nHqvfj/u+je3jjBs3bnDz5k2+/vWvv6/n+aVf+iUee+wx/uqv/upD38v/oNBVVbqK8q6Jc6/XY2Eh\nx/x8hlZLwWTSMjPjZ2bGT+TIEZyDg0jLZXwTBjroMW+02Nwss2+fH0G1ojFZsZkEHNoGXqeGbqbC\nwvI21XOLHP/1zzD3m/+R3PxNRLON4OwszXaPytY6pr5RXr2Y4Btfm8doMTE44qcv4OTl717nN/7j\nIXyaIrV7OdzuY9ijUUStlkf/9P9CbtQolhVGfQM89/0tquUWDz05jV4v4vZY91wRFotuTxci9LoI\nqrKXF6TR61HaEmK3g3q/tl7U6WhXqzQLhZ9KRvx+C36/5Q2idbfbRDD40QnQqtU6KEoXs1mH0agh\nEDDj8Vi4cTPDtXO3UWSVJz89w5G5cfLxNJVSA4sHjhwJ7z289fU5WF0totWK6PUi3U4bWQVRUugf\ndGO1GQjHXGTSDR4+PIivVKFRkBAtLmyfg70AACAASURBVKRajXqiQvjQHKpRg8utR+lqeOSJKfZP\neyhc+x7u/QeJDI5Ti29j6OoxWU10ajXcw8PorVakWg2L30+90iC/k0EM9FMO6HBYtGwuLGL0B/Eq\nKgZtB9/UFO1ymfUXXgDAEggQPXbsTXZrnclE38MP483lUDsdOvU6nVqN8tYW1lAI7VtNqz9gfCzJ\nSChk49FHB1laylOrdejvdzA66iGfbyKKWWq1Dh6PidnZIA6biMm9Sxh+DFGrJTwxhFPvYWkpz4kT\nMR54IIaq9ohG7UQiNjQakXalQvrmTXT5JJ96dpKiakfpiVhMIl2phV3Nc/VWllyujtViYvv1ZRTZ\nTbAvQjJbRdPzUo93yBU63FutMxQzUZfAgERiq8RDhybJ3JoHr4XA9CRjc8PcfHUBUYCeRovW5sIX\ncnHhYoJCtkaupsFpUplw1xC6ZuKXL+/qMySJIYeHqr2GZ8TI0PggQZdI/6CGtta+G56TcWC16fFb\nVDaW0siyiKEmsnk9idGofUOOwXsBs9uN+fjx9/SYH3X8wR/8AX/4h3+I8X1OqxwfH8dms3H9+nUO\nHz78vp7rw0av16O0vk5ucRGl1cIWDuObnv6pvUrZbIPr11N7U4RarcPrr6fwes2EQjasPh99PRP3\nNlo0mzJHj0bQqBIjoR79USeKPgJoqK7cobSxRSHb4PbNBBqhy87iBis7Mo9/8mFcJpl2pUKr2SZ6\n5AjPfWuBhR2QGhKdtspKq43Lv5/Q+BDbRYG+iYO4DBIGm41Kvcu9ezWa3S4ev4WQx4jYrnHm0Riq\nrNA/7iUaMHDnwm2MXjORsSjhsG3PzebzWxma6aeUziG22yCKeGIBBgYsSGvbqLJMcX0dpdXCMzKC\n1mDAPTz8tvfMYtnViC0tFUin63i9ZiYnveiUOvl7mwhaLdZA4E3leh8k7HY9gYCVQmG3d+app8b4\n0Qtr7OxUsNqNWK0mUutp7qhmjj4yTeTIJCNzQ9jtPymY9PutnDo1QC7X4OjRKNcubZBN1+h2K0xO\n+xkZcrG6lCESteGNBZicmuOH//1FUpkGotLCSBddT+LIsSgPnh7HZhKxO00YlBLt0REqm2vYw2Hc\n0TCNco1CPI03uBul0Gk0sIZC7OxUSKcbFJ01bmwuMjzsQi7nuPDVV5kc9zB9sB9PxE/lfm6J3mpF\nEMVdd6LBwMCpU2+6NxqtFqPTyfaFC1S2tuh1uwgaDZ6xMaInTryp9fnt0FXV3V4lo/E9Dbv7WJIR\ngGjUTjT6xhGU1aonGrUjSQpms27vqTF28iSp69dplUp7CXX2WAynRkM4/OYvllStsnP9Okq7TWZ+\nHq0nwEayx7VbmxTybWL9Dg4dDqHpalDVHqpoIDB3kJBXi6DIpLJNTJEB7sZFbN06rbaKN+JF0KsM\nTPahtpoM91mweVS6EReFfIvXvnOB8cMHMOinKVY62Fw2QoNhsoU2TVVPp9lkbSGO265h5pNe4hdf\nxez1UkxmMfv9mCwtDvSLWKNhEjdeJ7cmsX2hx8iolxMPnGTfyFEqWzvc+MFFtu6uEZ6ZIK/Y2V4u\nMjrqfs/JyC8azp07x/LyMr/zO7/zgZzvmWee4Zvf/ObHnoxU43G2L1zYE+K172ufhs6cecfFtVhs\nvSGwD6DTUSmV2qTTdRKJKj6fhX37/KytlRiJ6shfvYi0kGXh9Q6BvgCDR/dxb3mbbqtFJtfC5XdS\nL5ZpdaDbg1atxnDMTzmRxh32srmcYmO1gNbsxWDU0pG7CBotiUQNt1mlWm3zarrJw0/MoJR2ePGF\nZe68fAu9yYizvw/BYOLZX91PefEW+dUtmqMxDvzK00x+/hQ37pS59OoOWi0sL3o4+WA/6YzE+Gw/\nakdiayWF32fm0MNTqDuLdIxWaqkUzWwW39QUnWaT5PXrKDoLGG3YbPq9JOh/DpfLxPHjP0lYLq2v\ns3bpEnKjAYKAye2m/+GHPzSHRqulMD+fYWkpTzbb4InH+hHpMj7ioNtvolcrUS9VaUlmwocP4x3s\n2yMi7bZMMllDFAUMBi3Npswv//IELqeBmx4DfQNuHjo1xLXLmwQCVh58eBjkFomkRHisn514Daku\n4xqNYR2fZfW1Wxx7cJibr26TSlZwRiNMDFnwe/xc/Mr3aFYb9I1HcUcDmLwBvJOT1FMplK5Is1Ag\nMjrCdl7g7s0dmrUGn37YRcBnRlFUkJoorV0zQuW+3hFBwBoIoLNYkGo1DDYb7UqF8tYWUqWC3mZD\nazBQ2tjgx/PSnqpSXF3FNTj4rpqXq/E4mdu3kapVjPfTd9+rwr2PLRl5O2i1IrIssL1due8xN+IN\nBBh+4gmahQJyu43Ban3HhLr0zZuU1tcx9o3S9Q6ynBe4sJjg4qU49bpMVxB4Jifx+BMj2Pwubi+u\nMTY5grv/CaRSiX6li2i109lpoOnJnD7pY+VejvhaksrmDgG/kaGIA0fQS/KOnoWbS3Q7HUSzjaGx\nKAf2e3ANDHBtReG/fukack9DOBrDolUQBIGOIiJotaTSdQyuMLd/8BKtXI4Dv/osmYUXKKYL1LVe\nHHYtm9fnKdcUCpYB4jsNBNc0j/7nx8gkS2xuFdgpiCjKO4ef/RveGb1ejy984Qv88R//MfoPaBz6\n7LPP8tu//dv8yZ/8yQdyvg8KsqySzTao1ztYrXq6meybHAH1VIpmPv+GKPB/CYNB+yb9g8dj4vbt\nDJXK7vGSyToej4mHH+4jd/UircI9zEoHQSMiFlpUFuGhTx9lc36VfKGJXuMjONLPzAMzBBcWqNyd\nJ0EfOhT8Bw6hy3VwRfxk8h0GxiPsbOSwucwMDPuJxay06i061gCXzi9z7HCQra06llAEpV6mEk/i\nHJ8kWzdw7eV7tBotDIMTZCsi2wtZvvGNZdR2C6XZ4MZFK8Vim3Sqys5mjlNHPfzKbwxQ2dpi9dvf\nxDMQBasHhytG8MABdGYzqiSRUZxc+uotDN4gVqueAweCDA29vdNGkSTSN2/uEhGAXo9WoUB+cfF9\nJSPttsLGRomdnSoWi47hYRfBoA1V7XLvXp5WS6bb7eF2GdhajiPJIqok0avm0Op1+MbGcATcJKo6\nVi/tUKm0cbuNfP/7a9y9m0OSFEZHPZw8GUWjtjl93M0Tj/gp1wXK5TZdQUOp2OHipR1iYTMv/XCb\nJ548zpnxfUhthfWNAgnJzehckG99Z4mFu1miQwHUnRRF/wjJK/NsbRRpFEskNrMceHAaV8jH6Cc/\nSS2RYPvmEraQA4Pdilis0cykWcxnOfvQA9hdFlBker0eepsNqVajVSyi+3Gj/PY2tkgEjU6HVK2y\nee4c1XicajxOu1zGOz6O3G6j0Wox3NeLdGX5TdUHb4VmocDWK6/8pA26UqF9vw36vUjh/YUjI9Wq\nxCuvbJFK1el2e1gsOo4fj+AWqySvX6dTraLR63GPjhI6ePBNCXVSrUY1mcTUP8K9lIAnMkGlkGZ9\nc7dR0WIzYbMaWFwsMD0TYGomSCJeY3GpiJxLs3l3g0aljsfv4PP/21luf/8cK+sdxqaCxPbbMZ46\nTWN5nsS55xn4nz+Pc3Ifw4UKgagHs1HCINfwHXiUsmxE1ecJ9nlZvhNnbVPkgQdiHDreR7tVRBca\nIOYPUt3aInZgH/6JEbqOEMvzm9iMJkJ2gWImjynoIbmRQuz30u6o7OR6bGSSeFwadBqRhx4awGzW\nUSy2aDQ6GAxafD7zL4wW4b3AN7/5TVqtFr/2a7/2gZ3z6NGjFAoFVlZWGP2Y6HFkWeW11+KsrBSR\n5S46nUjI0iHictMpFd/45rfQgf1zhEIWhoddrK2V9giJw2FkZaWAKIr0ej2kapWNZJKJQSPNrTWU\nehWtyYQoCuQWFqju7GCLRAiFrJz81HEyRZXBA6NU1tbQarqMPXqY0tY2itTg1qt3cPZFOfKYn7/9\n8uu4/Sb+p//lONQKhEIygk3DrXUD2m4Vow4EnR5Nt40qarBHYhhNIrOPTGPXSZw4e4RkokKp5yKZ\nqnPhwg6VUoNOuYjBZkXu6Lh0OcGjpyLce32dhXsCuRtX0TYLtJI7rF69g2VslrFDo+yfHSJ/+zaq\nd5BLL62idXpwmT2UUjmya1t84hMjBGJedFY76XSdYnE3Sj0UstJr1t+y/bWRy9FV1fclcrzX63Ht\nWoLFxfze57a5WeaxxwZxOIxUq21qtQ6y3EWRZJoamJrxsbyYRtUbUXtdtrcrDE7GKBTayHKXxcU8\nsqxy/vwW3W4XQRCoVNq0cjmU5Bq1ZIJqTcY/PYklPILDbWVs0oKiKAR9Zv7T/3CAZqOD1DVi0erx\n9gfJbOUopEukSgKR4Qh9Y2EsNgOD/SLLV/JE3D00oeBuuJnSoVOtsXPxIlK1iqNvkMxilrWvfI/g\nocOEIi5KhTrZXIvB44fRtQo4A2Y0JhPhI0d225Qrlb1tF2swiNZopLS+TiOToVUoUI3HEQSB4vo6\n7uHhXfv59DQarRaNXo/+XWytNTKZN5UkSuXybnjbv3IyEgK+C0wCFuCdV4/3AL1ej9XVApKk4vGY\nUJQupVKb7dU0lcwtavkikqSg1Yp0mrcwe71v2kMVtVrM/SNcW+3y8rkN/IHabtyyVovDa0MQRBLJ\nOmq3x8pyAafDwKnTQ/z3/3oJJbmNy6RS2KrQMmm59sNLxKwygiqTu3SecqmBfnCGuqJHawiR3c7h\nmxjD49LT3FmntLmDde5h/vHLL5ONl/CNDPDomREeOTPG9laZw4f8GIxart8sMTkT49o/vcLa5dex\nO4xIV7bZ/8nHcEWCrP/oRxj1InKrTWHVwOzTT7BZbdCpymhlgVJDRzTqZ3Upw8xxHfl8g/n5DM2m\njMGgZWzMzeHD4Z87OOkXCYqi8Id/+If8+Z//OeIHWCYmiiJPP/003/rWt/i93/u9D+y87ydSqRpL\nS4U9274sd1nbbuIedaMRSntjDrPHg8njectjdFWVyvY2la0tol0IzwbISWYcDgN2m55apUWjpZJa\n3qSyvU046iJ39TLdRGJ3Gup2I9fru845826nST6eY+SJx7G39WzeWkFsymjrec79n/8NncWK3u7E\n98gnSNWNXDq/xqHjg0wMmIhfuojNCF/9RhKnx8oDv/wod5s24qke1fMb9B07ipRP0ZYFDh3pI3f7\nOo1mnna5gm//ARrhEDqzCbPNitRMoLM5yBVbtJMZbBYd7XaXgwcDlDc2SCzeZXTEhXc4xPKtFvlk\nAVVV6T84g95mI17qIEkKdo+HWjJBeWubnqqy069FSa6RMQ6xvF5HlrsIwu42+APHw+gtljdlBJm9\n3vet+6RQaLKxUX7DRKvRkFlfL3HyZB8mo4ZEokoqVUduSxR1KkceGOKZz+ynXKwjClAqt8hmG7hc\nJur1DlqtyO3bGXQ6kUjESaHQZG0xxe0fvsLsbIhYyMP8taskvr3AwV/9FFp3kMFBB/HtMquLCV74\nwRJqR+bg4TBqR+bomVlyqSJGQUIspxibmyOdqzI+EiG7skxqM4W1W6WcTOLqi1KWBWKjEUxWM+7h\nYVaefxHX2KFdV2cxzcj4ERD8eGxgEXq4/R4EUaCRSlFaWyN06BCdapVOo4FraAjz/alUp76bqdUs\nFBBEEY1Ot9tzEwySX1xEaTTQeb27xXnvws34tvUgP6U25N3iwyQjReA08I0P4mTdbo+bN9N87WuL\nbG1VsFh0HDgQxOezIEh1ttdSJOMVOpKKVrfb7uge29kjI+1KhUYuh1Stkixr+PrfvUY608RgtfCr\n//4ggaCNttTl3lIeVe1y6FAYs0XHCy+s8dnP7sNhgZogU8nl8PvNOAN2RFnCblBB0LFd7aChh65V\nxOweQurJ6J1ulGwck91GtlTFEo2yHW+QuXGTeq2FWddj8foqR84e49TDUXTNPJ1MnWMPj5Jd3uDq\nS3fwe60oooalO0kMrpuc+exDrJ9/hVyugtMMWrMZrclE+e4KmR2JakdHZHqUoX4bqDKlUotEoobZ\nrKPXA41GIJ8uk97SERkK/NuE5Kfgb//2b/H5fJw9e/YDP/ezzz7Ln/7pn35syEi5LL0pP0hrdSC6\nLJi7FZRWC7PPR/DAgbd11eQWF0leuUJX2dWLaAxbTD/4ID1VInn9DvLdNPZAGK1XQ8DkY3TITuG1\n89i9DpyDgyiyQvLOMo6hYcxTR9heSaLpdXn9yhZr8TYbdzbweCx4ETF5vRRXlgnOuillyqylE3zv\nBxuc/eVZPCtrLN5OEg6aiPi0tBpV6utLxAYPE0/USGxlUNEwPBXl4LiX2sodTCYNPZ2Hnmhj9V6S\nA7F+3N4BhkZcNCthtEqDoqPLdqrDwf0ekitbrC9niDkULF4PUqlAKZFnaHaa1++UGDs8yU5WYdzv\nw1LdFa9q9HpqySQ9VUXUiGg0AuWWyPXXFjAGdzUFvd5ullNy0EVwbo6dV1/dG/Ob3G68k5Pv289A\np/OTuPYfQ6cTMXQbbJw7j70pMdvfw2k00uw6GBq0o9GK3LgRp7S+xfHH95PMSRjMWpLJKrlck17P\nSbfbw+k04vOZefnlLWyaFq1smZtX2yw77HhNNoReiVoqQ6msZ24uQD5T4Rv/7y3u3YmjqhDfLvDZ\n/3CIjY0SLo+F8tI2n/tfz/LqlSxL9wpY2zmq2xs8+NhJ0hdeQm42KW7H2ffsp2ikkiy+fJ4Tv/d7\nRA/OYomEqRydQOdwMvdgFL9Lx865F2k1KyR6Pcqbm4Tm5tDq9excvMjQmTMEw2HalQqOWAwAs8+H\noNGgM5uRGw2kahWb1YotHGbs6aexBYNYg8F3XZxnCQTQW617JAfAYLdjfo9iGT5MMiLd//OBIJtt\ncPt2BkEQMJm0yHKXK1cSfOpTY6g9kWarS0faLXhT5C7VqoQkdWnkcnQaDRKvvUb27l3o9VgSJjDr\noduocfSxCbRakc9+Zpy7iwXCYQuDgy4MBh0IsLFZoVhq8eDpSc6nNih2OnTVNj7/EIcfnaBTLiHo\n9Iy4vCz88ByRaABdNEI7p6EVX0PogaZvEMPUcewWLdU7y5x4cAgxOMi122WGwlZGB50EtHkacont\nG1dpLplRpQ5TE06aXQNSq0NH6dEoVylmy/hPPEJAaRPwmdDo9Sy8dBlLcIh6NkHoyFFiQ0EaHQGt\nw83EhPe+lU/AadehrSTYuniTOytGlCMTBOfm/lW1dn6QaLfb/NEf/RFf+cpXPhTSdvr0aT73uc+R\nzWbxfwxyXGw2PaIo0O3+hJBodSL+gRDho4MonQ6G+66Ct4LcapG/d2/P0qrR61E7HeKXLqGzWJAr\nJfxuLet35omNhqm0GtTXEmSvX6ZqtzNw5nFEuxuNN4ItHGYnWaextkD/Qw9xez5NNZ2hvROnIvmo\nqjJH9x0jM38bx+Ag5rk5lq5V+Q+fP4bHayPz6k0iIQt9PoFWOk29VaGTMnPozHHKNRcrwjBmbQet\nQc/+IwMsZJbo6Q2kUxKhkIVIS0bMLmMouDgxE6RfVbj8/XksSpdf/s2T6DxmvvKlVwgf2M/IPi9B\n537a118gfSOPxmJj6kQMY/84gt1L5GgUlwRpeZP0VnaPqEUGfVjFJk2slLNFgsE3ChyLxRYTJwfR\nW627QZFaLdZg8H1dD9xuI4GAlXj8J4mifqdIY+Eaqtpgc6HAsNfPgakoltgA339+m3PntpkcczIw\n3U+x2uXgkQHK5TbFfAOzUcTrMXH4cIQLF7ZZXi4wOekl4NawLGUp5GuUq0VGToYo78RxeW1U2wLF\nosS9xTwaswWj2YQsddCZTGSTZSZcRg7MRdDtc1CvFBHWr3P6QBS3oc3L14psJBzs+8STBKanELRa\nYnMznP8//neCs7N0qlVyi4tYcznGZiJ4p2dIra6x/MoKi9/8FsGZSXQ9GVGE7N27jJw9i8HpJP7a\nNbo6A1qHG9HhxxIKY49G8U5MUFheJr+0hNntxj0yQmVnB8/oKN6pKXQ/g7PP4vUSe/BBsvcFrAaH\ng+Ds7E91rr1bfKQ1I/V6h2KxiSjupnz+OIv/50G1KlEuSyiKSr3eQa/XYLHoqdUkhmdD1DeiqPES\nGlHAYddi0XWo5MrEL12isLxMr9ejkcmgs7tAaEKrxqOfnqNS7RBfjrPeUZicG2RifAqp0WBrq8r8\n0m4ltUYjILe7fPq3z5JcWmNzfoOjTx1gaSVPbjPFxLgHYxdO/ebTBKYm2bh+m1QyS6duQpU65Ovz\nmA0CV56fx+6xc/faGq3OFfqf+CQvXIzTF7XhCTaZ//KXKceTDJ56kJ7ZTWllGdvwOBafA3vAi28g\nSkc08fy3bhAKmBFmXBjKWwSDXpSwj5kHrYw9vB+11aTZaeJyuXnllR2y2Qblcpt+b49hn4rc7qC2\nuhSWl+kqCoOnT7+nFq+PC770pS8xNzfHyZMnP5TzGwwGnnzySZ577jk+//nPfyjX8F4iHLYxOOhk\nY6NMt9tDFAWGh90Eg1a0ei3an7Kwqp0OaqeDzhuk1DFRKDRxuUxYlQIGm5OmYqMst4gdiSDm1wl4\ntOgQEO5/99N37yEHJ9BbnaTXkggdCW/Uj+ofYuXVJZS6itXmppnP0SpX0Dz8KLO/9VssFyyoFxdx\nBMa5u1pl/k6BuUCAbn6DretxtHINuavB5nMjV8ocHbcip2votAKDU2HsPhc+e49qtUAs4qSwtEx8\ndYuBB0/SVTrU716lMX+D0ZiNarHGwje+Tf+DD2Jz7+oAVu5l2Om1eODIMXzHTpGpiaytNXn+H5aZ\nOdJleMzPyIibRx4ZYOGOkWW5jN+lYyCsp5PdBkcUV+iNglRB2BX8Alh8vvfdPdPr9UgkaiQSu6GP\nAwNOSqUWsqwSc/dopRpotCI2s4bM5jalzW18R3qYLUa8fhvlRo/+kTCxmIPLl3e4dW2LaJ+TWJ8T\no0Ekk65hteq5fj3JykqRx04PMHFsghsv3UQVdHTaHaJjfei8IdLX8ruuq0wTVeni8LlQpSaC1KCn\ndIgNeKiXq2Ru3GD15irJrSo7d1d47NOHmJ7yInW6aEQRlDZqsUzxnsDg6dMonQ6l9XVEUcQcDNO2\nhygpVjo9PRqtBoPXR6XSwdhrYDZqEDUajA4HW9dusrWwgXN8ily6yMrad3lca2Ds+H7cIyPEHniA\n4OwsPUGglc+zde4cla0tqjs7hA4fftsI+beCs68Pezi82wZtMr2n23EfaTLy67/+O6iqAUEQmJ2d\n4rOf/QT79o0DsLm5CezGX7+b17lcgnh8i1RKS7fbQ5YLdLsGJiZmkRVYV8w4D+/D3VXwOjUkilW2\nt7ewj/dR3tqiYTbT0Wqx18r4Y9A3asRkV7A6HLzwnXl6VFjf3KbRdnDigX46jSThsJmJ4Sim/DJr\nN++QEnscPLqPo8cf4TvP36Utw+iAlfmvf4+OSWRkOsJErki62GWnJmGlx50LcT79G31sJzYp9AR0\nHQFVY6Sta9JT8xw5HObOuas4nxqm1G5Q3kmiefUSsV/7LL6TB9E1JGRBYfbxCayDoxQVK/uPDuMO\n9Og0yvhDAQKT4xQQ8O2fQq/TsHZngbLSxjU8SnJLRGM043S2KCQT5FcFHn8kRldNk5cktKkUrVKJ\n7H1h07v9PN7u9ccFlUqFL37xi7z00ksf6nU888wz/P3f//3HgowYDFoeeKCPwUEXlUobp9NIOPzm\nYri3/fc2G9a+QV69lGRpfoNer4cgwNjhMYJmIxe+cxVV7aLKEiGfgQeP+6ncu03k+HEyt27RaTRp\nlqoETx4marfQWl9kKaenXlJYuXwLX9RDYMRP36FhNi9dwRvxU9bpWHjxEuGpUQ5OB/nGP22iqj3O\nPDSOWUyw+IM1Jo4dwOG1Q6PEva//I/59+7FKMt//x3lMT09T8XfRmkx0Wm3q6Q0WLt1GZ3eSq0H6\nOxcIORTUdpNarcHScglVljEurzIxd5RQv59X/u9vUdraxq49DZ4oGwmJfKVL/1gMh8PI3btZYjE7\nfr8V/+kRDk6YSV69SnJ5iWSqQWDKTf/UGMtrNex2A6Io0NdnJxb74NI7l5YKXL4cv19MuuuK3K3j\nsNIrJNlYEhFEkaGZPuyVLtubRSxuF1e/s04m00CrFUmna5w6NcD6YpLBqImt7RLf//YC++ZibG0V\nefJT05w6NYAsd7n8WpLP/btJQpMNRoYcaLsSksHFd19IcOxomEKhgc1loat06EgyWquIWkxz9JFp\nWi2ZpSvzxM+dxz82hL/PTyFdQtEamTk4wL1XrlFeThOcGsUWDLHx4o9o5HL0Pfggla0t3LOHeX0D\nEsk1AiMdzE4H03PHMdy+RzlVwBbzINcKWC0WZEli69YKeqebaktAVbqoSpfVawsMHppGabVopNMI\noojJ5WLj5k1USUKqVGjm88QvXdptDv4ZklhFrRa99b0PuvuokJG3nGE/9dR/fsPravUnwTQ//iX2\nbl+HwzFCoQaZTBqdToMguAmH3UiSgiyrTIwMUNrcxODQ0ihsosnmGZodxWC3E5idpVUs0nW5Kclm\nunoLp8/O0RKsXL64Rb3SRKPRsXy7hjeopV7r8IlPHENrsdG89zqXn7tMuVBHK3S5Va7z+H96GkEf\n5vCUhdXvfZdWq00j04KYn/idFUyBECGrhZ1kg30PzmDVdug0KuybGkIWDDjzDXT5Hi6tDkGv0lBU\nzFobhmKBgYNTGGKjOK1u+h8aweLzUqyD6PDR6IBFD/tnP0MjX8CiVmnvrFHJFmnhQGPS8Xd/812i\nY1EOzPbz+q0che06kQMz+PwxMvkyClV8ES/G0i75EEQRBOFn/jx+2ut/7fiLv/gLzp49y/T09Id6\nHU899RS/+7u/S6PRwGL52TqEPoowGrXvaDd9K9RqEqlUnU5HRbXESOY2QRQRBTA4HGwXRJReFUEU\nQAWNTofW5kbrDeOdkNGazUSOHgWdjoY5RryspSd00UUneP3bL9A/LvHvfusE1Y1Vyju3aCkeHn96\njpF9MV46D0OnH8EfdqHTaXjollrVwwAAIABJREFUgQilsoSEDl/fEHO/HiTi07H8ne9S2dnGZNTR\nkSFy+CTP/I9nMdVTrL/wI1xD/Yx+6tOsXJ5nn7eflgy3Xr5N/3Q/+Z0MkeEIgljkxEOjFMptHGEP\noWMTJFN1ovvH0RiNGEMxmhobwahK/6QVo0lPsdjkzp0MYZ8WXT2HQa5g93vw7p+laooQGlZoCBYk\nRWR83E0gYMXvtxIKWd+TGPhEokq1KmGx6AgGrW8ilj9uRt/YKO0REYBmpcbCa/ewjIoYbVZ0Fgt4\nIsRzPUpqE+uQn2RJwGDQoNeL2O0GzGYd8/MZhse8dNUeyy/uYHWYabRUGvUO8zeSHDvZTyhkxes1\n4/Xb6B4YYWjYST7fQq0rHD2mo15rsblVYf+Mh4zLwNikQChgJuYVCPfZefGHS/idFsaPz2CzCBi2\ncsw9M4fV1GPj6i1CQxF8fT6a+TT1ZBKD3cG+x86g6izovEE2NiosXNym78gc127kWV5e4pFH+jnx\nwGk01y5SKxaYOnkURyyG3JJwxMI0eyaa/6w3qCcIqGoXg92+e2+AenbXBi+I4p6tV6pWaZdKH4lY\n+A+TjGiB7wOzwA+APwDesUc+laqjKOrP5eJotRQGBhxEInby2Rp2mxZRFKlWJRRJoj7/GonFNSpB\nH0F9lYDXQieXZvX1q3RVFZ3FgmbuCV7+u1fpqHVcBQeHT1qot3tYnHYMegGfUQf0EHoKClo2bm+x\n8fw1dL0uTqNCq1xFlfQkF5aZGh9FU83Q3lmjP2qla4pidVnJrO4QNBhxx/oYfHCA5RfOs3NrGzWf\n4ua3r/LI5x4nMhwl2arjH+knfjODxWHBYdcx9slP0rBEydZgu25D39UwGvJgDJkRVYmtW0u8tpRm\ndMzLxLib5O0V3HYN6VKXbGYHS6LAyP4BLry0gmgw4PY7uHJxk9Bkm1bLSHR8gE4ugVH7EwGZPRJ5\n162fvyjI5/P89V//NdeuXfuwLwWn08nBgwc5f/48Tz311Id9OR84isUWL7+8STbbRKsVsVp1NI0B\n/PuC0OuhM1soltoYXWbGjkxSL1XxBaxIO+ssfPu72IXdaO7osWMEDhyg1DGRvpXCpP3/2Huz4Mjy\n88rvl5k3l5v7viORSOwooFbU3l1V3dUbqebSYpMiNWNJY0vDcVhy0NKEw69+sib04JA8YY1GdtAh\ncWSyOaLIJpu9L9Vb7YUqFPYtASSA3Pd9uff6AcUiaTbJJt1UNTk+TwhUJeKL+8977/l///Od06Td\nAqvTiiwr9FtqrFUTSIKM0yTTSayQTUQJj0VRhCSLd5PE13KUKwr9/Q40UgfR4aBezpN47yo7V65g\n7wuhG5hgbbvBavYmjumH8LvC2BsNOqKb9WSPjd0me5s58qkCzXIP7W6Vc48c2jcpmzq9HwgaFug/\nPMz/9dwK2VyTz3/+OHpvGBU9rNSZu3mHwKHDdHtO0okc58/3U12YYeXaPG67gNeuRrC50IydJlHR\n0Ol07l/PYNBKNPrRaAQAXnllnW5XRqPZP3I7fTqMXi/QavVYWMiyvl6g1eqhKODxGMlmG3SbTfLL\nK0h2PU2vm2Yui23yCO9czXP98iaSouKhxyZILJeIRGw4HCKiqGFgwImiKAzHzGyvZbAaZFD16AuZ\naTW79CQFm82A2y3isOkZG3Gwfv0u33nhDbz9PkzhKLtbZRpthVqjx5X3KkT6nTz2xCi9SoHMlbcx\nGs+hFs2YQ24EXZfV736HVqmE0ykiWrV4AjaMbiuZ27eJv/4q9v4IlomjXP/rbzP02EU2dxq4Qz7G\nztp549I2dbUFo8PC1SsJ7M5hTn36c1g0DRzefet50eHAMTjC5tuziLb9ddGJesKToxgMWjA4CRw9\nSm5pCandRqPVYvR60d/TeajU6p8bsvfPhQdZRQ947Bf5gNWq/6UzUpxOA9Vqh1q+gFQuklgtI0lw\n+ukTpLZSXH9zFmSZSq3HyKePoa7ssHnpEnqLBUEUsYwd4u2317GOHaTZU5NPFrh9qc7JE6PsJkqs\nLaVAaTI44sPksLOwVKRebJDN1mnmchyZsGGRSyiVXVTlAAajlZW5TTDZCMR82J1GdEYjGp2B/uNH\n2Mqr2F7aYmV2k1DUS6AvRn9NprC2yuHPfRpXyEsy2cDtsTF2wkdmfRP3o88w/84W88t7dCgQ6HfT\n1KQJBa00mx1e+s5t0okcqZ0QYsuBsZqj1jNQrSsIOj3F3RQD58d4qyezPJfkM89McuLhIXL1HtV2\nheB0gOFjQey6LK2eA3t/P557O/9fla/AryP+4i/+gi984QsMDAw86FIAeOqpp3j55Zf/iyIjiizT\nqlRYuJsjna6jUqno9WS0Wg2lchun00a3lKeWK1DuijR8RlbiPbxeDzG7luytHGG3HYMsIEsS3VYL\nk8eDRaNBo4FEPE8xXcN38ACHh0V2X/422laRvqAf0WZgZqHESu5txn7rKTqNNn3WFvVKAf9gBK3L\nSi5dZa6iYiLcTz0Txzs2jDk6RDyjkE2X0Tp0kK2wvVLm2d85wUayR2EvSeTAMNffWaZcaGEyasns\n5HEf/z26ipZ/+up7LC9l8cbCWLa2ifWbic+tk9txo6rm0clton0WMk4t5fgajoEoU1GBiUCX5cs3\n8GmatNNtMlmZVmWWgCQQHZpmbU/5MdHwR4kfJKJLksLaWoH+fhsDAw7m5zPcupVEUfYnIRcXsxw8\n6MNk0pJOpeg2G4SOD5Jpq8mle+jp8f7NPMW6Fhk1L722zdiYm1SqxuCgA0mSefPNOKJBTbdmx+m1\n0egJlPM1gsUaR44G2Es3yefr3Ly8uU/Qdndo5PNoNCoKqQLJoopjFw6gqNSs3l6nUawTC/mR6nW+\n/fUZPvmZU9ycSZFKN9mZzSAVkpx9/JPoqruEhvtpZNOYjBYQtJTi66g0ApJaT3xpl835HdwjIyiG\nPu4slPjEs8cJ74HbYyLgM9HMZfG6FDR2J067lfzcHIosU0ulGJw+gMpoIZ/MoxUNRKcPEjv6w4km\nz/g45kDgvv+Lcs9LBcASCmF0u38la/uL4uNBiX4KdDrN/dacyaRlYsLzS08l+HxmRoftvDK3ye5O\niVDIztmzfWzNbWAyqJC6++y7Wm5SKLXwqfeFWVqTCaPLhdYXxpKro3N7qGYL5FYKvPLWBodPxQj5\n9FRKdrq9Hla7GbNVJJWukUo1GT4wzPaVIjsbKfocPZqlAs1aA2ltkchQFMsBDwvf+DrpbGp/LPHI\nUfQeL7ff3+LCsJWyT6CyEydRtjD10GE0chtPnwe9U8LX7GKxipiMAlWnmvlUh3dulGi0DJTyFe7e\nzVA7P8jRoyGe+w+v4POZcDhNOGxaKrkCtXwFh09DpSzRaPawGE0Ighq7w8BAzIHd2OUzn51gKyOB\noOPwyX6iUSdazT75EPR6Stvb5N59l06thjUcxjM+fr8F+F8i0uk0f/u3f8vs7OyDLuU+nnzySb70\npS896DL+2dAql9m7cYNes8nKfIdCroMtEkHQ6+l0JA4f9lNM5amms7QMLgSNxPV3N9jerTEy7qOb\nrXHs0DA2qYAgOJEliUYut5+4anOxtJTnrbc2oVXh9AEjS5euUt3Yo52vopK6yArU2gI2jYzT0OG1\nbz0P3TZaeowczuEKnmel0ELbq7GtNxOdOokgmukoAt1cHp3ZQv+RCRLlNmq1hrraxo1//BrlYp2D\n/+5POPelT7Jy7S4Wh42RU1PUsHBzJo0xOkLIGKbT6pDcSGETfZw6FSbgVBOOOTFLZXbfeZ3jQ2NY\nRkZB6lKOr1NYylLY3MJgMaG0WmgdFszRMDqVhLGbZSgSZCvZuRcU+qu7t2VZoVRq0Wr12Nj4oRmd\nWq0iHLaxs1NhasqHSpGJTg2i0ah49du3CUQ9rNxZYW+vjdtnIR4vUomXGB52MDHhodXqcft2BllW\nOD0dIJ0qsbCwziOPjzBzeZ25a6u4/HZOnQyxG0/RHzSQ3ExyvbLL0797hhdfjNPsQjTkIjbgQJ3f\nxBiW6AVEhqxFtq/HOTzdx/s38ghSC005Sa1UJbmcIDwW5aGxCJtvvI5GpdBpNBj/7c9h9nhol4uI\nvgDr81kcYT96hxNF5cA1oMeoh0BzEXdBhappptdQmL1TwNw5QOBoDOUHpn6yTHV9iYPnTqP1hlFp\nNNgdxp/YtIt2O6Ldjt5iIb+8TKtUwhoK4RoZ+chT2X9ZfKzJyGOPxdjbqyAIasLhfYHVL4tarUNm\nt0DACeFAAKndoZwv4/OZKRQa+CNeytkidpuBbq0Gdg3B6Wn0Ntu+Ct/iYGk9w9Jrd9hbjBMZ9PDU\n504xc3ULbS3LJx7fT1yU2y3e+P4djk37qWdztA9EOPiIRHd3nT6nhOA4SiVbYOPKDNNf/iOW3ngb\n0eXBNzyARq+nUShRXV/lzJkhlPQSnUoZum06+Rb5JeibGKRTqTH/t/+RejqFa3AQczBM+Nx5Eokq\niixTyNeoFurY7CK5ZIFauU52cxerETpdhao2QNvnQNDm0ZpMOJ1d0ks5wiODtEU3/n4v02cGkUpb\nvPHKVdKFLqcfjpHRFSmXJtDpdTgcBsyaErvvvrt/vYBmPk+rVGLg4sUPHbr0m4Z//+//PV/84hcJ\nf4ich38uHD58mFKpxObm5m+cNueDkJqZobi+jtZkwuOwsX53G7VWiyMapVxuE/AbmR7yUGv7iG9X\nef+tFVSdHl5NkepaHr1VwHnxDOqdGqWtLao7O1hCISo7O3RKPXZ2KsTjJfr77WzdXULudBg5eYj0\nzWtIXYmNu3EET4zokUlSs3dJLa0jGnU4xS71lEjz2g18vjF2L99lYU1FczxCLDiEo1fC2xAYfuQs\nNSwIy7vQUSHotSiKTKtQZOnGKlsphYOf+QSekJfCXpbV2U0qJYXETp3VlRI6TY9g0Irda+fiaTem\ndpqFr38L8fzDAKilNrW5a9SKVVJ7JfQWC71GjWa7SSmZwRvx0TWK2AcGmPuHf8B58ChjJ84SGB34\nlSb0qtUqbDYDiqL8hI+WzaYnGDQzPR3g0LiV/PYeL3z9yr4IWaNBpdGwm6xhsYskEpV7br27/Omf\nnqZabZNIVIhG7eh0MHttnVymht+t5eQxD/qH+7AHXOhFDXffm0dqdxiZDFGuSmSyTcbGXaRLCgvz\nKYb8Cje/+RoD42H6AwbKS2vY1WqGLkwizSusv/0e1d1dXLEoks9Kp9kmtbBF6s5trMEAtlCI3NIC\n3oOToFah9vgwF/V0NQaqion3XrlDMGyhFGwScatZfvs67VqdA5+8iCZgo5TK0q770ZrN95+7gihi\ndjux+PZHqmVZIZ2uUat1EEUtXu/+JhPA4vf/zJiEB4mP9Rvjg8Luflns7VWJbxTILm6h3Gs57ug0\nPPmFs+Trai783qdo7qwjt9o4g04csSHmb26QWakQ7A9SXS+h1unRatu02z0217KcPTeIz23gjbc2\naMsaBLlLIVcFrDRKVYprqyTtRjpaHSdPTaOsXCNx6y5atUzfkUl8QSdFiwrR7ELSWkglK3RaGizF\nAlpNio25LXxHjrJzYwZadQxGHeHTp0jdvkV2fh73yDC7165hGShgO/kIo+MekjtF1Go1q9UmBp0K\nj1OPwaDBNjhEciuDyajDrNOxttvli//ys+RWVgmYWgxOT6D1RSiUu3zuv7mIoVfhe9+4SaenIhxy\noJa67KUarC0ssJXqMDHhxa2vMxl0wY+Y4LRrdRIbGSSNAaNx/0b4ZY/Wft3QbDb5m7/5G959990H\nXcqPQa1W88QTT/Dyyy/z5S9/+UGX8ytFu1KhmkwC0K3X6fO52R3ykUkXkMJhzBYDQzEHQmKGQlVP\ncrNCo9amvr1OvVzD6HRg1xmoJ/cwSRKppXXQm/DFxtndyiL4Texu52k2u6hUUMiUuHvpDmefmGT8\n/ENs3JrHoVfwnj4NjgDp61ew2gxotFr0VuO+zXy5iH1QzYZaJFdoU5wrYfYPc+7UEOIxB+tbNap7\nOaiXoF5AszfP5IXjbDlW6PNoGBgLE0/1KK/k8LsEJg+Fqc4UqM8kGBlx0mz2yKaKlJM6XvnabYIu\nFeFIGK3RiH1oCGd/P5vvvossOmiWa+gNOvrOPERyfhHTsB+9z4rDLtIuFXF7jDitKszVOEHfxEe+\nXhqNCknaH9MeGLATDFrui5RnZpL3SYlKBaOjbiIRO4piY2czCxoBlQyNnoA/bMe+WkOr1aDRqNBq\ntZw8GebNNzcZGLBjsehZWcmhUdnRm0Sq5TSpnSLxTArfYB8NtQlJqiO4AthNWjo6PbaAlWpLTb4m\nIMldut0e64tJwsN9BMNOqqu3qe0kqBb3RaDBh54hJQqY+1w4Qk6iYxcwCRLt629jMFtQqQUyCwu0\nq1XO/NmfohYECjspgmMDVAQ3t5eqREZDRFwy7e1VrDYjXruack+hl9ri0IVzrCylURuMhCcPUE/v\n+2bZotH7BEOWFWZmkszPZ2m1emi1akZGXBw/HvzQU2cPCh/v6j5CNBpddGYLerudVqGIzqDFHXQi\naAUe/eQEmdl5qoUMOtpozQO8c7NIfF0iv1VhNSkTGgwTGQ4gGAy4jV2kdptOqcDQ8THUXzyPwWqn\nurdHKV/l9LQXp0lm164QsnU4dCRG/eqLrL/xHhabCcvQAAPHD1DbjqOR2qQWd2ipRPaSNbpocR8+\nxmDIw2t3ltG5A4xcuEi4z4au10Ct1dIqluHebsB74hRJbYzv/tMs2v4esiDy1KciWBwidpOaU8f9\nzL51i8GYnZ3NPMuLGY4/epCHPjlJSjay0lUwigpOk5VhTRWLagcUhWouT3/IhMFkwOY0oXE6uDKb\npqay0u4Z99upzTxG2cCw00KnWkVndxAviey+uIpKNKPTaRgZcXL8eAit9jdfT/L3f//3nDx5kpGR\nkQddyk/gySef5Fvf+tZvPBlRCcKPed7IuR3OHPLR0kexRAdwuU143CLxjB5SJTx2LV6njrszZbRG\nEbVazeDkAGKvjMrsQApOoHL4ubahxqAkCTt28dv6KSb2SFoFjvX3oVXfoLixiTw6TejMw0z1BUl0\nXKTTJSStiaNnR+l2epR3d5AqeaYunGKpAT1BZORQANFqxRvykG8bWFrJsrSYpYfA8YtncWRusfL1\nv2P6v/vvcXYsZO/OkszexGAxIfYN8tKruzz9pTOMDDtZWnCg0WpJJyvEghqMcoX4whZb3Raf+u1J\n2s02ssWLMRjCPTJCYjOPymSjo2h4+ZvvcfDRE7iiMYqZMka3CXn1OtZQCJ1eS7dapV0uI3zE5nmP\nPx6jVGpjsegIBi33J3QOHPCgKArxeAmAgQE7Bw7se5moVCoGDkQJbjRoN1rU2mq6XXjqqUHK5TZn\nzuyPLFerbW7eTDI87OTcuQhmsxa1SuGhR8dQqdWY9AqhqX5kq5fRUQ/f//4qq2slGpU6R07FcPjU\nGKxmVm/EQaXiqU8dIhw0kl2Lk7n1Htpchu21JM1ag2qty9mzFzj4xBle/MZlLj8/T/TAAM/87jRi\n7yBqlUJuZZVOMY9KUSht79vthw8dIBg9ypUrSUKBDNE+K9b2Hqvff4OR6XFkWaZTyqGRImhFPUMH\no9R3E3SLOQw2G97JyR/rdGQydebmMjRqbXqtJl1BYHFBxusQCHp1iA7Hx1bb92tFRhRFIZutU612\nEEXhXvvpw11Yj8eEwajDOTiI7CthtYusbda5MV/FulEmYuvRF3WDSsXyRpG1Wym6jgiCL0K1I3H9\ndo6TJ0O0eyqsRhXF1B7Rx85y68oGpaaGSrcJvTbP/N5D9NZnmH/lCgd8bqantKhrG6gdVuw+J9V0\nlpHhIbJz85h9PkInT7D33AvEb93EOzVJUzbQlAQy+TZnHptkfa3A3toOcrVAtVjBdegoaq323vFM\niLKxn7tvrOI6fZHEegFZo8dZtPHF3z2CVWhS2Uty+e1ZzH4/R44FOfvICM6wn2yxy//xF2/x+OMx\n/HYV737nfarDIgd9NbStOn2Dg9RcUNpaZm9dxn3iYZqlHtqgD7m8v10xOBwk0znGAnqoVmlqHcwv\n7GEdGEbDfiT74mKOUMhKf/9Hp8D/OEJRFP7qr/6Kv/zLv3zQpXwgnnjiCf74j/+YXq+H8Bt8hKYz\nGnEND5O8dQtFllEkiV4hTeyhYdyj+y/S1O3bdBsN7GKXQk3m/MNhRPkA9a6asXEvh8ctFBbm6TpN\nbNVM7K7lqGRWKO/u8MX/+iwWd5lPfWqU2cUiPUuAZ/7bp1GVUhQ6IoWWjtuZOianwIGpAObRp0i8\nc4mNS+8RcBkx2yyE+u10uy5qtSGuX45jtnTZ3i4RHPBilGvsvn2J8NQ4mwsNzAETKp2R2uYaQiNL\np2NEKzepbu6iU/UQtUZe/Pp7XHj6CANBHUOHhqiUAiRuz3Pz0hwauUu7JVPXuqgVS7jPfRLcNjyy\nzNr6JVSimXypTn43R77Y4ebaCigyK/Myj54doXvv8arR6dD8Am6dHxaRiJ0P8twSRS3Hj4eYnNxf\ns25XolBoYjL1sNtFgkErR0/0s7ycw9DoUii0OHjQx61be0xPB1layrG8XOSxx2IkEhVu3UqSTNaw\nGeHxxwZw2saZuZFgYDKM0WqiXm8zNuZGp1OjVqvp77eh0ah47/1dJg8G+Po35lhdK3HiRIiLZ/1Y\nMxZmb6TY28ygNxpwBPU0K2VSHTO+fj8mUYNO3eTGa7d49OEjZL7+ddSKjN5mJXbxUaRGk1J8k/jr\nrxP91330WRto4nGSN1o0DT124xmsNpHQ5DjVXAnbyDiy1kRlaQaxz4vS7dAul2kWiww+8QTGe1lM\nlUqbUipHaWuLXrOJ3mqlW6+zJgzQNlUw2O2ETpz4yFxTP0r82jyVFGU/W+bu3cz99tPgoIOTJ8Mf\nat49EDBz6JCfxcUs5qiba9d20ZqsaPR6thaW2G7XefzxGMZeiUqlTbfZRDL3mJnJARCN2qjVungt\nMo22jkO/cwG1aKLZzEGrh8/jIbvbYO7aCr56gqOPHUPvCWHpH6C0nUAMCbhOnMdr0GMKeqhsblC6\nehmDy0v4+DHCJ05g8Aa4enmTt1+4wfFPWzl94RwrW6+RWNvCFfZy4l88QXy3TeDYGbZSPXRRP+Wy\nlcAjQ6xtVJEV0Bg0xONlTp6KMDzi4M3NHIWawubVJbxDbcqSiNbdZGDITTZbZ+bmLp8678QgSJTV\nTjZbBjJrWR6OWbD4vTSyGVzRQVyjY0QMCpWWio5q/wxXqxOJDjvRmfNI7TZVwYToD6PR6e5fd0lS\nKBZb9Pf/qr4ZHw/cuHGDVqvFo48++qBL+UB4vV7C4TC3b99menr6QZfzC0GWFXo96UO3mT2Tk2gM\nBgpra6g1GpzDw/czppqFApn5ebr1OnqbjckxB7LBgrllR6vXYhC6SNkEisFEqa5iJ54D0UwtlwcF\nRF+YeqPL2JCVRx+LYXbYSW27aDc73LqT5+adPUqlEsX8Kg89Ns7nnu4nduoojoAPtUomu7RM4up1\n2rFzrC/uompWSGcyeAYjvPL9ZX7v94+g2MOkigoqqwz+Yc78j/+WbL6NYBvGU8jQfPMN5PQeWo+J\ng0cf4p+eu4No0CCrBHK5GqtLGQpbFaxeJ+VMAcFkoNPuYQ55oddi5U6ekfEhrINJ1OIuPUOL81+e\nIlWC6nYKW8CH3CnT0drYWNxg8mCA4PGxB+JFYTAI3L2bYW4uQ7PZRRS1TE56mZryMj0dxOkUWVrK\nAvueJF6vmdXVArGYg0cfHWBtrUAmU6fblSmXGiSXU5T20jx0NszZsxEiUSevXdrj/WtpcrkGweC+\nf0ouJ9Bs9tBp1bz00iqtZg+VCm7c2MEoqvns1CjXnvseE489TOzxi+itNnQ2Bxt//y5avQ6jDgxm\nK6LXQ0U28eSf/zmdahVZltAaDJR3dykn05gDQUIhG916k9vvzNOotTj25ElO/e5nyC8tobG5OfWV\nr6By+BBNAvWOBkH8od9Wp1qlnk7fJyN6QaaZzyHLoBVFGrkc5c04urNBOtUq7VIJQaej//z5j12u\n2K8NGcnlGszN7RMR2B8JW1kpEA7bPpQJkkaj5ujRANGone3tEpubJURRu/9vWi3VbJNsoYNDaeJ2\nOTFYjOwUW4CCSqXCatVz6piH3GaDnkki4u/y7jt3ya1sg1qF1qDF6vfRkWuMXDjL8luX2XpjDtFq\nZuDMKcotI5mVDFvzG3zp336BzMYO6kaBVrlK/LXrOKJ9hJ/4NLffmccUDOLvc3F9ucVszsqZZ55G\n53Bw6UaVgQE7t/MupIFj1M0qXG4n828n0GjVFIsdeg01EbuK+EaRdquDb7APx8QU04MuYgN2JElG\nLZrQWmwIgorcXoFCuoBOFCnk66iqdfbiRbJ/9z5PPn2MgSMXuHotyc5SBdFiJp/M43Rb2dnMYzCL\njI/HIBxm6ISeTElhMRNHrVahUqnodCRUqv2R7N90fPWrX+UP/uAPPnY3+I/i/PnzXLp06deKjGxt\nlVhczFGttvH7zRw44MXpFH/mZwSdDu/EBN6Jn9Q4dBsNeq0WAL1mk25iC43BQGg4TLtSoVuvY/D5\ncJ0cJXUlw8HzR5BUAkOjfgwWI/M7EF8vES3qCBTUCIY6boeOrizw7e/fQqMGUa/FHXBS3kuzeLmO\nEr/J+pXbDJ85hiviRynu0Wu1yGbqGJxeRLGD1iCiEhok0zXUei1SJc/auxtMxfRsNRXSNZGXn3sX\noyBz+NAU5bl1NPFdRg51OHA0RnFtlbMPnaDS1lJvynRbbYyqDr6BMD67CqmYQjYcJXn5XbwTE3zv\nP19nN61hbGiK8EEn12ayyFRQ22Vk0cbE+cP4+tVorTbcU4P4Dv7wWjbyecrb23TqdSx+P9ZIBOFH\nNiAfJVKpGjMzSdr3csNqtQ4zM0m8XiOg4sqVHer1LtVqh/ffT+DzmZEkiffeS/CD07ofxIiYzTqk\nmojBZqFvrJ/562tIjRpDse97AAAgAElEQVTVGpSKTTptiTt3MrTbPf7wD49iNsmIRoHr15MoQMBv\nBkUhk66ie6KfT/wv/zM3Zsu8OZMhNTfDuWfOUsWCejdOr14hcvoMqYVVDg4eJDkzQ3V3B2tfBGsk\nQt9DD2MdnSIzO0d+fYvI8ABT01GK6RJUc1TVVnSDU+gmppnfbpOcT3PxtIdSrvKB16mez9MqV6jk\nJIxOF3NLJZxuC0ZVnQOnD+CyKGix0czn2X7/fTQGA9ZQ6H6o3scBvzZkpFpt02z2fux3sqyQyzV+\nLhmRJJl4vMTaWuFepoLxx7opRo+HXq1CvSGxu7SDNSgxfGSY/N0GKlUNu11PKGSlnk5jM6nRDwbR\niRp06i5bly9jDQZo1ttogjEmTh2guLfO3etx1EqXWrFGsXqF2BOPM/rMswxfSNKTu5hiE5DbhF4b\nm62O2edD1hkxev0cfeI0keEQ3/l3L2G0Wbhyq0ilnKJdLWP4win+7/90hwNDJk4esuK3Sli8bqh3\n6RsygCzTP+hCliU0GhVGk5ZnPz+FupoluTxHrdZEJ6ixDo1hFkWsMQdOoc7C7A6xkMzu2g7WSBSd\nycROXiG7lKRSqLNz7Ro2m8jUhYfQO13UilV8gz4SiTKJRJnHHosRCBqZmPCwuVmi15Pxek04HAYC\ngV+dAv/jgFarxTe+8Q1mZmYedCk/E+fPn+drX/saf/Znf/agS/lQSKWqvP321v37vlhsUSq1ePzx\nwQ+dU1UqNUkkKtRqnX33UKuI0e2mJotkqzJavQa72MPi9xN56CF6jQaC0UhXUuHa1TCzUGEvUWRq\nyk+u0kORu4yOeYhv13jvWoa+qJtMusYf/esjfPozo/TqDdq1OnK3Q3onj6KyYO6PMSHq6bWa2AaG\n2FM7CI/38+TnnTQaEiqli9yT0Io6VL0OWrrsrW8yODmAQd3jrf98mdjhEQJhB/OX5zFadPQfO4zN\n5yKzss6Z08fpFPPMLhR47/Ief/hfjeFSdGQSFQZjdsI+HT1dPxvz6+TffhGLUcBqDbO+nSddhmKn\nzt3ZFIOjPlLtLoaKDkeqy8q2xOHDQ3RE132dQSOfZ+P112mX9rUc+aUl3BMT9J0+/Ssh4oVC8z4R\nAXA4DAiCmp2dyv7GSn3PL8OiJ5vd37CePdtHsynRaknIskwu12B7u4xWq8bqcqDRa5m5mSC5mmJ4\n6gSGdInTZ/q4eTNJMGRhbMxNNGqn3e4RDln59rcWCQattKo1qjUJq0VLQ9KR6jp492YcVaVIJlVh\ney2NJ+yirlcoL9xGarfQWcwY5Bo3Xr5CqN9De3mFSjJFu1rD5PMTnj6C4AlCq4rVYSa9sIxi7Ucy\ne3BE++mZvBhsFaw9AYPNxujRARLrKSRFhc1pwRv2oADx118nLzt47YVZ3EEnFx8foVBoMDQcI6JJ\nsv3K9+k1mxjsdnyHD1NLpcgvLxO9cAH7x6Rt/WtDRgwGLVqt+r5JDuwrrG22n7/rXlnJc/nyzv3o\n6R8lNRaLDo8nQMFmxuwWsDkMaHRazOEo1kCLsTEX5XKLRqNDvqHj6gu3sTtFzKKawdF+xp98hFq5\nTqXUJCT2ODhmYeW7CerNLlargUyuRWl3B8Ngkt2CmoGIF4e0jTvWh2ksiNSTGHzaQbPWRIwF+MJX\nPot3IIwvaORf/v4xJLWBtXiZhZkt7t7IojPoabd6dCQZv0ekk0nyW589x3P/cId3Lq1htejZSRQ4\ncTqKyWCnsBFnNAC3vvcihc1dtGYzlkPHWL98i5PPPMGt+TLHL4xjoMnM996i3uhi9PgwxWKoDTqq\n9RrVZJJ2pUayo6JwdQt/uIq+V6PV02ByOwFIJquIBjWFQpPt7TLlchuv18j4+ND9DtRvKp5//nmO\nHDlC5BcInHoQOHfuHF/+8peRJAnNx1TE9qNIJCo/sQHJZOrkco0PNWVXLDZ54404+XwTgPn5LMeP\nB5FdI7z2zfep5quo1Cr6xqN86pgPQadD0O1bpKdSNeLxIoJej9Fuwep2sLwSJ+RWoxYMvP/uJkaL\nEZPFRCBoIblT4b1XF7j+zhKBkI1nPz9FLKzj6HSIpW/fpLGzhTs2QLnYJFtV0Zjf4+7tKgvLRTw+\nM4cmXTzz2XGa5TKUUgxFDjM+6mLx/Vs0Gj121pIMHDrMXqqOrDcz/TvnKCzMou01cLr0MHqKO68l\nOXTIx61/eoXFmTgaQU36joaQ38DQ2RP4nDpkt5W5l95Ac/AikWgIlcHE3l6FZ549QDTq4uqVbXZT\nDa5e3cXlEqnXOxw/HmJvr0qr1aO3vUSzUEB9r+2gyDLF9XVcw8M/NSyvWSySX16mureH6HLhHhvD\n7PN9qO+AwSCgUoGi7Afz7exUmZ9PE4s5aLV6DA46MZu1pFI1Mpk6arUKq9VALGYnn28yMuKi25Vo\ntXrU613KpS6nz/hYv7tJKl0nX+qhFQTarTanT4eYmvLx3nsJbt7cQ6fTkExW+f1/dZS11QJrq1lk\nZOwOEcVgYS++RHY7RcCjI3ZwkOzGNqOH1Bx+dIzKpBeX345WapK99gaSokYjipgdZvZu3CS3vEzw\n6FEiD5+jrm+zFy8x/tlPM/7EOW7dyrC6XqSWLTDcdTJ1MMDZc3qkQpKyOUxmJY/UbNDVWggOTFLd\n20Ot0bCyVECSVazfWMSRqWHzudheqqNqze/75GQyKLKMNRLB4vcjtdvklpb+fzLyi8LrNTE05GR5\nOY8s7wdcBYOWn/lQ2jfRaTI7m75PRGD/ITU46MBgEMjlGty4sUe3K3FjpoPbbWR42EH5ZgpR1NFs\ndrlxI8nkpJcbdwrIag3lTJG2RkLXLvG5f/MJ0ts5CqkCJr1MwCazJghgcoCoxerU4e03Eh1w0bO7\n6BX3yGzNs3H5BqHBIKWmisETh9F6w2yVjaAXWVivsrldI2Dt0aqksIt6Dp8exul3otNrGJ3wMjLu\noaXSUa3ukrmzw8p8AjpttlfzpHZNWK0iZ0/68Q1Yib/1FvlUkW67S3JtgdxOlvDFT9ApFzk85cOk\n1LDbjcgGC56oH9fwML4+L+E+M7l8i+qWCkm0kcs18Hi7tBttkvE9+uwhRKeC166mvbnIjfcS1Otw\nbGSUbNdLtdphcTFHNOr4SHIsPq745je/+WthKub3+/H7/czOznLkyJEHXc7PxQe5fsqygvL/NqH4\nKYjHS5TL7fvpsrBPmjOZNsa+GDpXA5UgIFusrMVrBPtcpNM1rlxJkE43qBRrjPQbUDVLGHQgtRo0\nWibK8QLZZAFzo8PQRBC/38zltxZxWDUMjwdAVrh7N8u/+aODJC69QTGxg8tpptVsk33/KgOPXOB7\nL26gdQUYn/CgM2ipNBSMFpFGqcqBAT3JxW023l6k3dGhVilIikKxrrCb7uDtt5BaXIPdLZxHDtFU\nGUmsV9jaLHJ80sxGIo1R06XR6NCUBEwxM2ahQ9s7Rn1Uw8iomw4GvvNmHo2hg2gUKOQbRDxqRgIy\n9ZKE07k/mj8+7mZ5OUcqVUMUtRiSW/QyZSIR2/2RfanTQWq3P3ANOo0G2++8Qy2VAqCRy1FLpxl8\n/PEPtYZ+/34OTibTQJIUbt3aw2LRYTLp6HRk3n8/waFDPprNLpGIDYtFh8Gwn8heKLRIJEr4/RbU\nag3FYpMLF/qxWvUkdmr4hgy0Oz3OnAnznedX0Ok0fPWrtzGZdBgMAul0nZERJwNRB+NjTtrNFgfG\nIthEhXyqhEGvQdDpcPhctLeWsXlNqHUCfX4DjrAVwWxkd24Hnc9D33ANq8/L7b/7O9rNNrZgAHnm\nDt2uhOX0J7h6dQ+pVODQI4dZWEjTrZQJHxihtbvJjY05vE8N0Wp32d2rYpk6Sast0TNbiKcV+o0a\n1IAky6hUakweD5Ik01Xr6RTyOA+Noq7lUKlUiE4n9XQa6Z6Gqtto3AuMfPDHy782b4gfpDSGw1Zy\nuQZWq55w2IrJ9MFnlYXCD0iGzNzcvvteKGRBEDR0uzKFQpPHHovx6qvrRCI2EokK1WqNzc0yrVaP\nU6fCvPjiGuVyi/FxD9NHPHz32xl8g0Mo9TITMQONpVvM/cPX6RSzGENhuu4Qid0GsckYrXqLRqNL\nqqegNtvItETIN3DKbQo18AzHyKeyVKptksvr9I1Ms7na4O7dLQ6OmKnevcpip4rHZwXRjOXACY5M\n9zHz9jyPX4zh8lq4+85dDg65WEgWqe3sIFhs+P1WOl2JeqmC0awjPZvm8mt32V7YwOq2E47FUNcL\nuPUN9J0S66/dIfz0cQ5MuunwKJWGwtCoDaW0hl/xMzzsplKIkUiUUAsdHGY1sZiDVHyPbElGtDdQ\nNpZodLMkk1XUKhWF7V2Gnnicel1Lvd6l0ej+xpKRRqPBK6+8wl//9V8/6FI+FH6gG/m4kxFFUQiF\nrCwu5n4sIM3lMv5czYii7B/fNptdwmErs7NpdncrWK16zpzpo1Jp74sxf0SQmcs1kCSZS5e2ePPN\nOBajivmbcfrCZoJuHeXNOAcP+dndrRMIWjGZ9KiR6QuZqNXadBstWqkdxmIeuooGldTFpG5SLGWg\nuEdyu4reE8ASiODoC5Jq59i8tIZgEDlyIkI1l2N1Totb7NEzWKimM7RaEn0DNlK5Nr7xEZKKlTNP\nHeH4pAX17gLWiXFWltJc+vPnOfsHz3LsyCCVQhmrTc/2bAqLw0xswIla6ZHYqbB14yrbd5eJ33Zz\n/HNPMDEV4PnvrXHiiAdtapHFlQyqXheXWseppx4h0zbj85lZWckjilpUqh5OX4CVO4s47Absjv11\n0JnN6G22D1yLRjZLPZP5sd+1SyWqe3sf6ntgMuk4dy5KIlHmzp00kYgNt9uEXi/c65TsG1dubpbI\nZBqIokC3KxGLOVhd7SDLAn/zNzcJhSy4XSJbaoX1jRKlYpNStkyu2GZi0s/5C1F6PYWdnSprawUW\nF3O4XEbUKNgtAs/+VoiI3CY5+zqlpoy9HCEyNsmRM0PUciWixyZ5/+1VHK0q/f4tVpZm8DoEOrkM\n3slJDEcPk711E3pd9AYBs8dFbS+Fye0hpJeYPn+AuZfeYua9BRRUaLo1crO3EUwmurUaxWNuaiuz\n9B15lJde3aRWbVFpyPhjYf7VvxiD9DZDQ34Sa2naXXAEfdj7+3GpbTjsRQxTUxSMxn1L+E4HjV5/\nv0v1YYhIZWeHwsYGUruNvb8fWzT6keuEHvQb4n8FjgG3gK/8vP+s0wkMDDgYGPjZGpFeT+bq1V0K\nhSZWq55g0MLlyzvo9QJ+vxlBUDMw4CCZrLG1VUatVuF2i6TTNer1DtlsA0HYTz1EUTgYbKLObdPa\nmKdSczB+ehJR3iOTyeKwaKjlChiGD9Gy9XN1tsypc0c44vawPbeO4pIQQ1HuLGSp1ns8Mm3B5LBw\n4/UN+gbD9I2YaauMrKyXSKV6qBQFQ2Wb2ZkF/H0elubTOJ0GhjGwV5ji6ENj+HwizUqN5PI6NuMA\nff0RRg5GSO2V0erA77dy8kSQRq1NudjYN8bxOskli5gsIv02HQaTSK9SopfdYf3tLpMXTzE9IaJ1\n+sjOzSPbnCyvFNDZ7Fx4fJyBqI1uvUHIL6KoBWqc5PZilaMmiepyioYgI0kK9VYXjUZNdTuO2T+J\nKAqYTL+5xzQvvfQS09PTuD8m+Q4/D+fPn+e5557jK1/5ubfbPzsURaEYj5NfXkZqt3GOjnJi2sfS\nSolms4vDIXL0qP+nbkB+8DdmZ9P3u6FvvBFHkpT7mgKXS8Rs1tHr/Xh3xeczkc83WFrKosgyNpOO\n4w+PkM3UGDgYorqxgkFdZOxsgPReif/hf7rInZsJkmu7nLg4hbrToCqXScyvU0wXMZhFVH80SSWd\nRW41QS0gtdvkl5YZ6TZp5POopA6Rfh+ZZBnUGuxOK35LHcvkJBNHByjH16llsoyGR6hr7XhUIjoh\nSCe/R9MUJdOEVreK2QCtnQ0C4TA1owOL8wi59U0sZgGXTSBXg36Hg603rtNDS7PVpVqXuXF1B0WW\nMbdTXHn+bSx2kQsXYiQ2UmRv38R79iKCoLqvz+l0JFo2N+HDB+i1c6BSobdY9p2qLZYPXA+51/uh\ndfmPQPqR8L2fB6tVz4ED+yO+tdoPPydJCkNDDur1LqVSG7NZh0aj4s6dNDqdwJNPDnH9+h4njgfJ\nbu7itxuYuRFHQYXHaSbg8WCziawtpjjzUJTvvLCOz2fmrbc2sZj16HVqOp0uY/168nN3ee1/+yqN\nQpnoWIiiRU0pX+HY1ClEa5AX/mkOfzTA9EE766++wPbtBU48eQKbTkN2aZHxz38BnUamsrmG1mim\nUSrTUwvUu2qKlQ6vvrXIiTOn0Bl0vPbyCp6pEOW7N6DVwep20ErtkN9MYIsUsdoMSIIR74AJm9dB\noa7CZzRibZYYnQqzvFFBbXVhNms5NT1M9vKbqDQazH4/vXabwLFj9JpNStvbaE0mDDYblmDwp17/\nciLB5ptv3hd+l7e28JXLhI4f/9Br+GHwIMnIUcAEnAP+d2Aa+NAxp5Ik02z2EEXhJxw+y+UWvZ5M\nudwmn28yOurCYBBYWysiivvufuvrBfR6gXK5TTJZpb/ffi/7BqamfDgcBiIRG0eGBFa/+Z+QO12G\n+2PcvTLHY48N0JhbxCyXEdVm3M9+kee/PU+9XcA+doD/8z9e47c/f5B6wEyxmue1F1Zp11v4Qk7y\nZRGdpMJsM1Ir12m1JR56dhrDyBjdy7s4TbB36xoen41Mukan00Nn0LKzvInNEmH2WoGRYSf+sAOd\nWuLlb17mk39gIxC2o1X1cLit2A0SB4eNXHn+XXRyC/9QGIPVjNntRtAohE4ewhoM8MZ/+BpWiwFR\nDKEStIRPn2Lv6lWaBhfvvBanVqmjSDJaucmFTx5h/ep7bC1p8Z17DHQi58+78Fo6rKdrdJotRkZc\npJLV/fXpdDGbdUxNeT/2zn//X/CP//iPPPvssw+6jA+Nc+fO8Sd/8icfm9bsj6K0ucnWpUvI3f0o\n9Ho2i+/gQX7rt47RavXuvWx+tptvNlvnzp00nY6ExaIjna7RaHSZnPQhigLttsT0tJt4vES9vu+i\n6nYbGR1102zuv9RMRg2zs0lWlvOgFshmGjx63EJETFO98yp62czomZNEAkN0FS2BiAu3x0Rh0Ekw\nusnsu3eZODqAIIpIZi/miJpSIoFSL+MeGKZbrXD0aIi1zSq7u1UK2RLTZ4dpN1os7+Yxzy5Ta8pU\n2hqsniADFjvajsTNd+6wfmcdbbOARpGwRGMEw05UBiNyt8f8O7ewhYKc/Mwhon1mNm/exREK4jV4\nefubbyHodfTaMirRgs5kYH0xia/fR2VrlXq5itLrIHU6RGNuenQIezRUZYFyuYXdvt8FSWU7hIYP\nMzm8r5vTW60YfkpXBEB0OtFZ9k0RfwCNXv+hNSM/ir4+G35/kVTqng26oGZkxM2tW8l71ucCjUYP\nnU5Do9aiW6lg76Xpi/Qo2A3UJAmjUYfFbkRQJPaSFWbeX2X1jgmt1ODIVJh6W2FpKc/6Wh6NGi6e\nD2NoZWhWkhjoIOlU9Nod9jbS1NopHjl2DK3JSa9SoJguYpzSU8/msDisVOsSys46nWqFwLETOCcO\nEzqZIDlzG/vQICaNEWtflJ1UB4vdzLeeu8PTnxpDQOL21XXcdi8Bu8zAoI3a0jt4Dx3l2nyZF747\nD4IeYzDC2UdM6IwiNleU7NVZxqI+Dj08wV5ZoFbr0FCZ6H/4YfLLy/TabSLnz9MulUjPzqIzmahs\nb9PM54k9/jjmn2Jol19evk9EYF8nVFhbwzUy8jPX/hfFg3xLnAReuffza8BpPiQZSSar3LmTplRq\nYbHomJryEYn88KKk03Vefz1OLtcA4O7dNE8+OcjTTw8zOupiZSVPtdqh15N5+OEI83MZ8oUmgiBy\n8mT43lFQk2DQgo0UUn4PZAWfVc+Jr1zEqm+wXckhdOt02gZuvzpHKV1AsDgxWc3spPJ8/7vzeLwW\nXv3ePLHxIH1TIkadjKQSsMcGkZdzuGP/D3nvGSTJed55/jKzvPeuu6raezs9Mz2uB2YwMDQ4iNJK\nS1EnyqxOp927jY3buI8XQd6ni71QaLUKKbQX0koh7ylBADUACDMw423PtPddXd57m1X3oYEBQQAk\nQPA4xN4/oiO6Kyu73+g3K/N5n/dvPIzP+jFoRVrhNaZ6TOypjbSqXZQSKro7UC03UGuU2AMe6g49\ni3eiGLQCOrOB88/NIX17kTsX73DimWMsPDaMXq/ALJXpVEpMnhyhsLOF2tuL5oSBQqFGtdLA4rfy\nrf/0x7TrVbRKgWalyvZ+mZQ+jbrQ4P79FMVMHrnRILO5SSWVwu4y4XVY2VveRbmxTmD8NOVyg1xD\nydB0L/GtPVqtNoNDDixWLb1np3AM+X9gS/3zjHq9zre//W1+8zd/82EP5ROjq6sLvV7PxsbGT5xT\nbHp9/UEhAkCn8+CmZ7Z+sBvaarXJZqsIgoDNpn2gqigU6tRqh54QkiTgcumpVlvodAoCATM6nQqX\nS0/QpyZ+kEGhFPH67TgcOpLJEkajClFQc/tWlGqhhMVuwKRps3n5FoFTbjS+IEurVYqLMTxeI2aH\nhTf/ZZ+SrCGVa6HqGPjl/+PnSe+FiWRFqj0naJXLeGY6mOQUFqeFZCJDb8DI1HwvS/eS6Ixa9Hol\nq7e32bp2j+OTRiqhbWZ+7qfZjtRRaDQIQoPl6xuYjWqUopZGLkNxdwvNyFnG53qwDA6xfnGHoRkt\n9b1V7v/5X6JzOJFsGg4OZArFGqJKh95ioFLr4LCqGB7zoDSZMbTsmBwWPG49SpWCfK5ES63m7v0M\nSqOMxaKl0ZCxWjW49Q0MzRhCyYLC2vWxD6NGqUQtl0NSq+manyd+5w6NUgmFVotrYgKD1/uprw+T\nSc0jjwQJh4uk0xU0GgWiKHD/fgKDQYVaLVGttqhWmmze2yN0a5HwTpwjxwMYKhE8E5M8+WQ/giix\nux4hH6tQLRTpOuZjZyWEvduNICh49tlB4FCNMupXcO0v3uDUqQBqrRKtTonDbSYPqNVKUqky9WoF\njcvHaMCFwetC4Q4gNBrozAYUDSMCHRrZJOtvJrEE+pgYHaVRrqI0WdB2Bbny7SsM2n3UutTUK03G\nutrMTU/SEpRMTPuQVy+xdjWN7qiddLGO0WpCVKmw+sxEIgVa5SI79+6wsZqieTeMWrdC75NPUkJB\nLFZm6Gw/tv5+Op0OpViMjcXFD3SymuUyhVDoY4uRRrn8odfazean6m59EjzMYsQCbL/7fR4Y/yQn\n5fM13nprj1zukDBVKNTJ5+s8+WQ/Dsdh9sPubu5BMBAcqmdu344xN+fDZtORTh+g0SjwGhpUN1YY\naOWZHvLRc2wQd8BNLFZibS3N9LQbW6XC8NwIjVIRk9OGUU6x953buEcGePPGKmML/TSLIkqFhH1o\nEFlSE4lWaFRqHJsPUi2VuXt5ja7npmnls0yMD5NuKrHNP0qXOc/6tWVsZonoXpLxLzxJvqRBaekh\nsxmnWq7hcuqotwRUvn5eeeuAaqHM+o0VjhclfuqcjflRJWqLE60Qxi4XUbT0XHtpkVJLhdOqZOmt\nW9h0bTpI9J85Rt+JY+y/8iJKmhjsOvR6BaVSHUmhZXnxgAGPmVRi55DYxGHWh0KnI7UfY3CwzXC/\nEZWihH/MztZWjldf3cFj6qahKKChSVevm/75aVxT4//dh+VdvHiRsbExPD+hwVMfh1OnTnH58uWf\nuGLko25unXabtix/4LVstsrVq2ESiTKCAF1dJo4f92EwqNFolCgUIq1WG0kSCQQshEJ5LBbtg0JE\nTO2y9cYrZEMxlEqR2mA/ncceQx/s5+TJbm7ejGKymtBrBLq7LTQKeYq5MoIzwOv/cBm9WYcqWyae\nUbBYN7J6ZwdHwIt7dJi7lw+4UMlz5pF+/vnFLfI7mxikGrTbjI27GVPksPd3c/fFe8SSDd58eQPJ\nYEYptrEaBCSjGWevj51wiPBOnMUtgZoYY+GEm56gmVgohcasQ6xUaDcbdHcZcHUPYhkeIjjRx8bl\nO9xZ3kPV1Ue9WqYld5hfGEAWJEJr+8iSmkC/B4ppJqa7uLeawzw4QHcoRLtWotZok8m3sU8GWNqq\nkkymOXs2wMKCH0UpQeLGLQSFTDQhkVo5XHWbv0dFltvbI3z1KvViEVGhwDYwQO8TTyA3Gii1WlR6\n/ae+NprVKum1NbI7OwgqLRq1i/ubh8ecTh0HB8UH5OZ0PMfIEQtLl3cpl+rsbyZ4+sl+PF4Fm4UO\nF1/fJLST5Oh8kL4RL2a9SKEo87d/cx+T3QSCgE6nJBi0kiq06RvykM63cQa8NJIRlM0i3h4/iaaF\nzYMm4fg6x04PsbOb48I7WbyuIGtvXKVRazAx7MfZK9KqVUldvY7t6WfYeulNJKuL5H6MTDzD6Bef\n5ubFyxh0Ovr9faxlOkQjWaLxGrFIFqdCYPLnvkZFYUbZ2UejkJFpoVGJ2MxKhHoZ2m2alSqNhozT\n70JXCJELpaFmoRBRYvL5EAQBudmk024jiCIqgwFBFGmUy8jfvQj4HliCQcrx+Ade01itaH7ELq4P\nU983BcjAMjALqIBr33X8G7lcjitXrvDGG28Qi8UwGAyUSgIrK2nq9RSyXEGh0NFoyLRaGQShjsFg\n4t69OJ1OFo2mRaulQq9X4vXK+P1q3G7HoVQ3s8P+9Uuk1kLkknkyuTgaqcTA1BhOtwm1uoQk58he\nucTm898inoiQCu0RmJ4hen+Fdv8Qks+PXG3gm5pCcFnQ+900GgoymSp9faCQcwyM9mJ1Wxka09E/\nYsKo05HIygT7RGLrK9TTRSRRRHCZuHLrgNhuAdHipmvciWRQY3H5OPqlBV65EUVrlHC6XQiSRFuq\n4u7W0drdQNkoUGhWSWeyCDoPb1/coGfCwebly1BvIxnMuMY9tKmjU6nJ10Qkh5aGJOHr9uI+coxL\nb98lvrfHwMwEej8/gZ4AACAASURBVIsRWVFDa1bSKLcRRInucQcaRRU9Mn1nTxKLx9m+fp1hj5K+\nPgvGgAXLYA+Dp04SmBxif3+fXC6H2WymnEyyvrRENpPB8W57dnd3l1wuh+XdC3p3d5ff/u3f5hvf\n+MaP9SL8LPjd3/1dpqamOHv27MMeyqdCJBLh1q1bfPnLX37YQwHgm9/8Jt/4xjdot1oUDg4+cMzg\n9eKamHiQN9PpdLh0KfTAy6bVOiSjS5JIV5cJrVZBsVgnmz28MQ8M2LDZtLjderxeI5N9SnZe+heu\nv3yL7bUIyWSZVr2G1WHC7PMgNCr4nRJOrwWDWU9bbmG165HqRQKDXl7+67c5fX4CZSGCza5jc7cE\ncot2rUyn3UGlViLRwmQzsbGRYvjIEEpJoFkuUq22mfvyWTqZCI6hQfJViY3tAnqLkXIqQy5dZPJY\nPz22JomDFN2jvaitNgRBIBXJMn+6n53NBGajGv9IgKFjw0xOdxO+cYuV1y/RNTbIznYGuVzk4O4S\n/rkZTH0DNOMHjE14OPLEcTw+E1aLgrWDNn3jQZKxIvuRKifPTzI21UW+rmDokVNs5PTsh0p0OpBM\nVjj3aID23j2EWolWpUyzXKZVq9Fut7H29T2Yn0a5zO7Fi9SyWeh06MgylVQKrcWCJRj8gDvze/P+\ng9DpdDi4u0x4L0NJVhMLpbn4929idtlYXC/jdOoxm9U4nXq0WiXDAxYi6ztsrkRoNmRMRgXjEx5S\n+3FC+zm0Rh0KtYZ8rsaxYz7SiRy3F1O0RA2NWgOzWcfOTo6BfhuSSkWhAmIhTlefh2q1ic5mpWd+\njr6FU6TyHVRKkdEJLwfhEqFwGW+/j5kTQ7TqdXrmjzD21OOklhYR1FrKsSiJpSVMdgupvQj5ZB6d\nUYc92I2iWaSr10VZYWNpMYZSqcBkNdLRGhH0FgJ+I2uLu5itBrx9fuw2NYOjHnpMFTTtMjq7Dc9g\nAE2rxMGNW+RyVczKOo1kDJ3TidpoRBBFqpkMkkpFMRymkkxi8Hhwjo19bJdLZTIh12o0K5XDQs3p\nPHQM/wFbNJ1Oh2omQ6NUQlKrEUWRb37zmwDf/Kj3P8yl62Xg14G/Bc4Bf/S9b/jP//k/f+ikzc00\nAGr1BwmDLlcXPT2HbaauLhPZrBuDAbq6DmXAh5yQPoDDZMsdkXCiiCgJSJJAj9OEuVGnnExi9vvp\n6elh7623WFtcxD0xjmp7m2o2SyEcpf/Rs1x6Z5daQ8Zk0tGvVzA2O83ORhJdp8rcpI2hQSvr60k0\nkszRcQOPPDJEtaXg26/FKBVl8vEMqy+sUy+XOT4fYHasl1u3t0kXUsgGB+ubQFPHyGyQIYOLteX7\nFJIZdOoozm4HLpcTZUXGNztGuwO3/+EFXD1+IskGVn8Xjf0oyWv3EVUqZK+b8UkPyys5HH6Z0H4e\njcbF5MI4nn4fr3zrJtHVKCPHR0mma0SKKnazbqxGBfM/P0Xs1k0mgxpC//gvmE+epByJULhzH593\nhOTdq4Rf3Mc7Okjb6acY9AM+enp6kJtNDq5cIbOxQatep6PXk5AkXGNjH4qy/zxG21+4cIE/+ZM/\nedjD+NQ4deoUf/AHf/Cwh/Eh2AYGaJRKZLe3abda6J1OfMePfyDYq1CoE49/uG28t5djZsaNSqXg\n5En/A9WdxaLhiSd6kSQRpULg4MZN7l3dJLJzKDUtFypUynWmnlWw+/rrlLIFYpE8ppqCYxOj3FYo\nMKrqDEzOYbXrmTh/itGZIK/9p+dp6Ww0RD/htT0cXXY8Jg2aepP+US86o4KRARPVyB6SUom1tw+1\nyUit1iS9uorhqB+9tsEzz81y916CTkmDVq3l5KkgmTtX2NjM0AlUeftWlPPn+xE1Mmazkq/92hnW\ntsrsb6fQNNXcee0WYipFs1wivbuP68gczVwvp37+WeL3Frn5B3+ExaZH++RZdO4e1mMCkTgcRKuI\nmjDh9T1MJiVvv11mZCZAXmkkExLYD73v9Gm1alBJbYrFIvm9PUqxGHKziaRSIUgSrUcfRaXTAVDP\n52kUvscltNOhGIng/AhH3E+CeCjNyy9vElqPkMtVkNQaBoYGKYV2UakGuHhxD7fbwLPPDiGKAi/8\n0zKpWBGVSsRoUNMWFKgNepqilnY+jyBJ2F1Gbr6zya2bEoNDDgwO6Op1k4nn2N3JsLySYmDARrsN\nN25k+Y2fHqGcj+B/9BzVRpuSyskr/+0tWnonqWQFl88KHRmDUGb9VoSoUYWn/xgZnYt4ooRnagrW\ntlh75SL5dAmfJGG2aFFq1WilJha/neuru3SUWpKRDOmlu5isRuJREcfQINuxBt2SmblpJ5vRDpVG\nC6mWZsDTjdtrpKb2kHn7HQSjlfDly1j8frxBKyazlla1SmZzE5PPh9poxBwIsPinf0ollTqcv0YD\nS0/Px7qxqnQ6gmfPUkmnabdaaG02FOrv7+/VqFSI3LhBYX+ftiyjczjonp//vuc8zGLkNlAD3nz3\n+0/EF3E69Vgs6gfbNHBo8+t2v+/yOTbmIJerEY+XaLc72GxaZmc9D8hvZrOWbp+ebNBCrS5jMqpw\nOHUPgrXkVotaLkcpHj+sJLNZzIEA1r4+qpU65uNTmLfKxC/dpGHQM7UwQY+1iFLaQTPQRbWtYnl5\nk+zV24cEuflBVv7uPl3HjtDX182f/9ldxofMuPxOMvsN9rbjzJwYYGzUSaymQ9IIJBfjJGN5Bkc9\nVMtVVK0i1UwaSSdxkIrjc85iO+pk/1sv0nfuHDavC/fMDGqti7WlMM6pcXwTa5SyRRQaLTSqjI87\nsPT10WPuxWkW6HIoufhPV9lfDWG0GfFOTfKXf3YbtdmCwaThIFLCaFbz5V86R/LNCww89RR6t5v1\nF15A0Bqwu/PEMlFUSoHCwQGtqkR+9R7t+UFESaJwcEByeZnOu232RqlE7NYt9C4X+s+J+uTjsLe3\nRyqV4siRIw97KJ8a09PTbG9vk8/nMf8ICWifFQq1mu75eRwjI7RbLTQWy4cSRpVK8QNbsO9BrX6f\nyN5qtanVWlSrzXcdl7W4XAbqxSLVRgdZeN9IC0Bt0NEoVwitbVOTRUxGFRaTgKRJMvTVk5TLDcyd\nDOSTjE76aFSqZPJ1qqFNxp8bp1Zyk4mmERQqavvbDD7Vj6RVc/+tKOnNbQqRKK1Gg54jE4izcww8\n+zOs7Ld45XIElVrFxKSHricCZPfD6KiyX5aZ/eLjrMSViK0G3/mbN/m5X1nAZDdz+1aYrTubBAc9\nqDUi6ZSJvqPnCCpLGKwGhEKC9WiO5UyY7P372AaHMNuNrC3HGDKvcGJhjo2tPFJ7m06lSDSUIdSU\nMevBpGpg6fLR5dBzsF5Gozfg9FqZmHBh81jJKpUUwuEHn2e5XqfTbtOsVB4UI6JKhahU0m590KxO\nZfjhXZiXV1Psb0Rpt2SKhTqNZoVmq8OxWQdSRSSXq727AK1hMqkZm/ShEpp49vZp1mqMHwni7XWz\nEldhokYkUqQtdxibH+HIcR8ej5FQbp9isYFCpcRsFfEHLXR3GREkiWSyTDKeR05kiF+4RO/cBOH7\nOW7/yzsEjx9h89YOk9Nu5GqHVjpGaCeJ26GmFg1xdPwpSIRQ2A0MPH4WrdlI/N4SereHWCiFTtdG\n7XCxu3qAUjw08cweRLF7bLRzcdBYCV26xNCjJ4ncWaSRCDN3YgG1N0hmfY3ivaschCW0JiO1bAa7\n24Vep6RdSKNouejIKqq5HMLmJgavF4PbTSkaRd8dQLK60OhUqLWHOU724eGPzR8SRPFjTe0+Cum1\nNdKrqw9+LobDRG58/0f8Zy1GfpmP6Gh8CnxqfaHZrGFhIfghAqvDoXvwHotFyxNP9JJKVWi3D29G\n3+0CWq02yct6Ioka9XKNhEKkWmsxNBk8DM67cpWyrKHREqnVZTR2B51GnUI4jNsXoKYyk1N5CTz+\nJM5uNxpDh/t/8ReEF5fRujxMPvs089Nuep0zGLQCte1lIneWUKkl+h7vwSOlye1mePQLp4ncuEk5\nlaaQLTD5yEnKS1VCmzHG5vrY3UwwPGTl1ht3mZtxo5VkUnsh/IM+5o4H8E90U7gZpJItcPrf/RtW\n37yB2IiQ29nlXqPI8PlH2b56GKKVztQIDE9jdxgYmXWhMxtY+8s/pd8DLIwTHO+n2JHQyQUMgohK\nUtBQqFi8fcDjJ53k9vYoHhxg7e2lnssx9MgjJFbWaOfiCJIKtdWITIdUKMruWpjeUT+VZPLBjes9\nNCsVGoXC574Yeemll3jyyScfOFF+nqBUKpmbm+PatWuc/4TmUz9OfL/2r06nYmjIzo0bkQemaEql\nyOioA0kSaTZlLl8OPYieB9jby3PuXB9Ws4aOQoN/bppCNI7RZsLe7WT07HHyiSSbO3kQJHg3MmJg\nRItcLmFql8hvrlPIlhgY7KWczjB8boHQlesUFq/w+JkTiK4TmAJB5Ckz8UgGZ5eDo4+O8/r2Biql\ngH9kgJMLQVLrW7SMPmRRyfmnhrlxM8bF17fxefWcP9dD15CeeL7D25fCrL9zk3o+j0KjRanVUM9n\n6aDg2a+dJLS4THQzhCfYTXCyn+W/+xvqqSSSxYFQaGEc7+fORpTASIC2qkM2WcC4tkO95qSuMKGW\nOlRqMo99YZLFa9s4LApUjSKjvSosigxJfRbBCMMzvRw/04NWq8La34/B46EYiRzmdfn9WHt7qWWz\nDz7POrsda38/yaWlB9WeymjE0tf3Q10LzaZMKttEZTRSz+WQlEokuUO9WscUCJK5lMfrNXLkiBet\nVsHmZoZQqIDebsPitjE5aiUYNLG+U2Fr+1B1Mzxg5sa10KEVvyCyvpljetrN/fsJEgmZYqlOMGjB\n7tRRr7c5dbKbai7LwUacriPHGT0zyJ0/fAeVTkuz1WH0SD+NdIq+gAXztAerHlqlAhNzPbjdWg42\njTSbetShGHqrGUmC9MYmXf1eFDoDbVc32bVFRs6dJroRYmbCyhuhEHKzRatSRaFWMTHbQ/3qPcqV\nKnvP/y2+02dpVmUaghanTk0ul6X71CkklQr74CDZ7W0a5fJhkF4qdZhkff065kCA8HaM9eU09UYL\njUaBv9uMW6ul/SMipHY6HXK7ux96vZxMft/zPmsx8n/y2YqRHwper/EBS/6jpL1w6Eni8310lRcO\nF1mPifQtnCJ27z71YpmWxoJ1+uihZ39Zwfqrr0OrjsbqopmO4ZuaZjDgR+d2Y+i20nl8mM2lME6X\njsiVV2nXq+jUAkK7STFXoHMQQp1Lc//NaxQKDXwD3URv3cI+fxartk0xleHW2zVmHjmNr8tIvthi\nPdLGQJGAR0nPqIuv/MwExVKD3c0UlfgeJ47Y8f3MGOWawMa9PeKhFL6hLzFwIkBse4cX/+YqVpuB\ns+cGyZbAEAjyzJmjJLZ2ydcUvLXeJnflGr/4b04wddxI9+nTyBcvMj9pAClDZjdOKxMnlc+j0Sew\nDQ6RyDSQ221K4TCVRAKN2UxgYYHc7i7NQo52KU+xUEOtkvB0+6nUYH2rgM5W+sjVkKhUIv2AFt/n\nARcuXOArX/nKwx7GD42TJ09y6dKln8hi5AdhYsKJVqtgZyeHKAoMDtoIBg+5R8lkmYODD24T5PN1\nQqE8DocXV7eDdW+Q8//7/0zmzg0ye/tkI1Fa1Rp2s4JMCeSWTHQnhsupoW9O5CAs8up9kbU7KYID\nCp77uRna9zYZfHwBg0lHqVClngijHwzw//z286gdLrq6TIwN6DnzSB80vTQTYXJXXqdh76XsypIt\ntekbcqM47mN2yonVKNAsl4lmtKwuhjArmgxM9ZFPZPAEnQz2GLB3eZjRl3npv/wpS+/cRWu1snp9\njXoyxuj8LDvX7qKVWth1AjqpzOM/NU85GqEk1+kbPezYmp02PBYDbscoq8txfHYdC48NIBRSNPaW\n8eoyNDJp5rprKG1NvNY8Nuvh51VrsdB94sQD3xBBFKkVCh9o2QuCgG9uDr3TSTEcRqnXY+np+VSr\n6u+GQiFitmgx+/0URRG3pKLWEvCPBPAN+HlEaSEYNONy6Vlfz/DOOyEODgp4PHoEQSASLTM+7mB/\nLYJWpyZfLXPjao5TC31E9pLsrB4wOttDvdEhGLRgMqlZWAig0Sh48cU1fvZfjfPSv6xjMasQVRpu\nX97A5nNw7PQAOocTUaOjFtpEKxhQVRrMB6HgtqEUbSj1Bv7pzy5RSmcZGzSx8eobHH/qGF3Hj1Op\ngdpkwDs+ypW3NtEPz/DO1RgLx51UVm9z4kQP4bAFSRLp6zXR62xzbWcLo9OB4LRg9ncTXTygy68D\nQaZZqaDUaqkXCnjeNTSU1GpatRre2VlajQYCUENNXtY+8GtpNhpsbWfxDPei/hERUgVBQKn9sIpS\n/AGChk9SjNz7Psc+Wgv0Y4AkiRgMP5wDXDpdIZ+v09A6sM0/iqLTpI6GqmQinS6SjuSIrO/j8Jrp\nmhzDYDxCJZlk/eo98tVlJN11Rs9M4XcpiNy6g17ooNFrkXwOFAYj+8t7zD1zmvXnn8fkcaOyQ0tU\nYjDrKWysMTLt586rccK7aQrVu/TMHyEWzhNdXEIqJ7EGfNy/H2e0Tw8qLfZuN+FdLcnwoWPra69s\nMDLmISG22VoKoTAYsJbSZCKpQ6dEnZlCPEPxXpi22sT2QYdLV0JEwjkMBg0vPL+KQq/HqNbTkVTU\nsllit26h653FYVOTq4rUSlVq6SRTcwPYTQrKs7NsvfQSud1d+s6fZ+355+k6fpx8PEVHWaHegkq+\niPfxBSI5mWi0xFh/N3q3+30mtiBgCQbR/xAeAz9JaDQavPbaa/z+7//+wx7KD41Tp07xe7/3ew97\nGJ8KkUiBjY0M5XKT3l4Ljz4aRKP5oKHee6TW78V7ad/Wbh+PfFHD1htvUc1m0bndFNJFDC4nUjOM\nVmskuZ+iVS5i7F5A1Oj4q798h3tX1qgXCkR2E9i7nZw8dZw3/+uf0GqD2eXgyFd/it3NGLKoRmmy\nUqk2yGeqRC6/hV3IktyL4pkYxdSt5GAjRDhaodhQsXIvxMxsF//19y8RD2c4/9wcHr+H3P4BvUET\nZWOTowt9aDxevnNhjUKxQcPkwztcYufWEl1jAyy/fZvxhRlCuxmquTy9QSMdrQnr7EkERwwPRQqF\nJnr/MCqzkY2NNP/wN3eQ81kcdjU6VYeTk3oG1Um2XnibVqWC/8wZ2rkk5ZgeudFA1GoxeL0kV1cp\nRaOH/9ROB0tv74c+zwq1GvvgIPbBwc8854IgMNRnZOXNJOVUCrleR2cwMjvXRb3VYXraTX+/DaVS\nIp8/ND7zeo28Z6FzZNrB0qX7yPkMDWTahSKu/hGK+Sp0OsQSFeJv7HHtepRMpsrkpJOtrQy/8AvT\nzM56SabKWA0CW3fWGRhxY5c7RFIy554aY3v1VRwuC7jGSJcllC2B5l4Yc/0ArdPG7eU0paJIJR4j\nLWUoZUus3d5GJba5eWMPp0mi3mjz1uv7bG8ksVo1mLwTbH8njbC3i8tuwaRXYKo5Sa80kMtFMvk8\nw1/6Ao22iEVRRlVpoDB7sQ8O0pFl2s0mtVyOrhMnMHV1Eb5+nfT6OqVIBFGlwjhdRukcpmdugsTG\nDnJLxuJzYhqe/JGqH+3Dw4fcove6LYKAbWDg+57zSf66C3gayH7EsUufcow/EbBYNAjCoeS3WgUQ\nUKlapLM1Lr6xg7qW4ua1PRa+dJzdN9+h5+wZ3vr7t6lLOtbX0ggaHWvrac790pcYGCshVnXkNmoo\nvU7qpRJCTo3W34tjZo7itTsUozkGxgfwjfYSXrrLwInT9HztFGubWbwBO7s5qJdK7G9GGBtxUG4o\nWL+/w0DXMMm9JB2lhvlHhnDbFLz92gYTM124/S7imSYHoRz37sb44hkfvYNORr94npdf26ctg9Xa\nIfxWFK1Bh0qroiMoqAlaDhJVbt+JMeaosPHWLfrGAoeMd3GRs6fnWYt0SCSrDI47efqr04jhZYKP\nPYbJ7ye7vY3GasV79Chaq5WZr/8iodV9GrUGgRPzJNQ+qrEKSuWhIVLPo4+S29ujns+jd7kwBwKf\ne8nv5cuXGRgYwPUxuvzPA06cOMHXv/512u3252KrKRIp8uqrOw+C88LhAqlUhTNnAh8wb7NYNJhM\navL59zllarWEzablzTf3CO8mULVKuGiiaWaR5DySt5fwboLeo8dAqUJtNmH2dWEOBNndzRMO5ZFo\no7dZMdrMXP7Wm0wNf4Ev/MdfpQ2Iah2likxL0jP26DF2N+JIFgtFRPrPnkKR2EDXHcAeDGAcn+T2\ny3sYnXYK5SYOi5LLb22TjGRAbnHjzRX+1VdnGFoYQm/SoqQFOgvP//0S2eW7iCY7y28v8ciTYzgT\nCYRmHYVSolauETnIolHCblwmrWihVmUIH1Tp67Wz8MUZQhkJvVImlSghqbV0DB2KlQr5dInkWDdj\nfgO5ly6AIKAyGNB4u8HiJV9uY9d0UOn19Jw9S25/n1omg87pxBwI/EAy42eFphxl4ZiNeJ8BWe7g\ndmowt0L0zD4CKi1ra2m2t7Nks1VGRhzs7+cIhQqH14KqRT4ax6hX0m7J1LNZ4itrDE8HEAQjx7qd\nXHwrRE+PBa1WQSRSwmrVceNGhJMnuwkfFKmVyjicOsKJBoW8REsso9aoeOYXzpKtKPinv7iKQmjR\nKkgsr4c4cqKPniEvQrFEZukW1VSBM888RjmdpZIrkg9H8FlE9HYLka0oXlMT3xOjRA7yJJNVRs4/\nQimVg1oRs1lLq1ZFpdXSPX8cjc2GbWCAdrNJqZ6lHO9g6elh4KmnKMXjFEIhNFYr9uFhipEI4atX\naR0+5OjIMqm1DQzWXlrdkwSCQ4i0qaJFMNp+pHNm6elBEEUyGxvIjQbWvr4fuFX3SZ4KLwIGDkmm\n34uLP8Q4Hzr8fhN+v5lQKE+nc9gKDATMJJMVWqIKvcGMqFIhiAJtlZbEQRJRo2F3PU2l2kTRqbFy\nN8RUqs7w9HHk1St452aRRBGlwUDA3M39O/vY3EFUAzA4paZRqbB1/T59xyYJ3VmimK+wvlWEk9OY\nB6bQ6lWASKkloRRUDE8FqJdKaMxmdg5qROL7/Pt/e5Qtt47+fhu5gwiNUoTghIdmu0ZDaeD0LzzH\n3/7jFq+9eA+lWsnkwhS9owZuX9tkdtZLLNMmcpDjsSdHCO9n0EXDbKwn8fV50NrtZNZWsbdlzp15\nFMHoIzgxgGfQRStooZpK4RodRW0y0W61kGs1arkclUQCUa0FtYWy0kYsXsFoPFydwOH+v2dq6uFO\n+I8YFy5c4Omnn37Yw/hMcLlcOBwOVlZWGB//RBY/DxVbW5kPJPh2OrC7m2N01IHD8b5vhcmkYX6+\nmxs3whSLDdRqBRMTTu7fT5BKVUitrtGsVtF0ahwbGCd/9ypGcwaz3kI0lMR2dIGqQcZpMkA2DKIf\npcGA1mal2QS1TkOjJFBKZancvIuuy8/lG0nSmQo1fTeiUsmTP3cGuVblxtvrzDx3BrdigtReBJPX\nQ7iiZ2/zKgFBZGZ2mMVkgmy+jiSJtKpNrDYdq5cWaWV9fPXfnieWavJHf3SHdrNJOV3AH+xBJbbZ\nWIkyOeAnfG+Z/ifOoFAradVqmD0uEpkG1rle9nczYLARly2U21qUifscbOyi3C/y2GSQzZybbLJA\nNQVIChSKNrbBQRBFZPcgl5eLtPVl9Ptb9PZaOHrUh9pkwj0x8WOd+2I4DIkwXVotgiDQTFWpKBS0\najWWVgrcvRuj0zlUWi0tJfD7TRQKdaxWDZpWnr5BN5lYlmKtQ6kqoxKrBLsN3FpMk87U2VjPEIkW\nsVi0WCwaKpUmoihiNKrp67Px4nqEnXtRavkiarsLi9NDpq5idzNKNi+T3T+gmi+Qt+qx+Xwk21bs\nsyfoqW1x84U3OPHlBUxmFQOjXjQmE2qhTvyd64x94QlWbm+ze/U24wsw3mtFIbRIhVPEYmW63Gr2\nb9wmH01g/6WfQVQoqKQP1aSBU6cYefZZOoBKr0fv8WB496tZLiNwSDA2BwLk9/YeOKgaDErMVgPh\naJ0MoNGoGOwCIbFFJHUopTd6vZ/ZnVl4twv+aRKBP0kx8ivf59hPflTpR0CnU/HII0EikSKlUuNQ\nuqaS+Od/XiNZlNB6HZz46ScQWyUU6NA6nCg0asqVFnKrjUqS0JiNlCoy6zdWCCibpLJNmuYuzEYX\n3VYLzq4KsWQNQZNmZ3EFjUJmbOEoLYuTwvVNJJ2O4Hg/CcEDByVmj/XQTCfIp/IMjHow6QSiuxH0\n3UGqyRIOk0QxkWBq3MJbf/c6l56/AgKYHGa+/OvPUcyVKAo20CTwj/WjNuhoyiKlQoXZ+R66fXoi\nsQpzJ3rJl2X6PBKVfJ10LEezo8B79gkEi4d2uQC1EvZgF9bgodRLoVI9yC54z0bce/QoG9/+NuVw\nCJVSjXfmGLis9JskRked2O267zcFn2tcuHCB3/md33nYw/jMeI838nkoRr67EHkPrVabZvPDWzI9\nPRbcbj35fB21WiKXq5HJVJHrDRrFInKzRVWlpNDRoNTpqKZS9J4YwHlkHtHqot+noL67Qi2Vxdnf\nRW+PmZBWSzZbp62TGDqqx6iSSRcKhOtF4ntxLL19ePxuDlZ2ufrSTY6O6nnq8W5qa7d58YWXcXY7\nUdg9CCYHI6MuNDqRXjeUB5xEki3k/gA6RQuHETQqiYFTR3jnZo5yW43Kaqcjyxh0MzSKWUYWjlHL\nJjE62sw8vcDEkwuoLRbGzi/QNdhNa6XAOzdS9I10Uao0UDdFolthLOktxFIGdaPO9pXLHPvyU7xZ\n1iKrJYYGrOjVMXxHj6JyeLkXl2jqnSjUaiqVJsvLSfR6JcGg5d3O8o8vSuA9/sl7K3zgkB/RUbK9\nHafTOUxzDocPuyE2m47f+I2jSJKIV53CZhC5fF0isxila7iP6RkPBr3E+nqGVLbG5JSb/VCBRKJM\nV5cJu13LNyu/NQAAIABJREFUqVPd9PZayGSqDI51Ua/WSe2GOXKmh5OPj1KuyoxM+bn45gH2vgB7\n1+9QKjXQVBo0RC2vvRPjxPwQz/6vP0vq1lVe+L9eYmRukC5vGePIAI/+x39PRZbomZsim8gR3gih\n0qVw9vkJnj5J45+f5+D6fYZm+hg8c5TU8n0K+/to7Xa6jh2jnEw+sNgXfT467TaRmzdJra7SbjaR\nNBqs726hqQwGWtXqYT6N14tnMkDTUCeXq9HvbFNZvUGyfdhJlL5L0fZpUCo1kOU2JpP6h742Pt/9\n8s8ArVZJf//7ralKpYFOp6ZUanB3ucbw0AiBHjV+TZZaR03f0Wlu30nSpoXKYGT6/DypXBOXq8lm\nWslKRM3yC8u0pU2e+NIEx+Y8/NMr9+nUdATHjuPpthKpt4mvVOibPY7SYCKWhXuXUqiNNYxihV/9\nD+epJqKIHZnlzTKN/n52Em0qpRaDvSaSuRbdxiZOfZu+UR+iUoXLYyaxtITN7yGV0TJ2pJelzQrN\ntkw7lSbRLDHzZA8TAZn+nhGu3i3SqFYop/PsLIV57Nd/nlC+zp1X1ug/MkX3cBBnwE7P1BCS8v39\n+FisyOpqikymRk+PBWs9hfHdKhpBoFWpYGiEOfr4oz/+yfwxIhqNsru7y4kTJx72UD4zTp06xaVL\nl/i1X/u1hz2UH4hAwMzeXu6BHBcOt2Ss1o+OG9BqlQ8UdOl0hU4HBIWEqFLRqtUBJaZgD0Z9GbXZ\njL2/n9LuBq31JbQ2G0aPm1JbRtsu8PVfnefyzTSL95N4PAaeecxDbfMOiuF+YjE9kuKAajpJ6WAP\no8OJRiFhsmiRs3FKoT3sY+OEDvK08iWczhZf+dqXuH3hbW7/xV8y94v/I4HRAG9f3KFWq2M2KPF2\nW9neyfPKS+tYA36OHfPxykubmPQqlA0tLpvI2efOMDtmpFausnl9ibTk5eZymaZF5MLLW/TPDLMT\nl0mnKqiiEQZ7h7A5e1FvbGHVKhkK6lAU4xybHyfYNcKEr0Zps4mpqwtF/wzyrTwK4bDQq9db7O/n\nKZUaDAzY0OtVHD3qw2T68RDRbYODFCIRKskkdDooNBpck5NIas0DRVW12qRabSHLbTY3M+h0SpLJ\nMuZ5O3YxybgfPLZuFBJ4/Q5aKgMag46D+xlGrUaefLKfRKLM0JCNiQk3zWaL117bxeHQUa40Of+F\ncSyWI1SqLdLpCpVqm+XlKnqTjkxNg3NyGgQwepwY7VZsNi2376UZGrAjbYvoHhlHqBdp5hvsv35A\nUFKSjmawzZ3kS//bL9Nstbm/lELvsLB3+U0Ksg7HzFFs436kchKlVos5GKT3scfQezxkNw/tZ0Wl\nEufICOV4nNTKygNJtVyrUUmlsPb0UIrHket1lHo93tlZHD0+PD2H+W57r79Gs/3+lqZcrxO/fx9z\nMPiRJNTvRb3e4t69OJubWdrtDm63nrk574Mso0+D/98UIz8oGEynU3HqVDd7ezlWV1Ns7+RRqhyY\nZwdwmtoYPB5+cWCUrdUostpEW2vCrqihMwpcvbTDylaZaqWJwelgdT132PIzSNRaTaRqkd231/GP\n+Jk/OkRoP0eqoESphl/5taMYdBI+XYl6aptGSyCWg/7JHjphmXQtTbfPx0EsSyKaZWGogdOppbfH\nQqsjUa+USSYrHHdYqERr3Lu5wdS4lYOtOIVcmdFTfsa8HRa/9c+c+OknOT4X5I3vbLAVyWPSmZDc\nASzKOFJBTW5rk0atSTQLucYedm0Li01HW2fl9dd3KRYPyUhip8X+6i3c5g4q1fs+EOVolHqhgPpj\ntOr/PeDll1/m3LlzKD7nvBeA06dP81u/9VsPexifCL29FrLZKtvbWZrNNhaLmuPHux8kyn4/2O06\njEYVxSIYvV6ylQp6gwaL3YDKdRyLRUvyzvUHuTj1fB6Dz4dreprs5iZmTYR//VPDPPn0AM1CnvL2\nCnI2ibPbTUCnY/WqSD6cohyLYLAlOf4zzyA0KtTyefKRGKGqibXFEHaXhcReDe9sGO+RWWrZAvFY\niXSlyuSkA4NGxKAV0Og0/Lc/3EBUqrFZVBQLNbxdJirFCjIiKp2eLreaV//v/4KoVDPx7BewuIfI\nVBWkk2l+6T88w5VrMdaWUjRkgaP9Jm7dDJNwazlz5DjylTcx2ywEJh0EH59AljuEQznafSasPisq\nrRaFoki9fijLj0RKRKMlgkELpVKDaLSEQiFy9uwnb8F/FmitVvrOnTskRNbraB2OB0F7Xq+BjY0M\noiigUkksL2dYWAiwuHho/VAuN/lf/qd5BFuYg3e2qMh6tlY7dDZDiAqRmRkPuXwDjVbJkSMepqc9\nbGyk+Ou/XubkST+Dgzb8fjNLS3EmTTreeGsPtUrixW9volaJfPVfTzAw5CAZL9Lba2V61oOGOvdX\nQkSyAq5ZBZ1mnfzuNkarkfjaNs1sGs/MJL7BXsRiiNhrd2iLKiz2ATqlFpmNNVQKAVWhQ/jFy8it\nFhM/+7NY+/vRuVw08nlEpRK9y4VzbAxLTw/JpaUPebtUkkmcExN4Zmdp1WofCjUU6FDL5T5wDoJA\nu9mkWa1+omJkczPD7duxB4uEUqlBu93h3Lm+B3lRnxSf/zvqD0AqVWF1NUU8XsLtNjAy4viAJ8l3\no7fXyte/Ps3SUpJqtYksdyhV2kzN+LHbdchaC1XdYXZNuyUT39rENuVHVhmxdRlQJVIoqKGQRLb3\nipw4O0R28Sav//nb0GmjbecxiyUaqiB//w/3kAT42tc6mDQxbr3+Mh0EAueewmjrIxRr8Kd/co9c\nsYFSkHFaJI7NunD1+0iEluntsxKJlimE0wTG+1FpVDhtHSKRMt3eDuMDWmwnxun3Cmy9+h1UCiWl\nSBjLUDdGkwoRC6dPT2NUtbj2Vxeo1toUGkoKF9fomVhHr/4CV1dDnD5mpy2qEMX3yZodBGqNDqVS\n4wNBeIIoIkgPM2Hg/3tcuHCBZ5555mEP40eCsbEx4vE4yWQS5w8pvfxxQa0+dFYdHnY8CG1Tq7//\n7asty9DpYLVqOXXKz+3bUbTaLrx+B06njuWNBEa7BfvWIsn765TKMpWWhNVpxp7MQ6dDKRqlFI2S\n392l6/g8919+gct/+x1K5TrHzo6h7xrAP9bH+uU7aAx6zE4rowMGtIUsJreBWLtDPZXA69ZjtOvo\nNJVkirC1d0DXWD+h3RqlVIYjk1YOrt4iFU7TO2DnK2f7uZey0Vao+NY/rjE54eLMvAe5pKGYyrKx\nuEvP8TksXheWbjeFg7vMj1iJp22olBWOzLhwd9uoVVtkMmW+8/oafX02Zv7dDJLyMnIli3eoh1Kp\nyRtv7D1QG0krJR59NIjBoOLKlQNUKolYrITNpqW720gyeRg+Gg4XKBbrGI0/nu6I2mj8QLjbezhy\nxEuncxieWi430euVSJJIPl9DoRDRahUkch3aei8XNw6o12vkMmWiB3lOnQlSKNTotDusr+eJx8tY\nrVr++I/vcPy4n8ceC1KptHjppU16ey1cuxZhby+PQiEhCFAuNXjppU2e+x9GGBjxMNsL0ZuXCe+G\nqSRauDx+2opZRLlB79FJBLmJnE2A6VDu3CyXuf6Hf4BraoZCPIGk1nHsN36d5lg3zUyCZmyfeqOB\nxmolv79POZGgls8fBkcGg6i0WgweD8K7hGNBkhAE4dC8s91GkCQUKtXHyqrFd7dtqpkMCAJa2+FO\ngahU0qpWP1Gy9+Zm5gPdSjgMqs1mq596q/5zW4wUi3V2dnKkUhXsdi29vdYPtQ0LhRoXL+6STh/u\nNabTVeLxEufP92EyaT7y9x7uGerI5w8JPxbL4U0vlSqzuZkhHi+TTJbZ2soQsBooV9vYutzsLl2l\nUijTFhWg0tHfO0o5laaRijE+3U2jXCbQbWTz1jrdCz4ee3oSlUZJYfUWy8UwFkFALhZY/Ku/ZujZ\n53DZexkfs/PGq1vUmzUCXg9Bu0wxtI/Z4yK5soJbBcGFQdyzs1x74R3iDTNnFwLYXEY66TCl2D5X\n31jEZxMpS3os2Rb5lQTaZg6zVUn4/hrD/Wby6SIKq4tCpkKn0ya+uYdGqBHdS5EZddKIbmLpO0yq\nBCiUWniGhhHCS7RqNRqlEoIk4Zqa+qFCsD4vkOX/l7s3C5LrPq88f5n35r7vmZVLVda+oYDCvgME\nBIqULFGSLavDUozd7bElhyd69GBPTEdMhMMRfpiwI9o9bzM90zMxbffYrZZsa+MGbiAJgthRQKEW\n1J5Vue973tzuPCRYIsRFlE0RIs8TcJG36p83E/ee//ed75wOFy9e5K/+6q8e91I+FgiCwNGjR3nr\nrbd45plnHvdyPhI+Sgp0p9Uit7JCdmWFbqeDfXAQ//g43qdHqFabNBptXn99i67ejlMvUVrNcOfm\nNp2OjKhWUcxXyWiVBA4d2P2ZolZL/OYN4rduIXfbPaJSKFFdfp6z3/gWswe+SCOXo53Yors1T3Rh\nDuvgIDO/+WW2/49/oh5NYAxY6Tt6gILUZvZgEM+Qh/WNVSweB2/9wyuoOxVsijI7b6+xdfltJr76\nVRSBMdQqBbWqRDaaITY3h8PvJbAviDKdZuvSaxTW/LhGh7n1g+dwT4xREMzkBS+vvrRONi9h0Iko\nNDr0Zh3bsTqzR4+itVqxhsNceiu5S0QAVCqBW7cSgMzx40EymRpOp56+PhPlcnP3wSMI7++E+0nD\nYtHyxBMDFAoN0ukqL764xvp6HoejF4xoNKrR69VEIgXcbgPLy1ky2Qa1eptrVyP80R8fpVSWeMqq\nR1SJlEoNvvOdQzSbHS5fjiCKIsWihNWqJZGooNGISFKbWrFKo96k7TOy+iDFqQMWNl64zO1nL2G1\n6rA5bKSXsxjOT6IbDrP4j/+AotvB5PcTPHaMSjJN7sEDujLI7RbKlkRpc43tV14kNDvL2sVFHGOj\nKJRKKqkUjtFR4rdv067Xid+4gc5moxKLYXkoEjX6fDjHxihFoyiUSgS1Gq3VivEXhHi6JiepZ7PI\n3S6Z5WUKm5tYBwZo5PN49+3Du3fvh57/ft8BpVLxS1dF4FNKRur1Vm9ML9oT8KyuQiRS5Ny5MAbD\nz7xHksnqLhF5Bz1CUv1AMgI9VfbiYoZstkYgYEavV3HnToIXX1wjEikyM+Ph7Nkwd++mEKxOZr1m\n0ksW4psNNHotR870I6haGNRK7s5vEt9K4g04UGq0eA4cQra4MYo6hrwKNtcqNJttBLVAaiuC2uYi\nevc+FV2OE2PT3LkukEp0mZm0kbl9Ba0mR//kAP4D+3s32uERkisbbC9HcE5M8tLFO/hCDiYDsHTp\nOv19WnQmPRVJR6ZlJh5vUIjVaORzzBwbQW82IDr7KFXa1BpdtIKAL2ClWe3tgOq1FiaNAtTyw1Tk\nnlJaY+1ncNhI5NJrtCWpJ3iSZaLXryOo1RjcboxeL5V4nOzqKu1abddSX9R+8LX/dcaNGzfw+XwE\nAoHHvZSPDSdOnPhUkZGPgtzKCttXruy6/0azWTqtFv5Dh9BoRBYW0pRKTdwONbE7d/GPjNHgLvlC\nBQUd7F0R60SAaleLUhRp1etUUym63S4olL0k4XabbqsNyMTn5pEEI4ZmmnYmg2H4KEW1BqnexKg1\nMfWlL9Ktl2krVBRVLpwuI46AHbfPysCgHb2UodHNYTfKpNfiaNRKRNok5u7hVop863f2sL6RQ2cC\njcnI9KSF7I3L1Lce0KlXUEpVRDrMfu4wGytJps4dQKMVMSq8bMTaXH07AgKMjbtR6oy0+iZY2Gqw\nfS2NQtEbfX6nJWM0qrh3L4XFosFm0zEw0DPCevHFVSYmXKjV4q7R3LtdrT9pSFKb7e0SyWQFo1FN\nKGQhFLLi85mYn08/NPWqo9EICILi4YayRjpdBYUSd5+VbrfL3L3eff7IkT4OHHBSLErcuBEjn69z\n7FiIt9/eJpWqkExWCIUs3LubZGrSyeJcFLVFh8WsoZDOMeKz8ubf3SQbz1LJCfgqJRx9Psoba+gF\nBYPnnsDkslPa2aHZaCArFLSlBjqHk06zSaNcxtTXR6fRwDowwOgXvkBubQ2N2YzB7Sa/sdHTgaTT\nqI1GmtUqok6325op7eyQW1ujvLNDq9HANjhI4OjRXzh2rbPZGLxwgeTcHOmFBZzj46h0OjqSRGp+\nHnMggN7h+MDzR0cdJJPVR7x9+vstH6jl+jB8KslIIlEhFiu/51g8XmF4+Gei1PdT2n/YcUlqE42W\nefnldRqNNhqNiEKh4P79JFarjr4+Ey67hoC1iaO5wzOnbPjHXFQXbjIV1jA8MIggd9Em7zJ49ADG\nkI/CoRH0WgVGDZgGBim3XOSK0G7VKRWVqLUa/C4bxftb6CwWWu0mRosBSWqhzG/xnT86yFtvx9g7\nbqBa7CCtbJDXdll98UVKOzH6T59E6/Jw+slpbry9ydNf3c/Keomu3czv/Ltv0YqtkS20CLrCLKVE\nitkiKrMLs8mMaPWwkW0SGvLQ7cpYbUUsJgGTQUU6IyGqRRx2DbqGAdFn580XoiSTVex2Lc98eZR2\npoQ5EKBV7QWX3f0v/wVBFHFOTCBqtbgmJylubfXKgEBxe5taPk/o+PFPVI3/ceG555771I/0/jyO\nHz/On/3Znz3uZXxs6LbbZJaXH40hkGXya2u4JiZQG43odL1sGiVdWrUGVZUN94HDKO8v0mlKeCaG\nEPsHiEfzeJFpFIvYJ6eQOzLuyQqm0ADprTiVZBy9P4xlcg8rNxZotGTCx08ha0SajRZL3/shg4k0\n9jO/wd3VKqLZyt4zfXisoGrmiby+iF2CqqTAbBBopiPoNeBw6ZHbLQZmgkitIrPDApJkotlRcuyr\n53DV19iZL9OWFWQKHdrqFrpsmuEjh7DY9aTvXydTqWIstPGVm/zhNw8QTbfptiQEpcy1KztU6l0K\nkppyucnIiJ1Uqrf5UKmUWAxKWrk0qUyHotmMd8DDuXODgIwoCgwP2xkZ+Xh9KX4ZdLsy169HWVzM\n7FZqVldznDsXJhAwc/iwn3i8gtPZS2t++eV1JiZc7NvnIRIpkU5XMJvV7N8fwGjUMDPjQa1WEouV\nGRmx8+STQ7RaHZxOPZFIEanRZsAq4fEIVI7Y0Zn1/P63DxGLFhkMW5kIKBGbeawOI5MHh9lZjdFp\nSjQSUcwWLfVoguhbb1KO7mDp78cSDBE6exad0cjOrTnahSxqkwlBrcJ34AC1XA6FSkUtl0NtMLDy\n7LM0SiUsgQDNSoVyNIr/yBFMfj9aq5VWvU5ybq5nCPewJdNttcivre1qaz4MKp2OTquF/uciOlq1\nWu/e/iFkZHDQhizLLC9nabU6DAzYGB//4Nd/GD6VZKTRaL+nTyXLvYrJu+F06tHrVdRqLTqdLuWy\nhFarQqd779vO5+tcvbpDLlfnjTci6PUqhoZsOJ16dnbKCILAnmkX7a37LL95k7Io43FqkePD+CeG\nWbn4vyN3ZUZPHiQw0Y+6lsLY0HHyS0dRVPMU8zVK2hA//fE8O4km1XKdr//OfvZODELkHsVEGiUy\nBo8Hh99NM16hIwMKgS89PciYr8vl/7aIUqWiuL1No1RBbTKh0ulYffElRr+k49BhP/pBByfPDKEx\nm0lEc8QUPuqWOsV8A5dfRzDsZnOrREsSuPRWjNPH+5g6PktxZZHwsIua0ohgcRLZzHPo+CBmsY5x\nbIrbOy2MRjUajYBGIxKPZChvb1JcuI1Kp0OWZeI3bmAKBLANDaFQKNi6dAnbQ6MbtcWCpLYRy7SR\n15IEw+73tfH/dcbzzz/PX/zFXzzuZXysOHLkCLdv30aSJDSfAZt+GXbtyh85Lsu9ygbg9RoJBMyU\ny03sA0FK+Spzax08ob0IdLiXFzB0uzwzoGXlTo6pkwfYWtwkc/cOUiZJo1AgsG8a98hx9P3DPCjb\n0e5x4DdUqCSjmGwmzAefIOQbx2jRosms8NT5YUSDEUVnm+zNbbqihmp0C93QXnxDPjzqWXLzAvVC\ngZWFGO5wEI3FxuZrV6i0BIwtAc/UFPawk8LdHbKSFqPRSbPTm3Kpl3sPjsrGBp14HKPRhCTVqNbq\nCPFFQv5xpK5APZthY2GLbrWEoNGiNtsBBSaTmkajTZ9Vpmurc31uHVkGpapXGTp2YYZjx3qj/o97\nI9Frk+cfeQbs7JS4di3K4mKvKhIImFGpBNbXe6+LRksIgpJvfWsP6+s53G4jxWKDtbUC169Habc7\nnD0bJhar4PEYGBqyUSw2GBtzMGirc+uFK2x02+w9OobJq8fo9WJQu1C1q1z7/rNUFBKyQqC2tcbY\nnjEK2zt4x4exBzxEyhKa2XPoJiu0thZAqaSLkuAT5xGMZuqpBHKnl1JtHx2lkkyyc/kyq889h2fv\nXhyjoyz96EcoBBFzfxhTMITc7WJwONA7HFQzGZqVynuuU+Ud5+uPgHf0Iu+GqNUi/gIRqyAoGR11\nMjzsoNuV/0Wtu8dJRp4G/j2QAU79MifabLpHSosAarXwHsGM223g6NEAN27EWFhII8u9/IE7dxLU\n620mJ38m7FlYSJNMVul2ZbrdnjgzEikyOGjHaFTT6XRx6prcub9EOpbF51QTX0mR2Ihx8psmnvzO\nN9he2sTt0DL/t/8PRouRRj5L3759HPntf0VZsPJf/3GTUq6K3WpAb9Ty1mtL7P3DWcITAbQGDaXt\nbXx7Z0hn6rz5wh0OfO0pqJaIpCQ89hDhs6cprq8TvXWLdkfG3h/EPbOX5PI6gqjCaLPQzUcI7w+Q\nTeaoNAW05QS5WzewqWHy+AwFfYhWy8zGepapCRfdyAL/+Ldv0+dWo1K26Z+dZvqJwxw4a8SgaqM2\nGEhXRRI319BoxF3RYL2lRCl1adfr6Ox2ipEIyHIv9bjVQtRoaBQKyLKM2mJlq2xk7uYG9VqT4JaC\nPQebHDrkR6X6dAheM5kMCwsLnDr1S31Vf+1hNBoZGxvj1q1bHDt27HEv518MQRR76dq5HO9+Wpn9\n/t1EUp1OxcmTIba2CigkHZEHUY6fDHH7RpRorILV62DQrUdpsuE8dJKWWsn85Xu0cxnsVj2mfivN\nVoexUyf44fduUKtucuYLe+jEEnTVKt6erxOLNakmJPpGvZy5ME5l7TqJlS1kvZWW2kzoyB68Y3u4\n+jff595LVzj6W5/H6Quhtdk4MLkfSann5k9fJ7hnhDdeuk8hW0b38l2+8Mf/ilxdR0fUEklUMdpc\nNKolDP4ASkGg3WhQjsdBmcQSGqBdryLWs/icUG93ef21Fco1JY1iE0Msjt/jJhAwEQpZkGUo3H6L\nfnONzrFBNlazdLsyA16RiVHrYych76DZ7NBsdh75+8pKFq1WRKcTuXEjzvZ2mYkJB0qlEoNBxRtv\nbBONllCrBcJhK6IIXq+JN96IUKm0OHDAx9///Tw2m45z5wbY2irQ12fCYlbxYDVDWWFmbI8PW78H\nrUFPc3uV/PoS5Y1VCvEyYtCNbWgY/54JlM0Kw4dnsA4Pk25b+OEP7pDfjqMSFRx+YpqR2RDp2zfp\ntNpYA35qiVjP2A0o/PjHBI4fRyGKyJ0O2eVlzKEQY1/5Gp1WG8fsIaSOQIf6bvaX2mBA1Ot3jc3e\ngd7pRO52KUWjlKJRBFHEHAy+b7XE4HajEARiN28iqtWYQyG8s7PvqZZ8EP65OpF343GSkSvAXuDl\nX/ZEj8fA/v0+7t1LUa+30GpFpqbceL3vDWYbHrb3HohqJaCgUmlSLErU6wn6+oxYrTparU4vVror\nEwpZGB93EImUqNVaD/uJfjKZGo1KleROFhUddGoFW1tFHG4La7eW2XPhOPv6g9z5T/8RpaCi0+7Q\nlSTWXnqJ0BPnaLkdDI/YEWixcGMNrUrL4VkH9e0NclUl9r2HsY7PEL1+g0zbyOyXziPpPfzj39xC\n0GiYe1Dld377AkN70nQAWVDjnZlhcyWBemgP2pE9bCSaaN0+ggorhUaNsCHHa5d+jJQrkcuXWb/0\nBie+9WWmDn0ehdxmwKfm4r9/i8x2CmXXTrtapt28R/+YH8WR85jtRvQmDVR7gWTvzPQDFMttwpMT\nxLfu06xUMPp8FCMRjG73bh6BOdSz6m6obdy+tkqjJqE2GekKahYXM/j95t2As193XLx4kbNnz34m\nqgc/jxMnTnD58uXPBBkBcI6P02k2KWxsIMsypr6+3fCwd2AyaZie7t2ULW47qecXOXpGTzYvkU0U\nqRUrPLi9jqDRULcpqGaylHcSFFJatAYtCkHAczxDajPJqaf3sfTCayTSEsGDs7z9wtuYPG5c0wco\n1SrMzWcZ0ekQAuPcupdjZ2kZ10aHg6d6InetVuTmxWsIehOnv3iAwN4Ztu4sYQiP0dWYSEVuozIa\nadbrtLMx5retnH7yPLeefQOrs5+x/cN4pycQpRLi6iru6WkEjY5KJos94EVns5B8+UeoA8N4R6dI\nvLlApdqlUm6gVivp6zNj0XbJrqyQuH6VYiSCd2KCgaNDKAQRnSjRqVVYWmoiSW3cbgNer/GxkROz\nWYPRqN61GiiVJOr1Dj6fCYtFTTRa4e7dJBqNwJ49Lur1Nul0lUKhQSZT4+bNGN/85gx6vcjcXJLT\np/uJRAq7FfdMprYbvOe0q3nlufso5DahiQHuLEs4HQritzYZmxqEzTUMjQSh8UOodRrK21vYx8Yw\nhAYpVOHVl9fQ9/VTl5SotWpSsotcXdlzSZVqzP3nn1LY2MDk8yJodQhKBfHbt/Hu28fmK6/QrNbI\nb0ZIr28z+sWn2Uy0Wbl5nxNnR9DabECvzeLZs4fotWu7xnA6ux3n+DjpxUWi167tjq1nlpYYOHsW\n87t0b3K3S2p+Hp3dTvjMGZq1GnqHA7Pf/4l+xo+TjBR+8UveHwqFgj17PASDZiqVFnq96kNV9vF4\nhUzmUSFrtdqkXG5iteoQRSVutwGlUsH8fAqNRuTAAR/tdgeDQcWxYwE6HZnIUoT9h/vZurdKbDMJ\nXZl2OzI3AAAgAElEQVR6VcIxMkytXENnlCklM6j0WlQqJZIsEzz/JPfjatYfpLhzLYJSqWDfyQns\nGonI65cIz9jYvhMlG89w5Pd+h+mv/xZrKZlKrsLcXBytGqRmg8hKgu//XY2v/+5xgk99jfjdee68\nucTLLyzRPzNCxNYglyrRoIHF68LqNBG7fJG1q3N0OjIoBVAoWXnjKof3HeXOXIrpgT5MRpG8SolC\nqWAg7MBuFcmnikTvp1lZyfHEE2HcbgNut4FE4melQI1GwDk0gOaJJ6hnMhg9nl6FZHMTUa1GbTLR\nd/AgjUKB9FZPpKs2GbGFwwgqFZ2OTC5X/9SQkeeee+4zM9L78zh+/Djf+973+JM/+ZPHvZSPBSqd\njsCRI7gmJ5G73Ue8Fd4PgaCV008Mc+faOuVqG3/AjFkHm/Pr6M0GxkZH0BqNtJ0upGqd9HYKe58T\ns93AwMwwjVyOlfkIjoF+VtdyVNtq6okShv4mar2FpXs7TH9liK2lDMViHJ3FhMFiJp8qkEjWsLqt\nFKoKysUab72xxvmJgyiHZll68x/o7yshatUUkxlC/Ta6jQa1aoO1jIOBs2dBoeBWRub6//ICx08N\n8cT5L7Pyg++x+PwPcXosNEolhp/8HN5DR+jUKhze6yObyFPMNwhOj3LgQB9er4GtS5eoJBLonU6y\ny8skbt/GVixi9vup6i3ElyusbPR0elqtwIkjXqzKMvVsFq3NhjkQ+MQm6SwWLfv3+7h1K95zPdWK\nHDzoI5mscOtWmaEhG8PDdrrdLuGwjfX1ng/JO7EfExNO7HYt4+MORkcdCEKviNbzrOmNs3Y6XWq1\nJtFGG6vbxuGTA2ynWrz11jpGgwptJYMzPIB3cASNRsXqixcRRSVSuUxhfZ3g2XPEOh4e3FnH7TVT\nbSpoyU02r88RNA4zNhCmUS4jAy2pgcHlQqlUINNrj9gGB5n+xjfIrG9QrXUYODeEoX+YN398H7XB\njHZo+pGRXefYGFqrlWoqhaBSYfT5UKpUpBcWdokI9HQg6cXFR8hILZOhtL1Nu9FAIQgoRZFKMklu\nbW3XefuTwKdSM/IOrFYdJpOGfL5n92yzvb9NscXy3t3su1sOCoUCjUbglVc2yOcb+HxG4vEKhw71\n0ddnIhrtCZskwcDoqYMsXV9Cb9RiG7LTf2AaSyjEyLgTSlk8YT+NQh61Tovs8dB2j7O4UqbYahIY\n9pJPFRH1ekLmGpYJK63tFdau3qXdhfnv/4AD3x1keaNDPlnAYlHzr//gCGubZebuxOl2Zd6+so1W\nrjM1vp99U9Moh/eTl1RUGkpEsw2v2Yha0Ual6KJExmg1kcvVaNYktFoRrajAqBdRdRusrmSY2NvP\n0KANvUGDoppFARgHhokVGrRaXZLJntnRqVMhlpYyxGJl7HYdExNObEYlzYiJdq1Go1TCPTXFwJkz\n6BwO9HY7OnuvKiWZE/i2FSjUOgTVO9ecT8yj4F+KbrfLCy+8wJ//+Z8/7qX8SnDixAm++93vfiRf\ngV8l5IdtlY9rDe/nS/HzqFQkNjby3LuXYnsxQa0BOq0Sk1pJq9VGUKlw9VmZeuIwi69fp1SoYrQa\nOfTl06RXNuj3aDBoRCw2AzqdgGhRUynVQJZpSB2Uqg7Hz47g9ZtYvL1Ou5SnmEii0ojsOXKBaF8f\nA/1mKhWJ1Y0SDr8TCTVv30wze3wUZSWN267G67Dj8pgptVQoGmX2zYxQTBX46ffexuBw0D89zHqy\ng/9uhHymjM4/QNdswD/jIraRwHPwOKUH96ks3OILv3GAdENDpS2yuJghl6ngF7S063VMfX3YR0bI\nr69TS6dxjo1BcJyttdruNTMbBJYuvopNLqDRCKBQYAkG6T9z5iMZZX0cGBtz4vEYKJUk0ukazz+/\nytJShlary6uvbnD+/CCnT4dYXc3hcPSGDw4c8FGrtbh0aYsHD3I0Gm2++c09JJMVBEFJKlXF5dIj\niko0GoEjRwLk83W8rsMEAwb+7795ARkFNoeZXKTBT//xFv/T/3yWKhLLP/0J5tAAstqE3hdg4+JF\nJr/9PxKYGqKSKWAP+RHo4A062Ht+GEV2G7odXGMjbFy8SDkQoJbLYwsFMPn9qCxW9EOT+PyDFIsS\napePTNdC4IybiiSQU7y3fWL0eB5pwdRyOTrSz9xV3/ESkbtdCpub6BwONCYT3W6358lDL0yv8/DP\nj5z7CeCTICMe4O9/7liCj5Br893vfhertbdzHh8f5+jRowwMDACwublJpSIRj4skEhUajQwul4EL\nF/ZjMKjZ3NwEYGBggP5+K/fuLZPPN9BonAiCAodDolpNAWGKxQavvnqHcjlNtaonFivTbGZRq8to\nNFNkMjUSiSgmk4qqOczX//zfMn9vkWxeYrViop7u0G0vIRdTjDz9eZZ+8APysozt4EGq5gDNikA8\nEUVZyJHNqvGGHMguCa1dSX2rjifsIy9oEIYGWZmPYjN4MTkLLF6ZZ/X5IgeOhjl1vI/bD5qYbToc\nOhVLsQyBIS81g4pUrkqXMm6viXpNyeKDIo5SHvvoMIGwE0jTNNgxW7UMHZpE7/Hg99wilSgyNTLJ\ng9eu0Cjl0BmNHD11kKrWTWlnBwBJ6rksFotJfD44cmSCYrHBG2/Mkc83mBwbwj8bJp2L09Hr8e/b\nh0Kh6F3/UomBgQECYRe+gU2i0QICThQKsFgadDo5wL77ef664tatW9hsNsLh8ONeyq8EoVAItVrN\n2toaw78g5vtXhYWFNCsrvRCwkRE7IyOOX7meqN3ucOtWnJWVHK+/voXdINPOJVEbDZhNbs59YQ++\ngJ3ClZfo87kI/dv/jnJJwuYys3N/hcvPXqfZhqd+8xD+fhdX3o6w93NevCE39baC2cP9tDfvo4lv\n8eDBNuqGiemTe7hzw4IYGOT2YoX+/XvZunUTQaPlyKlh3FNTxCUFT14YJNg3RebmNZR0KZS7mMJD\nbKfbXPjcIIpcjKuvrFKqwep2HLWxTFdQM+mz0kZDvKqhkmzgKORQ1Ms41lN0ZAvhkVE2ijqu3epl\nupTLTTqtJueOu5gJDdFIbeLZswfPnj2o9Hr8R47wxvUszWbPZUihAJOiwoO7D9CP2npkRJbJb0Ww\nRaM4PsHvj9Wqw2LRMjfXE2rq9SpKJQmdTkW53HxoDy9Tq7U4dSpEu93h7/5uHoNBhdGo4o03IszM\neDh4sI9UqsrXvjbBwkKa0VEHktTm9u04t24l0GoFnnlmDN9QH8l4hXKti9YXIpdLkKspMBmMTH7p\nN6g0IF9qkigq6BsaQimVmZ3tY3nVSG47hlZoc/xEP5EXfkJq6QGiANNfeooj/8Mfk1pcoLm9g6DR\n4BifJF3X0XENIzdqNIQmr9wuUyqn6XS6OBz6j2QopjGb0VgstGo9Iql3ucivriKVyxQjETRmM4Gj\nRzF6vejsdqrvErwqlEosv0TI3ceBT4KMJIEn/jkn/of/8B8+8N/6+/t57bVNNjZyD49YSaXg/v00\nhw/7d0kL9IzLvvzlo2xv95TnbrdhV20NvTZOsaij27Xi86nZ2SmRy4l4PLrd3VqtZuD48TA7O2Vi\n8RarCRudpoTJomd7aZvt3DYjxgIth4mZf/P70Gpi8HhYzuj40VtzRKIq2q025Uwcm1nNV48NkF26\nQ7FWx+x1YxK1aI0OVrcKHDvjZWMlhcegpyAlaRRLJNayHPz8k4wFFJDewe/WYjarCZ7185//dh6z\n1cv8fIZ2PU8qIjC+tx/9niGO/ve/x/ILF2lVK3jGR/AePgaZLU4M6dEHJrmzUGTkiZOoaCNarEQ6\nViySEo3GidWqQa8X2dwsIAg2XC4D1WqTV1/dJJNRASpu382yYdXw5JP7H8kjePf1V6tFnn76ENFo\niWy2jtWqJRAwoder3/f1v274LLdo3sHx48e5fPnyYyMjb721vatJSqdrtFpd9u79cMOmfylyuTqd\njszWVpFORyZfU2Ky9WEygahS0ec1IG3MYw2FKOzEubtSZyNWp3/PKHLXjn5ogqBNizI4yojJTanz\nJvm1Nb76jePYh0fQlHZIbSXQdJXcu/oAg8tDy9TCPznC5asp7I4KJ799gsNPTFLN5hEUIGpVpG7e\nZelyAs9vnWLgyF4cQ/3Eo0VWFhL0WZQM2+qUYnGeOB3EvCzx1lvbSG2ZeCxHtePBaDKTLeyAQqDV\n7BAI9xGYHqUpCxgHAqQuRdHpVEQixYcaXyVzd9PoMDHmslLPZ1AIAq7JSXQ2G1ZrDR5aHgqCkk6j\ngaCQ0WrFnj18rEypLNFy7xA2eHYTuz8JyDJ0OjIulwGLRUO93iKRqCLLXSSpjd2uRalUMD7uZG0t\nx9SUm2azTanUJJer8+BBFlmW+clPVpicdLJnjwe/38QLL6ySSlXR6UTq9RaFgoTNpiMSKdHJ16Al\nse/gDN4BH0p9jehKhFIuTSmRwTDST1fjQak3EWoWcE2pKIaDjM6E2XjhWQSjhdDBvVR3tlj+8U84\n8sd/hMpgIHjsGDqbDamrQqjnyW7nSGZbVDBi0KvRCG3GRq2YjCr6+n5xS0wQRfyHD5N4sE69o6Ih\nNWkrNtE5nSDLSMUi0evXGf3iFwkcPUrsxg3quRxKUcQxOor1E74nP842zQHgfwWmgReBLwEfuS5U\nLkuPaBjewdZWgX37PKjVj741s1nD1NS7LM1leTdAq9XqEA5b2dkpAT323+nIBAJmOp2fjQlqNCL7\n9/v44Q+LuPy9nVsqmiW7FaUUiTDyuTCLL73K9o07zH7xNHq3G7tWwu23c38hS7vZwmAxMTHlpdNV\noLE7aZQrxNejBA8fYuTcGViIkbt5mdyd23iGBvB9YZZOOY/VqmF2TM0L/9v/idcuUkkk0OjUjD3z\nVZ45HSLTtbBwd4e21GKj1MIWbKJ8UGDmG8cZOr6fYq5Mtdbh/rMXEbMR4qvbOPcdxOkb5/nn1mi1\nu+w9NoLBrccC2GxaBgdtXL68TakkoVQq8HgMjI46yWZrj1zbQkEikah+aDiSVisyNGRnaOijfsK/\nPnj++ec/U14c74fTp09z6dIlfvd3f/ex/P53i6O7XZmVlSzj485faPn+z0Gt1mRpKcvdu0mazQ56\nverhQ6dNvgwagxEFMlI2TbtWQ263sew7Am9H6bPpqQtGEokC82tqhoetiGsl7i6W2Hf0DKMGGZNJ\nS+zGVXTFLeIbCQS1jnJJIpNeo39Wx8kzw+htNg7M2Khv3efmj++ys7yFp99HMZ3FMzqMf7CP1Rdf\nwqTp0lGKWCdn6TSqWIU6az+5QyqeQ+cfQFHUMLt/nPtrVQI6HR2DHdvENAOpOsVskYMnhlA6A9xe\nayF1OrgreYaG7OzslB8ZjdVYLQgmE2qHBZWo6JX8H+oFRkbsJBI94692u4vGYiE80ruXrq5mKZea\niBoVNVnHa69tcuHC0AdGbnzcUCoVDA3ZSKerqNXiw/u+AqtVi16v4saNGKKoJBi0YLVqqdXa5PM1\narU2Ol2vklIqNUkmK9TrLQYGbMzPp8nnJVqtLrlcHZWoZG0tx8iInUpJQu52MIoSs1M2pEYDldqE\ne8BHaW0FRbOOWtnBv2eC+EqEnRu3CA66GZjZRyWboyrr6FQy6LtV9HY7BreXlRdfInP/Ht1mk6Pf\n/S5Svcza9bvcvBGjVJLw9HsxTx/AHtRhamUYNJswtzLAe1s17XbnoZdKFYuyTO7+PVbvR0ApYPIH\nqAthpkIa2skIAM1ymUahgMnnY+jzn0cqFBA0mo/U4vy48TjJyE3gwj/3ZFFUvq9PhVotoFR++Kxz\ntdrk+vUYOzulh5M2AqOjDur1FltbRUZGHIyM2BketlEs9vhRMGjGYuk5h5pM6t2qSjVfQqHWojXq\nkds9dXetXKNZ7fVf6w/WePJzYRRSlVy2wtCwiwOTBq794EccOtLPgX/ze9TKdVI7GdSyRHl1gUYi\nSmo9Qn4nxtDhGZwDflS0aWaT2FQSykadSr5MPqtEfP0ylpk2Wt8gRruF+HaBitSlWu2lKZ45049k\n01FuGmmu3cBlAllhRqo56Bod/NP/e4kKRtKxHNFEnad/+ygzT09is2l4/fXI7vvvdGRisQoKheIR\nJfs7aLc7fBaRy+W4d+8ep0+fftxL+ZXi3Llz/OVf/uVj1428g05HfmQj8HFBlmVu3oyzuJih2eyw\ntpYjGDSj1Yo0mx1kuResNzphRpm/37PVttkori2jjEYw+4dJlruoFS36gyZaUguDQY3VJDB/ZQGN\nSom1EaFeKLDvQIhaeRNLn5Xw/inyWxHSkTi1bIbBkJHl169hNYosX5lDqVRQESSMTieNYhGDtsv2\nm29hMmuQzW7y8Syf/4N/zd2/+6+o9Dqq6Fm+8gCD3cbg+BDFuonjZ0e5ej2OGPRy4ve+jl7VpVyX\nebDTQVQJGFQC1WqLcrlJX59x1zhSEBTMzPhw6SvklxfolvPk19cpx2IMnDmDzW7nc58Lk0xWabW6\nOOwaJK/MgzdvUC430Rp1BPZNU+zoKZebxGKlT4yMQM8FtNFos7bWS44dGbEzMGDl2rUd+vutiKKS\nO3cSDA/b0Wp7+S0qlRIQOHRoAKtViyxPsrKSpVisMzBgRaGQ0elUpFI1ut0O0WiJ73znAOGwBSVd\nwq4u2mYGUk0Sy0skF5fpP3mcaZeDSkfF9maW8PEjZCUDLZNAQVJhMynYfP0Nits7CHKTPqcatU7N\nxFeeYfvSq/QdOoTB7SZ3Z55yqUH3YcZM9P4D9h8bIrF0j5WtLZRBNVmPC93v//57BKa3bye4ezeJ\nz65k684bLN3ZQqUS0GlFcls7+A4dYTMhMGgy0qxUENTqXUdsQRQ/8ijvrwKfWgGrXq9mdNTBjRux\n3V2VKCoZH3d+oPHKOzfa+/fTPHiQ3T1eKklIUpupKRehkBWrVYPRqCIarWCxaOnvtzA9/bOqysiI\ng+3tEs1mB6vDQCMrcuw3jiFGbqLW67D63fSfOoFjeBilKJK+n8GubyN2RMqZLLmVLKpanvU3EijV\nImZ/AIXWSGJlC4XcRWt34ur3UcsXKEUiBGcmMDksZHbS2AeCxO4vIXUUVKpt7lxdZW//DDqiSA0N\nDo+FgK43b98zbCtx9WqUQJ+B8p0NmqU8I0NWvEMa3l7N0ChX0TitPYMbtZpUoozZrKbb7V2Xn0cu\nV8fp1D9CRnQ6EZfrs5lJ8+KLL3Lq1Cm0n1IL+4+K8fFxWq3WY9WNvBvBoOWRNt7HhUKhQSTSazmo\n1QJ9fSZUKoELFwaJx3uV1uPHgwz4tSSuRhFUKrbefJNqNk8hJbL29ibhvaPUZDdyvc3nnh5nIKDH\nZRP54X+6i97nod1oUk5lCRz4MhuraVZXs+SyNSb2DvLUl0/TtPgxiG3uvFihKvYyVWx2HXq9CqvT\ngmVggPzSIqIIkiTTrneIbEaYTKXpiDqS6zGqTR2tZptUoohuZYOueoQrb+/gcBroH7Dx45c3GRqy\nMzeXoN2WGRy04vf3fFa0WoHpaRfpdB2QGR114LaLNBfvUdlYQCr1KsTlnR30Dgf9p0+j16sJh3/2\neciO/bR0DrrBGB2lmkJTSz7/s43Lx4FOp0sqVaVeb2M0qnC5DO9LlDUakUOH/IyPO3efBd///gK3\nbsURRSVjY07Gx51Uq02+8IVh7t1LUau1aDTaKBTw1399heFhB4cPB7h1K8bnPz/MwICVRKLC8LCN\n1dUs58+HuXhxjWS8xOxeN9HVOFMTdiKXXsXps6Fp5Fl5/Qr5fI2+6SlKHS0NnZe5uwnazSY2l5UL\nJ52YDQoyDYmO3CKXbeHpU2EJBhh5+mlUZjMolWiNeozGBk6ngXJRwu0xUFpbopGXcFhUdOpVipE6\nyfn5R8jIz9pOoOlUiaVyFIsSGk2PjLTaQKNMtiUw6tLSqtdxjI6iezgi/LjxqSUjAFNTLrRakbW1\nHIKgZHjYTjj83lHRej5PdnmZciyGPtDPyv02737rKpXwMG/BiSzLmM0aHA49zWabbpf3xJQHgxYu\nXBhkZSXHllpJKGjGY+4iaSexDA7hCrrw7Jmm3WiQvn+f+vU5hixmqkY1rqCHfp+OiqGElMug93jY\nSUjEM1UMAYG1jSLlTIF9M0M4KnmatQquiXFsY+NkX3iDZHqJ1aUkokaFyaTDZHeRSlYZ9bp45ivj\nXLsWe5jLAKdPhx6avUGzDQa3k+xOkkKpRf9YAOV6jNCwB6UniNFVw2bT4+/rebVotSJaba90/W70\n9ZkYG+sJvMrlJgaDmpkZDx7Pez1ePgv44Q9/+JnKbfkgKBQKzp8/z8svv/xYyMj4uHO3TRoImJiZ\n+cU21v8cdDry7gOrWm0+1ALAiy+uMTTUi4uvVJooRCNdR4hcPEVLqcfoUjJs11FuJMls7bDnqVFy\npS6Re6uINTsjM/2c/9oRHiwmCY/NElfWKdfBMH0EW/c+oQMWFEY7L99ucO6cjJYGh/Z7sQd9GJp5\nyokEKys5Rmx9mFQ6VCYTGlGB3uOkWKwzMjtCsdJBMnhoqmvYTSqabZluF0J7J0juGHA6DVy4EOaV\nVzbw9xnx2sB01MuNOxkSiQputwGVSsBs1nLwoJ/+fgs7O2WKxQYhr8DmpW1q6fTutaokEiTv3aP/\nfaqCCoUCq99L+l7lYfW0R0Q0GuF9/Z5+WTSbba5fj7GykqPZ7KDVikxPu5md9X5g5e6d6bw334w8\n9KBqI4pKfvKTB8RiZfr7LXQ6MgaDmlSqyt27KbRakaeeGiESKaDVCnzrWzN02x1Ghm14vSamprr8\n5m9OoFYrERQyalFG2W0ze24/+0b13Ny5hyU8SKtawdBS4CxX8e2dZm01RyoSZ3tuEZ3FhFKlotly\nYQ/4EXRGSvEkNqcRg7JB9MoV1i5eZPLrX8ccCFBLJunv7zzMB9KiaJQxOyx02jmsohKtwYUl2HPD\n7bRaCKpeRpAktR9W9x5OpaFArRZ2409UWi1GtweL3YNlQMC7bx/mUOhf/Fl9XPhUkxGVSmB8vMd6\nPwitep3Im29SiccB6MhQi8s0tc5dBzvoiSzd7t5YVzJZpVjModeLOJ3vv+Mvl5tsbhaQpC6ZfJOd\njSJHZkO4LeCfGkNnsRC9u8D8G7cpra0gizr0Kh02S5FKVUFu/i7ZyA7VphLL5Cz+vftpWhxI7Tmy\nxQ5b0TpjITMGt4voeox4SaCq96HvH8Ee2iG9lcDgMjH2xEmuXo9z5KtDxKMSFouG4WE7zWab+bkY\nfS4ViY0YcanM5NgotmSaer2O3Gqx98QE9RtJuq0GFrcCUdNlcMKPzaZDEJRMTrq4di26+2U2GtVM\nTrrw+Uy4XAYqlR4Z+Xmy9lmBJEk8//zz/PVf//XjXsongvPnz/Pss8/y7W9/+xP/3adP91MsNpDl\nnuD8VwWbTYvbbWBzs0AkUsTtNnD1ahSzWcPdu0kSiQpKZYDt1STrt+apZPJQrXDkWD/GVoaBfgtS\nq8vQiJPctR0aUpuRCS/p7SQ+r5FQ0EKjXCEUfJqNTIe17QrqwB5K3SbRhW0OHQsjb81x7cYKa1du\n0jc6wL6nTvKj/+s5lPouBn8QvT9EeiOGaWya1RtL6B0OsskuiqIObd8gtXsPqOUaeLwmzIEApmCI\nSbOSmRkPdruO2TE9W2/fYPlWjFDYyf5QiLWikXZbxmgUdjdxwaCVYLC3eatmMkQU761oCGo1bUl6\n38A1i0XLiRMhbt+O706xTE+7PxYBayxWYWkpQ6cj0253qNVk7t1L4vebPnTjU6s1iUZLOBw6ms0O\nDx5kKZebLC9nmZlx8/zzq0xPu7lxI0Y8XsFs1hAImAkGLeTzDer1Jt/7/+5TLjex2Ax4fUb0Bg1j\nYw7CYSsXngih04lsx2psJxoo9GZ0Bh1yu8X9//YT6uUy3XqFwVPneP16jlypSzefJbKZ48tfP4jJ\n7SCWrCKbHFgCTsR6Dp3Lxf4/+AMGPvckLaMHfXicVmMOh6DE4TQgmKwIooiQfw1rOEw1mSS7tESr\nVsPU14drYgKlIGCxaDCZ1ORyDRpKI0aPC3+jRSHf89gyO60YgyHG9oXxej95TcgvwmfzKfIuVFOp\nR0aW2pUyI2Efc2sVeEhGlEoFo6M96+DLlyMkElXW1/PEYmXGxhw89dQIIyP2XUbeaLSZn0/t2tGr\n1QItrZZsXc3ktJ12vUZbkli5s0apocI5McnW7UUMqjIm4wCRK29TLtbp2IOY1Srq1TpqlZkfPxvl\nS184S3D+NsN+NYJKgWwNsHpriZazw81rEU5+7Qx7/3ACoZ6nVKjTUakYOBaipXdw+/Z9QEG12kRb\nz1De2UaYDjAc1BLPZllelhk6doZhL1gtGsION/qBHEv3duh2wR/2cOzkwK4WZ3LShcWiJR4vo1Ip\n8fvNu+2Yd/u0fFbx6quvMjk5ifcXxHB/VnD+/Hn+9E//lG63+wt1V78KvKPJ+lVCEJQcPuyn3e6y\nuprD5dJjMPQ0YJVKk0ajTb0q8eaL9/HoJIJjITQ1LW1ELOFBmmKKRFqi2NRiGQgzHehSWp5j4eoW\n9Vobz2AfwxfOU5RUlPIJNmMxgmGBTjyGUyvB9n1inQJSU0DrC1EuVNi4s8SX/t0f0RG0ZGsCy9kG\n7gMnMdV2KDUETIEAsaaDVy6ncdjUHDp3rvf/sd/N5laO7QfbjM8MMGBtYDAoWVid485rdyiVJDaW\nYoSHY5z/5jNIWgvBoJVw+L0mcGqDAe/sbC/npNzTkpiDQWzhMArhg0esAwEzXq+BcrmJTqf62DYm\n2WyNSqVJLFamUGigVvcqLsWi9KFkRBSVqFTCbitZktqIogKHo9cGSyarjIy0CQTMCHKnF5YoSQiC\nklarQ1vqsLyYIhR2sLWZo1Yooui0mB4/gs6mR9Tr+fsfLFKttjh0wMPw6BjF7U3iN2/g2zOF3mHD\n4PEy99JVFKZBmlKTdktGUIvkcjX6Tz9BR32VVqVCX8BC38HfxNzXR1NjYWVui+byIqLJjG3sCBDV\nyCIAACAASURBVE5TF61Bh9HrpRyPIyi6JO/epbS9vZsZE7t2DbVej21wEL1ezcGDfq5e3SFdahE6\ncIS+wQjUi6DW45qexjXY/5HGgh8HPttPE3omLu8OzupIEg5dkdNnJklUepkzw8MOhoZsRCJFlpdz\nLC9neOutns/GwkKaSqXF178+iSgqKRYl9HqRSkVClmXK8TiFzU1K29s0+t2M6oZRdNvkIjFsPhft\ngJFGfJuhPf2YfV4EtYjKaKaSqLC+EgeNDt9IP914hma5QhcrzpAPUSyzNf8AU1+bwZkhck0tOrFL\nPFrmeraDQqGlP+RmYtyDqd6GbherRYvLraddyJC4twDtJmLHQfHBOiabl05bg85sIjTbv0skTrod\n7JkN0m53sVq1j4iCFQoFgYCZQMD8yX5ovyb4p3/6J77yla887mV8YggGg9hsNubm5pj9Ofv0zxJ6\n+SNhRFEBKLBYUmSzvd2j1aolnqigVomEx3wI+R22bs/xIJVEODvFyOnDTH1hgrrGwX6dgvgrP6W4\ns41JC5VSh8xOCtNWkjfuNRjziyjqRRbejOL3qLE5VGjUXfKrCTRWF22VjobWjv3/Z+89g+Q4r7vf\nX/fknPPuzOaEsMgEwJwpKvmVr2RJVr1OJdmSryzLZd2SZVt6ZZe/yFWW6y2VZdnWdb2uUskqOcm6\nFCVmUARJgCDyZmyOk/P0zPTM9P0wwBCLBUASALkAyF8Vi9iZ2d7T093Pc57nnPM/A0NkYynmZ2KE\nuoI4tQYmxpMMbe9EM2QGn5+X//UMNSpUyzom9QbquRQuv4tIl5twrYYmM0bunI283kR2bg6f14gk\nyVQqdVaXMuSXl1B3Ojl3rin2dccdbeu+E43BgKu/H0GlopzJoNJo0JjNWNvaUKmvPk2o1aprahl/\nOS5USVarNcbGEuTzVQQBikWZarWOLF89UV6rVdPf7yKdviAhYEWlErnrrnbK5RqplMTKSp6BTiPn\nXh+jWq7SEzHS3emkb7iDeKzI4FY/TpeZSjpFeiGNUleYOTOLoNFSLodbi9DTp6O03efHWktiDwUR\nzXZimTr52WWMBjPmiAsFMNn0fOTTB3GbZKZPTBDu7cJqEtBaregtFkSzg9d//BTzJ8aRK1Wsbgft\nB/Zh29WLnhK587k7vuFhkpOTOHt60NntKPU66dlZVFotGpMJk9dLR4cdl8tAJlNGrRZxu7cjNOqo\ntNqbIjH9atz2zoje6URrsbS8fYB6qUh3t4Odl2QiR6NFymWZ8fE3kltLpRqJRIlDh+aw2w2kUhIe\nT9PrrkslyrFV1I0K9UoZj0vH6mtHmjLo2TT1YomVlw6xNrNMOlWibWsPj/4//zcLY4tYQiJurUw8\nKRNPVXh0uB1nSKJ09gg+p4a1iXOsHh+hnlgj1G6nVi/j8FhYnouxklSw2I30PNzNHfuCSCuL5PNJ\nguYSibUS1bVFSokEyBJ+YztE53D4Tey4axeRHd4NOxpvd0WqKApyqYRKp3vTgepWpdFo8JOf/IQX\nX3xxs015V3nsscd48sknb2tnBJrN8oJBK5OTSXp6nGQyK6hUzfJ1u12PUvFCOcGhfzuESq3C7fEg\n6nRU83m8HUHUBgOrJ08SPXmCYiyGyeEhFPZhD0dIZUu49HVGfn6IA7u7WY1bsHqdbIlocDQSvPTK\nKyiZMkN7hnFEOpAWp0jkBWLzKRZ/8VPCO7ew55FHSKZLnHhliqE7DZTKdeIpiZ4eHWqjGYEGC7MJ\njj97jLokEeoO8PCHXditWlIrcUw6A4MDbqRyjXS6zMpqEZ2xiNNp4Ny5FH19rg0OhKuvD0EQSM/P\ng6Lg7O7G+S7W4mezZV54YY5YrEhXlwONRiSbLZ9fJAkMDropleQ3Pc7AgButVsX4eAKzWYvPZ0YU\nYXExx4EDbTQqErOvT/LYY71orXZCIRNWq4Ezp1fR6FTo9FoK+TJOl5G1bBqnx4zLoWNpJY8auZVz\nJAowf24NR8SJyeOhEIthrckoBhuuLhfqTge/9jv3YjZp8JiqHP7BTyml84xXMrRZJAZ/9VcRtm9H\nypVYOjmCUqtjMog0ihnKkydYq2eI51ZBUdCazfiGh7EEg9QrFaR0mtTUFLVyGYPDweLhw7gHB/EM\nDmKx6C5Rt741xuhbw8rrwGC3037wIKsnTlDN5VAbDHi3bMESCGz4rNmsPS+ic7G2iApQiMVKrUk7\nkynT0WFHlBRKDT3FeJ49u/bhtqtYefYonqEhTD4Ls889T0XrwBBSoXZWqNTUzEys0HfvfuZfO45g\nyFFvpOm9ew+nJvJ0exXU6jJKchWHXY8SNqNSlamm4ugENb/yawdJNFzEkhV0GhWFZIrUApTGTxJL\n1RjsDDMXrbMUl7HYjWzd1glzp0hPjKG3mrEYRPTm60suKyUSrJ06RSkeb32Xju7um97rfrscOXIE\np9NJb2/vZpvyrvKhD32Ib3zjG3zta1/bbFPecYaGPBiNGgIBC/t2e6GQwiDKWEJ2XlEaLD57klq9\nQb0BJpuJfEWFLJUpxmJI6TS5xUUMLhcNWcbW0UZ+dRX5XByVMUCPv5O8UcvxnzyDO+TGYuulp3sb\nGo2TO37n18nLOvIVEY3bRHZxEbtNwdCuIY0ZSzWBoxFH57QQ6g1x8vUFdu1pY365iFWvYDBq8UeC\nnH7yBRBEanKN+fFFxoc6uT/spnv3AEeeHSFf05JMltCZjAQHupmOS7hcRmq1xrqutxdQaTR4hobw\nDA29+xcDmJ1NE40WASgUqoTDNiIRO1qtSCBgQaUSKRarb3KUZiiuKc/gIpstMzGRZHk5h9WqY9eu\nAIVYjJGXE7SHbRQLZQwNOPr8NHNzafxdIR5+uIszJ5eR7Wra/fqmIms+y85tbhRqqFQCSkOhPWLH\n6xMw9XgRDUa0CxOkzp4kObfI9v/ro1SMHkrH5/C1dTN38nXWVvJ4zTVoVCmsrhIfGcHZ08PK8Zew\nC1kEjUJ8IYqAQr60SniomwtnWy0UyK+uYnS7yS8vU1hbo1YuozYYsEUiSKkUsZER7B0d75ok/43m\ntndGAOyRCGa/n0o+j8ZguGJDp+5uBxMTFrq7HRw/voZKJRAO29BoRLq7Ha0qFVluoBcqGNPjFOfP\noitLFOZfwzTUjzUcRq3TkZycJJ8ucuqlMyiAM9xGpVTEePQs9o9/iD2/+gEajQalCqwmawRkgZC1\nwviRZZRaDbXdTvu+fcRHR9HoNBi87YyOZzl5apKVrJq6oOHBB5pdcRtylezIKaTZCe54/GH2DO5k\n7lCB+sIpMsuLIIrY2tuxRSLX5TTUymUWX36ZwtoaAJVcjoVMBrVev67x0u3AD3/4Q37t135ts814\n17n33nsZGxsjFovh9Xrf/BduYVQqke5uJ5E2E4svv0x6cQa5Xie7MklPYCvuuwdR8nFsVh0ajYpU\nuows10nPzbF4+DC5pSVcfX1Yw2FiZ8+yePgwrr4+dL1Gzj37HB2dncwelVganSE81ENuZhLX1u2s\nGgd57fmzSPkibpeB3nAvgdI4KyfOYCgWKawUSPZ1I+qMPPChezlxbAVBq6M7YqSSL9A7YOfEK1OU\nKwpaowm50CxJzkoq0mtxhu7ZgznYxpmj5+hUaQnvHiZRNdLWpqNQqGK363E4br5S9VSq3Pp3s1Gd\nzPJynuFhH7lcBUEQ2Lnz7eVv2Wx69u0LASFGR2O8+uoSXfY6EUeVXDSJVCiSKwucPXSaclWksBbD\npN7O/jtCaBplhvoHKaYyUDUgxWMYh7rJVtUUkln6ug3MLRaY/+lpVCoBq6OPXb9+kGFVkbnDhykX\nT7DzsY+QiuaQpTIhr5ZqSSbU7kRaSNKQZaKnTqHWamnkkqyOnUNtcdJAIF/J0ihl0dlsVDLNnrKF\n1VU67r8fnc1GfnUVnc2GZ2CAuiyjNBrUJAlZkt53Rm521DrdZTPCL8Zk0nL33R34fGb6+lwt6fLd\nuwOkUlKrqkSvV1NPrlJOp7Ho6hTSKaRsipVjx9j6qU9RSiaplUoYPW4EpU5dKpNfWcXi92ENhynU\ntAR37wYgEc1S1sQoZYsYQz4GP/YxoqdPozGbKcXjGD0eDA4HybqB//y7n6Cz2fHvuYPV5QynX5vj\nwFYjK8eOkV+ONZ2bRJw9n/gQJqeNasmNqzOCZft+BE+Y1YxA0NisgLkWSskkxYtK/6CZg5NdXLyt\nnJFarcaPfvQjDh8+vNmmvOvodDoeeughnnjiCX7rt35rs815V8gsLjJ19AyFXBmDXo3dUWP27DNs\n/eAjhPvbSCzGqFRkzFY9tqCfUiKBWq9v3vsLC7QfPEhifBzP1mbTTLWhgdcmotFB755BPJEAPb4G\nCy88R9nRxfhLM9TyBQRBT70Bo0fGCN7tb4Y9ZRn30BCOoa1kawaqdTWlTJrFpSK5ZB63XY3F7WhW\nVZTqSLk8Rr8Kg82CxapDbMjotCL3/eavMPholky+xtJyEV2lRqVSQ69Xs29faINC9c2A12vk3Llm\ne490usyOHX5sNh16fbNSZHDQQzh89Q7MVyMSsRONFqmWSphddop5AZtQIjOfxOa2U41L1OQasZkF\nDA4HkYAWITaNGI8jqtV0bO3Duz2ET5NBqjo5NS2TWkuDoMHptiPr9Bw/J7PHnWbsp0/i6urEYHgS\nb6QHQ7eTaCWGqBMxed1oQl3Ydm6nVq8T6vSTnJpCQxWjAdRmM+HhQbJzs3gGBlr2q/V6DE4ntrY2\nNEYjmdlZqvk89WoVQaXC2t5Odn6e+NmzmLxerOEwWuPNmax6OW6+O3KT8fvNuFwGhoY8FIsyLpcR\nrVbkyJFlcrmmRLDRqMZcqaCxGlBM3RicTqqlEqIo4t26lbnnn6ewtkZ4z37659PMvn4Wk9tN9wP3\nkNL46fV5yWQkqtU6LxxaJJM5X6O/muWu/Xeyfdu2ZmLs/DypqSnmXngBqfMgZouBfL6AGpn8yjJt\ngV6i5+bIrsWpKGqqxQJmZ5304grmUBjXYJh03cpzz0ygGCVs7UXaurzcc08Ep/PWuUnfbZ599lk6\nOjpuCvGvzeDDH/4w//3f/31bOSNLSzkmJ5sJkeGwjb4+FyaTllqtzvTIEmMjMZSGAgI4nQZ8PhOZ\nVBHPvruxda4gF0v07+nFrm+wcuwYOosFk89HYW2N1PQ0SqOBWqulXm6u7k2VOO2RbfTv6kEnyEz8\n5Cc4u7pIpitkZqcpJ5MYXC7qDSsNlQ7MDmzt7eidTvSD+3jxpSVi8QoqwwxaiwWnvoaxzYnBpKNh\nsDPY52VuuUxJzqC1gjVoYecdEYLtFqzBIKJaTTDsJggMDDZbX8hyA6fTcNOW4kcizZYcS0t56nWF\nQqHKBz/Yh9drQqtVYTBoruv4JpOWe+6JkEyWaGzzkE3mOfbvP6NcKLLn4DAvPj9NTZZRUcdsVrP3\n/q1YxBKVQgGt0YjJ621WZ8ZiNFwdHHl1htFTi6hUIsHeNrbs6qRWyRNfy1EoC/idHkZ++iTqRoU9\nv/kZhHY3k0fOUEGHEo4wdSxPuSZwn1VNcP9dmP1+NHo9zu5uapUKsZGRlu0qnQ7ftm0t58LR2Ul+\neZlGrQaCgLW9ndziIqnJSQASExM4uroI3303au2NFw98J7g578pNplkaZuJiZdwDB9ro7HRQLFax\nWnWoUgKzz81TWF2lWiyComDv7MTW1oYl0sXS5BKNiRnu+ORHidx3P7mqiqzoxOV1Mjufo3A+EeuC\nIwJQqdQZmchw7wEvTpMJUaslPTuL1mJBZzfi8Rpx662YbQaGDw5iMamhVqGYTOPv7yOZ1GPv7ETn\ndNF3107WRkY5fmSJutaEqDTIra4yUW42uLrrrjBm89V3ii7F6HI1E7XOh2mg+ZBcEOC5XfjBD37A\npz/96c02Y9N4/PHH+dKXvkSpVMJ4C62srsTqap7nn59tCfhFo0VSKYn77usgGi1SrGsRRZF6ow5K\nU8nSH7TR2e/nXFREY3UQDje1KHJzMyAICKKIo6MDg7OZvKizWEhNTyOXStTzeexd3ah0WlZPnia4\npb+pl1Gt4nAYqFcq1CSJSjZLJZejc+cg7cODuB/eh1SF0ZEY3Vs0uDNFFpcK5KsK/Xu2EF+M4ds6\nREeni0Khyu4dXhYmKgiKgtshUiukycwlsV2ySymKwmUVkrPZMisrecrlGh6PiWDQgihuXu6XxaLj\nvvs6iUYLVCp17HbdFVVXr0QyWWoptl6uV5ZKJeL1mqnLOixWHfWH7uClH/4MbTHKr3xsCLkOdpeV\nwTv7qTcgKmlxOENYnAZyy8vMvvhLlk6MILtiBIMepsZUyJU68WiBeLxIf1iP3+bEHQ7g7Q4j5mPk\nZs6x/NoxLDv20/fRHqSaitlakJf/8zW8bW5eeOYcj93tIB3N0HXHDqqFAo1aje5HH8XW3k4lm8Xg\ndK5rXGdwOOh66CFKiQRKo0E5kyF7cedzRSE7P0+pv/+W2bXeTGfkc8CFpdf/Bn54o/9AqVRFpRLf\nVA9DkmRisSKKAk6nHqt1YzxVrVatK3EtqNzUZZno6dPUazXcAwPYwmGy0RRJQ4SqM8Lo6Qns0SLD\nH7gPbd2GXjFQLteRpCoul4Hl5fy6v2GxaDGVVjn3i1OY7SYyMzPoz7d5VjR6hvb0EM+L6PQK6XQG\nm9+HLJVJSWocWguyzYmsNtC9dxsGixGVw4dUiREbGUVtspAVHBQaeUoVBVEU6Oy0o9WqmZ3NoNOp\n6OiwX1WwSK3X037wIGunT1OKxd5IBg6F3uaVuXnJ5/P89Kc/5Vvf+tZmm7JpeDwe9u7dyxNPPMHH\nP/7xzTbnupmby2xQEl5aypFIlCiVZPKKmbbhQZZOj1OXa6i1Guw9fQR7w7QPrV+N29rbcfb0kJmd\npQFoHU40bh+iVUYbTyKKIuaObgzd2yg3NKQWapACxRGiodZiKEfpHe7i6H/NYvZ52bK7i54uG9W5\ncWqmIWqVBsuvHGZ1ZByzw8aWXbuYi9awm1XseqyH9p2DRGNFRkbipGdmUAppGg2YmC7hs/Wj0WUp\nJRKYzuf7KIrC0lKO+fkMigLhsI32dhuZjMTzz8+1Spo1GpHdu4PvmPLt1ZDleqthoV6vJhLZqKJ9\nJVZW8szNpVGpRAqFKsvL+daxtm/3smWLd50zoygK2YUF1k6eRC4WsbS1ceCBLWSiCbRCFEvIg73P\nz/hMgdnZRep1BbNZy8FddlJHDjE9MkcxmuXUL37B9v/xOJ09HqbGY2iNBmq1Orv2hjEXBfZ/8oNk\nFhbwDfThHeijLtcZOzqOJOgwD+zily9PUW2oySSLuPQygnMrkUc/iCClUKsEHN3d6CwWVl8/TnIt\nhSKqad+xlY79u1uKqxqDobUQXLkkfA7QqNWoVd5y79lNZzOdkV8A/3Dehle5gc5ILlfhzJkoS0s5\nNBoVfX1OBgY8l+1Zk0qV+OUvF4jHSy0p+DvvDF9VW6NRr7P4yivIxSKdDz7Y1DERBESNhvFXTpC0\nbaUa3I7PFUYAzuVsRDrsUGxgMmkRRYHp6RSK0iw38/tNaLVq3IYKay+/jv+ObmaefprE/BI1qYyr\nrxff1i189DcfIFszsHB6EvU2O+OvTxIvC/Q9eC+VmoBUqtNx4A7cAwMU43HEcp5KbIV6pULD0cbM\nyXm0Viv2+wdJpcqMjEzR1eVoZbCfO5fi/vs7r3ruRrebzvvvv21Le3/wgx/wwAMPvGeEzq7Epz71\nKX74wx/eFs5IuVzb8FpT2bOBxaIjW2xgDW9lMByhViyisVgJ7uptDfoXo9brCd91F67eXnKpPInV\nJMeeeY3k/DKegI3e/gG0oW7i6gDPPTdPvRqkx21nyyNBJp58ivLxk+wd3saWnb+NoNRR4nOUzr5C\n3Okgt7RIKVfC4Q2xeKJOYm65mfh49/1YdXUcZhVWm55UuowoCtQqVUqZZgdtUSViMmqolSrU5TfK\nX6en07z00kKreubcuRQHDrRTLFZbjgg0k/JHRmJEIrZ3RXzuAlNTSUZGYpTLdXw+E8PDvrccQl5Y\nyHDo0Dzlcg2Xy8DPfz6Nz2dqSfqfOLGG12vC42kq7k5MJMkmstiVFB4dJOZirC3EadvSw9AHHkIQ\nRXQ2G3PRBufOLQJNR2l2No2htErq+DS1WgOXz4fZUWDymRd5+Hf/J1v39aLS6RkYcDO0o53ppyeI\njYwgF4uo9XoElYrgvjuISpO4B7fw/z27zNLEEg0E2jt7Mbm1aOxuljMO7n1kPyaThnq1yth/P8HY\nyTmSiRL1usLEyAr3ac3037F1w3dh9HgQVCqU+htVUhqjEZ311tGI2syZZP78/+vAxtHiGlEUhWPH\nVlqJUADptIRGo6K/f6Ns/OhoojUZA2SzFU6cWMXnM7U6816KlEpRWFkhMztLXZYRRBGlXqdWklBC\nWxBEAVljoSIaqUkSpZk4hXiSoy+MYol0kCuLbNvmJxg0s7ZWYGEhx8CAC1UlR1vESXF1mfj8KmvL\neQTqGIsyi7MxbHt1DO0I4yTFyIuvo+SSREsCWx6+m6KkI6hT49k+gFqnQ2+3U4mvMDzso1yts5Bp\nirRFuty0BQysxppyyx0db6xCJKnGxETiTUXOBEG4YkXSrYyiKPz93/89f/3Xf73Zpmw6H/vYx/jy\nl79MNpvFZrv2pMGbgfZ2GzMz6XUN3Ox2PU6nAZ1OzdCQh5GROPGqDoPBRNhlw+O/8jOg0miwhEKM\nLy8w9cvnyKwmUGl15PNVZqfjGBsuXpwscerkGhZNhdmTVRL7wux54BHcujILL78MCnTu6GN5fhJq\nNRr1OtV8nvz8HN47O7C3B0nPL5FPpAn6jITarLj6+gAIBMxEIjbyaw5KiTgC0DUQwKoqoTKZMDid\nQLOT9uhofF0Zryw3GB2N4/FsnPDL5RqlkvyuOiOHDy+27MvlKhSLVR55pPstJdiOjSWQpBo6nYpM\npkKpJLO2VsDjMbX6amWzFSSpxosvzlOp1MktLXF0dJJwXxBHQyS1HGV+PsNjkS7atg8CMH90svU3\nlpfzxONFQrqmfbOzGXbs8NPW2870dJJEvEBFZyJg09HbZSMxOUn01Cm056+D1mxGLpUop5IMP/4A\nE7N59HotZpsOrcGA1QAemwrKeUwmG1ZnM1RWjMdZnY8SixXh/G0rFSpMnzqHt697g0aMJRTCu3Ur\nyclJauUyWpMJ3/AwJo/nBl2pd56bYVn7e8B/3aiDpdPlVmvsC9TrCufOpTY4I7VanbW1woZjZLMV\nCoXqlVUFBQGNyYTebqdRq2H0NrcCLcEgmt5OFs5Vz39MpBCNUawKiMUySqPO7NgSxZqOYNBKKGRh\n2zYfarVAV5cdh2IkM5EkNRUlnSw0S8qUBrlcmcTSDNYdK/g62wju2UPd7MGyNUVV0XBuUUJvUeHx\nmbFYmslKOrO5WdI8+iQPP9jPWsNLPFbAZNKSTBSRZfVlna2Lu/G+1zhy5AiFQoEHH3xws03ZdOx2\nO/fffz//9V//xW/8xm9stjnXRUeHjWzWz+RkElluKg3v3RtsJUTu2hWkrc3akjT3+02o1VeWQIdm\naDeTqSBcpFis06mJxcv4I1rKpTIkF5k4t4TDZSI1OUlP4DFUbgO5RJbUuVmsNh1SOt2sknA4qJXL\nNKpVDKLM9t0R0u02dBqB/l1dePvf2KnR6dTceWc7bSEz82cdGIQyTl0FdV0itH9/q7RTlhtIUnOX\nxGjUYDWCihoqg4jdvjFfzGjUXCKW9c5zqd5JPF4ikZAIBq/eO6XRUFpSC/W6gtGoQRDe2PECUKkE\njEYNExOJlmqqgkAqJZE/ucQD97bBUpRyuUGu1KCUTqPWaPD7LSwtNXNp4vFm12BMbpw+F+fOpZif\nz9LT42DXwV4cXW1YvG4G+l0UxpsCeKnpaar5PFqzGUtbG8mxMSzt7c1dNbMNx30eHv3QEOlkAVGW\naGTjTeXY4WArZ0dUq5EqSssRaaHWXXZuUqnVhPbtw9HV1XRGzOabphvvW+XdcEZ8wL9e8toq8Gng\nDuAx4LKa23/4h3+I3d5cuQ8MDLB//346zifxzJ1P1rn0Z6u1GfOsVBIA6HRNBySXizI3p219fnp6\nBlEUsNt1pFLSus8bDGpisWWyWfVl/57R6UQym1EPDmLM51l5/XVyWi0hu53hoAPjSo58PoosSQhK\ng55uN4vnRukasqJZ0bK4lEeS4hQKApWKBYNBjSQlQdNAazRibWujbNKjeB3YBRXlmog+4mJpdYVh\nqYLgMFBR11lKppk7uQZ1GdHYwGmJ4Hb3tuyt2O14t28nt7CAO6BnLZolGjXh7PGjVpIMDqpbD+6F\n849Eglf9ft/pnzeTb3/723z+85/flL4sNyOf+tSn+P73v3/LOyNqtYrdu4P09DhbiZEXr7xFUcDv\nt/B2InNarRoEEVdvH8n5Veq15mSXzcv0uBwYdatko3EUmpoZWquBSj5HWShg79+C0W7DGgzSyKXQ\nW61oTCakbBZFUaiVJapLi4TCYZw9PXh6ulBpNOcn4Ao6nRqjUcvgkI/BIR+lVIp6pYLebl+nMWEw\nNAXdREHBUl4jdmSUqlSmZ1cvoe0H2brVw9RUikqljsmkYedOP2bzrVF5IYpNDahkUqJWa6DTqejq\ncpBKSRgMzWsbCllxu42cOdMc48rlGoLehKDVUZPrIIioNGq23jPM2omTSOOvozPosLd30hWxMzLe\nDKUbDGr0Die+e+6iIKupFPLY29uw9m0h0N9OX5+bQixGenq6Kcvu81HN56nk8zTm5iilUgT37kOu\nyphMNXKjp9HbbPS43RQqEu49fXQf6Eerf8MRNHk8tA12sTj7hhq43e9G7wug1V7eURYE4ZbaCbmU\nzZTNDNF0Uj4CpC/zvnKhFfLbQVEUnn9+bl2YRqUSuOuuMP39bmKxAqOjCRKJEm63gVDIysmTa6TT\nzZI8nU7F/v1tlw3pXEylUGD12DFG/u3faMgylkAAs9/f3C47cC9LqxKlbAF9JUWq0KBaAfeuSQAA\nIABJREFUKFLPpckXq6wVdNQsfjo67ESjBSwWHcGghXq9QcABViXL7AsvMntyHFlRI6uM+Hbupqa1\n8OHP3InJYaecyTD38hFyFRWVGtisekyqMs7BrQgmO0ajGq1WjZROk5mfRy4UUJwhojmRotQgGLRg\nNms5cmSZdFpCrW42wtu/v23TBiRBELiWa34jmJqa4uDBg8zMzGCx3HwdLTeDcrlMW1sbx44dazmN\n7wSbed2vh/n5DCOnV1Fll0lMTGIyiAjOIK6hrTz9n0eZPtrs/qo3aPCHbNy9143NZaFYBX9/N91D\nbUizEywcPkxhdRWtxYJv+3YAsotL2PsG6LzrAAa7nViswMmT0aai6vnQUn+/a0OliSQ1e7iYzVpU\nKpFMRmLu1ASn/vNJ6rKMf6AbWWsjmpJx9/YS7nDgchmxWnXvegM1QRD4538+sW53JBg0v+UwTT5f\n4dVXl0gkSphMGlwuIwaDmny+WSDQ0eHAbNZy+vQa//qvZ4nHS1itOuqFHAGHwmCgjslhRY6vEF+M\nMjDgplqtI6hURO65h4zo5uzZWOveLJVqWEwqusJGfCEXOoMGt7tZ7ZNdXOTcz3+OqFajt9tZOXaM\n1NQUBpcLQ/cWchoPY8dn6B0MMry/G71GAEXB4HQil0o0ajXMfj/WtjbE83l4mViasZdPE52aRTRZ\nMbV1YPF72bMntKlVT9fD+fv1ssZvZpjmzwEv8B/nf/4AUL7yx98agiCwZ08QnU61LoG1u9tJLlfh\nxRcXSKWaiVuplEQiIXHgQDvJZIlarUEgYCEQeHPJdJ3ZTKNWa7ZvFkUElQpZrhOfX8W7I8+2bSGU\nhofJ10osja3y6hOvIgqwdTiEtRFn6M5OkrKacNh2fju1uSX4xBNr7Nrl566HHsU4uJv4app8SUFG\nYHibC72laZuUSlFcmsdgs1HXeJiczlDTWjBnV6mrm4p9w8N+Ojoc67brIpecxwc+0Oy3o1aLuFzG\nyyb5vhf41re+xRe+8IX3HZGL0Ov1/Pqv/zrf//73+cu//MvNNuddIRYrEIuV0GhE/H7zVfMnIhE7\ner2aeNxJZOdWPB4jC8tFpqaS7L+7l8LiImZrlWDIztbtXuqJVaxdu2nUjXi6nNSTy+RWVnB0daEx\nmZqVOIEAaxmFBY2Bs6ckZuvLbNsJZ85EWV5uhpTz+Srj43EkqUo2Wz1fgWJrJe5XKnVcLiO7d/up\nVhusTUwTj+YIdQVIlHRMHJlCEEUk0UomJ3PPPZvXyfXgwXZGR9cnsL5VQbZmKXAHZ87EOHMmSjpd\nxu83s3NnAK/3jZw2WW7Q1+dGFFPUag26tkfoiFhRajW0Opm5Y6cJek3Mz2dJJJoJwTXzGGL3btra\nLMzNZVldzePxmAi12xnaEdigeaKzWNCazc0dkWyW4O7deLZuQwz18/TT08yMr6CuCaz87CQqh5cP\n/9aDyLkcM88911JYjY2M4BseJrRnD42GQlYSkJ0dWHe3Y7frcbuN+P3mW9YReTM20xn5vXfqwBcq\nYi4t7V1bK7QckQukUhKlkszw8NuvnhA1mlYcNx4vsrSYw2Q3wWiCxZdSBAIWqpKG+TNTKBWJYlXh\n7Nkov/rJXThJow34+Pd/HyOVklhczGGz6dm5089LLy3gMrURFAuEvFrqDbCa1fj7wq3qFUGlQmM0\nEq/Z+eXTY1Q1FsYnp7F4XDz+sZ0Ui1UOH17AYtFedaAxGDSEQtcnJnSrMzc3x3/8x38wMTGx2abc\ndHz2s5/l0Ucf5Rvf+Abq26xy6lKmppK8+upSqwzY6TRwzz1hvN4rL058PvO6lvY2pwmHw0CpUOY3\nf+8u0surxOZWSY1PEL5jN6LNyZ2DHjRKlamfjVLJZmnU68RHRqgWCtRdHRx6NU4unkZjMlK3BYgm\nmyv9C1itOuJxiaNHl+noaC40XnttmUjETjpdRlGgWMyi0Yjk8xW0qLDb9dT1Fn55aAaxIeNymxFE\ngVqtwcREgp4e5zv0rV6dvj4XnZ32Vjnu221XEY0WOX062tpdmZ/PUirJPPpoN0ajttUF2GrVEQiY\nqdUaGAxqLFY9ZrMWo1JCGHCTXM2wtJgDwGjSEIuXwVRkba1ItVqns9NBX5+TbdsuP0/o7XYCO3ey\nevx48zrKMhVHJ0/+bJGjhxeoZnNY7Eb6B4dJVo3kCzVK09MtRwSaHeaTExM4u7qYjzV45ZXFluq3\nTqfirrvCN6Vy7o3i9j0zwGhcH264uAHeW3n9zXB0dZGZmyObzDMzk0atFhFtHn7xYozl1RKdnXZi\na1n2bOmllJdQEBBFFfFkmfawnfHxRGvwyGQqxGIl2tosuFwm5tZquHcMMNShRWk0MLhc6ypYTF4v\nxrYORp+eQ5YblBGo1qDSUDM2lmDrVg/JpEQsVty0Vc+twp/+6Z/yxS9+Ebf76qG59yJbt24lEonw\ns5/9jI985CObbc47hiTJnD4dXadHkkpJjI0lruqMXIparWpVqNX63Zx4aRy70Yt5m4FkRcv8ySgG\ng4ZOn0j9vAaEqFJh9vkoqdUsLWWQpCqCKGDy+lBptSQSxXXOiFarYmQkhl7/Ru7AwkKWel0hEDCT\nzTaPWyjITE8nObg9wtEnj2DXlUmnSpQKEia3C8358aRWa6AoyqY1u9RoVFesXHwzlpdzG5Jgk0mJ\nZFLCaNS2zulnP5taV+K9spLnD/7gDswmH6rELKOn3mj9oDcZsHd28k8/HgUE1GqREydWufPOML29\nLvT6yy/e3AMDmHw+Krkcsqjj1ddi5NJ5lHodnd2BrBKRRAtaq5VGQ6F8kSNygXq1SrlQYnQ033JE\noCmIOToaJxKx37a717fnWV0Bj8eEybT+RjKZNJdVJ3wrWNvaiNxzD1q3H6vPQ89d+0jowkxPxpFK\nZSqVOtl8jVhKxuFxIIrNB04UBRpGK9VqA5/PjCCAWt18aOLxEj5fU3ekUhextrVhC4c3lNJqDAZs\nfYOorQ50Vgs6qxWDxURDKpCJZ5raJzQVB9/nyhw7doznn3+eP/7jP95sU25aPve5z/Hd7353s814\nRymV5Mu2p08kStecz5LNVRlfqjOTNrCQaIZXFAVGTy5QSiQo5/OtCcns82Hv6MDs8aAxGHB0d2MJ\nNjuLWyy6DeNWrdaUdr+AKArkcpV1z7sgKHR0OFhKQN8Dd+MLWNm+r5tAXyc4gkjlOoIAXV2OW7br\n9uXMFoRWbgJmsxZJkqlU3nBERFFohkGyFUSViuC+fXTftQ932E9goIuBRx9gMqpiebnQOr6iwMxM\ninT6Im0WSaIYjyNd5FQYHA7skQgNrZl8WWDr3h70NhsqjbqpipqRcJhE7Hb9ZTvHa81mBL15nb0X\nkKRaq+DgduS23hm5FLfbyIEDbZw8GaVUkjEaNezY4cPtvradA0EQcHR2EhTtrJlXKCoyz/3sl0jF\nMiq1CnVPU0CoodZjsJoglcdoMdA14Mcd8mOcWcXjMSGKzVXM3FyGvj4XDoceUWx2FL0aLr+T7l0D\nyBoztbU0Rktze7i3y4qcTWK3u/D53tzRatTrlBIJ6tUqWosFg/0N7ZF0WmJ+PkM+X8XvNxMO295U\n0fZWoV6v88UvfpG/+Iu/wGx+66vf9xqf/OQn+epXv8ro6ChDm9Re/p0gmy2zsJAlk2nmGmi1qg1K\nrc3FwrVN1KIobFgMFGMxNBqJpEWFxe9n9dgx6rUaZp8PTyRCeHCY5eIkhaxEQ64hqlQEAma2bWvm\nUqytFXC5DOzeHaBcrpFKlSgUZNRqkaEh97pJrD1kpLY2z3MvzzFxeomOgTaG7tyCabnM0lIOi0XH\n8LCPvj7XNZ3fzUB7u42JieS66+bxmNaN6aGQlUjE3soH8flMBAIWVKrmdTU5bAT37KVgjiDXIV7T\nUK0msdm0reunUglNKf/zmzCpxRUmT82xNJ/EbNHTu7WNju29rTC62axFoxHROSw8+PgWTrw0TqVU\nZfdODz2uEpmZaXQ2G0aPh1IiAYqC1mIhsGsXNo8NjydJPl+lUqmRyTQXtqGQ5bbdFYH3mDMC0NXl\nJBSyUiw2u9feiInV4TAg5UsUVpfxeU3EYgoOtwVVOU9HyM2OvRFScRehwW4GBz30DQVQ63QMDzc4\nenQFlUrAZtNz8GAbAwNuGg2F3l7Xm4qPiaLAjh1+lqdXOTYVo1AR8AXsVKs1NDoTB/b53lTAqFap\nsPzaa6Snp5vOiNlMYNcu3P39pNMSzz4728qzGR9PMDjo5uDB8G2RRPV3f/d3aDQafvu3f3uzTbmp\n0ev1fOELX+Bv//Zv+Yd/+IfNNueGkMuVeeGFuZbg4exsmmDQSqVSb5aACuByGRkYuPbQncNhIBKx\nMToaR1GaTn85FadnfwApudhsZrdvH1qzGXd/PxqrldiZM2z1y4yk05QSKcK7B9lzZwS324jP11wx\nq9XNhcq//dsI586lUKlE+vvdmExavF4N0WiR9nYbPn2BhZVJ+nu9jJ2cZXFinkqxyLaH7mD7dh+7\ndgVu+RBuIGDh7rsjjIzEKBZlfD4T27Z51zUD7OpyMDDgJpcrIwhNB/FC2e8FenqcKIrC6moBtVrg\nwIF2crkq8XgRURTwes10dztxOPRUCgUOPzPCa4fGWyXdY2dX+FWjifBAGGg25du+3cfRo8s0klH2\nbrfj9NnZ2mNESa9x9sWnMPl8WAIBXL29WIJBjF5vayG4Y0eATKbMyy8vks9XiUTsKIrC8eMr7N0b\numV3sq7Ge84ZgaZo0I1c3Vuteg7udnHqlQQf+8Q2jr98juzyKupSmeHBLu6+O4yigFotrlsp9fW5\ncTgMJJNSK3vfZHp7ZbUej4mONgP33t2GgEC1XCa6tES0bEZ7b+eb/n52YYHE2FhzHxKo5vOsHj+O\nyedjbk5al/CrKE156d5e17qkvSvRaCjUavWbMulqfn6eb37zmxw+fPh9XZG3wOc//3n6+/v5q7/6\nKzy3sJbBBZaX8+uUl8vlOolEiYMH26jXFdRqEa/XdN0iYLt2BTCZtMzOplFRZ1ugA2t5lWqt1uwd\nUi5Tr1YxeDwkx8dJjo3RKJXo1zWQVQqeioBebEeWdWg0qta4pdOJ9PQ4W31c6vVmD5oDB9rYv78N\nrVbN3AsvoFHqdHsVPvyxHUyNRZHlGopcZWjIc8s7Ihfo6LDT3m5FlhuX7Ujs85m5774Oxsbi5HIV\n2tqsDAy4141LarVI0FhCXZ2klpVwDAzx4P1h5haavW5sNj179gQxmbQsTsUYPTHfckQAEitpxs8u\nt5wRgP5+NzaLhilTFqFexaqWULIFVo8fJ7+ygt5moxiNUoxG0VnfUNiF5i7+tm2+1nzRaCjkcs1c\noGSyhNt9+ylg33yzxC2KzQhbIirio4fZ66xT9ZoQ61V8xQnqxa4rquF5PKZrzlm5wNJKkenjk+te\nK2hEauLVB1JZkpDOtzKv5nLUq01Fw2qhQCWXI5/fGCuvVusbEsYux8JChtHRBPl8hUDAwtCQZ12M\nezOp1Wp85jOf4Stf+Qr9/f2bbc4tgcfj4eMf/zjf/e53+frXv77Z5lw3l1MazuUqiKJIT8/1KVdW\nSyVq5XIzj8ugYccO//kGdApzL7xAOpZd93mjx4NGrye3tES1UCA+OkqtXMbcFmZG4+Ho/3kVUyBE\nd6+bwUE3RqMWSaqxsrJRPTqTqbQmWfV5AbRqYo1+t43OB9ppqLV07+3EEbh1epa8FVQq8ar5cW1t\nVtramomjl9vVzS4sMHfoUCupWHrpEB27djHw2BDVah27Xd8q563VBcrSxvyiYmnjuOgP2pD9auKj\nk8iNBmq3m1I8jtHtxnqh27kgkF9b49IMklisSDzeDC25XAZkucGRI0skEhJ79gTo63PdlAu9a+X2\nOZNNxuTzkZyaYu3EiVazIq3VSskwQH5l5ZqleavFInKphNZsXqeueDEdg+0sjC9SSqZQGnXUej1t\nQ93YXVfWzEhOThI9c4bUuXPIxSK+4WHkUomaJKHSalFrtfj9TSnli/P3zGYtVuvVnZy1tTyHDs23\n4rjpdJl0WuKRR7pvinyT//W//hcGg4GvfOUrm23KLcWXv/xl7r33Xv7oj/7ols+x8XqNqFTCun41\nRqMGq/XaBf+URoP42Bjx0VHqlQo6m43g7t1YgkEacpVKLod7YIB6pUJ+eRkEAaPbjX/7dgRBQGe1\nImUy1Mpl1AYDZUcXh56dxBquYq+oyeRkyuUad94ZxmjUYDRq1iXdCgLres44Ojtbz3clmwWyuHp6\nsHlv3RyR6+VK4eXU9HTLEblAcnycns5OXIH135cr6MTfHWLh7EzrNY1BR+dg27rPlbNZ6rKMa2AA\nKZulsLKCKIo4e3owejysHj9OJZtF73DQef/9G2zyeEyMjycwGjVkMmUOHZpHoxFxOIy8+uoyjQab\n0mX5nWLzZ4bbBK3JhCUUwhoKUcnn0ZnNGL1e1Ho9DXmjF/1mKIpCcmKC6Jkz1CQJjcmEf+dOnF1d\nGz67ZaufRGInSzNRanINp9fOgfu6NwjzXKCwtsbSq69SK5dR6XRkZmdZPHyY8N13UyuXsXd2YvR4\niDgU+vtdzM5mWqqOe/YE3zQPZXExtyER8IKX/2Z5MO80Tz/9NP/8z//M8ePH3w/PvE0GBgZ44IEH\n+M53vsNXv/rVzTbnugiFrAwNXZBDr51PZvdf1/Z3bnmZ5aNHW8+7XCqx8PLLBHfvZu3ECaqFAiqd\nDld/P77t21EUBaPL1VpkuPr6WD5yBGiW7p+azWJwe2nIMkqj6TTNz2fZsqWM293MjTh1Kkq5XEOl\nEohEmuGKC5i8XjoffJDU1BSVfB5bezuOri5E1bWV0d7O1Msb9TYb9TqN2saqFqvVwAP/4w4O6Y1E\nZ5cx2iwM7eujb0uzlUZdllk7dYrU1BQNWUbvdBLYsQO2bwdBwBIKcepf/oVyuik8LksSyakpfMPD\nGF1vOD7hsJWODjvFYpVTp6KtXBezWUujoTA1lWRg4PbZHbk9zuImwRoM4t22jWr+jUZ9Kp0Ok+/t\ne6+FtTWWjhxpeeu1cpnlV19Fb7Otu2GhmSj38CM9xGKBVsnf1eLBhWiU2vmHT2s04urvR0ql0Nls\neLdtw9bejqhSoVPBnXc2ZfSr1TpWq+4tdfRsNDaGdxoNZdMlv6empvjMZz7Dj370I3zXcE3eB77+\n9a9z77338vu///u3tFqtRqPijjva6O52UC43He3rDSPmlpc3LDwKq6skxsebFRM0n+O1Eyfofvhh\nbG3rV9KWQICBX/kVDC4XGqMR67yB3GwMpdFAY2o+z4qi0Dhftr99uw+/v6kroter8flMG3YeLX4/\nlrfTdOc9ir2zk9zyMhdvAxtcLgyuy+8i9fb78AVsZLMVNBoRt9vUqnTJzM4SPXmyJa9QWFlhpV6n\n57HHUOt0SIkElkAAjcGAqFZjcDoRBAEpmVw3thuNWu65J8Lqap7l5fz5HKY3du6aY+o78W1sDu87\nIzcQg9NJ2/79rVWQ2mDAt20b5msYDIqx2IZtw2qhsOGGvYDJpKWz861tMYuXKGlqTSa0ZjOOzk4c\nneuTXlUq8S0lq15MKGRlbCyxLrfE5TJuas5IOp3mQx/6EH/xF3/Bfffdt2l23OoMDg7y0EMP8Z3v\nfIc/+ZM/2WxzrosLVRI37HiXUaitSdKG57ghy+TX1rBe4owAOHt7URSFzNwcXYKa1aUUllBba/fE\n7ze3OrYKgrBBAfZ9rg1HVxeVfJ709HSzE7vLRXDv3lap7uWwWvVYrRsXZ9mFhZYjcgEplUJKp7H4\n/ai0WoxuN8aLRRYFAeEyO1Y6nZqODge7dgU4cya27r2ODvtNEfa+Udw+Z3KT4OjsxBIIUCkU0BgM\nG8TK3ioq7WUcC0FA1Fy/dLslGERns52PIzcxejyYvN7rPjZAKGRh//42RkfjSJKMw6FvVRVsBrIs\n84lPfIIPfOAD/O7v/u6m2HA78fWvf5177rmHz372s++r1l6Erb2d5Pg4cqnUes0aDm/oAg9XeL5p\nOhju/n6sbW14imXMnX3MzmVpNBQCAQs7d/pvy7LOzUat09G2bx/u/v5maMVuv6xz+VZQ6Tbm1Ikq\nVSs8ZvL70dnt66TgjS7XVcff7dt9NBoKCwtZBEEgErGxdeuNGa9vFjbzrv6fwO8AOuAfgP/3kvev\nqWvv7YKUyTDz9NOtuCI0k2S7Hnromh2ci8mvrREfHaWcSmH2+3EPDKz31G8A5XKNSqXW6iD6ZrwT\n3VsVReFzn/scS0tL/PSnP73t+6u8W/zBH/wBsizfEGXWW7Vr7+XILS0RHxujksthDYVwdHezcuwY\nucXF1me0Fgvdjzxy2R3Oy1EoVGk0GlgsutvKEbmdrvvF5JaWmH3uuVYoHMDZ10fHPfcgnM9TK0Sj\nxEdHmzvdXi+ewUFMb6FkPperIAhcd8n5ZnG1rr2beWergRpNSfqjwJ5L3n9POyMAxXi8FW82+/24\n+/sxOG9sQ6tGvX7TJLS9E4PT1772NZ555hmee+65W74C5GYinU4zMDDAU089xfDw8HUd63aclC5+\nrsrZLMmJCXLLyxicTtz9/dcUur3duB2v+wWyCwskJiaQi0XsHR04e3svu4i8mcbfd4Ob1Rm5gAH4\nOXDvJa+/552R9xo3enD69re/zfe+9z1eeuml98MJ7wD/+I//yPe+9z1eeeUVNNcRPrydJ6X3uTLv\nX/f3HjezM/J14LPAnwH/55L33rPOSDJZ4ty5FKmUhN/flCF+M22P24EbOTj9y7/8C3/2Z3/GSy+9\nRDgcfvNfeJ+3jaIoPP744+zbt49vfvOb13yc9yelK5NINMeCdFoiELDQ3e24ZbfoL+X9635lisUq\n09NpVlbyWK06enocNzTZerPYbGfEB/zrJa+tAZ86/28t8CzwAeBiSUHlS1/6EvbzWv0DAwPs37+f\njo4OAObm5gBuu58dDj/PPDPDykozxqzTuWlvt9LdLaLVqjbdvnfy587OzhsyOP34xz/mi1/8Is8/\n/zyDg4PXfbz3uTKrq6vs3r2bf/qnf+Lxxx+/pmO8PyldnkxG4plnZte1ZAiHbdx/f8dtUUXx/nW/\nPLVanRdemGdm5o18QatVy0MPdV9zU9ebhc12Rq6EFqiet+EF4ENA/qL335M7I6OjcV56aWHdayqV\nwMMPdxMO2zbJqneHGzE4XXBEfvGLX1x3LsP7vDVeeeUVPvrRj/LEE0+wd+/et/37709Kl2dkJMbh\nw4vrXlOpBB55pJv29lt/LHj/ul+e1dU8P//5OWR5fXnwnj0Bdu0KbpJVN4arOSObKUH5J8DzwGHg\n31nviLxnKZc3qrXW6wqy/Ob9YN7r/OhHP3rfEdkEDhw4wPe//30++MEP8tRTT222ObcNkrRe6l2n\nUyEIwoZJ6n1uL2S5Qa228Rpfqmp9u7GZe33fPP/fbcPaWoFotIBGoyIQeEOc6O3g9ZrRaMR1A47J\npMFuf3Pl0/cqiqLw7W9/m7/5m7/hqaeeYvv27Ztt0nuOD3/4w/z4xz/m05/+NJ/4xCf48z//c5w3\nuPLrvYbP1xwLTCYtarVAJlPGZtP//+y9aYwc53nv++uu3vdtept9575TokSRErVQsrM6RozEH2Ij\nyLEdI7GViyBGhMQJnFwguQFu7HsAx3EQGIgNO+fmHOUYtnUdWZaolaS4DoecjbP0LL3v+1JVXfdD\nk0MOh6RIihKH5PwAAepiV3VNv13v+7zP8n8wGu//EM3DRipVIRZr7bd9PstNm6M6nQZsNj35/BWx\nPEFQEQzev4rHt8K9TmC9GfdVmGZqKsWxY2FqtZb16nDoefLJnttWR2w2FUZH44yNJanVWj0zdu5s\ndWh80LkTt221WuXFF1/k3Xff5ZVXXllPVr3HpFIpXnrpJV5++WV+53d+h89+9rPs27fvpn2A1t31\n10eWm0xMpDhzJsbbb88D0NlpZ+tWL0891XNLrRnWMg/LuC8s5Hj77QXK5Zany2zWcuBAF11djhue\nEwrlOHkyTLHYQKcTGBpys3OnH43m/i4DXqs5Ix/EfWOMVKsir7xykXS6uuL44KCLQ4d6b3DWzcnn\na1QqIlarHovl3iiXftzc7uR0/Phx/uAP/oAtW7bwne98B7v9/o+jPyiEQiF+8IMf8KMf/YhkMsnh\nw4d54YUXOHz4MN5rlCYflkXpTshkqrz88jjZbBWDQbOcuLp3b5CdO69tOn9/8TCMuyQ1+a//miYc\nXpmF0N5u5fnnB5b72VyPSqWx3HfoTrzsa5G1mjPywFCpiCtaeV8mk6let2ncrWC3GwgErA+NIXKr\nKIrC22+/zWc+8xk+/elP87WvfY0f/vCH64bIGqOnp4e/+Iu/4MKFC5w4cYKDBw/y8ssvMzQ0xN69\ne/mP//iPe32L9wWViohK1ZoPrq6gyWZXd5ldZ+1Rr0sUi41Vx4vFxrIX/UaYTDoCAesDY4h8EOvB\nx7uAxaLDatWtSjDy+Syo1WvZ+bR2kWWZcDjM/Pw8oVCIUCjE+Pg4b7zxBg6Hgy9+8Yt873vfw3wX\npPHX+Wjp7u7mC1/4Al/4whdoNBocPXp0XQ33FrFYdJhM2lULWlvb/V3i+bBgNGpxOg0UCiubJTqd\n67k/17KWV8r7JkwDrRjf0aOLFIsNVKrWZHHgQDdu9/qkcatcdtuWy2VcLhdtbW10d3fT09NDT08P\nAwMDPPXUU/T23lnoa521ycPgrv8wXLiQ4PTpKNWqhFqtoqPDxv79nfe9+NnDMu7RaJF33llY9mY5\nnQaeeKKLQODBTki9HjcL06xZ0+zJJ598oJpCrfPBXDvm4XCYcDjMe++9dw/vap2PmvVn/eFkfdwf\nSvI3+oe1/Eu4rzwjt0opkSB05Mhy+2hBrye4Zw/ezZvv8Z3dex6WndLtED1zhtjZszTFVk6SyeOh\n56mn7nrDxHvJ+rg/nDwo4y6LIovvvktmehql2QSVCnt3N90HDqA1Phz5HrfKWk1uTplyAAAgAElE\nQVRg3UxL8Owt4MP3Ib9PSE9OLhsiAHK9TuL8eRql0k3OWudhpJrLkRofXzZEACqpFJmZmXt4V+us\ns87VlGIxsrOzLUMEQFHIz89Tikbv7Y3dZ9xLY2QS2A8cBPTAznt4Lx8b1XR61TGpVkOsVq/z7nUe\nZqRKBam2umqimsncg7tZZ511rodYLtOUrqmMURTqhcK9uaH7lHuZM3L16BmB3I3e+CBhDQYpJxIr\njuksFnS3UV3QlCTyCwvkQiFUGg3O3l7snZ13+1bX+ZgpRqNkZ2eRqlXsXV0Y29rQms3U8yvDrBa/\n/x7d4TrrrHMtersdQadDblypeFIJAgan846u1yiVyM7NUYrFMDqdOPv6Hqiw7I241wmsvw78n8BJ\nYO4e38vHgmtoiFI8TjkeR2k20VmtBHbuvK3YYnJsjPCJEyhyq19Nbm6O7oMHca5Xmdy3FCIRQq+/\njlipAJCdmyOwezf+HTuInDyJWC6jEgSswSDOvr57fLfr3A3m5+d59913CQaD68mc9zFmr5e2zZtJ\njo0h1+uotVrcQ0NYg7ff1E6q11l4913y8y3F3dzcHPmFBXqfeQbDA66ltFZ+/f8P8BPgF1cdU776\n1a/icLQkczds2MC+ffvWVMv7O30tVqtMjozQlGUGN27E6HLd8vlBr5eLP/0pS/E4AB59q7yvYrXS\nsW/fctnrWvp7b/V1b2/vA5HQdieE3nyT9OTkimNas5mhX/kVmrJMNZtFo9Nh9vnQ6O/vks5reVAS\nGW+VRqPBSy+9xPe+9z2efvppJicncTqdvPzyy7jdD37bh8s8SOPelGXKySSNYhGt2YzF60Wtuf29\nfn5xkZlXX13eaF6m64knaNu06W7d7j1jrcrB64DLfq2/BY4CP7vq3x/IapoPSzWb5eIrryCWyyuO\nG10uhn/zNxHu4AFYKzxIk9PtMvWzn1EMh1ccE/R6Bl54AYvPd4/u6uPhYRr3er3Opz71KQC+//3v\n43a7aTab/Mmf/Alnz57ltddeQ6vV3uO7/Hh4mMb9VsnMzDD3y1+uOh7YvZvg7t334I7uLmu1muYF\n4AjwJtAB/H/38F7WPIqioCgKepsN03V2T7bOzvvaEHnYsV+nwZ/ebsfguHEzrQ9D85qd1zofPYqi\n8LnPfQ6j0ciPf/zjZS+IWq3mH//xH9Hr9Xzzm9+8x3e5zt1mucrmFjA4HGivUZVWazSYr+nn9CCy\nVsI01+OB84wUCnWWlgpUqyJtbSaCQdtNGyVBq9ImPTVFdnYWlUaDZ3gYo9PJ4nvvUUmnUanVWINB\nOh59FL3N9jH9JR8N98NOqdlUiESKJBIl9HoNweDd6R3RqFSInDhBfn6epixjsNvp2LfvjuLON6MY\niZAcH6eWy2ENBPBs3IjxDhPt7hb3w7jfDb71rW/xb//2b7z77rsYDKs77k5PT7Nv3z5GR0cJBO7v\nJni3wr0Yd0VpPb/xeAmdTqC93faR9X4phMMkx8ep5/PY2tvxbNx4S3kfqclJYmfOIFYqCHo9ng0b\n8O/YgVq4vzv2wtoN03wQD5QxkstVeeONEMlkK0FRo1GzbZuXPXvab3re4rFjJEZH4dJ3odZo6Dpw\nAHtXF9VMBpVajcntvqP45FrjfliURkfjnDwZQRRbux2Xy8BTT/Xg8Xz4HjlKs0kllaIpSRiczrsu\nmFRJpZh59dUVmjaWQIC+Z5+9p+JM98O4f1jGx8c5cOAA77//Pn03SUD+6le/ik6n4x/+4R8+xru7\nN9yLcb9wIcGJExEajZZn0OHQ89RTvXi9d7fHVSkeZ/a111aE020dHfQ+88wt5XzVi0XqhQJao/GB\nqqRZq2Gah4q5udyyIQKt1tJTUxlSsSyZmRliIyPkFxeRrxK4quXz5Obmlg0RaJX1piYnEXQ6rIEA\nFp/vgTBE7geKxToXLiSXDRGvS4dTVWDu2Cmyc3NI9foHXOHmqNRqzF4v1mDwIzEOCuHwKnG9cjxO\nJZW665+1zhUUReEP//AP+au/+qubGiIAf/qnf8q//uu/kr6OHtE6H45SqcH584llQwQgl6szOXn3\nf/+FpaVVeX3FaPS6z1qjVCJ98SLxc+cohMMozSZ6qxVbe/sDZYh8EOur2IdAURQqqRRyvY7ebkdv\nvXHjo+u1/HaaFRbeehMlnwRFQa3R0LZ5M+1796JSq1GazevGGxVJahko15QCSo0GiiyvSxB/RFQq\nIvV6Sx7H49KhCo8zdvYCFpOAEGuV3Hbu3/+RVbvU8nkaxSIao/G6eUMfxNWG7mUURVmVuX8jmrKM\nVK+jNRhQqdf3MbfKj3/8Y3K5HF/+8pc/8L2dnZ38xm/8Bt/97nf58z//84/h7h4eqlWRWk1adTyd\nvnPByaYktbyZsozR5Vqee6/7rDWbq561Wj7P/JtvUorHQVEQdDp827cT2Hl3NUCXn12jcc2WkK8b\nIzehXG4QiRSpVETcbhN+v2U5x0NqNIieOkVmehq50UBnsRDcvRvXwMB1r+XzmZmevqKcqdWqMYpZ\nKtEwRmMre74pSaQmJnD09GDx+TDY7Vh8PrKzs1cupFLh6O1dsRhc9pakJydpShK2jg6827aht1hQ\nmk2keh2NXn9PFhCp0aAcjyNVq+hsNixe7327kNlsesxmLY2GjE1dYeLcGLIoYbebUZpNsrOzOHp7\nb1vvRaxWKcfjyKLYmtBMplXjlRwbIzYyglipoNHr8WzceNtxZGsgQPIacSa9zYbB5SKTqRKLlZDl\nJj6fGa93pQhffmGB+PnzNIpFjE4n3m3bsK6Lr30giqLwjW98g7/+679GuMWx+vKXv8xnPvMZ/uzP\n/uyWz1nng7FYdFiteur1yorjweDqTeTlub9cFnG7jQQC1lX5ffVSifCxYxSWllCaTQxOJx2PPYbV\n78fW3r6qlYPB6Vz2dEj1OqhU5JeWKMViy++RGw2SY2M4uruX39uUJErxOI1SCZ3Fctve8Nz8/HLL\nEaPLhW/btjVZobdujNyAQqHOW2+FiEZLKErLeNi61cvu3UFUKhXFpSWSFy4sey7q+TzhEycweTzX\nrYDo6XEQDhdYXCwgywp2uwG7NkPTuLKMT67XkS5Jw6vUagJ79qAoCuVEApVajaO3F8/w8IpzMjMz\nLB07tmx113I5mrKMs7+f5PnzVLNZDA4Hvq1b73pC5M2QajUWjx4lNzdHU5IQ9Hq8W7YQ2LVrzVrn\nN8No1LJrV4BTp6LI1RiyKOFwGvD6WvFmpdmkUSze1jXrhQLzb79NLZtFazaTnZlBYzTiHhzEu3Ur\n1kCAcjJJ9PTpZUE0sVIhPjKC2eu9LeVdazBIx2OPET93DqlWQ2+zEdi1i1xFzRtvTFMstowUk0nL\n44930tfXSmytpFLMv/32stu5ns9TKxToP3wYw32eNP1R8/Of/xxJkvj1X//1Wz5n7969uN1uXn31\nVT7xiU98hHf3cGE0atm508+xY0sUiw3UahV+v5mhoZWhkFKpzptvzhOJFJfn/i1bvOzZE1wxb6Un\nJlZsFCvJJJGTJxl44QVs7e20P/IIybExpFoNg91OYPdu1Fot0TNnlvtLqQUBk8ezInwj1WqIlQpG\nlwtZFImcPElqYoKmKC4LqrU/+ugtVU+WEgkW3n57ee6o5/PULz27N/Pk3wvWjZEbsLCQIxK5El8X\nxSbj4ym6ux20tZkpxmKrQiiNYpFaoXBdY8Rs1vHkkz0kEmUaDRmHQw9pgVBsdkVOiMZoRGsyLb82\nOhz0PfMMtXy+JTFssxGNFllcTFOtinR02GBxcYX7r9GQKWdyZGZepXlpF1zP56nlcvQfPvyxVU8U\nlpbITE8v/31yvU7ywgVsnZ1Y7tNStb4+Fw6HkcKSDm08iEmvoikrFAo1TGY9+htky5fLDRSltTu7\nmszMDMVwGJPXy8Lbb1OOx9EYjSiyTDWXY+DwYWr5/PJkcpmmJFFOJm/JGCkW6ywuFsjlang8Hrqe\n+wSCXEdntSJotRz/xeyyIQKtcNToaJyODis6nYZiNLoq/l3LZqmmUuvGyAfwz//8z3zlK19BfZve\nwC996Ut85zvfWTdG7jK9vU4cDgPZbBVBUOP1mpc905dZXCwQj5dxOo2o1SpAIRotkk5XsNsNVKsi\nJpOW/OIi0MpFyWSqSJJMWw3aM1ks3ja8mzfj6OlZNvwFrZbo6dNETp1anhOL0Si2jg60ZvPyM6Y1\nGtFeag9SjseXDRGApiiSnpzE3tV1S89+KRpdNXdUMxkqqdS6MXK/kMmszvGo1aTlmKPOvDr7Wq3V\nItxEsEiv19DZeWWxEk2dOHt7yc3Po8gygl5P26ZNmNrakCSZaLREqdTAatXj99vQaARmZzO89toc\n4+NJ8vk6Xq+JQ9s02GQVAjKRSJF0tkGfykR+YRFP0LX8sNXzecqJxMdmjFQzmRWGFlyy+ksluE+N\nEQCXy4jd2oO6uJ0Lb55iYS4Ngobe3ZvJy2auNkWrVZHR0QRzc1kUBbq77Wzb5sNsbhklpVgMtVaL\nVKlQvqSqKzcaSPU69VyOfCRGTVITT1Yx6FTYrHpU6tbuTHeV0XojyuUGb701Tzjc8tioVNDf7+KJ\nJzrR6DTU6xL5/OrfeqnUoFKR0OluMEVc0r1Z58bEYjHefPNNvv/979/2ub/7u7/L1772NRYXF+lc\n7zt1V3E6jTcs500myywu5vH7LaRSZU6ditJsKuzY4WdhocDi4iKVikh7uxVbU0s+X2NyMk390rpQ\naeoJxGsMX5redGbz8loh1Wotj8hVz43R6aQcj+PZsAGxXEZjMODduhXjpQ1tvVBYEeqB1kaklss9\ncP3I1o2RG+DxrJ7oTSbt8iJi7+oic/HilQ6qKhWOnh7MbW23/Blao5GuAwdwDw0hViroL+WISFKT\nY8eWuHgxgyQ10WjUDA+72b07wPnzSWZmMsuVObFYmXGbkc12A/VUgvn5PBqtFq3ZTCInU27kGN7g\nueJe/BgXEL3d3lr9rvpMQadD8wAk2ApaLYb+rRjTOnq6iwhGMwXFzDtHI1jsJtzu1u9nbCzJyEhs\n+SsYHU2gUsG+fa2JxOTxUIrFVizsglaLoNNRr0uEQjnSkoWKYGd2bIaODhudnXZMXi+WWwi5LS0V\niESuhI4UBUKhHIODLjo77eh0Am63cVWCtc2mx2JpGbEWv3/Fzg1a8W+Tx3NnX95Dwg9/+EM+9alP\nYb2DHajZbOazn/0s//Iv/8I3vvGNj+Du1rmWyckU778fZmEhz9mzMaxWHRs3tjEyEqdYbPDTn07i\n97fG8uLFDFu7g6TzF5cNEUGrwbtxA5NzFQLdNWy2lVoyiqKsmn81BgNGtxv/rl3ItRoGp3OFwJnO\nYkElCCs83ypBuGWvhsXvR2syrfCOrNVn96E3RhoNiaWlloiV1aqno8OG3W6gu9vO0pJ9OcfDYNCw\ndasPl6u1kBqdTnqefprc7Cz1QgFLIICjp+e2y2w1ev0q9c3oUo6pqTSy3PrhSlKTyck07e1W8vna\nioVDkpqkKxqcj2wmlC5h96pwdnei6xxEcy5EPlegXBaxWHTorFZMt2EsfVhsHR3YOztb7kxFQSUI\nuIaGHhg1wWi8wsW4GkFwIleaKEqrtDedruJ2m6jXJWZns8vzj0rVCtNkMlXK5QZmsw5Xfz+FxUVQ\nqzF5PC0xskulvfmqmkZDTzhZJ7hhFwPBduqZFM4t/QQ2DV03RKIoLZdyOFxErxfI5eqr7E9Jai57\n+FQqFVu2eMlma2QyVRSlZYjs2OFHo2klT5rb2uh64gni5861kuCcTnzbtz/wjbs+LP/5n//JSy+9\ndMfnf+lLX+K5557jL//yLx8aifh7Rbnc4OzZGNWqhF4vUKtJLC4WCAZt9PU5UakgEinR1mZBEFTI\nskKqYaXt0QPo/PPIYgNbRyd57JSyVWo1mWsfT63RiKO3l9iZMyuOu4eGcF7q0QUr1ySPS4+pvYvK\n0jxKs4lKrcbZ24vlFkXxLD4fnfv3r0xg3b59zYVo4N4aI48C/zfQBE4A/8fHfQPNpsKJExHGx1M0\nm60Z2+s18dRTvTgcBp58sodYrEStJuFwGFYJ45hcLky3WQcuSU0WFvKEQjk0GhW9vU46OmwrEqMK\nhcayIXL1eZLUxOezYDZr6QwacRplapIaq8eOYvfifeJZdNkKVUlgKirTuf8JihfHMNoFrD43vm3b\nMLpcFAp1dDoBg+HGw59Mlslkquh0An6/ZVVc9VbQmc10HTxIKRKhXixidLmwBoMPhJIgtMJuitIa\nm8uoVK2Et8s0GjKNhozLZcRo1LCwkCeVqtDb62Rw0IXR5aLv2WcpxeNY/X6ys7MoioLB4UBj62Jk\nromiNAknRPT6NozBALquLoyOKzNdLZdDFkUMDgezoTzvvbdEvS6jVqvwes0UCnVstivlxgaDBrv9\nymuv18Lhw/0kEmWaTYW2NhMOx0rvlaO7G2t7O3KthsZovOEYNhoSsViZSkXEbtfj81kuxd0fLhKJ\nBKOjozz99NN3fI3NmzczMDDAT37yE37rt37rLt7dOtcSjZYYG2uFvq1WHT09DrRaAVGU2bHDT6Mh\no9GoVqgp5HI1tG1O0iYBo1HDfEFElht4PKYVz5eiKJSSKfL5Goq7C1NfFTEZRn2pIMG7Zcvye5tN\nhZMnI4yNtdYklQoGe7sZ3t8DtRIGux1re/ttyQc4e3uxdXYi12poTaY1W814L42REHCIVrO8HwBb\ngPO3enI6XaFSETEYNHg8pjuqzkgmy8zMZJcNEYBEosLCQg6Hw49er6G7++72BhkbS3LiRHjZ2Jib\ny3HwYDe9vVfyOKxW3bL1fRlBUKHTCezc6UNVSnH+1bdIRNO426xs6N+L096F3W7g4lwRWW7tepdE\nPVufeZYtww60JhP5QoPXX58jkSij1aoZ6nfgMxTJz86gs1pxDw5iDQSYmEhx4kSYalVCpWqVvj3x\nROv616NRKiFeStLS6FYmaOpMphuWO9/vBAIW3G7jsk6BwaCht9OIQ1cjnSgwOZ1HpVIxNZVix44A\nb70VolwW6ey08+67i1SrErt2BdDbbC0p/8FBnFu2k43nkFRasskahUIEna618F82MPT61mup0SB2\n9izZ6WmakoTGYqNg6V3+PTebCrLcpK/LzMLEPIVEGnewjV1Pb6GtbaVhbbXqsVpvPsEJGg2CxXLD\nf69WRY4eXWJuLossK+h0Alu3etm1K3BfVk99GH7yk5/w/PPPo/+QmjNf+tKX+Kd/+qd1Y+QjJJks\nc/FimnJZJJWqkE5XMBg0eL1mhofdOJ0GrFY9yWSFXK6GyaRFrxcolUR6e3Vks1XGx0v4/RY6Omzs\n2RNAr28trY1ymaX33+f8uxdIxIs4OoIE9j6CdbCLrk4TlViUuddfx+Tx4BocpCzrmJ7OotGocdkE\ntEqdYqFKNhhg087BO/4bP+jZXQvcS2MkftX/i8BqNZrroCgKo6MJRkfjy8bIxo0edu4MIAi3Z/HV\n6/KyiNXV5PNXlDRTqQrhcIF6XcLvt9Debrvtz7lMtSoSi5UABVkUUQsa6nWZsbEk3d0OlKaMXKvh\n91vo73cxM5NBlhUEQcXAgAu328j0RIzyxFkMUpFAm442j4C0MI5jdx/Ovj4kSWFyMoUkNenqsrNx\nkxeDWYcoyhw/Hl7+zhRF4dzxCfr9Avp0DCUcprC4SODJw5w9G6dalS593xAOF5mdzbJz50rXYFOW\nSV64QHJ8HLnRQG+zEdy9G1tHxx19P2sdWRRRFGXZ4LLbW96zqak05XIDnzaHuHiKeMnKqVkViZJA\n14Yunnmmj+PHlyiVRHp6HAQCFppNhampNAP9Tow6BY1eTzxR5o03Qpw6FaFQqHPwYDcqFRQKNSwW\nPY2GTH+/k2KxpYGgzYfJnDmJ0dh6jIvpPAUpSfeOg8yEWiXpehoI2Ske22RF2dqDViViL00jVtqu\nm4T9YVhaKjAzk1kOCzUaMhcuJOnosOHzre2J8G7zi1/84q5Uwnz605/mxRdf5OLFiwwO3vlitM6N\nmZvLkU5X2bHDz7vvLlAsNhBFmT17gnR22i9VoiUxGjWEwwUqlQYbN7ZhMqgJL+V49NEOFEVBqxXo\n67HS5m2FQAqFGnPvnGDyzeNMT2daBky2hFqjIdKxBTkTpzl/DhSFYjhMMRzGvvNx1GoImqvEz5yh\nlM5hsJoJmB5B2dh2x0a9WK22CizWsFr3WrizbUAbMHErb04kypw9G1uOeVerEqOjCfx+a6vM9Taw\nWHSYzTpKpStljSoVyxNnPF7i9dfnlssetdoku3cH2bbt9gRjxGqV9NQUCyOTiNkGAx2dRBJ1QlMJ\nTD4/VZeR3GKY5EhLS8Lo8bBjy3Z6ehwUCnWcTgM+n5n5+TypxRiLFyOIDZF6vkApFsM46CB2+hS2\n9iCbNrUxNORClpVl6xwgk6kuL4DT0xlqpQp2bQ3HrwzT53BQTacRy2VS4QTV6mr1wHi8vOpYMRwm\ncvIkTak1FlK1yuKxYwy+8AK6NW6F3w5So0Hm4kUK4TC5S7oCvu3b8W7ejMdjw+MxUYrHmXn1PahW\nKZmdzE/OU6u31HB7h/1YLHqCQStdXVfyLEqZHEtnz9GMzWFp7+RM2MjoaIZYrPVdv/baHL/2a0N4\nPEZKJZFmU+HChQQ//ekUhw71wswEsYkEw8NuVNUChaUw2XKTjcN99Ld7WUhI6Bp5UtPTeHV+BIeX\nkmwgngNjOEX70N01Ri7nnFxNrSZRLq/+PT3IKIrCkSNH+Lu/+7sPfS29Xs/nP/95vvvd7z4U/Wru\nBZWKSKUiYrXqOHy4n0KhgdGoYetWL2NjSVQqOH06hk4n0NFhZfNGN816mUgoQW+/m4u/PIO+msJg\nEGCwi7zHjH1wIwvJJpELs6A1IisqqhURh9NIbjGC3dVBqlHFo9EsV8tUUimshTSdbQKzr75HPt4q\njqgWy6TPnaa4tQtb+817mV1LNZcjMTpKMRJBYzDQtmkTroGBNempvNfGiAv478BvX+8fX3zxRRyX\nSpw2bNjAvn37qNUs1GoS9XpLJEav9yCKTSYmppEkFz2XEoFCoRDAB77escPPmTNRMpkoGo2ajRsH\n6ey0EQqFGBmJUSxeKoutp6jXYWxMS2+vg0R0nkomg89qxeBwkKrVUAvCqut3d3cTOXGCo0eOEQnn\nCZ1aApXAjt95BpOlyvybb7Jp8NcYffs0oizQZrVQSSaJv/sW9u5uur1exFqBs69dJF8TsNn8aLQa\nivUCNaVKm1ZAatRZjEQo/fKXbD/4JAablaWl+RV/bzS6SCi0yIULLe0Una5EOp3i3KiTwYM2UpEI\nAH1KA4NBQ6kUWf5+G+UytXyWs29FGNiwAYvXSygUInHhAsIlQyR1qS+LJ5ulms0SuSTic7vjsRZJ\nT0yQnZsjdOQIlWSypZy4sEAtl6Pr4EEKCwskx8ZYOnYMi8+H2dWBSqVCrjdolEpks3W8XjOJxBWD\nTqxUsDRzNNNNsnNz5AsNZi5CMmXich8pr9dEPZfB4nGSqTUJRyuMjMSp1STOn09waGMQVVOk0chR\nX1zE0dODx2KjNHsRwRhl4/BupHyJYLsdxdnBWyfixBbSgEJfVM1hk/OWDXhFUSjF49QyGTQGA2af\nb5VnxeEwXFs8hV4vYDLd62nm42ViYgKj0bj82/6wfPGLX2Tfvn38zd/8zXW7/a5z6yhKK3R5OTkb\noL3dysWLaYrFBsViA51OQKNpNfFTlJbuCEC1VGX8bBZ1OY3ZqGHT1gDTR95GpwW5XmJ+YpLY6TPs\n//ynWTwdwmTS4vI7yYk1HtvfQyGRIbMYxu10IRh1mLUizUxr/rzcGM+ZjtPlcjFZbs3TgqDC7TFh\nM6kpxWK3ZYzIksTSsWMUFhZan5HPU81kEHQ6HN3dd+srvWvcy1lCQytX5E+BxPXe8M1vfnPVsfn5\n3KW4+ZXSJJWqtej39Fzp13HtRHCz1z6fmWKxC51OwOs1odG0jIqRkRrQWkAuf169LpFKFBFjOTSZ\nGOloFJVajTUYxH9VP4HL16+kUiSmZskvlhGTRewWgXS6RuzURYJ7H2HbIwIdXg3vv9YgnpbQGhs8\n9kQv6qUxCouLHI9EMHs8uIeHiZwbh44KA49v5/z/foVOnxUKSWrpMv5tWzj/P18nOhrDs3MPbR4T\nHV1X8l22bBniF7/IAK0feV2006jXkEWJUqWJ55L8eFvAxRazgVOnWomXtXwefS1Nj8GGPDHB7MIC\nnY8/Tk9fH9pUilg4DIDnUmxcLQio1Gp6rqmBv53xWEtIjQa5hQUqqVTLEAFQFMrJJLn5eUxjYyTO\nn0drNFIvFFpy6W1euvt9XDgzDyoVyWSZnh4HBw50USo1kKUmZlOTDT4T1cgUakGgnk4g5QQESYVB\nb6G/14atFCJ/Ms7Zs000ZiuBTbt4PVtFFFvJzGNhFeffmMeklXn6uf2U585RHhvD6HKTCccZFCQ2\nPHuIhJLmzGyR6HzLQFTrtJTqKkZGYvj95hUT841InD9P9PRp5Esy1pZAgJ6DB1u5Lpe4XHa8uJhH\nUVqdqYeG3KvyUx50jhw5wqFDh+7a9fr7+9mzZw///u//zuc///m7dt2HjVAox/h4knK5JRbZ22vH\nYNDS1WVn8+Y2ZmayiGITi0XL7t1BFAVkuYndrkctN1CqOfQqFYV4hYHdnXjsAqNYiIcyxGfj9AwM\n0d2rR63VkDjyJsmxcQyChLs7SGQpjs3roSk3EdTQ7tNjE5rkMq01IjMzg6DVUs/nEapVBrsMiCo7\nRpsFl9/ZagugUiGL4k21rK6mmkpRvkpqHlqiablQaN0YuYbfBvYA/9el138OHPugk/x+C11dNkKh\n/PKxQMBy3f4C11KtikQixUuhDyPBoAWdToPbfUUX4mra220rwhONhkytJjJyMsT08TF6hgN06tIk\njh5Bo9dTikbpOXSISipFYWkJtVaL0eWi2pCpSSokUYZGBY/biMNpQmOxsrXeREIAACAASURBVGOb\nnYnJNO//8hwGh5PgUBfTR8+gSoXwunSUIhFKkQiCTkd7j5+xkUl2feoF1If2UFkKUW1W8A/1sXBu\niky6wsIrb7BVa+L9SJUnD3TQvbGbto0b0WgENm1qI5mskM/X0Gj0DPYP4TZV0WkVsFhwDQ5ibW9n\nS5eA220imSxRizbRV2so6ZbRIVYqxM6dw9rRgb2ri/Tk5Ar9CUsw+LGWD3/kXFaPvaqfy2WkWo1K\nMklTFNE4ndg6OigsLpI8P8rmZzvRmzcynzdQKjVQqWDPngAGg5Z8OELx/Dih//cVcnNz2Lu66D50\niD2PBfE3XKTyMkOuMmf/9wiBNj16s57Q2UWs2QrtbYMIRjNnz0ZJWqporS4KqSjxVB1tvo6YL6Ax\nmtBbTDTSCaRSEfeW7WTOnECtEVBrddg7OzDYrOTzdUolEYfj5sbIZVevfLkrsaJQikTIzs3h3759\n+X0tleFuIpEipVIDp9NAMGi94xyr+5UjR47wyU9+8q5e8ytf+QovvfQSn/vc59aki32tEw4XeOut\neSqVBpVsgbdePU+g3c6GTT50JhPbt/vo7nagUqlwOPSYTDoqlQYOhx6Px4TVCGKjicGkRVMv0OmB\nRlPgzdcmsepl8pE0uUiCnoFnSIyeJzN+gchECKfXTi0Roe/pQ6RnZtj76U+RvDhL7fxRTP2tKpfU\nxAQGh4PAzp2tnjWKgtFswGm3ozWbWXrvPeqFAr5t26im03Q+/vgt5XvdSFFqrYoV3ktj5EeX/rst\n9HoN+/d30dHRKpF0OPQ4nUbK5VZi5o0mvmpV5J13FgiFcshyE6QGG7YEeOKJ7hvuDIeG3CSTZSKR\nIrKsIIoyXV125kanKFVEjr1ynOyQm163h8LiAk2VwPzJs6TmlpClJkajGsUtk9N3gF+Ht72TxLlz\nhOeTOFQmCuMh5IyRcMnYqvtWmthsejJjIbRqGbet5cJryjL5xUV8vgBOmwZBqpJO5BnYuY2Z//o5\nE2+8R7Um42jvJp8UKScTxKeSzHmgGZ9DFkXqhQKDAT/JDU5KFRlBENDrBXbt8NLXoW0ZTlcpswaD\nVrxuHRdnjq5qey2Wy0jVKhavl56nniI1OUk9l8PW2YlneHhVRc1aplCoLeuwXK+aRKPXYwsGaTYa\naAwGpFpL48XodKK2OJHNbgyeOrVCgY59+8gFAi3viMVEd1sATbpV+pvP13njjXmefypAY+o0jXRi\nuZ2AoNdjaAswF9OwFM6gNpgIn5+kq8uBILR2Z52DQfLFCo/utTMdU5gTRUrJDKpqFptFj9VuJjpS\npByKgs6IYHUSz8oE0ln6Dm6md3eVpsWDoNNdUoKcxdDlRlULADd3/YvlMmJ1dWfTZU/RVRiNWvr7\nH56259fj+PHj/O3f/u1dvebzzz/Piy++yDvvvMOBAwfu6rUfBJLJ8qXigNaG9VpvXCiUa1XKxNKk\nEmUWQmmioQQWoU4o0mBmpoOhIQ9btngxmXQ0SiU0ajVbtvj46U8mOPruAqHZLC63iWcOBrBqJcrZ\nHO1dTsqZPDa7kWIyhUCTSqGMWK2gNeiRGyKpVBb7Ugx7wE+jkCN+/gJSuxejzYJ/5076nn0WqVpF\nrFRoFAqIgoB/504MTidzb71LTdYitHVSrSvk5uaw+Hz4tm37wO/E5HZjamujeMl7DaDWaNakVwTu\nfc7IHWE269i0qY1crsqJExHOnImhUqkIBq088kj7Ck2Fy0QiRUKhHNV8gcLiImK5THZmhnanisHt\n1++yajZrefLJbjKZGo2GxMxMttU4T91SyKzWJCancwQe7STY1UMhX2PkX35EqVDG3d1J4Llf4/X/\nMYraZCaXyFGr1XnqyQNY+5NUtE6cVgFRbSAayeMe3oJSzIBWh9HlRFAktMYmpXgcuVZDMJhIRXMU\n6wLlYg2VLJJNFbl4YYlSvgJqDdu3WWlXa7G4HZSyM8hNFdmpKZr1OiqNlrJ4gZ7ODaQsTlSChm3b\nfPT1OZcNuGKxvkJrwm43oHc4VhkjepsN7SXLXGXzoB+2YtUJd1xifS9QlFYy6OhoglpNwmTSsn27\nnw0bVisTejZuRCUI9D37LPHRURC00NaNFNzM+bkaGslMX7uDSmQWi9dL29NPIzq6eOvnF7mmfRHZ\nRA6pXsfa3k77879BUG5SW5hk/mKMsyNFZKOd/h0b8JqcvPm/LtBswlIoiSfgYue+AdqCTty9VhKp\nKmZZhVdjQJVdorQYQqc00HcFUesNGCwmwqkaDW1Lw2bH7g7yJZnIVIjcXAizRU9vm4Olt15H9fjj\nN62A0prNaI1GGqXSiuNrUcXxXpNMJsnlcvT399/V66rVar7yla/wrW99a90YuYb5+RzvvLOwnCht\nNms5cKB7RbJ4Pl/j/GiMRjbNUrRKLlPGH7RTr8sk5hbR2lo9x2YmYxCfIT83g9ZoZK7hI5WqUMoU\nselFSrkip0a0dP3mMGK2RmC4j3w4jOg04en0Y/X7aEai+Pq7qFVn0KhBYzNisRioVhqMHp/m1JGL\nPPa7G9Dmm1iTSQS9viV8CKBStcQP02miY1PMj17E3tNLoaZmYTzG8LAbeyRyS8aIoNXS8dhjxM6e\nbfW8utTte90YucsoisLJk1Hm5nLLx2Zns1gsOvbtWz2x5vN1xFqd3MwsFpOA3m+nXm0QuziH32vA\nepWinSw3mZ7OMDeXpVqV6O52MDTkXl64DC4X2XyddKaOtaEQixZwBAeZ+K8jZJaiqLV6FLWGt356\nmnxdj5KvYx/agF1ukNM4GHxuG/lUlsWxELpqgd4eOxVJg2eoF0EDHb1umDlNI7WIyeWilExiau+k\nEo+y9eABUKtwdfhZijcYeO4wc0ePk1hMkcwr+LbvJtO0Mrx3E+3tVhqmQcr2VtJTMpwi/V9H2PYb\nnyRcUpNIlBgcbOXZxOMl3nlnYYUK5/79nXi3bm01RbvUZ0ZnteLfsQNBo2F2NsOJExFKpVbSV3+/\nk927gyuqeNYSiqIsG0uxWIlTp6LU6y2Z5Xy+zokTYVwu4ypxO63RiH/7dlyDg/Q+8wyLC3niuSah\nWI3z4xmkUgFRE2BX/yAaTUshMZmT0ek0y1VflxGMZkz9mzg1VmJ2voBarNNp6cHp7yL61iix8TCi\nxox+kxf0JuKhBNVKg3y+StMR5NhIls6gzPhohGee6cOeifD2T14jv6Wf/c9tZunYcQRDA0GvY+Ou\nnVQEO5LUpL3dxtNPdTKuSVPvHsDj1GCoZ1DrdCQnJmiUyxhdruu2MzA6HAR27yY5NkY1k0FpNrH4\n/Tj7+j6ikbp/OXHiBHv27Lntxni3wu/93u/x9a9/nfn5ebrX6ILycSNJTUZHEysqtsplkfPn47S3\nXwkRGgytqhVFlhEEFZLUxO4wUCzU8PltWMxajh9fQs5EGerQsf9RH3qbmXOvx5kLVcmUVagwEItk\nMZgMLCwVURQ1F5caWDQu2vr96DSgdbjw6LooRiPodw2QC8cx93lp372DQlGkMhNn868+T8nSwXsn\nY/Ts2Ii7v4daQ0GrNFCaTaRKBbEhUiiIxC+GWDo3xdDzz6I1mYlFSwwduHXlY5PLRe+hQ4jlMmqt\n9rbE0j5u1uaqcQtc3sVfy+Jinp07/asWRKfTgLpZp3PQz1K0ytxCmWC7DZPTSTEaXWGMzMxkGBmJ\nk8tVcTqNzM1lqdcltm71kUrNUVfUZKo6PEMDDHdqsetL1ApFsukKVl8b5UwBwWQhPhlHH+hGa7eT\nStdQFBCMItZ4GVHUYOnsQa7XGBz2YXeYiUaLCIKK3k09GPtMhN54A6O/g97uXhroUWplkufPEwtn\nyM7MgNWDbvNWbDseZ/NnOghXrBRMZl790Tv83n/bB9o677+fJDz+JorZgafDz5bBAcqZHLWmllAo\nz6ZNVRwOAxcuJJbFu5pNhWy2ytmzMT7xiQH6Dx+mnGiFFUweD0ank0KhxokTkWVNlmpVYmwsRVub\nednAWStUKg2mplrGpdGoZcMGD9WquGyIXKZalchkqquMkcvoTCbQ6JiNZ1lcLPDOOwuXUkrUvPp2\nnL7Ne9mxq51IpEg4XMBm02Gz6cleSjo1m7V4O1z87HSM//Xv55AkBalUYGC4jV/Z4SWWqpOvgFhv\n8NbpIruefQbH1BSldB73QD8LopdioUZTVvjkJ4cY7DEy/UqBbYd243FqSc7HMPZtYPjxHVh6hzi3\nqOH9I0vEUg22bPHisUG7o0FdztFIFNH4fETPnKGSSODbtg2dxUL7I4/gHhpa/pubTYX5+RxzYS0N\nzQAdW/S0+/SY2zx3XafkQeDEiRPs3bv3I7m21Wrlc5/7HN/+9rf5+7//+4/kM+43ajWJYrG+6nih\n0KBelzCZdMhyE1Fscui5QU6/M4HLL9Dd46Czw0p0LsbA1h7eH4mj1yhUQ4s0khrMDgv9G6yIlRqq\npoRWr2V2NoNaraerv40zJ8O0+aw88sQgEyOLZKpw6AkfbqeWutqPa2c3umYVo1mHpi1IKA5jmQyW\nDUO4TRqO/OwsKlMbCdHGqbdiWAxt2IqzKLFZchPnaYhNDN3D9O1/hMlfvkNqahLb4FZUiozzNkUk\nVSrVfSG1cN8aI1qtgE63eveh12vQaFYfb2+3snV7O//je0eZnohjsBqRNXqOnUzwq796RUyoUmnw\n6qszvP9+hGazJTi2c6cfk0nL8LCH/fu7OHMmitdnYdOT+xgIwOLZcQwOA7LBisntRqVaQK4UaO/1\n0bDYqepc1LMSarWKnh4HwaCVhYU8glaDyWKns8vJ1q0+Go3WezQagdRkFk1bOwtzObK/PI+7w0vo\njTew+b1kGgbcbZ1EZyP0P2GioPXyP49WmZ2P8t/+YDvbHuklW2gi2S0oYp3+HQMoGiPVagPZ5MDk\nbUNcbO0QasUy2XKe2FJLifZy7FWSFAqFOo880o7PZ13VyyCfr69oOw+thSsaLa0pY6TlQYswMZFe\nPhaPl9i2zbdK5ValYlnt9EYIghqjUcvUVHpFCataoyWerDIyEmNkJI4oNimXW9/P1q1eFAU2b26j\nUpGIxGtY/AHqlTolUaJUVxGJldi2t593XhujWBQxehycnW2i1g8SlbMUT0uYLGna2234/Vbiiwmq\n2QbeNhMF2UilVEYu5bG6HZRyJd5/M8JUQk17l5vZ2Syjo3F2bWtDzhnoCvbT1qeQHB0lOz2NraMD\nlVrdSk4eGcHa3r5saExOpjh6dGlZ8j6aktA6XAyvGyLX5cSJE/z+7//+R3b9P/qjP+LRRx/l61//\nOub1McBo1OB0GlfNRS6XEYOhVXUiCGosFh2CIPDYwUGUahFRgoszGfbuHyBT01Kvp0FSsNsMyLLI\n/GIZwZCjs8OMyqql1Mhy/rxEX5+Tnl4n46NVRs9GyWYusnmDAzUKbp+TQjaN2ugFt5+tW72k01X+\n+3dOcvp0jKXFHIosc+ipbjbt2cCF83GyhQbZVAm7W+bsL0/R4TcgqNWo5Drz759i46/9CsHtW9Cb\nDQR2bsbR0Y7lNgsEZFFEuiQFv5Zbcdy3xojRqGVoyLNCWl2rVbNxo+e6Saw6nQZXmw27y8TmPT3U\nJRXZeJZf/DxG+0AQnatIIGAlHC4yMZFeltSW5Zbi68CAC5UKNmzw0N3dkvOu10VOTxUxGHw4rVp2\nH36M8dPTdBx8DpPTxobeASYjMotLJaymIv42A08+6ibQ3cbmzW3U6zIWiw6nU8/YWJJUooBFVSEy\nn8Rm1bEwEWNxJolGLdPZ40YsFUhn7RicJgqVJpLWzPx0gvFkgWykzv59Q0iyCpvXg7fDgTYfY9tm\nD7pmldT8LEuxEvo+I/7gFirlBDZDlXponFwmDTmBas2CoDRxu/TE4lUqFZH5+RxerxmVStXK9KaV\n1KnVCmi16lXeBbN5bTX0ikaLnD+foF6XMejUNEolaiqIR4309jqYns4uv9fvt+D333yCFwT1qsot\ntboV1qqU6rz202kSUyGsdhO29gAmtxuzWceOjVZyczMsjodwF7Mc3BXgvfMashkr8XiZVKKMy6Lw\n27+7HbXJStdggMnRRc6eDpOOpBje2sm2ne1MXohQSGbJJIqcr+p5tKsdlVhHr7Gg13gR5CrW7j6K\n75fp7mvDZNIyNZEksRBj35Ca5MUL/Ow/Z9j51E5MUhVLMIg5EEBuNFBrtYjlMo1SCZ3ZTL0uMT6e\nWtF7RxSbjI8n6etzotWu3YntXqAoCidOnODb3/72R/YZfX19PP744/zgBz/gi1/84kf2OfcLgqBm\n+3YfxWKdbLaGStXSu9m2zbuiJ9LGjR6SyTJTUwXSiRo+t4ZP/vo2mhoNk5NZDjzqpcOjolGyMDcV\nQ2820NHrxWLR016T2b+/m09+cgBQtTwtElw4F8HjszB+LgKo2P7YEG5vkGZ6icrcBAndLo6Ni8xP\nx9E1q5jUdWRFYfpiS6hw9yPdVCsSZlUZTbmEupIln9Dh0mloFPI4zQYapRIFrAxs3YHi6aF94Paa\njGZmZ0mMjrbENC81ybP6/Xd3EO4S960xArBpU2uynZvLIghq+vqcdHffOJ6mqAR8nV4WQynmzi2i\n1gjoHW5KVYXTp6M8+6xxuSQxHr8sDtaSbNdqBRwOA01JQi7l6PBqSWdlQpOnmRyZYlyjsO/xbg78\n1pMcO52hFFZoNzXZvMXPzs016ukUZlUVJTXPmfk4sbIBq93E8LCbRKLEyEicHnuF196YYuT9Wbbv\n7WHD5i2oE2cQGnl0ZhMdO7Zx+myc3RvtmLRN4vU0bR1u0k0Rj0PDcLdMWWnSMRAkoI0xMjqGw2nk\n2H/8GJVKhWt4A9HRcZzaGuqmQCG5gNrnwrvnEfYGzbz30/cJXQhhtlt5csdWXIPtpNNVIktZmpk4\n1aVZpFoNV38/ruEN9PQ4VngIHA49PT13t5fPhyEUyjExkeTChSRGQUJJh9GrRdRqFS5jg1/97b04\nnUZKpTpWq57eXicm05VKoFpNIp+vXWosd6XipLPTxic+McjISIxotIROJ1CriZi1EhePXSCXymK3\nanFFw3i3bSPjbDK7dIzpV1+lafFQjMnMRc+x8fEnWAobQaVh564gb/w0hrohMDueRJAq7Oo3s3nj\nNnIFkUalit0GffvtxBcSuDZ5UBTY8olHkBaDJM6dJTszg62zE1FqUlicx20yUFYcxJZS7NnqZObN\ndxg7PoZer2Xy1BR9PTZ0Rgv5+Xl0l5JULcEgWlOrzF0UmzQa8qrvtV6XkaTmujFyDUtLSwB0XqOx\nc7f56le/yh//8R/zhS984b5JGP8oaTU17aZYbKBSqfB4jNhsKyvEXC4Thw/34/GYmJ3NEgrl+feX\np3G5jDy2WUfh2ClO/jKM02lkx74NGId6OXoiSTaextdmoFKus3PfIK8eCdM34EGl0eLr9mI3q2g2\ntBx8biO5skKfUeTkkTfZuaeLqgilTJ70QoRqNo9Rb6KOCr1WRZtbT2fQRDGVRhMdx9DnxVJPICha\nmg4TOosFRVHo3thFz14nzg2bcXnt6HQalGaTYjRKOZFAYzBga29H0OtRC8KKrvHFWIzFd99FrFSo\nViWKySz1YnHNKmTf18aIRqNmYMDFwMCtlRJ6PCYcXieTc2VsHe2gVuNyGbFYtCuaIMlyE5NJSzxe\nRq+X2bTJw/Cwh1o+T/j4cUqxGHq7HYveSXpqEptZjcGgJZsqEP35UWybHkUuQ6mqcPSNCXb0gjEz\nw//P3nvGSHbeZ76/OnUq5xw7VefcM8MJPYHkcGaYRImStbIsy1rJlrW+Nu4H+9PC/mLAhgFf4AIX\nuGvsDYvFtbUrrS050AyimIfDiZzUcTpWd1dXzjmn+6GpkShRwVqRQ0t+gP5QB3X6PXhPnfM+7z88\nj+ByEfAXyGSqqPtHiEbb7O/n6O014nGqKEcTLN8J0G53SETyDM4N0XCNo9cJFJQKvI+4YCBLPlui\nSQ3v0cOopHUmbVUi4TyRW2GO/9Zn8Hh1ZG/eoW/Iwc6125TLLbrdDqZSDrtDz8abl5l65jwydQ/Z\nVIHWyhYaixFFK49R2UTaLdHZX8Uy28/d9QrbdzdpZpOMjNroM4uEb96k2+1y7NgUDoeWSKSITidn\nYMD0gXotHzXarRapSIq3X9tFrdfgduvYvLZAai9Mb68Ri02NVdtl8bVrlMyjtFod3G79+wjH/n6O\nW7eiFIsHDsdjY1ampmxsbmZYW0tSKDTQ6RRMTtpYWUng67WgpYTJrKLTqCPXqhG0MnQq6HWK1Dbz\nSEURSTWPWaOh41IgyYU5c3qG3j4THamcseMTtBotJLIEXn2dd69E8W/E0CqhXS5gtOg498k5wrdf\nZu6zn0RqcbO2lmRi7hAOiQSdy0Vma4vqzjrKdpHE8jKmmSO4rTKGvHKq2SKHp0z4FzbJrcRQTj6N\nRmeg2BxgdzeDFDUzngkk74VyNRoZTqeWQuH9OXm3W/dzuTj/smNpaYnZ2dkPnSCcPXsWQRB44403\nOH/+/Ic61scZzeaB99H2dppWq0tPj56ZGcePNXwUBAmlUoPV1eR77b9qtIou6aWb2HVtVEMmqtUG\nS28vMSwaWbgRxu7Qk6+JdJGwsRbnNz8/wcJqht/+7TlWluKk0yV8/TosQpFCcBNDTssnvnASudCh\nKMgwyWt4XBqW90O0s3mkCgVjvR5cuiaKcgK5UCZaTNMtq3DPTrJ/+QpKqYl2vY7v/Hm8D/2o11di\nZYXk2hqCXI5CpzuQVigWUer1WMfGsAwPIxEEStEohXSe/f0ChUIdQQK2RBnnoQSWfyMjDxZ2u4YT\nJ7zE4yXa7S5Go5LZWQflchOZTEAQDgpjh4bMtFpdNBo5KpXI6dN99PToCb5ziXzgQGa902hQ2l9F\nJzZQm80YVG2k7TI7a3uM9Q2QWE3cFwXTJKT49AX8l64RykpJ5DoojPfoPfc4m4EGOmWHo0fsrAW7\nlMoNJg4PIZEp2NnJMjzVQy5TJZdPk6vriCahmmvSrLURw3Xm+qsUtrcw9/XSO+NkasKKRBDItNtY\nLRpyFjU2m5pOu40oaeNf3CKbLjMm07L3xitE7m0yMDuK0mTEO32EZldGKhinKyq4dWWHaEmBkAzR\nrte4U2qifWwUt0tKIRzGNjHB2Jj1A9thHxTqhQLBa9fI1BT4ry6DTMmhc4cp7WooJpQIcjmTc73U\nUzFi8Rzmk73EUy3y+SBqtQyXS0exWOfatRDNZgedTkG322V/P3/fo+IH0xaFQp2nznkp+jco+bd4\n5nOHeffaPtlQmKHDQygMJu5u1JA0B+h9fBxFcgPJ4gJakxWJUYHrrI9ytUU5W0DRLDA47KGSLyCq\nRIL+e9BuEQ0WEGlRzJQJ7OWQd5vc+dbzDD/1OI4jpygk0qRXt5GWUxSCQQQxyiPnzrOVVVNqg8+r\nwK5pcevGJZQGAyOHRoj4g2QjMZSPXODqP9+lkMwhVVTZC99AojtoI5ZIJMzOOqhUmiSTB8XiTqeW\n6el/Waj4VwXLy8tMT09/6ONIJJL7bb6/ymRkczPNrVuR+yn1tbUUnU6X06d7f4QQtlodtrbStFqd\n91S2BarVFg5Nm3ff9dPr1jI+YWVnI8bueobYhp+x8X6WV9O88OIWs4e8JMNJulIZR+Z9DHjkdItS\nShYFBmkG/2tvImnV2Ljix9TXS/9j51ArZTQSYR4/34deKyUeLtDrs3D+rBerrIxK2iRw9y7Rm9dI\nXq9h7u9j5nOfQSqXUctmye7vE1tcRCKVonO5aFar1HI5qtksrXqd7Noa1XQaqUyGbWKCSjJJMJ1G\nEEXMg4N0u1329vKkU5X78xAKFchka3xUVX2NUolOu41Cr/+pJP1XiowADA2Z+fznJ7l7N0qz2aFY\nbNBotBkaMrO0lOC559axWFRMTNiw2dQ0mx0EQUK1UKIUiyHIZKgtFmQaDc1qlbEhA9VqldT6BsgU\nCA2BeqmMqFBSSSbJB4OMPPkI8Vf/gUoiSaeqwKq3EIjn4OYCobyBIw+5WFmOo7a5+Np/fJblpQj/\n/A8rSCVw/jMKZofVKO1Wvv31a1TiccxWLdaBHoK3F2iMH8U91kKtEtDo1YgqFTK1GqXRSC2XwzEx\nyvr1ZfK5KvbZXobG1DiGBxDaDdQOF2MOK3VDD1ev79LaXGT0xCyOcT21RpdYNIdloJ9c+qAauxSL\ncfutKqpJEa3DTrf9oyH8B43U+jr5QACJbQBRJmXXH0Vv8TPeL+LQuXDaVbQTeySzBdQOB21EoEWt\n1iISOagbymarCIKETqfLzk4ao1GF16vH789QLNYRReF+iiK6n8YhZklu7KFr5mktvY2PNoozU4Sz\nDXb3Q0hkCtZXY7RaLR4728fRU4/QSkVpO4col2pU9zYobG+ikXeRqnM8fGqEVrmC0KjQbbRRq6S0\n6m0GjkzhnR6hpjhHsSlH63DT3LhNPp1Fa9Yhs/pQ2Z0gU7C6lUawqlHVszRSMdq9HlyHDxPZSyI0\nQOnup+ehOS6/ukhqL0S72aTdaFCQSFi6NcHEoX4UioPiwMcf9xENpGiUihh1IkpJA1A90Pv8ccTy\n8jIXLlz4SMb64he/yJ/8yZ+wvb3N0L+wu+KXAd1ul+3tzP0mA7NZRavVIRIpsrubY2DAeH/xi8dL\nbGykePHFTeLxMqFQgUSixMSEDe1JK+OTLmqFEvVqA5lCjlytQm0xUxPVLC+t4HAb0Zq06I0qEukW\nxVyVF68vMXVogD6blI3vXKYeDeD0eZDqfOTiWaIbOwwNTmCyG8lsLPLYmJ7mlAV5u4ahvM/WUpip\nx09S3vcz+cjRA1VUqUglX8Q1O0tqJ0xhf59Wrcb+lSvYJiZIrqzQKJeRKhTk9/Zo1+skVlZoVSoI\noojn2DGqmQyZ7W3Mg4OIJgcdUQF8n4xYvE4SJZEP2/+5Va+TWF4m4/fTbbfRuly4Dh/+ief8ypER\nAK/XgCBI8PuzaLUKensNVKsNrlwJ0Wi02d7Osr2dZWrKzsiIBUGQvfLO2wAAIABJREFUIFPKkdtc\n5IsS9kJ5VGIet8NOPXGRZrGIyayiXixz6MknuL20ByY3jUqN/lE3KirsvvkWCpOFTF5KS8zQNzOD\nqVfPEV8PlVSQYKFNtiwlly6hVUl5+LidoalelPUUqy+tceJzT1GrtwnspKjVW9hnZrDPHabcVVKM\nNxBkSrRzQ4TuLOIYHcJz7Bh7l69SSVY49Ou/hlqnIB9L0iyVqdZaiEqR9Poq7vPPcO1iiNB6lFYb\nqoKWgQEzR04MkNxoIZHK0NgdxBcXEDs1PCOTZMUWpbyAOZLCNdT7oG/nfXxPqRZA1S7gG3GwtZHE\nfy+E6+wwuVtX0NXVZLNV7C4DtvEJwoXv6xN8j7iLooBUKtBsNBkwN4mub9BsGFGZXYRCJYrFBm63\nDpNJiUreQSZABxHL1BwF/xqdnXUUvhGkbaDT5sXntmlJRCTNGiPjTsx2N0anG+9wD7Jals3oFjIa\nbC2FqRUK+PIxRHsPntFetq8vYXWZmDs5Sy2boR3coCo1YPdaWLl0C7ndi1Kup7gXQ9MukA+FMJ77\nLMlyA0HWYeeNy+RDEZrKZxl76Dyp7ZeI+DP0Hz2E3Owgmzl4WXxP6l2Qy6lW6tTr7fvt8cX9ANnr\n12iWy+QApclE/yOPoLH/W4TkB7GyssIf/dEffSRjqdVqfvd3f5e/+qu/+kAPr18FKBRStFo5er2c\n27dj+P0Z5HIpuVyN06d78PnM75GTLLlcnVarQ7FYJ5Op0elAsdhAYTShbPUjdLe4dTuGQSugtZpR\negeoR9r0DdoplttsrCfxDVm5fDWEzSKnmytz859fR90tI43uIMgVyLQ6FFotbWMv+aaM6H6KyfkJ\ndmRtavEwNjOolDqKsRh6vQKpVIbG7WHx6/8N97ETuM89TTzTJHQ7ikrtYPRzs4hKGdndXUSVilou\nh9bjIbezQykeR+d203v6NOEbNyiEQnhPnAA4UHAOF0jkBAYefxJHwE98awet3YZ+aJxS/cO3Z8hs\nbxO9e/e+nUZma+u+4vSPw4MkIy7gJWAc0AA/+Up/wXC79bjdByZfzWabf/7nDVQqkclJO41Gm06n\ng8ulw2hUUK228O8WWEvoWL+xSi6ZI19sMjBk4+nf/Brpy6+i0GnptNuonAZOOXsoCTr0FgNmsiRv\nXMI2MU61UMaqUpArwcC4l1Y9ycar22xupNDq5IyfPUlekLOyHOWLXxgn8M7bbAbT7C1v09NvwWKU\nURrwYveaiW3uUC5UmBufRHd4mkBRzZU7OY7MWmjduYPe5UI5PIegzODrMbP0wiusXN0kuh2iW68y\nfmKCY7/xBW68tU5HpsI0fYhKQ0JNoSZZkWMcGMDdKBEMFVFr1Cg1Slwjo6xu5KiEAih0WvayCp79\nihWr9cHXiQBIBAG5Vks1naaezTA75EL+a7MEwmXU3j6e/H0PSf8uvUoRq6+f9ahA4z3PGZVKvP97\nsNk0KBQCqkqM5/7L81hNMhZfb+AbcTJ8+DjvZg9E8eaPO9EX9rn2NzdJB6MUBs24h7wYvR5i715D\nprPjMh/kbwWpjOOnBwkmmqz/4xZzc04W1pZxiVkGdDJie3EMdhMKKay8fJGBC+d59NwoKqVA36CT\n5RdfxWFVci+4T7MDzk8/Srhm5PY3b9OtlfBapZx5coaZz53m1mYL0e7F7DJTHPAiUyoo1ETiBSkd\n+yBKpYLdpg1nrInb56SYztJptZDK5aisNjw+FzrdQSFvq14ntrT0Pv+hWjZLYnWVgX8jI/fRbDbZ\n3NxkYmLiIxvzD/7gD5idneXP/uzP0Ot/NvflXxYUCnWUSpFisY5MJtBstqjXWzidWoxGJel0lZ2d\nHRYXYyQSFfr6DLRaXe7ciVGpHGgMpVIVnnlmhJrKy+AJB7H6CjqnntGJEf7p9RiHD7kZnvKwt5vF\n7dJRrrRRyqvkkxn6HVpuv7rIyENjnPz0M4SuvsPit59DIojIzFYmnn0G/2aSfCLD2JyPbFRHZnmB\nlWvXkSjUNEQt7WIWjUGL1uPF/eSneeG/v0MsEMfQP0A1V+ST/8uz+IYs7Fay9HSt2EbNVPY22Xnt\nNdKbm+g9HkSVCu/8POV4nC6gMFsIlA3sveqn0Wizv5+nt9fN8IVx0rkm4VyT01Mfrl1Dt9sls739\nfvtuoBSN/sTzHqSDVQZ4jJ/BHO/DhigKWK0qDAYFUqmESqWBRiOnWm3wwgsbpNMVQvtZ/MES7okh\nVFYHhWyJV/7xNpcu7hJumFEaTZTjceKRAst3A+wEStxaSJNtKAmGSgw89SnMvR469RqeIQ8GrZRG\nuUI8VgRBIB5IEF1aZtinQyJAt5hl9+46HQSsThPJ9U0G7BIOnRlHKWmglLaYmXWT2t1ja2ELURR4\n50qQb/6PVS4t1MjWZGTDMRKJGploksuvr4FMiWukH/NAP4GNIK2uFLleR0uuZWMrRyzTYT9cJZSR\nkMtW8YhJjk1pcbgNHD7/EFXU0KiiNBiQCFLisQLr66mfOr8fFSQSCdbxcUSVCrpdGokIveocZx8b\nolKHq6s1JL1TzD5zDu/kEA6HBoNBgcej4+GH+3A6D4q6ZDIpbruSnRsLtOoNTCYVuVydnc0Y6nKY\nuVkboihh1CulEQ8TChWRak0YLHruPff8QetfNkl2d4f8+iJzR3poNjuoNHJWFmPUSlUy+xEKqQJ+\nf46qoEdPiVIqSz5bJFeoIeisZG5f5sgAiLkgDrOMRLLK4lKMZLbFXqhCuiSBTgeFSk5DIieWl1KQ\nWllcTvLc3y/x3HMbjJ07xZHPPE6u3GZxJUu0osLQP4B/O8PVO1kOPzzJ7NnDWAcHsA75mH70IY6f\nGbof4m5WKjR/SAYeoJpO0261fuT4ryo2Nzfp6elBrf7oiHlPTw/nzp3jG9/4xkc25scB+XyNt97a\nZW0tRTRa4pvfXKJQaDA5aWN83EokUuDv//4eb7yxi9msQi4XcDk16NQSxsYstFodlEopHo+Ovb08\nNqeBeNNAWjfE6xsqXrmSobfHiMWq5ty5QdweA7FEBUEq4cR8D9lMBZVWycipo+znFJS7SgJrQdpy\nLSqjFrPHTiWVRqxlSGaaRN+9TnprkzvPvUJoM8T6pZt0SnkapRLtaoWRp58kngel2cL042fom/Ch\ntFp582KApY0CK6sZXvj6RfZDRbKRGMaBAcyjo8h1OiTvuaR75+cPOuIGptiNNmk2O0gkElwuLeFw\nkWrjQA5jft7LwMC/vOMxHwyye/Ei26+8Qmp9ndYHGId+DxKJ5H4R/PuO/xRV4gcZGam/9/fAIZFI\n0GrlvPbaDsVig3C4gFotMjXlYHJQA6F7yEyjlNIF7i2XKeUqOH392D1WcqkiiVic8SMnMZ9yE85I\ncRgkvHMtwX4gQK3Uw3hvP7feXmX26BF6Hn6UrtZMPhRjbSWCu8dF6k4QmVyklknRjAeZm3PTKqRR\nKKTo9Er6+ocohcOU717jC//bf8R/p0MxmiB27waFSh3zqfO88/oanbaCoREzOoPA+l6NwVEnlWiK\n6H4az+w4lYYU/70QDqeXsWNztJAy99hhbn5jm4ZERTqSx+E2YlB2WLvtx0aCPneUiSOHqLT0bC5d\nofO9cL4oRW21Eo+X3iez/qBh7O1Feu4cuUCAdrOJzOIkUlaia1TR6RTodArkcilGo4qzZweoVlso\nFNIf0aYxagWk3RZWqxrle0J6lUqLSCCJ2yfjoYfciJ0G168FKOUaNBot4ns1NCYjkm4bi12PqiUj\nLxEYcyjY8isP3DgVEuwOLWpVG2k1h8trwtxrpRiwsH/1Duq5XiY+8RSx5RVym+vU83lKHSUbqxEy\nhTa1jpR8qcvGRgpRrUFjNlAvlxk8PkmipeXSzTQKrZazT9oJxupYrWpuL/spBvapFCrMPvYQRqed\nT/w7K4l0DfNAD5891E8yUUSQyXH1Wu+LRQHI1GpkWi3NSuV986OyWJCKv5JZ3g/ER1W8+sP46le/\nyp/+6Z/y+7//+x/52A8KwWCeRKJykEpttrFYNGxvZzh1aoaXXtqiVmuTSJTpdrt0Ol3OHlIQu/U2\nzmqVx8dMzIwMc3u1yMyMg1qthShKeP75TXw+E4uLccbGrOwF8mSyVU6d6kUUBSYn7UxO2viHby9T\nTOZ4+OwgwaxAPJrn7qVlCh0tznEPJredbX+O6q0IZ37rMCqzEXm2gNJtxjPuo10p0ZUIaO02NEYt\nlUIJ79gEyaaLcCVI6m4eT7+D6QunufnOJp0ulGIxTCYl0lKawNWbyKkjUyrRejx0Gg30PT2MfOpT\niAoFe6EKrfb3Nw9yuYjXa8Dh0HLokPPnctDO7e+z99Zb91O5+f39A2PQY8d+7DnW0VEqiQSdH9iw\nGH6KhcGv/Nuk1Wqzt5fjO9/Z5vLlfYrFBlarCodDS73aQFrcot6WsBuu8cLza1QrDXRmA6H9Oicf\nsuF0S6mbh4kJbu4uJtncSOIbcTJ/dpjWi+9y/eIa01+ZRLq6jv/mKspqgolf/zyO4R6m9sM0pQoG\nR53UCgUkjTLFfIW+ATUuu4kj8wOUm3IkopSKxU3vmB5JvcSN//evaTWaCFIBqcFCeSvG0Gg/x6Z1\n5JbepbQWRebzIfZeYHUlwqPHnYSSO1y7uIZGbBLeiZLO9DD35ClatTrzj44hKlU0ml1senBZpET3\n48ydtiCpZkivruB5+DEcvh5qtT2kcjlapxOVyYTZrCKbrSKRSDCZPh5FjTq3G53bTbfb5eLFPba2\nvu8uG4uVkEgkPPxwHxKJBLX6g1tUPf1Wpg73UQgFkXQb9PfryWbrWPp62NopUijUGfVY0BlUlFJZ\ntBo5pVwGSbGKQqslubqMY3ISeVfOzKkeKi05FquKbNpCq1QimM5z4pCZZmCVVEuGxarn4S8+RR0F\n1hEfb/+XbzL58BEqsQi+Zz7LxZdXyOdr2LxO6rUGngEXdzdrdBVa5g4PsrJVJJKvY92vUSuVGJnt\n48vPOtl44TnEbIlH50fRDY1yZzXPc89v4HTqefiRXqxWDXqTGr3tg0O3okKBc3aW4NWr91M1KrMZ\n2+Tk/e90Wi2yOzsHoVmJBPPQECaf72Ot9viLxvLyMlNTUx/5uBcuXOB3fud3WFtbY3x8/CMf/0Gg\nUDjYlddqLRKJMnL5gQAjSNjby2EwKHE6NUQiRXpNDdZfuUJoL4XXq0ciyXB4VsrYzDR3F1P09Bh4\n441d4ODdcOSIi2q1hU4n59TJXna2UxQyJdaWw0QjBWbnPCTCShpNkFsc2FodlGaBcLGGtu1g8Z0w\nxVwZk1XHdqjBkMPCbjxGdiGCUuZEEBLoxDqZSIq6VEv/mccptGBhIc7WegxBriR1J0SxreChk2Mk\nd/eJ+UMc/dIj7N1ZAUGkVckj12holsvYJifpmZ8n5/eTCwRomvpoFnKIuu8X8EokB3YoPw8RAUhv\nbt4nIgB0u2S3t7GOjqI0fLCul8nno9tuH5zbbGIaGMAyNvYTx/lYk5E//MM/xGg8CCmNjY1x4sQJ\n+vv7Adjb2wP4n/4slZpIJssolSUeecSA399lczNDs5nGqtWQuxfHc+wEb1xZYGxcwepym3ymxOC4\nGrlZxDncS6YIb715l8BuhtW7eW7dCPHwYzaGZq3EghliiSq64ycwmVW4OkX8V25gOHWKll5BO99k\noF9HS2XEOjZCO9eiGvKTs/tQjw2Suemnki/S89AQ1uFBEqEkaqeLbCmDrceCx2IlYzbhmVCw9vpL\nRC8v0m63UYWjVGoZTs49RSzdQDCITB23U8t0kKsUOMas7EQzjIyPUN0OYnVJMBrVNCJZNm8HeegR\nD9V2CRkHi008FWPosAPBYKNWa9Nopul2c4Dlvd1ICpdLy/nzR1AqxZ/7fvwiUSo17tuK/yCi0SLV\navO+VkajVKKWP9AAUFsstBsNIjdvMnpkiEY6zt7qLuMjTgx9A9A7SWKnwtxcL3c30xy6cIL+vjUa\n+TxauR6zY5ZqOolUFKkXCqi9LurVJuZmmF7bMM0JE9/+rwt86ulBtl57E6ddRbYNBquRSEpKyTiI\nPFrHPjlNoyNl+jOfRtE3wqO//Swb11cpFusMDHnpm+gn3s6j0KkwDZqJLq5itusIhTIMDlpJ+AOE\nvSUygSB7m1HahTQ+k5nnvrVGS5BTq7XIxZPYbBrOXRgmna5QqTRRKmXYbO93XzYNDCDX6aimUkgE\nAa3TieIHahSS6+uEb9y4311VjEToNJvYPsL6iQeNlZUVvvSlL33k40qlUr70pS/xN3/zN/zlX/7l\nRz7+g8CBIvSB8rFEcqAdMj1tx2xWMTpqobfXiFQqYLOpkZYTmIf7MY6M43GpyYeibC9u49b14bCr\nkcuE++Smr8/AyZO91OstwuE8l797h2SyTKPcZXbGickoZ3DIxJHDDvp7NMRjBfbrTroWFUc+fYHF\ny6u02x0MFgMT505QU9l49fVdbEKDZKjIeL+DbCZPC5FmJYvZYifZMVGVqDC5MoyfnScTzZCLRCnl\nq/QNOnjpH59DpVORCwbJBSKc+cTD5Fbv0mk2EUQRx8wMhWCQ3HvvT3kHXFolkWIeud74PguSnxc/\nHBWFgzWh/RNSNYJUinVsDPPwMN1u92eKon5cyMgHxvh/UpX49xaxn/ezRmNjfz9HNhVnZztBLivn\nxZf26e83cvSoG78/w68/1UMoESaTqZCJtSmVGsxM2RAUKhodAY3ShEKtoJqqEt6pU6so0dtklEp1\nlhbK2M1WLjx7iHqzyaWXd+h1a1DVExyem8ZqMNPzud8kuJOgkC6hpEMl3yAdiDJ85BhL9zLorW7c\n50Yx60UUWjV6rQz/mxcZf2weoZondW+VRrHAQ58eoxoJk3x3lXyhgQQwFMs0N7bwnDlPU2ai1LTS\nVOlpmevUkVLc6zB+2MDf/d0yc4e8JBJmbt5MYVe3GRx1cWTMDakAXQ66J4YmJxkXRUZGSiSTFQSh\nl2Sywu5u7j2VTiPRKGxvp5macvxP35+fF8VinWDwQFjOZFJit2vodLooFCLN5sE9VKlk7+2kDuSS\no7du0ahUkKlUGPr60DgclNNpBLmK4595jNkLNbrtJo7pSQJJMLtrvPrqDuVyg7bFjtQpR+eto7dq\nGZryEPvut7GOjSHXaFB4HCy8/hZ6nY5KoURyO8y//+oJLEKOjl1JJpFF0lSisZrRq2BozklB0NI2\ne1G69CzudigsL6JyD6Kes+DSy4jnBf76b9f59V+fJmZWoFbL8A1aKVeatLoyZHKR4FKIzhkzDoeG\n3W0BtUHL7e9cpa/HSyTVoVXIUapJWL2XxuUxcOdOjGq1hUolMjZm5dAh1/s8njRWKxrrj+rJtOp1\n0hsb72vz7rbbpNbXMQ0NIcrlP3LOLyMeVJoG4Mtf/jIXLlzgL/7iL5D+kkejGpUKHqeS6Wk76+tp\n7HYNpVKd8XEbgiBhfr6HVKpKNlthfr4XfVfH5e8uEQmGUShkTB32cvrCNHKnktArG8S6GkSp4n6U\ndGMjiVIp4rKruLge4PHfeJhvf3uVcrGC063lnUt7IEiZP+Fh4tAA4fAyLz6/xtlHexi+cI5uo4bK\nZGIvCXv3kmQyFTxHzMgUCe5c38HcN4B31oNBbHDz0j36jDlW9tK0qiWKqSK+6T6k43aK0RgaeRvX\n+AjFTB65Wo1GLVLa36P39OkD3Q5BwNDbS+jq1e/PTzbNsNXK4LgHiemgEN3l0qFU/vxLvbGvj3Is\n9r5jSrMZpcn0U8/9l0RHHyQZEYHvArPAK8CfAO9+FANns1Vu3AhhkuRZefEy/o0oLp+H//Bb43z9\n7wP09xt45JE+nD43lo6PzWiXh455eefNbTLRNKJGRwcJhw+NYu1EWA4kKKfSFNIFjE4PolyF3W3E\n7jIw0G/k//vfX8BsVFCKRSm222wm5Ez/2iTPf+Ma4XARmdHEcI8Kl03HxNRRotESerMOlc3Bu/ey\nFApZHj7Tx7BJT0PnJLiwSl+PHoXRTK1apezfRK1ToRLb2J1aVAoRrVqgUcxDrYDDZAFByu5+iVis\nhLRRRK+Vo1Yfxu3SceXKPmq1jE99apSRYRMWIU89sE5LFFGZzXiOHr3PbB0OLSYN5LJltrdrtNsH\nTVAajQyVUiSVqn4Ut/ADUak0uHQpQDhcBEAqldDTo0cQJNy7l8BsVtPfb2Biwo4oSqkVCkRv36Yt\nU1NSmanWWlCBVKDA4o6UUiGPTV9gxKdDJW1SLlRJpeD11/3Uay1mZ2z81//7Gul4AW+/lbFhKYl0\ngCeeeJpK6IDIiSqRvkE7Kxdv89DMKHKjmVtvLTHdJyUSSCFVKFCajJRrQDmNU9eiHVjjkU8cJl+T\n8nf/12t4+ix4hjzkNVquLWfwDRiZP+pAJ29yayuEXienXqlRzpQYGzVjt6swzLrxONQEFwtMTdrR\n6DRISy1sRgOlRol6qYDO5KDZ6hAMFqhWD3K71WqLlZUELpcOr/end2h0Wq335YW/h/Z7du2/CigW\ni8RisQem9zExMYHX6+W1117jySeffCDX8GGjXigQX1qiEA4jlcnoHx7G95SPUrmXcrlBJFJCJhPo\ndqFcbhAI5FGr5cg7VVr1Oi6nlkazzfbtDfrdM/S0S0grWRpI6LQlTIzbqdfbXLwYoNvt8plPj/Bb\n/+t5bl4LcGJGj9pk4JVX1zFbdUzMeAgurVMIannqqUEUCikStRLjgIu713dop4ps75Yw2Q34Bq1U\ny1VKxSrlGgTe3aNabeGVJejWW0TCedpd7YGhpT/H4u0wR4846Os3Y9SJzH/qFHTaDPRo2fynIl2F\nFFF94J+l0OuRKZU/0jLbyKQwGvUMzsz9QubePDxMLZ8nHwjQbbd/ZE34ReFBkpEW8EDkA0OhAspW\nkb0rl9i66yebrRLcinC8WeGZJ47QFuR84fNjNAolpP0jTDrrtO6GeOrTM+wGyxSyJeaPudAXtnn1\n//g/Gf3Sf+CORiC6kaKSyWHy+Tg23c/8MScbK2EGBs3E1raRGDRIdFYqGgehQJ7121uYvG586jxe\nnYTM0l1SlwvItRpszn62w2pW7yVxO1XU6m3uLceI5TSc+Mx5ohffoJDM4vY52VrYZuqxE/SNeSln\nCihkHUq5KtpBH4W2ilwgytyUGblCjnoziVph5dCcnXCkwMZ6ip29AodmrJR3t9jeyWCYH8Z5+DBK\noxGlXn9/d9tqNEgsLZHZ3qaFiF1Q4/GY6MoUtMt5wsv3wGEi1w/GX1Ck41+CSKREJFK8/9loVHL7\ndpRKpUmt1qJUaiCXC8zPH3iH1PN5Wgod1+5kCfn9SAQJo8fGiSbTZLf9ZP1+up0OkUODPDzvYHsx\nTSDRIZWqoOxWefv1NDarBqHdQNJuIBMl3Ly5z9lHe9m58i71TBKVToPa4eTMM8eQUuDwvA+vTeDE\nyX4OPzpFp9VGpVXSyOcILNyjmEjhf+0N0qtODn3pNzh5po+Mf4/QxTcwD43y+NkRxoe0bL31DrE7\nIieODFFrtBme6mFzK0MxW8Lm1HP83HHqS5cxuuxIIjEUYp0TnzjFty5WaNbbKIwWZGolY4M6gpsh\nUOpp1mq063UqCOztZel2u5jNKjSaHx/dkGs06Nxu6vn8+47rvV5kqo9HDdGHjdXVVcbHxx9oVOIr\nX/kKf/3Xf/1LSUa6nQ7hmzepptM0ZVpa3S7ptTWcSiW+4QP5romJDktLcarVFt1ul8OHXWg0Mt54\nI8pEbx+ScgZJuYpM0JOriniS+5w/76NhGSSZa3F7Mc0//tMGI6NWvF49e3s5Rkd8xDcv4nTrMQ25\n6e01Uy1VyITi5PcDtKoVJvqknHQk8J0+TiYUxakqced2hF67gfmzk2gtBl7+26u0pUqarQ4Op4HR\nUQuL/3iNuSdOEVPoGLJKmRrT4raOkco28fabmB2QInaraBol/CsBbq+2mf/cZ8nt7hC6+S5yhQzj\nwABapxOl6aCT83uQCALGn1As2u12aTebdBCQy386BZCr1fSdOUNlYoJuq4XSbP5QIp4flzTNR4p2\nu0MtGaNaKqPXK6jVWkilAplQnNmjAo4hF9e+u8DbLy/QbLSYPTnOqSdmyeSaOPrKdLIJFJlt9lZ2\nqGaydLZv89lPHuN6r4lUrMDMyVG8LgU2q4agyURFMOCaP00uWyWdqyPNtBE1Guz9XsaHNMikcO+d\nO9x4+TquXhs6gxb3cAfHgJJjx71cfnODTruDzarkzKyaUjCEXKPEOneYlkJJrxcygQAzv/ZJ9t+5\nTDWTweAbouexJ/jP//kGfWM9CFoTg0N2PG4N4UCKeKKMQqMmk6mikndRZ7a4/dY9jj89z/XbaSIv\nBZg+PcPMMR/9/Qc/vO8J2ci1WiTNClsvv4wgVyJTyuiojZQEI6n9KJJylrlfexrDh2wY9sMolxvv\na20XBAmbm2kGBkz09Hy/0CoSKWKxqJEqFESzEoLbBw+y0XzQ6pevdGnnv09q9rejVJ84wt69ML0D\ndtQ9JWIbfiZ8AwRyGq5F4jRLDVpVLYcfnWX/1l2Wrq6hUsvQ6+voM1k6opLeRx5Ffe8eNkmZYlzD\nwms3CK0eFH3OPHaCsc98lvDqJkazDrPXRm5lgdzmBusLAaStOrUry3z1P/0JjZAfpc3JpUv77PzD\ndxgYdfLMFx/moUkN/vUKY3M2hFqaQqFOfDuCc9CLZWwM9fg4h6o5zC4LrXKZx875GOlXsfBWAIXF\nRiZVJpOu0AVmJsws3inTaEs4daoHh+PHe1k4Z2dpNxoUIxEA9B4PjgeUsngQWFlZYfIHCnofBD7/\n+c/zx3/8x2SzWUw/Q/j8XxOqmQyVBqxG5QT34kgkEoZGbSjjKSzvkZFotMQrr2zzyit+KpUWer2C\nL395BhDItTTozHpQ16hGQ4gqJTsZJbe/s4RruonF18/i3SiPnRtgbS3F66/v4HBosFg0nP30Ca6+\n46exneK1l+9htuo4fXaYrs5OKpMArQm1KkIjuElueQMHSj7unkTOAAAgAElEQVT9ZA/VepvO/grW\nwYd56jOH2FjcRT7joM8poxLwc+SpUzhPnKLhT9PnVLCxEiK0l2Fg3MtMHyTfvUL45i3kGg2uYydQ\narXEd/ZpJlPILC4MJhXdVovI7dv0zM+TUSiopFIIMhmW4WGMAwMfOJf5YJDdd+8S3I4hN9twTE3i\nGfJgs/1kt3KJRPKBadpfJP7VkZF2u0O53ECpFH8mVvdBsNk0RKUSGvU2PV491WqTTqeLzaZmcNhM\noV7n+W9codPuIEgFVhbDNKVKTp+fQKOV0yHJ+ht36JkaIm3Vk9veQBrc5dHpWZRH+7FM9rK3k+Ta\nZT9Gtx2T28qtazvsrQVRmG1MTrtR1jJMeTuo6gkMQ2MsfSeL2WmGRo3Ebppms8HRHivhPZHN5SAG\no5Ixr0Dy+rtUAtsopV06UiljT15g9+YSxWCAxHWRvvmj2A4fA42exG6Q80+McPVGjNPPTrEbqpBJ\nVyhXO7jcesYn7cTCORRdCaEba4w8NM6tu0lqxQDVaov9UBl/uMEXvjCN06kl6/dDt4uoVLJ79SpK\nakhlItHtINFElaNf+CzBHNxbjmAb2fjIyYjZrEIUBVqtDhLJ9zV3ftjUrVY7SCuoLRaKTdlBxVL3\n4IHrClLqzQZytRaNQ0KzXEaqkCGIcuw6SF6/iH9pl2QkQzm0j75/kJOn+tla3qeSy2NWd9i4HkBQ\n6ygXMrSrFSQ6ECNRoguLbF+5zcmv/Xsuff15tq4voDBZ6YpK3n7hBiq3l3trKYYmjuA9NsvGWgSJ\nT8OIYwx5JYFeI8DOHdLBMJEUPHx0hJFBPRv34vzT19/h/GdPYPVYCS+u8fJ/+u/0jXhw2BxEi1I8\nNiftVJi5mV76ejR0mw0cdiWdZoOxo2O89eYum9sZCvkaR4568W/GmZh2sbbXYGEhxoULgwe2CNUm\nrVYHrVZ+v8hVodczcPYs1UwGJBJUZvPHptX7o8Dq6uoD6aT5QZjNZh5//HG+9a1v8Xu/93sP9Fp+\n0ZBIpazv1li6uXf/2M1kAY3ZyCAHO/1795J0Ot9XUS4UaiwsxHnssX5u3YrQaIi029DX7wCk/MN/\nu4ZaLSOdusNTkyNMTDtYWU1y61YUq1VNPl8nsJ/D7XTj3ysypdcxPOogkW2yvpZEQQ29Qcm7byxz\n9ISXzNYCybs3URv1VEKbdA0O0hUZ6t4I40M6VNtBZAoRpUZHY8hFQ6rFPuLEYFRxbzPP4kaFeqbE\nqTNy9t54i9CVS8Tv3EGh05Ld3eXI177GzvWrGKwmrMM+WoUsAK1KhWalgu/CBWr5PKJc/mMdeUvx\nOKsvvcLty5tUSjWkcgXZSJJc+VGOHO/7sQaDHxX+VZGRaLTI3bux99x1RaanHQwO/nQ1uU6ny95e\nDr8/Q7cLw8NmBmaGiK+s0qxU7vdfe0d7GZzu53/8P2/Rea8WQmezEk21CH1nFb3VyPWbcZ54xMXw\nw8eJLK1gGx9FpENqa5PtS1d46GuTLCzGuPvWAiaPA1bC+MYGUCkGcXuMTM84OTKuIXTnLq29VbLF\nPPV6m+FBI+vFHOGNEKIopZzOUa80mBnTEQq4GfHp6FNnufW3b2PUieTzdUxmFbFbt3AMDdFKhKjk\ncuxcvIznyByuY8cpRSLIpTFOTtkwmpRUtorI5SJPnTajqcXI3PAz7bSgtVtZ3lWh0BvYfWMJq+3g\nx9xuNtjezhAI5HA6tUhl7y3q3S61bBapVIIgCAgSCXq1jGYug1KjppTJk8/+aBfLhw2XS8fUlI31\n9TS12oF+yPS0A7VaRiZTJZutolBIOXXqgCQJUimDcyPshyvUcjm6ajUjEwOUF2KInRyFdBy9Xsn4\n6UM06k1cTg2hS1Ek3Q7ybo16ocCopox5RkM1peKRTx0lFs4RjldRaaw4HQaEchqpKGAfHyMZiqFQ\niIhyGY1WF/f4MPsbQbLxfSx9PaT2QpgsZnKigStvrXLrxSsIShX6Ph9zxydxVjeJrqwid/Sj6MZZ\n+9bf4hzzMWa3gaefTEmCx6Vl6YVX6AoyQv4otYzI2OFh9t+5hEylounMk2jqyQWC5ORFNJIyY//u\n84TidTqAViOjWqpx8aIfb7+FsTEL8k6VwM077IVr7AYryPRGegZszM05MBoPUjESQUD9Ie+cPq5Y\nXV39WBjWfeUrX+HP//zPf+nISFNQEc/8UF2SBKLZA/VsOBBCM5tVjI3ZuHs3SqHQYGMjxYULPvR6\nBclkmU4H5masvPrNi8j0RhRCjZYA+UiYk/P9rN1LMjJixunU4nbrkMtlLCwlUZlMBMJlnv3cDIlE\nlcBOikOzfXSKGWKbe4hiHyp3H4axKplQlO07O8g1MXpPzqPpFtm/e5DSyW4FKYb2kSqV9D/7eaKb\n++T9m8Tu7DHa08PIhVkcmgaXnn8BahXMfV7azRb7V2/gPnYMpUZN8J2LGOxGFHo9jWIRJBJEpRJB\nKkVt/slrYdbvJ7i8RWI7AN0ugkxGqNvGPjtHImH9NzLys6JYrHPlyj6ZTA04aNu8ciX4ns35T25b\n2txMc/Vq8L7bajCY5+zZfp742qeJLCwjadYwuOw4ZmeR6nToTQf/TypK6YgKYuEwvhEHglREoRC5\nuxDlwqOH0CscWM0KhGKCvkceoWHuZzstZT8U58jjx2jmM6C3kkhVcNjUmEwq5DKBzPYm6y++QiWV\nwuU1Ud7YxNLrweXWs3+vi0whYvXasY+NQENkaNCCt9+GshRDa9RQyhcoFhtIZCLpSBLd+Cxyg4lK\nQ0LvM88SzCm4+N003aqXYZ8Os6JKem+flZUix4YFvvEXL+JxanA51Wg0+8jq/fgmByjSRa0SaFZr\niColGpuNQqV1/4E3Dw9TjEZBEJCp1TQrFWR6HTK9AYoplEYDzb0MUlGKoefn86zJ52vs7ubIZKrY\nbGr6+40/80MiigJHj3ro7zdRqzXRaORMTFh59dUdAoEcKpWMiQkbW1sZ1GoZAwMmhkZsROMjRCJF\nul2w2HVceELH2oL8QK/A52brXpC9rRgDPWryhQZOlxaFwo1e3qays8nwsSmefmaUrkFDMVDj+LOP\nsvHaW9TEDjqZgNpmo24aIJdSMva5C9xczLIaEWk3NYyceRTVyl3y0STu4R62dksUCnlktTISmQwa\nVUrBXeTzfZQqbaR9Mxh7XWzcWCYdiiNpN2lq81jlGjpmF5lolUIqT7nSxtujY+70EOsvfYeaQ4dj\ndoblW28z/ZCPfDrHwvI6IyMWVBshrr21gdGkpJiuYnMZ6BlysBus4i3uYlXVSWgNXHp5iUa1jsJo\noFQeo15vcf687+fWL/hlwerq6gNP0wA8/vjjfPWrX2V9fZ2xn6Lp8K8JglTA0OOhWKhRzeYQpFI0\nTgcaiwmJRIIoCrhcOlKpCkajkpERC5lMlf5+I/v7OdrtLtevh+9HwCMlJeaxCVSNNH0zI4TTHURL\ng6eeHmF9PUUsXsHvz1Eo1HniCR+5YptmrcrOTo4u4O01Mjxq5drrMY5+4jQVqci9WINoVIdWq6P/\nlJPVN69xdm6Ixcv3OPPUHJFKi/V8AdRTjE67Uej03Pq7FxA6LfaXwwwU4gRTm3h+42nqxRKtchGp\nVoZMrUaQSpDSQaGVY+71kNnexjs/D8UiGrsdrdP5M81jOZ2mUaneDxl3mk0qqRSdVvO+8/GDxL8a\nMpJOV8lma+87Vqu1iEZLH0hGut0usViJfL7GlStBcqki0m4DQRRRaHXcuRPlk58cxT7so12rIdNo\n7oeWj5weZfmmn3gwRb3RRquVc+zMMN1WA4VCYH09jdCoktrbZ8Bn4+iZYZptCUvLOdK5JhuLEQL/\nP3lvFuTYfV55/u692Pd9SwC5Z1aute8LWdyKorhKdlvulmWpoy33jMPu1kzERMf4aSIc9uM45sER\nE+2wrbEdHssamRJpkRTXWsjal8yq3PcEkNj3HbjAnYcki6JJmrQsm8WZ84REAsh/4n9xce73ne+c\nzSIT037e/uE9TF43x48GMZpUqDs1rGKN6socVq+TSqGGx90mHS8w+cyTiK4QHURGjk3RFHScf2eL\njZ0WuUSOhydFHL1BiuvrKArUi2UsoSO0Wh10Hh/W3mkWd1T87V9cRBa0yK02qWPDTA6bGQw3GNvj\nJD77Hvl0BQmFgQEbSrtFdWOFia8+Tr3ZZXUpRTmTw+S1YTAbMJuN92fU7f39KN0uxViMnqNHKW5v\no7LYKct6nENDSCYrenOTwPQYntEhqtUWjcaugdDnbamdP7913xtkdTVHNFpi/34ftVobjUaF12u8\nn5j78+h0uhQKDdRqEY/nw/6nyaRhcNCOy7XrnfGBUdL8fJpw2IrFouXs2T4SiSrd7u5kycZqAou6\nzcixEW7PZtBY7LsnB40GSZERuh2c2jqhQR9d2Yze5WZ9W+HCq7eR1SaSDj0Tp87i0dUQ5CaZksJr\nr63hcJuY+8k6UreF3uVh6b07RCN5zj21j9BwBntfmPiFC0wcG+fW61sYPD7alQrNWgOTy0FNNcHF\n92Io791Gq+ph5LkhWlsLNPVOWpUSvQ6BOzNZRo5OUkhlcQdd0Kggdlp4BsN0dFZcziLxG9foPXKM\nzLoe7+ggSlfA5zUwEtJAMUVN0nD7wjbBPb3MLM7Q4zczeWoSQa2BepNWqUSjVCaZNLxPGv/pfvP/\nl1EoFCiVSoTDX3xgpEql4pvf/Cbf//73+aM/+qMvejm/NJhMGkbH/dRbAu1mC0EQ0ejU7Bnz3B8/\nHx93sbVVIJGoUKu16euzcfx4iKWlNO22QixWolBoYjSqGRzyUUnG8Q2GefHFZZaXUzz5wgHiiTr7\nDvYgdxSuX48BMDho59KlbRqymnhGpq/PysSkh+s3IuQrAsWGmp/89QydegW/306x0sQx2cvD/+Mo\nstlHeuc22YaOl384Q3ZtHUkSSRdkzvWPUkmksHgcBPs96IQay+/eYP9zj9N/+jiRt99CFAQklUTP\n3gmcw0NU02lso2MIChjcbrRmM5JazeY772ANh3GNjqLS6T71fdQYjdgcRnQGDY3arkeIPeClI+ke\niHyxLw0Z+bQW9Kfdv7CQ4fr1GCaTmtnrG6SjafZOudB069TKJszmAdrtLlqtBukf9dgm9of5rf/2\nHPfubFNtgNLpQqNCdD1Go6ZBlqF/yE2rJXPxVoqaNguiGlFQKMUTGC16rl/bpokWUFhf2MHt1PHC\nM0P83f/2f/G13ziGSiNRz6SwOi00o118U9MYrCb8B/Zi1ikohRR3VluYLDYsRZlWo0Hb0o9tuIZc\nyJOPLxGemsB16DiFtgG73Ua5YmDtVhatw4WcL9MRVUS3C/hcGkYGzPgtbSoOiVW9Bq1WhdWig66a\ndq1CIVdh/NgenhLVXHprhXgkgyq2ztf/06MMDOyW/wRRxDk8jGNwEPnoUSrxONV0mh60lBQjhVyN\ngTENA2M9JFJ15ua2abU6WK06Dh7009Pz2aOiyeRH2zs3buzQbndJJitIkvj+SSb4ER1INlvjxo0d\n0ukakiQwOGhn714fWq3qffJRo1L5qEFPrbarfZAkEYNBw8CAhky6yqUL60RuzVFOZ6nvH2JxPke1\nCRJdmuiZ/so52oktVBUtrWoN0dPLjcsbxPIChwbVmFUFJEMLyenHMTTB/EyEaxd3rZT7Jvq4sRDF\nrBfwGlUcfPYslVwJ2/Agx471cOVanP1nJgh4dLxTk2lW6mjNVtCYUSwe3n1jnYXZKE6jTGVnh1a7\nl8cffYjkyiZ6k0Qnt4PPJjF2YD9ep5r01g42S5t9Zw9iDPWyvV3CbNLQ7toxB3s5+huDODRNBG2T\nZ88FOf+XL2MLh7l8aY5WuQpuEZvDQi6RZSdeQ6dW6BoNuyO7yq4u5/9H0pBPxNzcHOPj44ifkbvx\nb4Xf/M3f5Mknn+QP/uAPvrSeI7lcjVari82mu++PMT3tRa2WWF/PIUkiw8NOhoc/bEs4HAYeeqgX\ntVoimayQzzd48cVFZmYS/MZvTPPIIwOsreUwGFScfWyIcsbJwnyafKHBvkN9lPJ1drbS9A04mZry\n0mp2MZk1vPzyCmNjbnp6zHQ6CqOjDpYXU1x5b4tf+8YUr76+QrHapZ6pkM9UEDQaLD4PtmELt5Zb\n7Dk2wcytCJJWg8XrArmF1mIkkaoTmBgiOruM02dHrzGTFrtkNiP0PXwWh89JemEB18gwlmCIer3N\n6mKKYk1h8itnyUg+jEqU2vsOp4k7d8iOjuIaG0NrtyNXq2QWF9FaLLj27MHs96Oz2Rg4fhC1xcH2\nehKt1UbP4UMMTQYfCPfsLw0ZcbkMuFwG0ukP3eCMRvUnOstVKi3u3k3SbHYQ5Ca9AS0Oi5+WpKbR\nAq9RSzigw2T65PEkSRIZm+phZNxPdCPJlUubXJmt0umIqFUCx073Uap3ee3VZWqVJsE+N6WmCr/f\nBM0KzkAfwUoXp0vP6KCJlY0SzXqTcq6A160jl28x/eyTJK9fpVWt4AgH0GoEzLouA06Z7Nw9FI2O\nPeP96DMiSreL0IJMpoZg9jP9qy/g2ruB2hng1obCeqrFb37rKOl3t6hpujS6aUpVGUQJuS2jN2gR\n9QbWbt5hasTNoQMurDYjlWIVlVriyEMTeCcCbL/2MtWVVY4E+mHEg5o2jTvvkNsXpljfjea2WnUE\nAmYa+SL5dBFRY8QR8BF22qlU2uj1KpLJCtev75IIgHq9wuXLEZ58cvhT3/MP8PPTMB/4BQwNOZCk\nXWHq2lqOnh4zo6O7+gRZ7nLtWoxIpHT/eTMzSUwmDePjHkwmDU6n/mNkxOs1odXuHv71XI7sygr5\nukji3jz1hkw6LzNlsZAupEjGS3g9RpKZGu0hD+GxPiyWEQwOB3//F+/gGdLSY66QvHad69tFGl0N\neouBp7/3LRI5mfDBfdQqdUSjBUVroqVV0VWXidyawe6xYTarMVkMHBw3onU4KSZzfO1bp3jtR9fZ\nidc4dHaSQqGBORDg7FeM2EwiK7dM5PINDL4gjpWbYBzkvZeuEJlb40ZPgP1PnmTk1AGCFpmVVxKo\nGgV8PQ5SmQZdi5dkCW6fv41aUvj6rx+kFtsk4JRw9Dmx3k2hMhioRjaxBIMIgoDWoEdQeWmmStTT\nSdrVGl63Dofj811RdbsKkUiR7e0ioijQ22v7XD4mDzoehEman8fk5CR+v58333yTJ5544otezj8L\nrZbM7dsJVldztNtdLBYtR470EAxa0GpV7NvnY3LSgyDwia1Bl8uIouxWNSKR0v1zRrHYpNtVePTR\nfiwWDZIkMjTeQ77cZWzSSyaWQ2/UUGvu2j5MT3vp7bPw5392B7tDz9pqjvFxF+NjLpYWM2yuZhEB\no82MWq0mmarisDnQim1y6RItRY0lPEBjJsPex4+Q/NE1DC4XeqOW6WN7UDfzaKsxwodH0UoKCxdv\nMHF0jFPPncKkbhO98A6B/XtxT+/F4vNSL9e4+splojs1glN7yLbNXP3by0yNOxiwmEnMzNAsFjF6\nPGycv0BqbgH/gX2Y3G7y6+uUd3YYfPxxbOEwpWiUvv2jDBzfT1elw+Zz4xv2/ttv9ifgS0NGjEYN\np06FuXcvRTpdw2zWMDHhweP5uHK4Wm3dN3HKJfMMDzt5+dUtlha3cVoELFYtgT4vnU73n+x3z82l\nefPFG0hqFT6vAb1BzdSBEO9d3OSVN2NYAn6sShej047fbmRjPY/T48WoaWOqbtNn0aMqxjkz3c9S\nRr9rzTvsIbqwzvBIkOApFbVMDu/BA8iCjlKhQn72NqVoFJXJxPzbi3StfpqGAWqKmVoeXH4n7nEH\n+kCIZF1H526SXr+KV19dpqfXiVZbRmWx49HrqJfKOHx2BibD2ANWwv1u0Aocf/IwpfUVmoUc/vEJ\nDH2jFCMR6oUCq2++g6h6D1lUAyKDZ0+RTRZY227SbHdpygJhc43E9SskI1mM6jZWu4mJpx7FM9SH\n1uZlZ6d8n4h8gHy+QS5X/0wyshsHvvvcZrODViuh16spl3fJhKJAMlm9T0by+TqZzC5BbVWrtOt1\nREliZVnP+LgHSRKZmHADH0zRCGg0AlNTHgDa9Trbs0vEYiUqshZf2Es9O4/T76DWkBkesNGo1DHo\nREasJdZfvkzHI7J4c5l9x4c5dfZRGmiZeeUOO7ECiXgFk9NOJVukuLqMqPhJVwS2ozKpWgGtSU+9\n1qbt9mIcEnEPeBiZHmBtIcL6dpVuM0Wr3UXQ6Pj13/kK1UqTVqNJo9PAI0dJrawja1VMTQZQuXrQ\n6yX0E+MYeodIyHZqxQoGuwm714mhXaCaKOGbnKQjd2gUFDRmDWZvD++9fJ5iIoO9N0SurBA0C6Sq\nMYxNPz1eLZGZeUSrFY3ZTFNjw2DWYhINRLfyOPp6GenV028u0W23ELWfrelZXMxw9Wr0/t6uruY4\nfTp8v+r2ZcWDohf5eXzgOfJlIyNbW0Xu3k3d1y9kMjWuXInw1FPDtFodEokqnU4Xj8f4kdagLHdI\np6s0Gh0OHw5QqbT4yU+WCIWsHDvWcz91OxIpkU5XaTY72Gw6xsZcmN1OrG4nxVITXw+YTCpUEmTT\nVZ766jDpVAWPx0Rvn5U7txP0BCwEQzZWZtfJp0sMDlh559U5BMWEO+DEFDAzOh1C0OrYO+GmXJHx\n9/vJxLIMjrioLd4iMrfM8P5hkjs1PDY7/d95CrVOjbWvn4WXX6MQi6M2W/G5Q9RqbfLZCnXnCB05\nwN1oG31xDaNZT2SnymCPnVomg2t0lJU330ERJXbmVpAFDb7pCZx9QdqFPIWtLXoOH6b39GlKsRhy\nvY7R68XS0/NFbffH8KUhI7A7kvvww300mx00GglR/OQascmkwWhU02p1MFoMrK5kKKZz7N/vw6hu\nI7WqRLeyZDK1T/VPKJfq3Lm2Ti1fIr+TpFSREQ1WOnKXfQf93FssEG0phIJmxqcCtNsdNjYKiBo9\njeQWI4MW1Jl1VueitG5vcugbz6M2WRF8w+yfVlFfvUu11iZ48hTFZIqNK5fo3TtKPZ7E4HJSb3QJ\n9xmJZRtMTvn4/g+36OuzYXWYWFop0h/Q0o1EuPbiBXLFLuG9I+zd9zDPPz/G8eNhZu7E0etVDIYN\nrF69w42flnj6iTBL71zG+tgh9BNjFHcStCQDGquNrs2BTedmtC0SuXKVUjyFIIJvbJTc0iL52Q06\nXRg8vp+Vi7dpFfKYxDrp+WV26i067TYjx/fSc/jQJ2o6RFFAkj67pr93r4+FhTSNhozDoae310q9\n3v7IY2y2D7/8did6BCrJFMWtTRBERJVE0yHSLIfIVeDKlSjJZJVarY3PZ+Lxxwex2/W0ajVSS2tE\nNzPEEzWiiSrJgoDN4iKoU2iWqzQLWV54ZgCn20Tz3nvslHeodgScXhuVbIH6xjyeIyexW1V0FBGT\nzYRcLRMY7EHTrfPwYSuX7qi5cCnKdqTC818bQ1EE0skyokbD6YcGmLk0y/l3tpi/uoDFZeWJXztD\nswZXbqQ5uM+FgIKYibNz+zaNpgIItCtlHvsPISyGLldeeQ2N9Dp7/923GDv52yidNoZWhvr8HFVF\nYejJpzCE+nFlC1y/uMyN8/PIggq6HfKbm6Qy+xkYNFNauINQy7N331kaGRfVpoLaZMNq7FIrlMln\nKoR69FgtOob7DJQXZ6mGvFjf10vU83lq6TQIAkaP536IVrMps7iY+QhBbTY7LCxk6O3958eZP0iY\nm5vjqaee+qKX8RF84xvf4Pd///cpFAr3s72+DIhGSx8TUpbLLSKREjMzCQqF3bA2o1HN8eMhBgbs\n5PN1bt2Kk0hUMBjUdLtdenrMfO97x0gmq3g8Bq5e3UGnE9+PruiyE83jdhmw27X09Tu4dy+Nwajl\n1HEzU5NumrksD58OUCzJIPkI99p45cf32Jpbx6IOcvBoL0fPjFIvVzDoVXz7P58gHi9TztWYPhJm\nbMiKwaDi4vVFxJCeXkuDqK6FSd1icWkViw6sUo1moUB5J8ah06doW3wsL8YgOIbfuesDFJtfZuTk\nIdq5NHatjrwooxIFKpEtKt0OXYeGak8I/4ED1DIZqvkyWrudoYdPU0/Gmf2/Fwgf2ot/YhSNyUQt\nl0NSqfBMTDyQo/dfKjICu14Qn+WzbzRqOHQowNxcGkEwklaJ6A1JTGKdbj6HZLUg6E3vZ6p8HF1Z\nJrW2xc7MPSLXblOr1JEFLe6hfhxOA+2WwrPPjNBstLAaBLbidZLpOuce78cmlUneTeEzCGzNx7BY\ntVgcZnw2uHEzTn4zx9JMiZNnxggPN1l7510WLt3GPz2O0mlTz6ZpZhKsLURptzqMf+URekacPP6E\nil6vxObrrxJZ3GLvgRDjR0Z48leOsZ1okq8oJJJV9BWZnWgRUWlj1GtRCQqrd9Zo1hpkJwysX3yP\ngf17iK/HiK/tMHF0lHikwFs/uUGr2caod7D32W8Qfe3vCe6bQlKr2Lxyi2x+lxCkFxaRs3HUGh2V\n6A6t+m7FohBPUa82SM7MEDx4hsXFDNXqhyTC7zd/LpHUgQN++vps1GptjEYV6+sF7tz5MBfB6zV+\n5AvMbtfT4zOwcn4bQaWiVakgl/JYx7WsvVlmuR0ml++iVktYrRLlYo25uztYNC62L15k4fI9br09\ngyPoZejESSrFHM2qyOPPHINOm1w0wcLlWY49NEp+dRWlWcfkMtNOpEHQQKeFI+Snd7wPRaWlkG8Q\nGu2lnY2Tnb2BXmoTFMz8z787xdJGg421LNW6wlNPDjDs85PaSTN7ZYXEdhG52aRrcPLWW2ucOt3H\nwmyEdj5FsMeMPr1E0GsgmqhjclgYPr6PzViDgmLD8fBzqDotXvyb6+iCGRrFMqJK5NjJSZTkBpde\nvIR9usbCUpF2rYpW6pCrtZFMFmqJOGZVk2axytjXvkZ2eZna9Z/xxOPnMA5P0TF5mLm8wM56kuS9\ne7jHxoh3Ovhcw6SX0jQ8MXQZFT0OSF+9eN+JVWe3EzvFZr8AACAASURBVD59GrPPR7Mp02x+3DL+\nA93OlxkPYmXE6XTy2GOP8YMf/IDvfve7X/Ry/klsbRXI5xtYLFpsNu1H/IFgN212aSlzn4gAVKtt\nZmcTWK1aXnppibfe2qDb3b0IPXEiRCpVZXDQiUol0Gm1ye2k2HcoTCZZIpavoVULtNpd/uT/uMy/\n/+Y+Rkac2K1a+vtMbL17haVrc4yd2s/dpQqHvnKY9aUUDreZc8/uQ2yVmbtwm69++zHMJjWVqszd\nmRgWo8joniEGw0aKhTqzN7I0S2V8fi/JV16lV2ngtYzR6TOglTrUtlbpdDoogorNjTyvvvgmGrub\n9Moa+48P4ZFkrLoy2+ffZuPCJWRrAHfPAAa7k5m5NAabiYnpPrZef5XeM2cwh3rRODYwelwUN1Yo\nRWPUajL1Yj+x69cRRJFiJILJ7cY9PY1rdPQzR4H/rfFFk5H/HTgI3AL+6y/rRUulJmtreba3C1Qq\nLawWLU8+f4Dt+Q0Ejx293U5P2IkkCUQiRfR69f0vynK5SX57m0Yiik7Y/QBIKhVagw53f5B3L67j\n77EzGhAwtss4TE42q22Wlwqkdwo8dURL9NpNZIeEN+imJZfQ2Cw0W23IJxGaNepthYXVKs8+t4fI\nnUWmvnKWTrVMcGqMyuoitWQG3fs5CyCxtpYnE8vSuHWXVqkIgsjWahKvVWH8zFdZez1GW+pw7Xqc\nu7MJTp3o4eobM+RqKo6c6OfAYwe5+cYtJJXIxBOnScWy6Lo17IYuGo3E7TeukFzeQtJoqGh0rHnc\nPPK//Dey0QTbt28hmu1YLCL5fINuR8GkF5G0EsX6hycIi8+LqHRpVSo4rCrOnu1jYSFDodAgGLSw\nZ4/rvkbjs+Bw6HE4dgVV09NanE496XQNo1FDMGjBYvmwMiIIAlOjZlpnBtnYLFDfKTO8LwybM6S6\nQ2ylG2j8fYBCObZDLZPGLAdZL81RjcdotruIGjW5aBLd7Aw94QlW53doZ5PUV2Z46PQoO7kebB4r\ntpOHKC7OUlqah65IPlfFLaspxFN4Dp9kdfN1thNFtPoEcjbO3seOUUlnSMwtEj4GzYqNyGqCTqOB\nTd+Hz6Nnc1PA4vVgzomUyw369gQImpv0Gss4BwVcXj3xeJZxv4f3XpvBHbATPDDGT/9+hnK5xdCJ\ng1jMVvpGe+gaS3RQoWj0GM1qEnkFncrJG393nifsYfKZJontBHsmeoktb6OxWDnwiJ8+nxql1kVt\nMuE/eIj85hbl5bvI2R10B8+RXV5F7w8CUEkk0Pv8ZJIlUtEculSJ7aUl3Pomk74P96WRz5O6exeT\n14vJpMXlMtxvtX0Av9/8uY+JBxHZbJZ6vU4wGPyil/IxfPvb3+YP//APH3gy8sYb63Q6CoIAbreB\nQMB8P1vKatUSDlu4eTNBpdL6SIu3Wm2zvV1kfj7DB9Es+Xydt97aYGLCjVrs4teVqW9HePygEcku\nUcxVSO3kQaUhlS1TKjXJpMtksnWcTj3rq0keOjRCp17B57ew79wJrtxIc+vmDipJxGLTcvz4CPaA\nj/W1NOsrWbKZCk+cG8KrbiK2oty51OHmW7eQTDYEi5u3XltknydM9NU/w2TWUo+soe8NY/R6kVtt\n2noHW+tJivEU+qaMe3yca5fm+ebvPE707/+SwPQEqm4Lq6GDKNUIDA1SrQ0z0m/E3klSczrpdjo4\n9+yh+dKbeB12SqsyersdtU1AJQkUNtYRAI3ZzNbiIq1qlW67TejEiV96vsy/BF/kSg4ARuAM8CfA\nIeDGL+OF5+fTrK/nUakkbDY97XaHaktg9NgkqVQVt9uAXq/iT//0FplMnd5eKydPhujttTE7m4D0\nFp10hIGAhtJgDyv3thndN0Ik1cTvNTNoKXP+T18lHDRyuy1RaoocOnWWe2sNyoqBw4/uJTtzk+JO\nkoOPn6FTrVCJzREW2oxO9VBsikQXN6A7TO9EPytvXySfKrJ58x5ahxOt1Yq2V6TQ0eE8fIqZpMTh\nfS7O/2madKKIqJKwjrtQW52sL8VoFovotEai0RLFbJmV9RIHTo/x+itLLMynOH1imtO/asMdlli4\nMo+nGiE8GSQ86EHXN0xBW6avUgeTnfhajIV37zB9qJeOoEa0OLl+LYrTqSeZrLCTrPPUrx2lVcij\nMRmpl2u4h3oJTI7SbZQwBAZQ6XQEAnoCAQvdrvKp7bTPA7Vaoq/PTl/fp1tcGwxqBjxd3O0yuVqG\nysIczWYT68AQGlWXdq1Ks1ikGNkGBSwWNdmF28j1Oq5AEFuwh1I8QTlfILTfRLDHiLpZoNpqYhFr\n1KxWbt+IMj46QE21jePAYZqFIoZAiJpk5d0fX8L3yFdZbgd5+DsHKc1eQRfay92X30Cq56kUmiwn\nopz45m8QWRE48tQk1UKJH/yflwhMjFEpNwj0WHCFfPToisy/dRm514KWNikUAkeOYR8ZR616HZ3N\nzu07caIrMTwjg8S3Usg2Fem6DvfoOH63luLcLbZuLaNN2hh6ZC9nHhul2VaoKRqkThNFkPjO//pr\nKHIbM0XMVgOyTkDt9BJfWqdm8OCYOoVnIEAnGydkaWB2g+fRfczPRLA7zMiFFL6JPazNxag2BbL1\nMoPPjCORur8vjUKBVrWKXKsxNaRDpbKzublbOfF6TUxOun/h4+JBwAdVkQex5H3u3Dm+/e1vs729\n/UCMHX8aOp3dMoiiQDpd48iRHmw2HbLcpVRqsr5eoFxucu9emmDQQk+PGUEQMJk01Ou7gvnd1+mS\nSlVRFHj+uWHE5BLrN2eRFJlkqoposnHusTP8uKWwE69SKNZ5+tk97Nsf5Pr1HVZX8xw86MfkceI9\neJTNaIGlCxH+8q/nkCQBg0HFnhEHb7+xTrjPxsiQjVSsiEZfRZuYp1jJYugd4upL52nXGnQSKZwj\nUJYNtIdDePdO03fyKD0TI2y8/TbdVhNzIIT71GO88U4UrcWKIEoYnQ40NgeS0YLRbqES2aRRKFBM\nZhk+a8BGngl7EWVjnoK8ezGoqPXIJi97f/UF2uUigtGOomoTGBtFziXoyjKSVns/uDK/vo59eJh6\nNovJ+2CIV+GLJSNHgZ+9f/sN4Di/BDLSbneIRksfuU+tltBqJfbu9e5m0OTqfP/7d0gmq7tlQblF\nI5Xg8H4nzWya0HCQ7bhALbLJuFdiZGACQzBI4q11BvoCbLz5Oj6PDkmjpZAqI6i17AmrCY33067X\n0feP4RQErHYD2fm7xO7Mksy0QaOnprax95knOPP0QVJ3brL6yius313H4PZTS6dR6kWm//1/oC7o\nKWbL5FI59o16aHdVBEeC9Az6sdiNaOQq0c0kDb+XuTffY//zT+DxGFlblsikypw508ueqQoOl4mJ\nfUF2NtJk2l1O/w/fwk2GnUvv0KhWkVU6+u1W+k/30e5KtI6P8u75Vaw+N1lbD+Tq1OsblEoivWEr\njZaCYvXTd+gw4YNTlKI7iEoXsV1D53RiHZ3k7t0k0WgJp9PAUK8BoZqn02yidzoxejy/9JO33uHA\nHAiQXVykuL0N7M7US0KXqSkf83EVxUgZjdGE0aylN2hGUPdSz+dRaSUOnhknnRmgWq5jD3jpMdbY\n+MH3KUYixEcO0LQE6DvwMDlZR++pEzSSO+jdZXZWImgdYHYHyGUqnDzsQSu0GTkyxea7V8jFEnh9\nFrrIoCgUVlf47u9+ldu345z/wVu0Wh3UrgDmUIjaTpTDR3vYubrJYy8cQm8xU20opNcj2B0aFK2R\nyeefQWhV2Zqr0DM1Rq2pQKVCPJbAfypAz2AQMTbH9s0ZOvUailUhc+0ie0+fRAp4kc0KS6gotiVu\nXtmko9Zx6qFBypHbJBeWsUweQDN5irVL68zcrtP92XlG+3X4PXq27t3G5PPzzH98AovTyuK1eba2\nihSyZdQmI616ky4CH6iFBFHE5PezfeEC1XQaQRQJ+vyMPTqNotbjchk+UVv0ZcKD2KL5AGq1mqef\nfpoXX3yR3/u93/uil/O5oCi7U1cnT4bZ2irwxhvrdLsKAwN20ukasVgJi0VLIGBm717f+66ruxOW\niUSFel3mwAEfDl2LKz+8xs5WmqFBO3q9mnq1QtjW5rf+035WVnPUmwJGk4a/+P4dtjaL1OoyBqOa\nyUk3itpAoV6i3mqxHSnTlTv4/Ub6nhwmn6+ztJhDbrbptFpMTAVQGgmsVj3Rewvs3L6L0WHH1t9H\nJRrBtWcMtdXJ2f/yXTbefofo1av49k6j9/golVqUyw1qghnb2BRqQaZdrTBydBJfn5em00pxO4LR\nbkHXlqmlU0xO7EFWR2l3+pGaJcRqFtueKW795A3kZhvX2Dia0YNsvnuLdrKJrtbCtWeSnqNHqSQS\nGNxu5GYTQVEQHpBx9A/wRZIRG7D+/u0i8Ev5VEuSeJ8t/zw0Ggm324BGo2JmJk4yWQV2xVByOsrq\nUhq7ehBVbot6bJvw/nHyEhSW7lFcuYLBoMYV8iNKGnRaNfPzJfrHzfTsm6RnYoSsbGBtLk0+nuZW\nJcUzz41RjsyRXFqlVGpTKtZpVnOE99upxzbJymUcQgFBEHH7bNRKOQzmSXC7SGwmyBZlls5fpVZt\n4t+zxumvP8Sx/Q7u/MM7mBQbvYcmEbUGxKEh1jfKpBJlNAYdo4MmuorC1lqSIyf6OHfWj6rbpNGG\nre0ynT4L3UaFSrGKQa+GWonLf/GXGJxOKrUuvccO8fS/+xXyDS2bm0VMrn5GT1Rp51IE+52YegfI\nYcfY1HD4oROkomky2wmQJAx6iYVLt0jFC1iCIWSdk0vf/xlOfQO9ToVKp8N/8CCef4UTuPt9x8lm\nuUyn1UJntyOqVPSHTQSng8zpKzRLBYIhGzZDh6KisPnWW6h0OgSNBvvIGId+/RlQFOb+/DL1XA6t\n2UwuVSS7muPYiTMYtCq2371NI53EblXTLpcoJrOce+5xomsJbvz9NWq5AifOjqCTy/QOeoltpmi0\nBbQmGxvraVzFKtlUiUpXRzzbYO6vbnDysSme+MYZvFawG45SbOu4enmL2MIaQrNO8LibXCSOyukF\ntY4DXpn5hTQqrRaP20ApmcI76GUgqOXWhXWsPg9aGgTsCoWlOVJWM4OhMI8esqMVu5QbkEvKiIKB\nt386w8lJA422QnI+waWb8/imphBEgVQkSTmn5Zmv76Mnl0SvqzI6YCISybE4l6D9vg5ErjfonRrG\nqJL5oBFjCgSopdO7gtb3UdpYx2C10HPkyC99/78IPGhjvf8YL7zwAn/8x3/8pSEjoihgt++admUy\ntftVk0KhyZEjPbRaHUKh3dRbp9NAsdhgcHB3VNxs1hAKWTh2LEg6niEVL2Iy61jbKnPgkYO0GhJ3\nl8qYAyaMYoupg34uvJfC4zFhseg4fjyIw2Hg3lyGvl4bw2M+AgEzyVSNa9diaFQiOr2at/6feVwu\nIzqlSnQ7h15yc3jASGllk3okgX+kl2YbsktLaK02KvEY2rqDSlKgsL5Gq1wmduMWuVwDUyCAT+4w\nNTzMT/76DiapjtGk5cjJR7AZBYRHHmH2r/4KAQF7bwjH+BSbBR3X5xoUEhkcIR+nn/46ikVPcmUb\n954RXvybawRDNnwHD+H3GekdOo3QrlONx8guLVGORhk8dw5LOIz+F9SMyI0GrWoVjcmE6nNM0n1e\nfJFkpAh8YDRgBQr/+AG/8zu/i0az64y6f/8kp0+fpO/9aPrNzU2AT/x5zx4Xkcg27XYHrdaFJAk4\nHE1SqR0CgSCiKGI215DlLjrBRDqRxuJSkAwyle0GhWIDVX+Jjt3NyHPPYTJp2S7W8adkItEOFpeD\nji2Fc+8Qt66XubqyDAYFjVHPqWNjXPzBHFdn9PQZWkgqiVK+gq7Xj9CUaTebOD1moqk4HacWlV6P\noDfT9YTYUXSUIzLT/UYuvvsusiwRcLnI76R498WX6ZkcxeaxI9RyzF+7Qf+jj6BaW+DQ0RDJap2t\njRyj4z6On+yl28mgrqWY+cFVMqkijiE3HrufN99M8/xXwuR1VjR+CzsvvYRaaSNbDFjCDiorc5h5\ngrsrCQrJPJG8mnRWxZFj4xQlkXsbGlqtJHZHmxs3iiwtyTQaMjZ1hI0rN9BWW6jUEtH1ZfrHe8nG\ns6gcElW7GppNpLt3sYRCJHK5T9y/XxSiSoV3chKd1Up2ZYV2tYqttxdzMMjWhQtYM0sUt7eJ3iyi\nOnuW7PIy7okJJJWKbreLVqfGaFDTabep53JoLBbodnH4QhQTHZKbSfr2SFx8/V1UtKHXtvt/9w3S\nqtZIzi+SjecpRSNclpucODOIwVFDvZPH1xdiO69mdMxDtihTqirEUm22FmNIGg0/+ZsrHDnRRywC\nuUiFn/1slmKxTu+gn8GQjq7BTkIWqFQbjE77yaaKbMaiLC9FUEvwzHMTjA3oMVNgaNBGxSHSSW6T\nmb+LpNGgMppYevMCrVoTmy9MoH+UedyoRRn0HmJdI/4TLlQ1gdqFt6gXi6hMVtJtE9aOlkRJxGoP\nonObEEQRt1Xi2Okh5u8mqNeaONxmTj08xMCon0oiiCCKaM1mti5c+PiHfnsb3/79H+YcfYkxNzfH\n888//0Uv41PxxBNP8K1vfYtMJoPrAc0N+mCUX6USGRqy4/fv+kbtBjHuVktarQ7pdA2NRiQctuB0\n7ur7rFYdjzzSTyJRpVBoUKu1uHw5iqbbIdDnJrqeZPTkQd64EGfuTgTv6BClTpTnnh1mUFSRieeo\nlBoMj7pRFPiTP7mGz2dmYsIDdBkZcTE87GBgwI4oQixWZnzCS63aopAro+k2aHdVNPIZNAY9NpPI\no79ymstv3aNVqaI3atl/ag/N9bvkixYQRURRJLsVJZ8soFGBVpygU0/z+JOjmE0qTFIdq0lmLQGr\n9xqEXvhtjNUYjegmjhOP8Xd/fpFGuYpaqwWDjfm1CvtNehAEBJWaaqXJnRvbHDkzTFivZvPGLPnb\nV+mWs3gmJvAfPEg1k0Gt1yP+AqZ4udVVkrOzu2TEbMa3dy/2T0kI/ufiiyQjl4HfBv4OeBT483/8\ngLNn/zOFQhNBAIfDhM32YX/rgy+xT/p5YMDOU08dYmOjQLvdpb/f9v4EhkI6XcNi0eL3h1haymKy\ndOl0OoR6woSsOlacfioNNSvrIsGJILLDjmLVE7Q1SWQS9I9osI8eRzKZWVhooNbqkEQTWzsNSqUm\nDkeRA2cPUCuWCAwGgTo7kTzJtSRKt4v2wASG0ABBgwWnqoLp+ee4+dI7lOcjyKoWrj17KDVFNu9m\nkBtNmv4W+ydt1Ja3sB8/Rvf4WTrNFupkHE2xTLHYwnNkgKWbHQpZifLyOtGVKF/7lUk23lukkMix\nspRGvrrBua8f5/DBCW7eznBszzRWocC9nTyVYgWXPoNc6yJKkF6PoAjD2M0iPodI/7CWUirLjXdX\n8E9PEujzoFY7SKdbVKv13auZzRy1WIl0tc3wkAOppVCZncMWHEZuFPFpd0eo2/U67Wr1n9y/fwms\noRDWUAhFUWjX65R3dqil02jMZvQOB0q3i1yv05VlLMEgrXKZdqGwK7icn0dxhDAdfQJrvUg7n6TU\nVNMj1Qn1O5AUeXd+36VldTWPVifRNRWplWrEIzn6e01s5ESqySSV1ijeiWnWo02yFRHFaMO6Z5pG\nV9gdPVY0aIwGul0YHu+hUu9y8XKCh04HqTVXUWk0ZIpdTj4xzI9eWkclqdCKLebX63icGgYHbIgC\ntGpVohtJYn0GStkKJtGAVswRX12ikkgROnmCtqLizo9fxdkbIr1UwjCf4NS3XmB2pcbCSo50ps7r\nC6s89OwxZI2JSqmB1eZFQaLRkOl2YWsjj8ZgwOByYXC5GCzfxm/zIisSVoeBnrEe9HY7BqcTgFat\nhvgJ4jhJq33gysO/CBRFYXZ2lunp6S96KZ8KvV7PY489xksvvcR3vvOdL3o5n4hz54Yol5sYjZqP\nRD309Fjw+UzE4xUURaFabdHXZ0OjkVAU5X6r9wP3ZEVR2FxJ0qhUiWTqPH7mKCrDHDvpFgtzCUYO\n7aGhtiHmGkTjuxduAZeKZY2C02ng/PlNfD4LWq3EzEwClUpEo1GztJRheMjBof0uRvv0zN+pUutY\n2Ikp1FMxXB4jtj1BBFHANJ4nde8uh6bs6B/dg8liIDlzm7W5OcJTw/gPHCT63nu0qy2a1RoKoNLp\nKUTibMyuMRJUoeoJcn22SMOQ4+arl+m0mpx97jAHw15iqzFarQ6tpkyrVELvdFI2mxG0vQzuH6ZU\nruL2W0nHcgS9Olau3sGua9GsN9Cp1eQ3NvDt34/caNDI5z+yD4qiwGe0biqpFJHLl5HrdQDkep3o\n5ctoLZb7n/t/CT4vGRkDAsBV4Of9up8EXv0F//ZtoAFceP/2x/QiH4TiwS4rnZ/PcOLER2Pp2+0O\nKpX4ER2CIAiEwzbC4Q9HQJtNmcuXo6yv53E69UxO7lr80mlzYtqI19iiUKgTzynM3lwhfGCK5eQG\niiwz6m6gbaQx5aqoHD6Kejfm8QOY2zG0XYmNeznKxQa1apN7M3F6nhzEJraROhUwGJl65hzSu3ex\n+V2EzjxEW9TSSWyyuXoXg7eH0KlTDD3tYLuoZTHSxZ1K4LAbqJR3DxK720I4OEbX5ObyazeJr27j\n8Lt4dN8xQoddvPH6Grdvx3d7o/kMBoOPSz+7y9HxAG//9B65TAUEkbdfmeHZ/2kauWsHU4NOvY5k\nttLNV1Bb7MQjWQxWM2M6E8XlCIntFI8+e5CAscpiR+Dck6OEpvvJ1iSSySq53O5BKUkijXIJjUai\nUmmhoCC3uwgGFWqNgFHzYSlPpdOhNvzr5iBUEgmSs7M0SiXUBgP1bBa9w4E1FMLk92PyeGhVKtQy\nGQobG6h0OrqCip1EnfdeukQxlUejhqljkwjbd/G6NLQySTIba/zqf/0Vrv7odQrFND69mZ6hEEaX\ni1algs/lwGaEQqrI5R++xn/873+Er6LH6HSynFJx7XqCqeNWjp8Ms76cQG/S4XLoOf3oMMlch/hO\nmUSmhXsgRLVUp9OWSSar3L2+wd4jg5jcdqrVFrPxMhOjVnKJHK18BpQelhYzzN1c5cheO3uGxnEW\nC7gmpwidPMG9V89jMGgw2i2U61py6TJio8TqRo1SQ4VFpadvTy/r9zY4dHaaldUcpZaK/r3DGDtF\nxFKSbquOpb8fSadDb7XS99BD1LJZBEHA4HJ9rFyrMRhwjoywc+MGyvvjDqJajXts7Be6InvQEIlE\n0Gq1eB8gAeAn4ZlnnuEf/uEfHlgysuug/XEXbZNJw0MP9bK1VWRxMfN+NUTgZz9bY2zMzb59vvuG\nlYqikJydpZNMcua4j5+9vkG6ZWb03CMUrkSYfNRKuiCzuphAUkkUC3VESUQldDnz8CCyItLfb2d+\nPkO53KDd7pLPNxgddXHkSICVe1Gy5hKhfjuVlXm8w32EjwaRD/nZiBTIFrKsLMQxSG2+/rUDaLZW\nqFbqpGJb3P2HN1GUDpPPnKPZajHy1adJLizh6AgMPf442WgCg9GEx2/BoK1SwEqxIZBNxCnlKmhN\nem5cWiX89QncagkFFeViHb3FjMpgQK3VYHcY6PvqSfKRGCNHNFy7voPVqSctimg1Ah2pS7u8K0so\nbGzQrFbx7t9Po1hEYzKRW1sju7REV5axDwx8asZNLZW6T0Q+QKtSoZ7N/puRkd8DfgdYAP4M+C/A\ni+//7o/4xckI/DPHeXd2yshyB5VKIpWqMjeXIpOp4XDomZhw/5PpvbFYmdXVHN2uQjJZxWbT0dNj\nZnrai7Fb4tqP3yHfMLAwl8Q73E+6oqJaq7BwbYHQ2SDtWITa0iblronRJx8j0tXTqLdZXk1j1Kox\naRWErkAwbCWbKDBx1IvZZqHSCtKI5Tn83cMUOwbanRbxN3+KnIvjNlqQGw0Ss3fpf+brXHlnm0uX\nd/jVF4YZPDBCZWcHq1WLxurAu2+cH/3tFeSWQr0tsbqcRn47xsRkh0S6icGkZ3MlQajHg8GkRaMT\nKNc6iKKATq/B4TKhN+qIxKoMTPXjdEmsXUxz5Le+w9bF94itxtCYrfQ9fJq62kopu04zHWdtIYZn\nv516PEajWkMeDpHNqjAY1PfH8Or1NrZwL7r1GMGgBZ1ORaPRxDk8hKs3QCcVAXavij1TU/fNsP41\n0CiV2Lp0icb7bSBRkqhls0gaDRqTCUmlQlCpCBw5wtKPf4zcaOxWTcJ7uDsbZ2d+HWs4TMfoYDXa\n4vjhY9QSCa68dRddYYt6ocTBb7yAYr9KeDSI2e0kWVXhmZ5mfXaOeldPaNKJ0Rcgu7GNzaYnK9pp\n1DLYfC6cehmjXuD0cT+xSBEEgRvXIhw9O44nYGXuXpK9Ux5++qPb2MwqSvkq3qCTdqPJnVtFRkdc\npJMlNPu9qDRq1GYdjXqLbCyJ0mqyeHsTS/gsrgNnqSWiROM1Vu+sYnfb0Dg8iNkukwMWYtES81dX\n6bTaRBZkpg4PYteIHDzai38kzOpagZE+Fy5Dh0YmieTqQWO2kpmfJ3T8OGq9HutnjLS6JydRGwzk\nNzYQJQn74CC2X1IF7IvGzMwM+/bt+6KX8Zk4d+4c3/ve95BlGdUDNMb5eWCx6HC5dr2KyuXmfdO8\nu3dT+P3m+1Eg9WyWQiJNvOUgGsuzd3+ARLICYSfOgJvb82XeuxxFI4Fe16FcaqDR6UjHc7gDAgeO\nj7G1VWB7u0i73aHZ3M3TMpnUtNtdmuUK2UiTwSEH5r5B/l/u3jRIris903tu3tz3fV9q3wv7DoIA\nCBAkmy02W+xF3S2NRh0jyxGKGMszCtshhUNWOBThHwp7RrZlSzEzYbU1bknN3tjsbi4gCZIAsQMF\nFAq1V2VVZmVW7nvmzd0/EgQbJFtNUE2xOe+firyVVflFnnPP/c53vvd9z18Is+e4BbPHwXY2i1Sv\nsb6coJLNI5fD8T1G5q/eRitvYfa5cA6GEG1eP3ullgAAIABJREFUlLIWXRSM79yNQqFk4coduo0W\nA3sGMGtaiI0qRbkRucuEUIsjiDKqhQoyQaAlqtBpZFhMItFbWexBDyqLjdCQEyG5RnR5HgCDzcZX\nf+cI5VwZdX6FRnwTLCaK5SLtZhOZQoHKYKAtScx++9vYhodpViqUEwnodqmm07QkCf/Bgx8Yjw+r\ndCIICL+kzcVHmZ3/FT0tkDLQBzx/7+e/+6VE8BAwGHq+AoWCxFtvbdzfmedyEplMlTNnBu9TedfX\ne5NLpRIZGLBQLNYfUPfL5yXyeYmRERveAT/BE4+RuRbFPFwnmm5SLJbpD2pplEtUEkmka1dIb+Zp\ny5Q05/Uc/9wTjLj7+P5LW8zfijA9aUVl0HHwUBBBKuPUN4lu17l5aRXBYOONv/wpw/tGOTylIbaR\nwK5pkw+v49u/l1a5Tnb+DicPDyAT4PrtDGdOH2NUIWHUQiEvsVHSki4KGExa9B4FZpOVy1fjBIIm\ndDoFzY4Ms0GBTKPB3+fAH7LSWLqGwaDCYtES364weLCfpUiDrjrLzRs1hgcmKCvrjH05wECpQE00\ns7BRIzu7icpkwjY8TDGRohgpou8WGXxkHxsVBdVqA4WiJ7OuVIpEo0VEZ5CRQ0W0rQJqlQy53kjf\nsaMY7RZK2z1tDY3d/olTyaqp1AMlyGa1inf/fmqZDHK1GrlGg3VkFHRmLJMbKGxuXOPDrG+3Wbnz\nDt12m0apRLVtoJCvkh/U09gM06nVQG1g9dodfPv2kK0oMBaa2Hb08b//u3PsPz7O7ucGSG7EcQbs\nBEMmts/+GP/Ro+zZ2Ud62sbN61Gk2AbrN2fY97WvoHfa2dwo4e4TGfAoKE45uXEtgkNb59kvjNJq\ntwkMelhb3GZ9PoLKaESjljE2akMu9HYlHr+dwVEPC1cXMWlBJSpZWM7h8xnp9/fTKpcYPXWMWDjN\nVqZLdKuCyWVDJtdTKdZo1huAjPBqiumv7KVYaZOKpDl4oJ9qvshrb6yi06vYOe1E1y1S2pLotFoP\nLEztZpNKIkGzVkNlMPQYUzIZolyObWQE28jIJzrmnwZmZmY+E8mIx+MhGAxy5coVjhw58mmH8wEk\nkxVWV7OUSg38fgP9/ZYHTDALBYlqtfmAem+j0SaXq91PRqSqxOxGlx++eK1n5ul34Q+YgQ6Tk3ZW\nVjLEYlbK5QahoJHTT4ywNBelmJeYuXSF4Kgfv0+P32cgco+JOTZmw2JRE93I43AbCQyK3LoeYf7i\nPCa9Ab2yzcpSCptFCbUS7XabbLrM9StRAr4xVINTTB8YxG6AeHibm1fC7D4+xe0bM+Q332F4yIJW\nLeDZuQNHvxeNWkTQ6DBbBrj7D3NILTmh6RFK2QIWrwOtUY8tFOT0E3J2HhxmYynG2IiWgClP+sbs\n/fuxGI2i0OkIHj1KN7eL+e+tobXbUZvNaB0OHBMT1ItFVn7yE1qSxMabb+LeuRPrPaov3S65tTXs\n4+OojQ96R+ndblRmM/X8e+2d2nsMyV8GPkoyIvDe0UwYOAF8Fwjd+90nhp/1KdFqFUxMOBAEgWTy\nvSOCd5HP19nermA2a7h1a5uZmcT95GN9Pc/UlBNRFO53aL/7/9+d+FanCa2lREumpNWqI4pgs2qw\nqJvIKym67Q5yrRa9osvKiy+gtxqIz87z9KlnGPaJlBpyatUGseUoGkWTmkFDqiwi0xoI9pl55PEJ\nwptl6pIct9eKohjFvXOa/MoygtaEza5jceYSTx2YQOmbQJTBRjjLnbktYnNLBCYHyeTqqHz9NFt1\nig0RrVkPCg06bReH08DG4hbFgkS11sbu0GANHEaqd6mWa4w97kfSutBVu2yE09yZy3Biv5WLf/si\nqZUN9GYDnp2TOPqG2Mq2UVoN1NIpDj8+gckAmNyUy3VK9Srb2xJTU04CARN+v5FUqkq73cHy2DDd\ncp5Op9MT3dH0hMtsQ0Of2BwpJ5OUYjG6nQ4Gj6d3U/6MhGO70UBlNOJ5/HHUJhMKrZbVzSqFuTVW\nrt0lubDCmExNW+cmu7KKxmqlnEigHnKhNhlQdSqs3JhlaLCPWluPb8hNaMcwluERoltl3nw7QqMF\nuWict66uYQ4E2VxfxPsb+9EGQujsDmJrMfKpIrGFVXyHQqgsJs5+5wKlhgyj1UhkNY/VMIXLquNr\nXxxA0y7SqNW58sot6jYVQ/0GqqUaZo+NTjrCo2cmCQ7ZcCuH0JhNdBVq9LpJlArIlbok8l0klKxV\nVAgqN6qpAK3OHGKjwN7Hx9D5Q7xxPk6gz87mcoxGs0W9VsdmUnD5Oy8hqtTYdhkxWlRMTzrpttso\nxS6i0YJeIz6QiLTqdaIXL5JbW7uvZ+CcmsKzZ8+HUrgb5TKVewwbrd2OyvDzq5m/ypiZmeErX/nK\npx3GR8ITTzzByy+//CuZjLz22tp9MbyNjTypVJVHHgkiijJSqQrJZBVBEHA6tZTLTarVJjKZgFb7\nXsKSq/Rc2utSE4vPzUs/WaJcbvA7v7uf/QdDjI3Z8ftN91k3K3c2qGxvs3e/H5tFRSFbwagXOXzE\nz0m1ArkosLFZoC61GBiyoulq6BvS8+r3v08ukUNrbFAtV5G11YRXYvS7RZxOA+lICqNJxdZKlGyy\nwL4zh4hVqtxNGzAO2UjWtAyePkl67g4KRZvgmJdqLs/b//e3SG+lcY8NEnpCxdSUi8hSlGwJpo/u\n4cCxYZqNFrWWyOorZ8lvJ1HrNBhGRLaXY3RaLUyBXvtCS5LILC1hn5jAd+AAKqOR5OwsMoWCai5H\no1Ihdv06nWYTuUpFq1YjvbiIdWSEdzuGu53OfU2Sn4XabKb/xAmSc3PUsll0DkfPJdhgoFSq02r1\nnJY/rnTDR0lGksAuYObe6zLweeA/Ap9o99bp0wNsbfXcFwMBE253rwny/f4F76Ld7lAoSCwvZx94\njyS1SCTKjIzYWFhI0+32PE2Gh633DZccDh2HDvmp11vcvBlHEARCPi2jHieNSy+gtphwqDps3bxN\no5Drcc937aK1eo1hS4DNsoaFZINmLs3up/dw7ieXiSWbXDt3h9E9g3zhG0cwmtKYnTocln7WXlvv\naW/YHVhCIXIzV1Cn88gTCgLDTrZyAqKs54GSS7tpydQM75+i3pahVki4bCInDoZw2ASuXiuwa4+P\nZiXI2JSP7eUNvv/vv8tjXzvF7i8+yXY0Q6dWRspmGbIbWIx2mRyQU1hdwiNL49vlJZ1rYO1mCXlk\ndI17qOYKPPKVg8QjGd7+8SyVOniGQhw5YyXQL+8p1eZq2O26+x3wAOjdn9yEeB8KkQgbb71Fs9I7\nD02p1bj37EHrdFJNJlFarGTbJm7OlTBXS0zsNONViYTDeWp3lzEMjVGv1ujUJRwegZ2fO0FkKYpc\nrcbq0DN9bBrl+jsInQbNfAqXz41/7xTxsohcJqKTVTl8wE1XqpBYWKG0skC71aWaybDxThufz0BN\npuHOXIxqvojdrqOaL7H7yWPM/4e3Ca/nGZrw0R8yopO38DkFrLouyz98Fc+uHZx8eppctsDo43ae\ne6YflBqyGxGW7q6hrycwhG+gMhjw7tuHQpZg4fo6BpeLkX37iOVlFHIVFldiLK9k6etzc+rkQW7P\nbuPqlMkkcli1HSYmnSDI2HOwD5ehhcupZWpPkFvffRHPvn3k4jU8TjXZ23PM3W0ycaBnqvju4lfa\n2iKzvHw/AWzX66Tm5jD6/R+ogpWTSSLnz1PNZIDe4hZ85JF/tvnyy8TMzAx/9md/9mmH8ZHwxBNP\n8Md//Mf86Z/+6acdygfws6q83S6Ew3nGx+1IUou3394kl5NYWurNl+PHQzSbbTwePR6Pnmq1gVwu\noy1TodBosLrMpLMSggCHjvYxNOKkVmsAArFY7zkyN1dDWS+xf8pCdf4GYqFOI6Vja72Eq3+AN96K\nkMtW2bfXy6nTAywupPBa1Uj5FCOTPoy7HYidBhaLgGfATr1aoVXL4rUKaA4PsP9QkMJmhCOPDlG/\nex7fnv3IBpRUlu4gJGoYhvsY+vwjNFsdlM0SK29dpFGpUisUWD73DjqnC+3IUf7tn3ye7UiaXCyJ\n3aIgEy+RX46goElLqhOc6MfkdqI16ihFowiCQCkepxCJoHO5iN+4gSUUwjU9jc7pJL+5SRfotlrQ\n6dBpNmkLAqZAgFo+T6fRQJDJ6Lbb6N1u1D/H00jndNLvdNJpt5GJIvV6i6tXt1hdzdFud3C59Ozd\n68Fi0Tz0XPgoyci/AJrvu9YEfhv464f+xIdAIGAiEPhgf4HdrkWvVz5gC6/TKXA6dTQa7Q84xkKv\ntLdvnxe3W3+P9aLB5zMgl7/XPex06njuuQkefTREKV9GiqyirOeZWV+nns+jD/ZjdFrouF3I1Wpm\n/v67GJ0WnKMSupaOrz7zCCu3mnz/P56lIajpGwtQlxuoVFvcWcjTzGRRdCQGH53Gixa3sU1+M0Ls\n+jUyK+sUUhkS16/h2rmTelZi843rLN+NMzbpps9uJhC04OzzkdhMoqjnKW0ss3Q5wpPPHqdUqzAy\nZEHRKDF3/iZKnYH5pRzTExaqiVtcfvE8KqudZLZJYDRIaGInlfUbVDfXUKmVjO2cotvKo+8UefLX\njpOLbrF2c5nXnj9PJVegmCmT3UqhMNsIjflJpaoUi3Xsdt0Hvut/DnQ7HVJzc/cTEejtCrIrK/j2\n7yezuEg4LXDxUgSty02r0OH8+U0O7PdgFkrINCKttobgk89gNwiEX3+FE48donxqF8ViHYdVRWhQ\nQdU8hlanYn0+SlmmYC6tJ7Me41Bfg/N/+Xf4x/qwCFpc+0LcLmURNRpCE/2I1Qzu8X3MRapItRba\naoylC7eYKdSYPjjMnkkPJ587gqqUIH7nLrmry5hzLhSDQ9iPPo5MJdKeuYDdZGH+b39APpXDPjZO\nsaFk4sRRDGrI5jxUigXufOe7RLdrKI1Wmpt58kKVmmGCZLqDzaZmZVXAZFSwvpLilR/N8uvPDvP1\nb+ziytmbFBMpJnb42O2vU5p5C4+sRHkhRz6exJRMsvPRRwi/+hKJlTA2t41ut8v2zAzl7W1MgQCV\nZPJBMxHe0yF4YLy6XZKzs1TT6fvXpFyOxK1bn+xE+QRQKBTY3t5meHj40w7lI+GRRx7h7t27ZLNZ\nrL9ifiTvR6vVodXqMjubpFJpolSKDA9byWRqJJNlHn98EINByZUrMeLxEkqlyOCgFceAH0Ffxt/q\n8mtfnOLqlS2uXInyzjtRvvnNXRw8GODs2VVEUeit79feoL56B6fViKuzRTvoYyNf4dChAJLUxO3U\ncf7Ndcq1Dm6PD6NLIGCa5fprNxFEkcrZyzzy66f4zd88ya23bqE36xkdd6OUd6k1g7TKeaTtAmaD\nnKXLr7Jw7jKh6RFqq3PEzp3FMjhI9PxbDD31FFpXjdhiGElqkdqIsxK5TWp9i065xIhfwFCXs5mt\nokzOYLRoGTjxHIm7i6xeuIysXqbbbmMMBilcuUKn1cI2MkI1maSaTKK2WnuWDC4XBrebxO3bQE+U\nUK7RYOrrQ1uroTKZ6NxLRLz79v3C6sa7TejLyxlmZrbvLwFrazm63S6nTg08tPL2R0lGIj/nehc4\n/1Cf9kuCzabl6NEAMzM9zwKdTsGOHW4cDh3NZhuLRU083jtZkstltNsdQiEzGo2C4eF/vOtXJhNw\nufQ04+vkiyU6Gi07f+u3WH/9dar5Av69u3FMjLP8xgVyuRpau40b55eJplvU6i1Eux+lSk4plUNs\n2fHpahRlXRSdOl/8zb1IyTivvLRAOlXjX/+bR1h69Sz58DqIIiqjCa3XR3pxmaXlMs1Sgb6Ajm45\nRyW8RCewi/MvvINSytM36sFnEzGHBJo3X8O/7zDf/+sf4BkdZHDfFFfPr2CplFCLHQrzN7FYtcRS\nRbRaDfmVJY594TBbWzUaZiOirIuMDsa+EKb+AcLhPJWNOJfeXGQznEdvVKHUaqiXy6STefrGA/eo\nb//0hrh2s/mxNCfazSb1YvED11vVKkq9Hu+RR7j2g3mso7r7N47JqCB+9TLZtTVUFhuFCuhkdVoy\nA6myiObOTcR2A6MoEn9jDe1TT6PzBdlumomUs5SKEpVElD6PiluvLaBTNAnfuI1vpB+TU8fU0Un0\nTjuWTppOZIt6o8PsuZv0B7SEZ+aQqVSg6JJO1zDqtgkYhlh4+yKlxRXMbgelTj9n/9+L2KZ2k5m9\nyfCkF08hihTfQK0x0tiOYA+GaK3eZHErh85px+r1kA+HqdUFMls5WlKFTqxK6JgDk97BkZNDHH80\nxNztLaqlKl/76jg7dvuxKcucORmgVbXSP+Zl9ezr1MpV6CrRq7qYnWbUJhM6dZdaWULvcDC0Z4j8\n+jqxW7MYvD48UxMYg4EHqJYAolJ5/4ju/rhI0gOJyLuovY9i+FnA7du3mZ6eRvyMsIJUKhXHjh3j\ntdde48tf/vKnHc4DeL8xntGoQqmU3a+YvNdQ2ut9czp1vPNOhM3N9+59rVaO12ukXG6yuZQhulWi\nWGxgsagZHraxuVnEZFLz7LOjaBRdpEQMlc9Obh6ahTSZ65c59t/8awI1G5ubJaxWNe12F7tdS7Xa\nJB7JUG1l2V6LYrKbKObLmPUKmrFl9FkvzsxNbLYR5KZRzr2yQPjWEhqtkkNP7qUQDhO/8BZquQql\n2CZ28w6NQp4jE6MUIxFufetbHPnv/nuarQ6Vagtz/wDFW1XK200iK0kUgo+dQS0Wg4QvuB+53c/S\n2xdZm4khyAQCARNOq4JqKoVv/35UZjMyuZzavXutlk6jv9fTYQoEUBoMiCoV6fl5BFFEYzbjnJ7G\n1NdHt9VCbTY/1DHL6mru/XsREokKuVztvh7MR8Vnq736ZxAKmfF49FQqTXQ6xf0Ho0Ihsn+/j7m5\nBJVKE0lq43brGBh4sOxULjdoNtsYjar7FDG4t4NLVnj1bJjYyhZypcjQqJuBg0dp5jPoAiGK0S2S\nkSQOv5N8qc3i7CZtQUExU8EXUmIw69Gb9UQuvI2UL6DQ6rA6xihdi6L0DRC7s0wqVSWf24ulL0R+\ndY12tYbG6cI4OMr2ZgqjyUJ8HRSyNt6gjuXby/RbfcQXw+QX77J+Vcc3/tsvEHnh2yj1evR9A+i1\nCi7/+BK7vuygVKrT12ciF09TzWTxD08gMzQwmlRsL6wSvrmI2hGgs7RMo1ztdZirbDR0Tu7eSOFX\ndzHajXQFgVKxjsNtBpkcEBEECAZNOJ0PN9nK5QblcgOtVo4oFUncudOjhdntOB5SyVKuUqF1OJDy\nD2rlqcxmlDod9WaXrkyOTHzPLdYkr7J58w6GgRHOvrHGykKcdqPJ53/3afY9eYboyy+gqKUQAOuB\nk5y7kMDobBIrq4in2+j0eoJDftqRuyzPp9g5GqJ8e5FmPoVT6WT/F08TX0vQTufRjg9RzaShUaVV\narC9vI7c6iIRLdA/YKUWi1BOJMmurpNYWMY2PsGFs3fYWtpE1z9CuSQxeyuO7ZEA9YaA2MwjSCVE\np5XMWg6Z0cnKpRn2/NopSuUGep+frVubNFtyjHoFOqOObFYivBQlPjOLzWHgwJ4g27dmUG4XKSvV\nTB4cpRTZJL4SxTY+QXL2Nq1ImEK6w+DkTvyHJmhLVaZPH6LWVaLSykldirCdqFETy2TbEXboDGht\ntl5S0e0iiCLW4WF0jgd9Z0SlEqXBcN/V91180jTvTwIzMzPs3Lnz0w7jofD4449z9uzZX7lkZGrK\nyepqjmazjcGgZP9+H1arFotFzeZmoXekWmsiijLMZtW9I/eejYfRqEKhkNHpQKXSIBotMjnpYHY2\nxczMNkajiv5+M/F4CZNJRSLRUz8WagUO7t+B76QcixaarTbheIsfnZ3h6u0COp2cqSkXjz4aJLKZ\np55O4e3rsB3L065W8ASsKFtdtK08jVKJ2LVrBE88xkt/8zort9eJRzL07xji4g/fwvLUEDIZONxW\nVEoZ3UoeWbdJU6qhc9hpSxJSPodjqI/B0ACSOYTbESWxuo7BHUBw9tFuNyETRTIEaEkypHIdnVGH\nVMixtpzEdHQcQSbDPjFBo1ik2+1iHhigmk4jKpXUSyVq2SyCTIbO4WDg1Cncu3bRqtVQ6vVoLD/f\n9+sX4cMsHWQy4YFn6kfFZzYZAVAq5R+6O3c4tKjVCu7cSd03XAI4dMiPTCZw506KxcU0rVYHu13L\n3r1edGKd9MICUqXG5cUOsa0iuWyZYqHOyswyJ5+YRFMt0DdgxTrtZmA7SzuX4trlTbqCnEZNot4V\naSmNPPlckMtnZ4iXq3TlCvwjfrymNrMvvc3oMyY8fU469Q1q5Trakd048xXanS4dmYqO1oxvapyz\n379CeD2P0ajE51aTiucZFEV0ZgOFbodqoUQqXUPv9yOqtcgEGZP7Bth55ihan5/gxAAGvZyNSAmF\nM8TWRoZ8TUaj2aZWlTA4LAj1ElNffo5qsYy9P0hDbeHumsT26hY6VxuPVY6n300mWUZtNKLRq9i1\n18+uaRt2l+mhKiNLS2lu3tymWm0i0sKvq+DspqgXCki5XK+T+yHhmp6mXi73zkEFAYVGg3N6Gplc\njkYOgYCRfL6nVSOKAu1SEXvAzdVbcRLxAvliC7lc5OL5NZzBgxin9hFwKRHocvZchKsvvMHQgWnK\nWj+xdIepiRHKVQlZsYjZrKar1BLaNUlo2EUJLRevZ7h1NcrYDj87Rw0UZi8xuaOfRgs0ZjNyJUzs\n7sfl1BCfXcMW9KLSqHAEXMhtHrZX30auUiHKZBh9PsqZHLmaAkvQSyWygcJoI52p4BgZoWNw4Ot2\n8O2YoJwrkNjK0mw0qFVb2IcMYLQz5JCzsZpma24Z55Fhapd/SjeyRXpFRt/h/aRmKmgddkYOTfeS\nO5VAwWlBaTCgdThox1fJtM28/HfvILVAbbbSykvsP3iEZi5DMlnh1jvzPPX7X73PQtJYrei93g/Q\nAGWiiGtqCimXu3+0JtdocP0Ki4b9PFy9epVjx4592mE8FE6fPs1f/MVffNphfACHDvkZHrbRaLQx\nm1VotT1n3vFxO5cuRSmVemu306nDYtESi5V6sgKmNuXwHarpDJYDB1iKSmxvV9izx41er8DvN+J0\n6qlUGuj1ItFoifPnN+m2mgz4lMxci/CbXxnk8gs/wtIfopDdxunUcfCgnkikyA9/uECt1uLXnx3m\nW28tYTdbCQy4oNVCr1fQH/ChUsmR+cfY/z//byi0KjZnX6Zbb+L0mKHdJLeVo6k/isI7RHQ1jN7l\npIMM58Q4apOJgVOPobHZ8OyYxnPoKGubFWYuLJHbjGL0BwlMjeJxa6G0RWZ+Dsk6zM0L88jWoqSi\nabw+A2aDjM2FdbwDh4hducKdv/97FFotoWPHCJ04gahWs/LSS0j5PIIgoHO7CR49iu7nKPK2Gg06\njQYKne4jVUhGRmwkEuUHWiNCIRNm8wd1Sn4RPtPJyM9DMllheTl7nynT6XRZWsoSDJpotTrMziao\n19t0Ol0qlQJStc6UOU1+eZGOPUT49hoyo5VaU067WabTEVkKV5gY7+Pbf3ORvokg+w8dJ3vzCkpF\nDIVaTmjPOHJnkO/+zZs8+ztnOHk8yKD9KFIuD6kN8lfDNGtNaDfp2zHM5JgFCRV5mQO5d5CFK4tk\n0mkOPTuJKjjEduI1jCYVuWyNZkckuGuKjWiFTruF0eOi06ijVkJdpcS9cxrDxBSNgJJ0uozR4cKo\nlWh35UTu3uCRYwdYevMSqXyFtsXGmX/7u3SzCRbffIOs2YB5YJCa00kmvIxzxz7eXFyCvJGRAT1P\nPDHEZqyG2e1gaNSJx9KlHZ6loxknl6iRWV6m2+lgGRjAMjj4oZbUqVSFK1diVKu91qPcdpKN6CZP\nPDWMKBSh26V2TxfkYaC12/Hu3cva2bOU43GUej3NWg3x6FF0DgfT007q9TZbW72SrtNjp9CpEHs5\nQrXa8wsSRRluFKws5wi0ishzOWzjk2QjcUS5nFQ0xeQTE2zFK0TX0wSdAqF9u6nMXSW/FcdiN1Cu\ntEiIRubvVtA7vWys5yhsJRhR1ZBWzzH4xd/A83tfYO7Fn6JQltEp9Ux/4Wm2Khq6vkky2w18KjVm\npx1BZ6RZq6ELDRLdvNaj0mmt2EeU6F1OZDYP3qPHuXYpjHrcTUPnxHP4URI/fIUDj47hnhzFNTlJ\nqirHZDNBrcyu3z5Ge/UGs9/+DmqDAYM/gMruotFq4HC5iW+mSc9cRyF2cQ4P0AWyy8vo/EFWkgra\noop2OU+n2yGTKpJqhLCaRSgkkBrQQoFzeOAXjpcpGGTwzBlK8Th0u+jd7l8p19CPisuXL/OHf/iH\nn3YYD4XJyUkkSWJ1dZXBwcFPO5z7EAQBu/2D1TGFQmT3bg+Tk70KmyjKyOclUik5o30aZp4/S3ar\n5xCtdW2iEczI6KBSydHplITDeeRyGfF4iWeeGb23MW2TzdYJBfSk0xWqbSUqo4GpU0dYzqhIZFqY\nzb2j/eXlDDqtnHpN4olndtBtt/Dt2Ul2aQm7uQsGGwVTiO88nyCfr/Nf//YoBp+f+vIqjewWKqUM\n/fAkWwU5g7/2DKXnf0RbbWL8S8/hmhijuLlJfm2NdrNFemUVmU5Pt2Oi0Wxz4HOHUHZqpGbPYdSM\nYPQ6GXz8DK9cTbE4t82x3WNkY+eJRkqYJqyYrHrURiN3/+EfAKhls0TeeQfr0BByleq+1EG326Uc\ni5GenyfwPmZVt9slu7JCcm6OVq2G1uHAvXPnByqc78fAgIVut8viYppGo01/v4WxsY9nPfBfZDJS\nLNZpNB6kJvUSj8Y9A6YeBUkmE8hkqsTCCbyhFjJApIsol1HMV5E7PBw/NUm3mMKgU6AwGAiOa2gj\nkGlqcZ94iqemd7I6v4VMoaBbr/HsV/YTHLDTDN9F2LhN+KevIGs3MTotjB0/iW/Ej61URa3SERf1\npHJV/IERlAUTGkeVCzcKHA82ePRfPketZieOAAAgAElEQVR8bpFyKoNtehy72cGF1+YRRDX2sVG8\nfiuDUyHE0W9QkOT8+KV13vjOeQS5iD3g4cmvn0Cm1TGyaxC7X8D5O19ilyQj3dDQ7lTZmrtA39GD\nVKIbxGduU08nGDj+KIKUoN+vIxbLcafexBcwc+bZPQipMNG3v0tEq8Xo91NNJknevYtcpaKWzdJu\nNBh++mmCx46h0j3Y1JrLSfcTkd5YdJCqdbL5Bm6lkna9/rHGudvtkp6f72mY3Cs1VpNJtm/dYuDU\nKfR6FcePh8jlanS7YDLIuVEpotWpMJvbaPUqHEEPmbIMhVbL6PgEytQKrVyK8UkX/aNeVtfyxJbC\nPP21E3RlSnT1JD6PBvXEaSLXb9FpSFh2HyW2JdKKRal1mxiNBjZvXMI9riR67i30FgMag4Ydn3uM\nRKKM3m6hY3TxwvO36HO68Bw8iqBQceJffYmZ83dRWW3cno3jm57COxLAuftf0pQk6HYpNBT8+Hs3\n2Yg3kelNLOWiPHLEj3LXSdwOFY3EJpe+8xIo1Dz5mycZeqyPpTtRcp5Jhr7+TQo330FGF43dzt03\nr5PqWLHajWQTOVKLK+zWabH3h2jX61TrUCxUEZQqmoISjajENTZCPNPC4lOiUCsJ7plG8xC+JzqH\n4xcucL/KyOVyxGKxX2mDvA+DIAicPn2as2fP/kolIz8PoiiQz0v31/F32ZE2mxalUMM6PIjB46aR\n2cZMAWt/gKIkY24uxfXrcZ55ZhSPx8DmZo+d8/rrYUBArVag1GronxpEZTQx9aUvEqmoeOtChO1U\njXq9jc+n5zd+YxK7XYtSrWHu4hrb22UefaSfI18bxahuEi/IuXy5wNXrq5RKdS5N2xje2+sDKZdL\ndOoVjH4/60tJwm0Z09/4HeQ0GZweQCwlaFYqCIJANZ0mNTuLfWyMkV1BbCo3ubUVMitr2BQiq2df\nQ6FRMfTrX2c7vILBpOHabIH9T52hK1UIBE3s3N9P/J03kbJZRIWiV11VqUgvL2Pq70dlNCKTy2lJ\nEs1qlVIs9gGtoGI0yvJPfkI1lUJUKqkmkzQrFYaeeOJD1VjfhUwmMDxsY2jISqfT/VjHM+/i00xG\nngL+VyAN/FJrnjqd8gGNEgCrVU04XODixQjJZBXolZgGBiwkywVk9N4rlpP4HEpSd3MERwykbl5l\n5foSk7t8lDVeNtIwv1zCf6fIU5+f4vDeAbQaOXdePkc5U8Rg1pLp5Aju2YnR78M2PkFhaQ593xDm\noVEyG1uotUrWVzK4T+/m//rBHY4c9NDuiLx+dol9hwfRiRLXl7JspXXIFQZit9v43TmOPDZBZDnG\ngE3CTB5Zt8VGOE9R5ebm+QVQqnGHnLhDTrbjOZ54JkRjJcrN//A8tXIN/cQ+vEeOsXLxJnIE3vw/\n/xONYgHfcID07Awagw7PoaP0q+IMHR2hIdfh8JqR5aLM/ue/xTo0dN+PoFEq0ahWEejteOvFIuHX\nX0dl7Lmy/myFRKmUPdCopjIYEJVK1Go5Xan3vSv1+oce52at9uFNkek0zXuukoIgYLW+t/NS+wc5\n8w01Vy+t4tujpCJ1MFkNHDroQVUKk1nuOVtKMhtFSeTgk6eYj8lY3Gzy9NN9sLDG1f/8U2LRPAan\njekzR8li5rX/7wVK2ynMdj0Otxlbfz8mdwPlo4cob0WoK0Q0bi9qi4V6V0ltO8meIyPcvboE1Tbx\nQo4nvjKG50v7iKbaOFwGdDoFiWiOly4scP2teUaO7KYkddm904lT0WRmocLMzC36ggbsLiOp2Rss\nX5yhIxMxaWH5xy+iDI7zg2+9SastYA14GN15Bo+xwcZyHKXDxWuvb2CzaTmxbz/bC2sIciXhN94g\nPT+P57BIcV1BPt0km6mRr8RxTkxw+EgAnxVcu3dj7w9gMD48je+ziqtXr7J3797PTPPqz+L06dO8\n8MIL/N7v/d6nHcovhM2mJRAwsrz8XsXU69WzvV1h5eYSifkVNAY1+w+NYlfmkLWiPPOFQ3zvh6sM\nDFgQBPB49HQ6Hba2SgSDRorFOu12B41Wid2mQq3TkKu3WQkXGBi2MzjS0yuJRkvs3Onh0CE/f/1X\n17n0zgbjY1beeP5tztPkt7+5l/MXoqxGGtRrHYqFOj98YYn/6X/YR//vf57w3TD+qVF0Lg8/fGGB\n61dy/ODlOA6XCcN3o/yPf7iLYiTCyssv0ygWsfQPkA+vo9CoKcW3Wfre92hLEt49uzE7zFRLNUpb\nEUwmNa1Wl7pCx+2VGv4BL/snQzQy67Sl3nF0p9kEQUCUy9GYzSg0GiqpFLVcDqPXi87lQqHTfeAY\nNX79OvEbN+7riygNBriXLBl/gdIy9JJdUfynyY59mo5VF4FPpAvM7dYxNGS9/+XIZAIOh4719Ty1\nWotMpooktQiHewJdgxNezA4TcpuLYjJDUF/gc782Rr+9QzOzzf5jIxgHR7j09iqx+TU8fU5MehVv\nP/8mkTsrLH7vO1jECv1+FTZ9B5nawNmza7x4ocRcvR/nF/8VbZWBl/6X/4Nrf/s8tVQaW8iPXOxi\nMGn40YvLWEMBfv9PvsSp04OEX3+No/vsaFQC6/NbNMtlXD4bue0UQb8Gr7GFStaiLqgpFiU2lrep\nFCqM7R+lo7dx+XqKazfTrK1maLdb6N1u/IcOUq3Uufv97xMYDyHlC5TTOVrNFo1SAZVOTSWTRaNV\n0kpEaNx6A3crgqmZphqPIVMo0NjtbN+8iQDUSyU6zSbVdJpGpYKoVPYcb9PpDyQILldPF+BdqAwG\nRo/sxOXSISqV6FwuAkePPvQ4fxhrA3q9COLPsbZWadU0FTqeeu4Axw44OLFLw+FQBYu0SXXpFlI2\ni97lIhQyE/AbaCU2CTjlnNilQSNIKCwOnHsPYA14UZvMWAaGqEXWkXVbdOnS7nTJR7boH7Lj8JoI\nnjiF98gxTOO7KGr8LG3LuXAlycxSHZVey/ZWnlJLRWQzS347TavRoJwrcvPCEjevxbD43Ny9skqt\nWqcrKlhbTvOD788jE0WarQ52p45aLo9X2Gb7whso82Em/TAyZCYaq7JwbZHhk8eQq9UIKj2Jjo22\nJYDN78YQHGA0qCRkB8Hk4MjvfoNqKkmrXse1axcyocPwgIlOuYDVbcfo8VDKl3C6jYjOIM6hPsbG\nfznqi58VXL58mYMfIpX9WcDp06d5/fXXaX+IoNWvGkRRxsGDPg4d8uH16hkbs+HzGXtHriodgsVJ\nU21jdr1B19GP0O0Q9Gh59NEQJ0/2oVYrePPNMO12l/5+C1//+jSf+9wQzz47yq5JK4cn1FTiUbbW\nEszdibO8nEGS2thsWkRRIJutsrFRpNnqIirk5OMprr21wOzMFqUaWK1a1m8vM+DXoJALGLUyXnlh\nhr7xAPv2eBA2Z4nfuIpK3kFqdKhV6lTLNYL9dlqSRGJhEVEuR1RrKSeTSPk82dVVVFo1CqWCeqHA\n9q3bVLJ56sU8emWbwyfHqJar6JQdRsfsjATVuPQNHCMjOCcn0TqdIJOh1OvReTwEjhwhfuMG8evX\nyS4tET53rudWPj7+wHct5fNU0+kHhM4apVJvHf+YAmYfB59mZST/i9/y8SCXixw86CMYNJHLSZhM\nKkqlOvPzKQqFOu12l0ikgMWiQatV4A9aeOtcisjdPFadhX6PyHDAQl1Tw3lmB/lklo7Lhr3PTypR\nwGrT0dgOs3l7mdgxL/m5RbTKLo7hART+Ic798DJtjQXbzt0srxXJJ/OEZGl0WjmmwQmuvL2E1Zsj\nZBvn5OkhNkZcmOR1aktz6LRNdPUU2evneWTvTnx2kWIyzeKVu4idOv2HzMQW13GF3HQ6IBNleL0G\nxnYGyNRlnHt1AYfbwpAaXv1PL7B70oxqZZXm1WsMfunrXPvBWYYUSjRWK6JKhUbVk+12jY3SbnXp\nSFX6TpwgvbCAIIqoTSbUVitb164hk8t7BnOZDPaxMTILC9Dt0qrVUBmNmAIBWs3mB9T7NBoFx46F\nWFnJkkiUsdm0DA9bMepEmtUJFDodcqXyocdZlMtxTE0h5fO07u0MRJUK5+Tkz6UL9/WZKRYlwm++\nzfzFWxj1SjxONXW5g0osgiAItOp1up0OjZUVbNO70XTMLL10kepIkODucdZSAh33BKWyRLVU5far\n5zn12BSFcpBSpcXYiBWXukg8JvVYAW+eRzOyi9f+8sc0qjWcU1PkKhJvvLxA/7CThbevYzKraCPy\no//nHBpfkHpHRmojz9nXw+w6Oc2tdxah3UQQZWxtZlEbDTRbeVwuDZpWkVJCwmaSIygVlDbDCN0g\nW+t5BF2DkpRH0Joop5I0FBrk+8ZQOx28+e+/ReTOIu12h+SdYZ78vS8i9vcj6dRUUimyaxtoDEW+\n/C8O0rD0s71dRmjUyMYzPPfU9ENRAOulEsVIhHqxiNbhwOj3f8Bc77OAy5cv881vfvPTDuNjwev1\n4vV6uXHjBvv37/+0w/mF0GqV7NjhZseOnpDixYsRJKnF5naDsqRmayNLtdqkfyzA0MBuRJ0eh7HI\nq9+bo5AsodOb2NoqYrNpOHGiD61WgU7Zprpyl1Q8z8UbBWKJGtWGgnhbx9mz6/zWb+1gc7PIoUMB\nymWJutSi0+nSqUuoNUoEAbY2MowNm7FY9Rj1MsxGBT6vjqOP+li/PsvSGxeZvTDL5KlDWL07OXbI\nRSLnYGTYgkXIE10Io9DoKEQiqM0WlGY7BreLWjaLTKnEFAqSDW8iV6vpNiRK20lkShXT00HsIR/l\nuozBQStepwqjzdgzq3Q6MXi9pBcWkKtUePbu7XnGdLvYx8epFwo9iwZlz+H4Z9GsVtE6HCj1ehrl\n93xwNVYr2oc4gv2n4r/InhHoMW1CITNWa51IJH/fvwYE9Holen3P58ZgUHH+/Aa35oooxZ6ink60\n0wpXGTTJWX/heVrNDvYzZrRClcm9/YhGLTfe3sBs1qBTC5SVClq1PPnNTdSuCfKZMraJPqRsFpVR\nTy67zdDUEOYdDa68EyYQNCNTKNAquwwE9OwKQa1co2Mbpry2gKzb5sKLl3EOJ/HsmKLelhja1Y9e\nI6My/zp9Rw+RmruDJF2hrg7h9eo5cGYv3/m7WUxWPYMTPgxijWa3xWa0zL6BQeJvn6OwOMfkyUNE\nFqPYRicZOfkIjVwGV5+bcrmBQdYlvbiI1maj/9QpnJOTaKxW6sUihY0NmpUK5r4+pHwe69AQOqeT\nyDvvYPD7MXg8WAYH6XY6aD5EWMlkUrN3r/cD1/+pDyTrwAAKtZpCNArdLsZAAKP3g5/zLlQqOX6n\ngnApjdfZq6okkxW6goBNrekpGcZiNCoVcmtrePYfYGstTLPRILq8Sf/BHQwO2bn0yk0UFgf5ioDW\noOf2a5cY3xmgXWkQvhqm/6kdNFUmls+/iXd4iJzSQj55g5ZUx5TP4dt7kLWFLUZOTjA86qR/xEki\n08Q0Mk5bkrAauoQmQmwl60zsnSS2kSa7lWB41Iu/3wVyJaJc5PDhIPrKGkqZjMHdY2xcuU46WUKu\nzWDSq+l6fczciOEO2HBabQR2DOGfHubOS2/Q6XTQmo0UMiX0yja51VVs/X3c+fFZlLIWMpnA6sWb\nhDoi1kddxOaWadSbPPbVkw+diITPnaMcj/cuCAK20VGCR458uPnWryi63S6XL1/mr/7qrz7tUD42\nTp8+zauvvvqZSEbeD4NeSS5Todlss7Utka8IGIx6cuUOL70Ro10pMH9zk+jsIhqNHGo5gpNjgEAy\nWWVuLom5ESd5/QoDB3Yxd2uObhfs/QE6LQWtVodIpMAXvjBCqVQnm63j8xtoNJpYlDqy6+u4/RbU\n3RryYo1/8ydPEysqOPJYi/ExG/pOntnnX2MrmqdabVGMp1Aac8TvpvDtnETelpi7cJ3msJWxyUlk\n7QaCKKJzOFHbbegcLqLXrmIfHun1k2SyyOQKvAcOcuf1y2gWk2woRth7uI/xCecD7tdGjwejx0Pf\n8eP3r0WvXEEQBDQWywP03W6rRbfbpZbJ0Gm3e8c2CgV9jz1Gen6eRrmM3uOh7+TJf9YNwz/HSuAC\n/u5917aBr/2iP/yDP/gDzPdkacfGxjh06BB991w/w+EwwD/6WpKarK1BIlFGpSoxNCTj5k0Jo1GF\n2SwxMGBBklqUSg08TgmzvEZ1M00jWkCxy8vi/DKCQo1Mq6arajI0aWT55ipab5PpR/swm5Q4zHKc\nzz7F0swNFBYLtuFhtN4MhXwMaWsdz/h+sk2IFUrUpTY6k55KQ6SNEmN4gfN/fwm/W0NbVqPTFTj9\nlc/TyKZRe4qU6yUWfvoyg/sm2Zy/RbXSYIehSyGRZjORQtVo09Tb2OgI2AfMHDwzwMCOQcxGke3Z\nd2g081DTQqOOYmKcTLnI8RMHyWbrLM4vYT9xGPlWDLlag8qsweh20W2pycp0VNDRzBUZcTh6k3nP\nHjqpFJN9g6QX5kk3W+j8fvb//u+jUKvZjMVIVavsOn4chUbzkcbnw15/HBi8Xgz/SALyfiRTNarV\nFuWfkaJORHJMf/VRCmtL1AsFRLUak8+HSq/DmI0jsxmpNmXUKxJ7Dg9gcdt569I2t5dKnH7uGHd/\n+jqJ6DalQo2J3X20rQGSW3VqSjM1jbO3AzJZUFtliAoFpfU1jFKOwdBBSukmm5euUpObmH3xdQx2\nC0qdhka9iXtoBLPTimFwlPpWBqVex2OnJjBbtIxPunHqJBKvJ3jzrQ0840M4du0h37iDtb+PQN8Q\ns5uQT0cJTg1jsMsZCmqwKmq47Wo2lEr0bg+juwexWrVU6gI+kwHX1Djbt2fRG1QMHdmDwtNHo1Sk\nI8jp3zvC5L7+hxqfYjT6XiICPTOu1VVsQ0MPNW6fNubn5zEajfh8vk87lI+Nxx9/nD//8z/nj/7o\njz7tUD4y3mV6KDIpVJVtxGIDk05NPi8wMGhjfj5FMV/DW12grTFRyEuACqdehZRK0HXb0WjkJBIV\ndAZQKkREGThdeqIbWWTNGnt39eHzGRgZcyIIMl55ZYUDu2186biOBW0U+f/P3psFR3Lfd56fzMrK\nuu8bVQUUrsaNBtAnm2yySapJkZRkyYcsjaSRZ3asmN31ju1d27H7ug/WTsRsrNYbfrBjxjuODYW1\nkmxLYw0PiVezye5mn+xGN+6jgAJQ930fWbkPIEFRJCVKpthsxn5fgMxIVPyQlcf3/zu+X4uVJx75\nbdR6mdr2Oi39IJdfWCCba9HpQj7Zx1OfGUHUasmliuiNeraWYpw+eZzO4TDpVptCokynK+L1WzE5\nzWhmZojfuEFX7WL2+VER8M0eobixRs+RIxg9XjKb22zcXCUZTWGoahj69CQeC2SWlvD+giZqs99P\nWqvd7yN5EzqrFa3JxNb58xS3tvYXjy4X9khk/zMnJxFEEYPLhaP/l7vP/7n4KMhIEnj4V/nDb33r\n/Y2B33qJ/bztjY08u7sbqCrY7R70epVHH93PirhcRiRpf3Vns8rIe1kWXruB2lUxyDAQ1CK2Ougn\nD2Pt7WXt2Z/gC4YIPDRGpWsg4PfhNCjc/Ou/oO++k4ROPUWyoqXYlrGE+7jz4uvkd3ZpNQ2M3D9H\nj6XKVr6K12/hjVspPnv2FDtXV8inS2jVNv0hIysXrrLgdjPxyAPMCkbisRz6gSEEdw8L33uVB8+O\ns3P9OiP3H8FvtdIS9chyBUkno600mZ4Y4IfrS+Q291DSLZRCjZGTg5TnX8Lh9dH38CMIoVEEY4vj\nkQFsFolurYhSq9GqVtlcjlNVoC4bqTc1tLoifX0ddDqJnr5h5ktW4rUGhpEAfoNCuN+NKxygXavh\nmZxEb7MdlEc+yPfz87Z/nWijxT0yTCGZQ+3uN9B6h/tAFNCaTLhGRnAMDJDf2KCwuYlSLtM74cXg\nD2J0Wli9GSU0GmFytEWzo2LwmJl4cI7heoNcvolks/Pyf73J0P1HGDk6QmVjBe9AkMjMGKnNGO1a\njUomy9DhQSS1xdW/+3uGjo6jb2Qx2cykd9IERyMk1mIMHR4kGDTTPxZGY7Jgsxl46dw21WqLf/21\nSfQGHQ3ZydraG6xGb3HmqRkch0/gO32UV5+7g8ms59/8L1/A65BQ91bpbtwgmpYJBP3MnuhnL5rC\n5jCjcfrYKaks/9cNHLogg58dQq/W0Blkdpe38PbYeWxwgKGpPry+X87c7r2Ucrvt9kFp7V7Byy+/\nzEM/tfK8F/HQQw/xpS99iWq1isl0d6wcflkUolG2X30Vtdtlut9EPmCl0NQyd7yXWKzElStxpsds\npGMpwuNmgn1Ocuky7baC1GrisOno67MRCtlo1wV0NiuNXIapmRAWuwk9LWJXryO7/XhNDpZX83zx\nt0YIqTG2zm+yvZShUWsyNNVL5NQJxmd6efrZdfbWE9QLBUSNyF45w+2Ig9HHzrC+lsMa8KF1uHnj\ndpbjT97H0R4fjUyCbXGP7PwbWA8PolYbhE89gAokVqMIQO8DDxCcmaa8E2PxB/+FZLqOqNUy+dj9\nYHHRP+xCVJrU8i06zebPzVxYg0ECc3OkFxb2DUMtFgJHj+77SS0tHRxX2dtDFEUiZ87QyOfRyDJm\nn+/nTtH8OnA3c6RHgP8NmAR+DHwW+NVmPN8H9frbjLDR6BCJOLhxI47fb8ZqlRkZ8SLLGpRilkvr\nm7hdeiQBXB4z1UoTv8/BXlJPKVOikKuQTizgrTQw9Q5hSG+jWsw4e7wUdEEuf+8KOpeXVj5HaHyA\n+77wENs37uAOeRkO6zAaTBx+ZI69nSJDjmFaOjsri3E0GolOo0mlqOAK+qgWimzsNTn85MOY1gts\n75SJrcZ48uufImJrIgw9hXdmhmS8iMVippHPk7j4Kna/k6nf/R2+8uUJXv2HHMbxKfzGOsryBRRR\ng9bhxDZ9nL//x3VSqQpBh0pv2MLsjJedF39EZi/H7dtJlLbC6NkHcc70sLmZJxKxU6+3ee21GO22\nQjBoJVNUWGsqVCWF0xENOovlnnJf9fnMJL39jDyqJbu6hihpmDw1QW1zkUYmQ2Z5mWoqdZBxkfJ5\nbH0Rao4h/vHbV7C7LbSNVV65lMLuMFDfXGbn9jL3PT7HTqbB7qVbRMYjhNUYu9cvUdtep7Z+m/sf\nfpLisTPsbCYwKhVGhmy06zUq+SKyViL66nlO3H+c+TsZrC4LwWEHhyccrNzeYf7iCv7+HpYWk3Q6\n4HAaqDZVBobcZK0j3PcVC/nYLqLFhe9QPzeX6hSzRTLxHG67SPn2TQqZIgP3H8MV8iKKIoNHR9mN\n5bEN9PPyC+sUGhKIGtJ3bjMx08dMbwd9u4BWo8GurVNL3KQqZVF9ZxDED977bvJ49k24um9Pt0kG\nA7qfsSj/uOPcuXM8+eSTdzuMfxbMZjNzc3OcP3+eT3/603c7nA+E/Pr6wepeW04iFlqINYGyfpjV\n1cr+5KQq0TsSohTb4ujRflbXi2hEGD86xAOPDOJ2mzh2rIdUyoZt3EFzZx3ZIzI0GebWhaX9rOGw\nA3snwf3jJsaPWrjxD1ss3klTr+975GwsxXGO1VC6KunoLpV8kVyySEcBb0ikXKignRji8f/uS9y4\nvsvLP17EHQlx8Y0S4o0cs8MyaqvBbjTJ5OMPIRoliqks0dtRNq7OMzgSoGdylGqrgmNggOCJEwix\nHNZwL61cBjGxTPbVEnqXm1yrjc6oxz87+74lU1GjwX/4MPb+/oO+Pq3BwNL16+86tpbNIgCuu+i3\ndDfJyDXg7K/rw1utzsEUjaqq1GptBAHOnIkwPOwkELBgs+lptxXEioWcXyG9EUcrdHHiwSI48E8e\noyntkNncRtQIBPrc+KfG0NvtSJUU9r4+TMFefvxynFq+SKcLjVKFV/6fH/LoVz/Nk5+bYPHyIunF\nBvrRI5hd4xya83LnB0vECyKRIS+p7RS1Ygm9pKVcr+EeHaEQ22MjcRODxcJEOMTDD56irXTZ2shR\nESRiN0qM3P8Q6YvnufbD5zFZjLSRWHnmOcbOnORTMxLl3U10Jgvy6fsQ9CYki42ddAdNu4I5Oc/C\n+S1SLgOmeASbxUa1FKNZqaG320lv7zE5V6Njs3D58i7pdJVbt5LU6x08HiNnzkRIJqvs7ZWp19sH\n4nL3CkIhK81mgLU1Ga+/H7fHhFVJ0Yruy8mbvF6q6TSdep1Dn/kM5p4euq4+Lj+zhs1rp9KWeOX5\nJRRFx8Z6AbO7iV6nQd+t8ujZYYpHA/jDbpZ//Dy1+C4mrw+NVkLdWWX6AS+2YpHc1i6lPTfOgQg0\nmrQ7CrlEnr2NHzIwOszwuJe9dIF8poRZb6KjCHz3/76ARqvF1eOkWjbSrgcpZ0tcvJLA7nbi7u9j\nU1XZvl3k/pN+5sZOodOKVJeus60ImIYn0Cgtln/wA9Rul97Tp3not88QqxipiimyqRRGk0zvzAR7\ne3FOnBzD3EzgHBqilsnQaTQo7exQy2Z/Ka0Qo8+HPRKhuL1Nt9NBazTim57G4Pr5PlEfJ6iqyrlz\n5/j3//7f3+1Q/tl4q2/kXiEjP01iHQ4Doiig06nYww5yDRmv14jNpsce7mFlfoe9a68SHuphYLqf\n8dk+Op0u5XKTwX4LzVIJVbKx0u5lctqNmN7E/OAAeqMek1gjt5mmsLVHMexkbTlFOlkinyzgcOoJ\n+E20qxW6Jj1Oj4WLT1/BYjdx8oFBbBYNowFILq9RU2QyTQO9s1NUyg10OomN9QImg42xE2eY/vRD\nKDtLbL58jlK+imt8Ao08S30nimzQYR8YwDsxgTUUwnpzhc3zr1LeXEVVFFZ+8iJas43Zr36J5Pw8\n5p4eLP6f75Sut1rBui+m2K7Xkd5jAlGUJMRfwSPsw8S90z32S6BabXHx4g7RaIGtrQKNRoe5uQA6\nnYZw2MahQ+4DR0GtVoPTrsNlVNE6RVRVRGwWaCe2aUiP0gpOcSgSopXeQ5X0dEsZ9q6c3x//WlvD\nfmgMj9fGYrNFt6Vi8PphJ8PijWiSi90AACAASURBVE2s2iAby0m+9GcP07H4WFxI8/r3buL02tiK\nZjh1dAa9dBWlrkdoFBk4dQzR5MBRjxG7fJWW1ooiL3Pic6exBnowCnWa5So9vVZqDYG6Lczhr3yZ\n3NoaK/M7mK1Zcgu3MHu97F15nWKrhWQwUC036HnoU9y+dQdNapvk4gqVUgej0GT5ldeZODpMYGyY\nWLKNxmRBVQCljVYrsrVVRK/XHIjZpNO1/dqrSYssa97henyvQBAEhoacRCI2Wi0Fo1Emv9EkIwho\ntFocg4MYPR66ioKttxfP+Di376QJeTRYe0IsLaZIJaG3x0LNr8HvdtB/PEBxK8oL/+n/wGizMDLm\nRWfUIVqcLNyKIkkSGl0Cz8QklmAYwROhVBfI1bQ8/O/+FVtXbzF0+iTLL11AauQpJxLojR62NzIc\nPW5gbLqH8y+tUqs2MVt1DM/5WFuK49HbmByx8dLLUbKhHnQ6DaOjLlwhP+1SgY5Gi2loHGljlx6P\nlo0fP4vcbaA1mShsbpItqeinHqBU6RLdSKMoKqFeB0OjvbgODeOSg5RisYOVqdrtvmta6v2gqiq5\n1dV9cTxZ3j+vbjcmnw+jy/VLNcHebSwvL6PX6z/ScuKvC2fPnuUb3/jG3Q7jA8Pe308xFju47mw2\nPb7hALVABK29gtW671nz6rU9DCMnmDvSwWzSspZUef6vFnjwwT56rXWkzCYGTYuuZOCBqVFyXZHd\nopbla5v4+nzozSYCo8fw5pMUmlqsLivZvQxqu0m10KZuk+kiIhn1DA3YiIyHmTkcIHnlIopGpWBt\nsLaSpf+RR7h5aZN2W8FpERBMCv0BGclgwGi3cO1HP8BEFb1WRzW+QiWRZOJLv4s4OYjebscwOMHK\nTgew4BwZInHtMm27jc1XXkNRuiBUaOZztM0y9UzmF5KRTqNB8vZtChsbIIqY/X4QRXiL5AkCzqEh\n9Dbbr/mb/Pn4RJKRaLTAxsa+BG44bKNSaVEsNvnsZ4cJBt99wquJBMETxxCuQC2TQWswYBs8RKUp\n0m21WLi6iKl/BIO2S+z55zCZtLjHp6mm02Tv3MI/cwZBq0OQDXR0VhxDQ4weDuBya/nd//G3cfSF\nSK5Eia4WSe3kkIp7hO0GSjUHZ/7lb+DQtShVFWodLZ1SjlpNIfyFz9ASZLrtNuvPv4iEwvZmhpP/\n7g/40fNxFt64RDcbR2fS88SnB7E5srTbCo1cDq3JhK23l2oyic5mw390gK1YBoe9jxsvLKJWq1gs\nduqVKsYBJ4Wt6L6MuM9EIlnGGA6gaPfNqoxGCQEVj1OmUqqDqKFa3XfEHB11v6dR0r0CSdIgSfvx\nmwMBbOEwxe1tRI0Gx8AAJq8X2WKh3WhgaqTYe+UFdupVVtZLhMcGaOkC2L1GtJoG7oid5/7iP1NK\n5TFaTNSKFZJ3luh/8AGSGzEknRatXod5YAhFcPLsX7/IxhuraPU6HvytBzn1mccpbaww8cgJREnL\n/NUNdrbzGO1Z1s9tY3eN8/XfP0k6VWFwyEmt0mR3K0vMVGE8bMb7xQkyVQ29ERfhsJWePievvVZH\np1GwN9qYHXYyKyvU9nYwRkI4+vupl2sUK3uMzrZwhAOMvTm2WynW0ekkvCE3hRsXEUQRrclEp9HA\n4HZ/4IxGeXeX2IULKK23G4Xr+TyOgYF7iogAvPjii5w5c+Zuh/Gh4OjRo8RiMRKJBP5f8CL7OMAe\nidCp18ksL9NttzH5fARmZ2lLJoxmPfl8g+FhJ4VCg5s3k2zudlDVNrduJfF4TBg0Le48+xK06kxO\nejEYGqg7CzgOneJOWcQ72MsrL66Ry1awuq2c+dQIXqudntlpTDroarS0OzD44H3U2iLesI9aMsG/\n/MZpiou30PXsa42Uouu0CgqF1QUeeHiK15+5THp+G5ImZIOB0//2SQaCEtlOBtotSvkKllAYo9WM\nzW3H5LTTaCqsLGVYWc3RViUme0WKlQ6dtopss6MgUa60KZZaqPkWEe0vlkRILyyQuHHjQHWy227j\nGRtDabVQmk3skQj2gV9s5/DrxieSjCST1Xds74/xCqjqez8AO80mSrP5Dr3+SrVFpdpGqBWJr2yh\nNxuZPjWK1ubE5DSAKOIcHqaRz2O3SZz+8uNcuxilWigyevQQM/eFEB1+nD470Vcv0ZEMtCplPFaV\nO6/epNtqYXfbsAhHGfYraAZn6SoCHkOH1/5hkcUb6wwdHqJvtJe+qSHmn7+I5PZzdb7A5XOryGYT\nVpuJnfUkl6+aeeToKKZuEYPPy9qzzyEbDXjGx8lvblKObePz96KL+NkNutnM5rGYNHQ1WmSzEXeP\nG1EQ8NshNHyI0EOPYB8ewmzWsr2eZPP6IlK3S9BupNKCiXEPw4dc9PbeXSb9YUJrMNB7+jSlWIxW\nrUZ2Y5P47UVyq2to9DpkiwWvU0smpUGnVVm/eocH/kWERFlhd2eHgMGHZLJicnWpFMu0PAb0dis2\nr52+AQ96i4HgsRMI3j7+y7eXiVeNyIFe2vUm3/3LZ6h+6SSPnnKyvKNw88Id1q/MM31sgJlBJ7VU\nFoPPzJ2tDLJOIpuuoCDRP+zGamtRj8fo85g59qn7cLpMBPq8yLLEkSMB0sur3HnxGna/m3AkgKae\nR2k06Ha7iKIIGh3R7TKCzkjbFiLk76G318aRk/04ekPo1RnSi4s0i0Uc/f34Z2ffV8PlZ1GMxd5B\nRADq2Sz1bBbtB1B1/DjhmWee4atf/erdDuNDgSRJnDlzhhdeeIGvfOUrdzucXwiNVotvehrn8DBK\nu43OYtkfWQUmJt4W3UskKrz2WoxOp0ul0qLb3fdOoVqkmM4jCPuZXY1GwCPIFKNpvCEnF14tUdeY\nEKw6Ck2RrWQHi6eDZPGjHTXw8OwJGm0Vo8NOK5dCok1blbAa9WTW1slFt8gnsgxNDeB1OmmVShx/\nxEHsikRRsWGz6fAGHChLF9AGTlDbWAJRxD00SHl3j26rDs0KtVSdqmhj87m/xTc7x/pOk7RlAMHi\nwq7t0Cj3sn5rA73ZhMbqIFfVUOqa+XkF006zSW5j4235a/YFzcp7eww/9RTyx8g1+xNJRt7LMVCn\nk/Znz9/r+EiEwuYmtXT6YJ/JF6CityCUywA0KjXy6SKSrKFVqSAIArLRiGwy0TM1Smsthf64B7Xr\nwihDQ9VTyrbp7+silRM0VQPd7C4Wr4tw2E49n8dgBKPdTLxYR4gVaTXaXHzlZewGGwaDjNqss/7y\nKxz/+pfRiR08/V6u7JVpVmpodHqMwR76dEZq9Q4Wvw+j3s9uMkVDa0fSqOhsNgJzc+TX1mjtRXH1\nuPmNf/MEN5/RUe3ImKQ2ZrGOd3ICrdGIc2gIayhE8NgxSqUGqWSFgbAJuRlkfX4TvVzlwRMRjo4Z\ncPb+6rbTH1fIJhOmvkH2XrvG68/f3k+zOnSYtQoCXXomxzBrWthtftYX47R319Gbe/GGDdhdZoxW\nI2qzRj2Xo1jrEugN4hoaRNaKWAIBAkePEa8bSKWqlCttWrkaSrVMu91hfTnJjDvD7NFZwoEZKo9P\noJO6tOKbGANBdtNZ/F4zCwtJJJOZSFhGbub4j//rj9Cb9PzW75/Fm4wiSQ46FT1ahwO3rk45t4Gp\nsIHYSaJxjEO3Sz2bxeh2IxjMyJ4AN1YarK8X6O21YTBoCR/yotHpEDpNcmtr1FIpuopCIRrdd/R1\nuz9QZuN9m1zvsaxIo9Hg3Llz/O3f/u3dDuVDw9mzZ/nJT35yT5CRt6A1GN5TcfktTEx4OXUqzLVr\ne0iSyPS0l/5+O816jq6iUig2cDprVMotshWV0EMidARKlQ7lhkippCLLUCg0iUbz3Hc8yF9/9zpq\nvcrRI37aV26RjGXxDUaQtVq03SaqIFEvVfGHXKidFrXdKLNfuQ+XUeHxY3oM4TN0RC3FWIx6dJ5a\nrsDwE49TXFtBK6mYRyIYXS5cQ0OUkhl23ojSrtWpb60yODzN8vUVTp4+iZy4Q7EGh8MRPKMjdG1+\nzM4Qd1ZL9A37379cLgjvvFcFAVGjeUcfzscFn0gy0t9vJxotkMnse9BoNAKHDjlxOt/7Qrb39RG6\n775907VWC5PPh//wYSxVDZvdJs6Qh1IyC50Wg6dPklm4s8/ORRFrby+OoSHathA17QbdTpeaqmev\nrHLimIvK0hu0k9s0ym36wkGWr9/G5HBQi+WJPHqaTK7JKz+6gb6/xROPBKjkCuidelyT04iyQKNY\nZGdxHVdfkMruBv2T09xesCIKCuV6F9nTy+ioA8tggHP/dI3myh2UWo3Jw0G0NgfFtRWSt28Teegh\ntl56CcloZPL+OZRWa38UV6+nU69Tz2ax9PTgHhlhb6/Ma69tk9hKkl1ZwR/xc/YLRxDLaeRWhsLK\nIs7ee1dr4edha6vI8pVFqpUWZovM6kKCVqOBWMszZYtg0ruxtbYZ9ncJzvRi8IfIXTmPWDMwcuow\nKxduojUawerGNzdHt93aH78TBHYuXqDnkccZH3dTyeYp5BQUVUFvszI224fBXkGRzaxvRrn16jzN\ncgVXj4uBIxFa1SJmScMjT05RrSk0ikUqe2V0Fgtmv5e6aKSRjLF64zVskQgGhwONXo+oEajvRinX\narRzKfxzcziHh7H29GDsP0Ss6UG6mqbdVlhaTGOUVfSaNifmpqnGotSz2XeM+OXW1vYF7z5AA6s1\nHCaztPQOI0STx/ORqjp+GHjllVeYnp7G+R5ifvcqzp49y5//+Z+jquo9VzJ7P1gsOj7/+RGGhvad\nZGOxEvPzSfqmPMg2G06NsG/mJmmwetw4vDZa2TY6nUQuV0dVVcJhK90uOBxGnB4TX/z6/RR299i7\neYdCro5zeJh8Ko8z4EJDi7FH7kMvNslvbSO06pg8Xqz9A+j0GhqCgef+80sUc2Ua9Q6nnphjLhDE\n02oitht0m3UEQcASDLL89LOkqjKrsQb5bA3zep4nZo5jtplJ7uU4OjfNXtNOraGwWdGgMbroJBWc\nzu67FFV/GpIs4xwcZK9QQO9wgKqitFo4BgZ+LrG7G/hEkhGHw8Cjj/azs1OiWm3j85no6bG8700n\niCKesTEcAwN02220JhOCIBB2gstlYLDXTG55EaFexhoO0f/Qg9DtIhmNWPx+JL2eUJ8RNBLRaB5N\nR2Vy1oZL12AjHscZ8iPt7tLjl+gLHSZT7HL/k3O0RAPf/r+exj04SFXRsb1TxeG20W63aHX2exlc\nQ4NYPG52t7fRdNscGbeS60xx6404haqKzajSP+zj2//xIrsrUc6eGSd66TKlQo1GqUo5HufQU0/t\nNyuurCCbTOgsFjyjo3gnJ7H19lLP5UAQMDiddFWBG+fXyOcbgIjS7hBbiGLVd5kOtmkWi5gDgY/w\n2/xw8EEeuqqqsr1dRGs2I2lF6tUmGysJjGYdvb0+cukSS4kSJwY12ANeTHqR5vYSzkgv1XSSiSfP\n4p6apZIvERrwIhYSFJbn0TscBzberfg2D53wsLUQpdPwo69ZGBhyc/rBfmQZsoqV7axA1ztMU1si\no7Oxdb3GZz8zxuLryySLO8Qy7As1jfoIjA8jyyKmZob1F1/D4TRh9vuJXbyI0enEPjCAf3qa+PXr\nVLM5Srkytok5zDNHcQZczL8UJRSyYbXoSGwlaZbLHB4xo0muktjaQmm331GWUd4saX4QWHt66D19\nmvSdO7RrNcw+H96pqXtOBv7pp5/miSeeuNthfKgYGhpCo9GwtLTE2M94ldzLkCQRSRJZWMjQ6XQ5\nfboPp9OA78ufIb+ySLPeRN/TT7quY2GlyLFjQR5+uJ/d3fKbn6BiNmsJBi37xnqCREvvQt93CIen\nTqMlYPa6ydZUULUYtHYGHn2UbjZBu1bGHDnE9oULmPoGWc8bKWTKIHRxBN2sxuocznaJ/f0/Yg/6\nQenQLJWQDAYqDYhtJNHJJgwmPWgkNjYKhIaCBKQMrfgOqiSzshAFwN7UYQuH6O+3/8K+PffYGKIk\nsf788+RWV9Hb7bRrNSS9Ht/U1K/3C/kl8IkkI7DfcW2z/XKiLZJOBz/zoDQaZYwjEXoO9R08mN/v\npRYKWQmF3tZOKO/toXa7+xMakQjteh1HLc7IsRmalh7+6UcreCamiOdhfSnJ0SOHUawe1i/fplCo\n4zSD+cQQg2dO4Ql56XTaOL06/pv/doZLl3apFGu43EZevxTj1kIeTUvgyu0ij/7GkwSdYO1xoNaG\nsQaDpObnD1azSrNJPZcjvbh40Kh5EHOxQbG4/7LRmk0YHA6qqTSpRAW1z4akb+L8qWYnVVVp5PN0\nFQWD0/kOieKPAxKJCouLaXK5OoGAhdFR9/tmyAA6HQVL3wCO3Rjrd2KggqKo9B2fI9O2oOgFHEfG\ncZrUg1FVUZbRTZzkR//v62g0AjavC1OhRfL1BUZHA6jq2xMo9UwGl6ry+18bIVkSkHUy/QN26oUy\nhVoXnSSRb0gUK21yJdhd2gFJRzhkpVRSOHrKS0OoYJANCJ081IqEentoJbYx0Mbs9++XR7pdyvE4\nBpcLnd3O+Be/SKnawTQwxrXrKTo7iwwfHmBoyMnt2ym03QbmZpKBiIN+R4NidBdJp6NSKmH8qYZV\n2Wzed/T8gHAODGDv7UVptz92K7EPAlVV+dGPfsT3vve9ux3KhwpBEHjsscd49tlnP1Fk5ObNJPPz\nqYPtnZ0y4bCNuuimHTqMoKg883KUQiGL0aglHq9y+nSI3/zNMfb29gmJTqchm60xPe3DaNRSqbQQ\ng0G2N3P0D9u4s1JieSWHonR5+MEIWk0Rh81EI51gd3GVpR+f4+SfzFFpdQjcf5pqvoTR6cBos7A2\nH8XrcyGiUk6lKMZiBI4cQbLVQc2j1kqMzkwxev8cDZ2dgUNO2kur1CstRnpDdLsRYptZLFYdk5Me\nxsd/cYZS0ulQVRWNLOMZH0ej1aIqCqn5eazhMIY3Vc7vNj6xZOTDhiAISG+aDNVy+7bWBofjHcRE\nVVWqqdSBip3e5cLo8ZDbilEsNqmXquhlGdXoYGevCBYXVSVDqVKj02oTjZXo8Y7wxP8wTWY3g9tj\nQtXqSWQUlCZ4IxE0kobNrQovvbhJKZGixyMhOzzIRj1dtU2nI2B02HD1mTEFXdRlB6lqG9PEMYSl\n67QrlQOxqfdqRDQYJIxGaf8GFEXs/f1ojUbcbhmr344tNHNgKd2qVtm7epVSLIaqqpi8XoLHj7/D\nB+FuIperc+5c9IBcZbN10ukqZ88OYDS+uwtdabcZC8JOtMn0k49g6d1A514jONZPTdWS3k5idTlw\n9gZpbi2hNRrpyGZ0Pj+rywlK6SI6g4zFbkEyGnFNzRJvdQiEHJiEGmqzhi0SYefiRZTmFmFfAIxe\nYq++SiOTwuK0IGjMzI25uKao3LwRp1ioEegzYLbquHGxwOgcDA87GRpyEF+PceYpLU6LgNvgRq33\nIogirWabutZGo9UkEB7FojVQz+co1iViywXS6Qpebx97e2X6+qw8/vgg0UWZZl8Xu75DN7uz3yho\ntR4IJnXbbWSzGf/c3MEIYDWVIru2RqtUwhIM4hgYQH4PVU9Rku4pD5qfxo0bNwCYmZm5y5F8+Pj8\n5z/PN7/5Tf74j//4bofyoaCQLbOysEen1T0w3ux2VVZXczz4YC+lUoPXX9/D5zMTiTiw23WsrGS5\nfj3B4KCTxcU0iUQFvV7ic58bIRi0EA7b8Pst7O2VCAYtOJ16LlzYpbfXxli/AalVQDZKdCyD5Itg\n6rVy4utejEYtrXaXvWgSWafH0O0ScAkMhx1oLaMUt7bwTk5SicdJ3brFyG9+FdW9jM1jw2qSiN54\ng0Khjqczg7vHQzWVopPeYbLHxlh/CP/hKXyRD26lUEun0fzMPdiu1WhXKv8/GbkX0axUiF+9Sjke\nRxBFTF4vPUePHqiPJm/fZvf111EVBUEUsfT04JqYZiNaZHNzhU61QujIYVR3H9RKuLx1DLE6R4+7\nKJcb9Pba0ekk/u7pHdJ7BcamZPq9bdqmEq/8h79k+P6jPPYHX6JUatIVNCiymeXFXWaPm/if/ueH\nadUbDAR1VDNZqsUqNzZ2aVXKaDwhNlYUJoeP4mok0dtsiFotzqGhd/2PsiwxNeXjwoUY9XoHSaej\nZ2yQ06d76e1950WbWVwku7x8sF3c2kLQaBh49NGPRR16b698QETeQipVJZWqEom8TUbq9TapeIG9\n1y9R3o7S7XTYLXcZevwxCqYIO9E0u9EUatfIkROThMYHqPV4ufp6lM2NHGwVaLcFhmYGUEUNa5tl\n4ud3yefqzERg67UL0KoxNh1CkmWsvb3UsnlWUxKd5WVu/fAZzH4f4X4vXl8NuZgnMjjOaxcsGLsi\n42NuhK7C7P3DuL0WTpwI0dNjIW6vsXluEU2+RVt00tT7MPn95FbW2EmlcUf6eOGZBQw0GOlRcHgc\n1JoG7H19yGYzAJlMnakpP0bFxubONTql+tvnJZ9n4FOfQqPVHpCTt4hmNZ1m44UXaL3Z4F3c3qaW\nTtP34IP3LPF4L3z3u9/ld37ndz4W1/OHjbNnz/K1r32N3d3de9pvByC/uUliLUZmaZNyqYk1GMTk\n8yEIAqqqYrXqmZz0s71d5saNOE6nHqtVx9xcD+vrWXZ2ihw+7OPUqTCCIHDyZBBZ3r+OQyErsixS\nLDZ57rkN/v7vF/jik37euPYGYY+GaztljA47hx46wXrOwNTYMEpiCWMrw961Nzj91CxOcYf0pdu4\nM2YkpY5rdBaN0mTo05+m2+2iExQcU0ew6LvcfvoFWg0Vf9CFpl2lHG9hHxigvLODIAj0DIdx9/1y\npXKDywVra+/YJxkM+/1tHxN8cp4aHwFS8/OUc2VKWg/1RgdrQUFeXiF49AiZ5WUWvvtdKokEstmM\nLRymvLtLXbLR6TuCU7UiSyKi0ci1awkuXd6h0VTx+OxIWpFg0MPIiJtvfesiO7EiIl3azSgr3Sp/\n9N/PYvK4yWUqrF64yeDjn8bvN9NodFDcHq5ejiFptXz1Xx/l1WdvsnRlmUS6gdlm5uTJENpansDs\nNOlamYHZEGqzjntkBPv7CDgNDjoxmbTE4xVEUaCnx4LH884Vr9LpUHgPc7tqMkmzWET/MWDbnc67\nxbnUN8sub6HR6HDhQgw1t8fCs5dRVRWPx8jgoANd8g73H3uAV7oCWqOJYNCKImpZXMrRaHS4eLNM\nqdTFqFYo5soMDPuplutotFrmbybxeWTSi1HyW0lsDhP5koJlawvXyAj4BkgsrKJJbqO3O9DoDSRT\nNTweE1a5yfAxJ43WYVBVctkqiWyHrgputxGfz4xW6NDcXsHpkFFdQ5y/lCB65w2MbheOgIdjTz1O\nYidL5vYdAMaPTrD00kXCDzyA6vbRbCoIAgQC+0Ta9KZKanZl5YBM2/v63tejori1dUBEDvZtb1P9\nACJM9wpUVeV73/veJ65E8xZkWeazn/0s3//+9/nDP/zDux3Or4x6LsfOpUuIGg3hsJ2blzfJb24i\nGQwY7DYGB51Ikkip1ODSpRhOp5GLF3e5des64bCVz31uBFWFZ55Z4/OfH2Fw0IXV+s5r3mbTs7tb\nZmkpw2NnIwTbC2ysz7OXd5LPN9HQpbq7jTU0wxvXNuknia26w9f+4FPo1CY7V68R6A2SzLSx69p0\nozuYBw8x8tn7cPWH0Gg0DGoNLD33Ij6PHpPJisOuPxCbdL7Z+yUZDL/SOK49EqG4tUUlmQRVRdRq\n8YyNvafD+t3C3SQj3wD+1Zu//wXwd3cxll+Idr1Oudzk8kKN6OomXaWLwaTjxJlRzP4dMsvLlPf2\nUJpNOvU6SrOJZ3ycXHSXtttJS2NidTOP3avn2rVN+oa9XL8W59KVFfoidr785UkymSpmsw63x4Qs\ngaa9v52KF3H2BlFlE4VMCZdZ5bEH/az2WVlZy+O09fPEYxH24lVW5mN0VZFms0M5luG6LHLqqBu7\nVUtB68F9ZBCH3fC+Y5fttkIiUaFQaOByGXC5jOTzDTY28litMm73PikRRRHNe7yk7nZKXlVV0ukq\nlUoLvV6LJIl0Om+PsVksMi7X270L8XiZRKKCtZKjq+wfl07X8HiMSFKJbipFqdSiUGoR3d7BYtEh\nigLRaJ7V1RzdrorLKqDUahQrHWStjMuuI/fiEpP9PcQuR2nV6uiENsWsFXpt1HM5LLNT9M8JqFst\nlHaHer2N2lWp1toEwm7MdgOzswFef30HjVbC5TEwPe3j+PEgVquOaiq134RmMnPuappLr6yBqmIV\nWzQcVua3FMRsEUGzX4prKSIDh3xUknuYh8LUalV8PjOgkkxW8PnMBE+cwNbbS6NQQGe1YgkE3tcs\nq12vv2tft9N5h0PovY5r164hCAKzs7N3O5RfG774xS/yzW9+854mI7Vcbp8YCwKjvUFEcYDtzRwm\nncrMXICRkf2ep5WVHH19dpaXsywtZeh2VUqlJplMjW5XZXzczd5eBY1GJB4vMznpPSDrOp1Eo9Gm\nUmny4GEXN//TdZRGg1y2QqfWoFWUyO2maevKpBNFBvotlOJxZIeTej5OPb5DTmegI5moNmScegmd\nc5DFjJFPzdgPSIe3x4EaeWeZW9RokHS6d/Ru/bLQ22z0P/II5Xicdq2G0e3eV2L9GOFukpHngL9+\nM4ZLfMzJiCCKpEoiG0tvW6HXq03uLKSJDLpAVTH7fBRjMVBVWpUKrWoV9/Q0erOR+I5Mva0h4rKS\nyW6iN+Toi9hAI5FIVFheznLyZBC/30QkYqNRa6FVjKxfvIao+pFtDmSDHo9VoBLbwriXYMpk5tGv\nHcbVF0LTbfHDf0xAV6GrtNFqoFwqEVtu0Jl108qXsHj8WCz69yUiitLl6tU9Fhf3O9G9XhO5XJ12\nW0EQBIxGLXNzfsbHvQiiiHtkhFo6ffACEkQR1/DwQQngo4aqqty4keD27RSNRgenU084bCWbrdFu\nd7FYZGZnA9jtb5ORcrlFXzvLfwAAIABJREFUs6mgt9kOUrpqV6XZVNDIMoWqyrVrcbrd/WxKtdom\nkSgDb6ftyw0Rq92N2QDBkJVaXSEUstLpikg6mVa9QbvZwqDdJzsaWaab2iZ14Tw9fS5MShGDxUyu\n2EYWFWw+F+EhD32jBk6cCO7Hp5dwuQz7QmWA1mRCMhjIV2B9JU6jVEJptzF5PdyZ38NikRh0WUlt\nZ9BoRKxmCcmhIxjwoxvzs76eo1Rq8sor2xgMEidOBDl0yI29rw/6+n7hubYGg2SXl9+hVyBbLB+L\njNiHhb/5m7/h61//+ieyRPMWPgmlGlGj2deuUVXaqR1GPTaGe1x4xyMERt/uq1BVdb+vr9oiHLZS\nr3fQakW0WpFqtY0kieh0Evl8g3q9Qy5X57HHBnE49p8XIyNutrdLNLIZfL1e9kp57G4j25s18ukS\nPTM60lUVk8eFXk4yeMhH26ijllPQasBqkckV6qxv1Ki3YO9qjJaUJxy2Mj6+P0Rg7+sjt7ZGu/q2\ncKc1FHrXOPyvMpItm8131QjvF+FukpGtN38qQOcuxvGBIOl0VLp6BFFA7ap0lC71egdTV0elo6PQ\ntNIdfxhbYJfO5jy1bAZLTw/BqRF+8Owu3/neMuVskXJdIRC006pW0Oj0+Dx67CaRiWELtUIJSdzv\ndahU2oQCeo6cmcJmEshrZQJeLY6Am3ouR7dZh2ad0p3r2Kw69m7fRii20MgytWgUo9ZASQNWuxGr\n18HmZpKZo5H3HAPrtFqo3S6FQoudnRKdThetVqRWa/Pyy5scOuTG6zVRq7V5440kgYAFh8OAc3AQ\nUaMhu7pKt9PB3j9ATe/m6adX6XQUBgedDA050ek+mssslaoyP5+k2dwvz+RyDZpNhVOnQlitesxm\n+V2x2O37neYNnYOe8UHiSxsIqJjMOpyHDpGpWg+IiMUi02h0iEYLzM31sLq6X65pNDoUVS1DhwcZ\nGrRx5bUNjhzv5fq1OFOHJ0neuIZW28GgE9DodBjdbvauX0ZqVYguNwlMTNKtlgmNmLF6bDRbKtvn\nzuGdmMA7OEgyWWFhIU02WycQMDPQa4R8HL3NRjudQKdRUBoNLB4XWpOFAY+ZwUE3YqfBwBEtfWEr\nDmOFrujBPzXO4l6VaLR4cA7q9Q63biUJhazv2dj7XrCGw3inp8mtrqK0WsgWC8Fjx+4p9+afh1qt\nxne+8x1u3rx5t0P5tUKWZb7whS/w7W9/mz/7sz+72+H8SjB5vfvmlskkwL78QI+JmmDk+efXqVbb\nRCJ2BgYcLC9n0eslFEVlYsJDJGLHbJZxOg0YDBImk3yg4F0sNkkmq7RaCtvbRRwOPVNTXnYvraK1\nhlDkGBYDeP12FK0e28g4e/Euc6cOoYnVsbodZGIbDByZoOwxsbVTZenKOtZgCM/wIOevb3Ds0cNE\nV+KYlAIGsY3J76f/4YfJrKzQKpexhkK4hocRJYlyIkF0Pc3yUpa2qOfQVJiRUQ9m8we7Zz/u+Dj0\njPxb4Ad3O4gPgvChMCtDacqJJJVcHY3Hj28gyLkLCeZ/cglfwIbdbeHIsSc47AH/3ByZisjubgmn\ny4zVaqBQaDE+7iafl9HLGjLxIj6vzO3zN8gncvzm73+Kzd0ma9EyR46GODrrRapmGZ0dQCd1qezu\nHGhWADTyeXJraxS3txkI97O7a6Y7NEQtk2XyvjCnHpvG79LitQoY63Hg7VVvp9Uiv75OdmWFzNIS\nTcmC3hQk6O+nVBdIJCp0u1CrvZ16r1ZbVCotHI79Uo9jYADHm6O+q6tZzr+8fVAWSSar1Osdjh79\n4F3f/xyUSs0DIvJ2vG1yuQb9/e9dG31r3Hd1NYtz5AhTh4ax6rsMjPdiCfawcWGX2Vk/29sFMpk6\niqLi8ZiJx8v099tpt7vUai2GhpyMjLgZGnJh0GuZPz9POGzDZjegO9VPaXMFa08Q75Fxds+/QuL6\ndVweH3a9jUIygzvgQGs280//53fodjpMHokwnE7TMbk590qMQmG/ETcey7JwPsuxYRGhVSMwNcYD\nBj9do5NsoYPRJKO16FhcSGCyGBDbCgZNHosxg06vBUGgUGi86zzUah2q1fYHJiMarZbQ8eO4hobo\nNJvo7fZ7cnT3/fD973+f++67j3A4fLdD+bXj937v9/jGN77Bn/7pn96TWSDZZKLv9Gkyy8tU4nEM\nbjdd7xCvvr6fIYX9Z9GxYwEeemhfd6S/P0c2W+fKlV30eolDh1yMj3sOFh5vYd/vJkGx2MTp1GMw\nSMw8NM2d584x9dRZ1HaTIZ8T++Ag+Y6ZU9Y0ne072IYP4RsMIV6+juT04PGHkPy7YPdhGxhmO6/F\naW8xEdGSunKOhatF5G6d4PHjBI4cof9nfJAKW1uszW/y46eXqZbqCBqR3a00heIEZ85EDso89zI+\nCjLiA77zM/viwL8ATgCfBj7/Xn/4R3/0R9jfTPuOjo5y8uTJA9fM6JvNkx/ltlZuMXJkmOVlJ7mt\nKGarDkWB1c0KjmEf3VaZarHKylYd11AYsVSiUjFisegIBjvUyjVSqwVul/M88VuD+NwypoYGRTLw\nxo08bqPKS//7X3LkNz6FtldHb0+T4VE/4CcajZJZXYU3iUim2UTUaPCaTLQbDTKNBpr4Gg+eGGA3\nYSJT1BEaDtIjJGlFc6SqVZpShLcerdFolPzmJnI6zdpzz1EURVSjneTGbUbOnkFx+jAY2ggCmEwy\nzWYGALvdj04nvev8rK9vcPnyDp3Ofk/JW8evrekYG3OTTu99oPP9z4HB8O4eEUEAq/X9Rba0Wg0n\nToSIROzUam3M5n68XtPBze3xmIhE7ExNednc3Ff1zeVqWCw6kskqs7N+gkELer1EOGxDFAUiA24K\nyR52r88TX45jsJnwzz1AqijgyFRoVSoAlLej6JxO0LqJ35ingUwpld0/HysJ3F4rymr8gIjA/qov\nsb7F2OAEulICnatGq1hkatpPOtciNBDg+o04DqmO1WEnvbjBne0qoafGEItRtl95hdDQMWKxd54H\no1H6lVZYH6cGuA8Tf/VXf8Wf/Mmf3O0wPhI88MADdDodLl++zIkTJ+52OL8SDE4n4fvuO9g+dy56\nQETewu3baZ56apihIQd37qT5wQ+WmZkJ4HAYkGWBq1fjPPJI5OB4k0lLu60cTOQJgsCVK3tYzBLe\nwTHWby+AqlLT2NAEurQLuzRjq+xtpdld2uC+3zqLwWJg/eYqhWwJvaTSe3gGS7gXOV7CNCiz+L3v\nUskVUe1tmrub5Dc29pW9g8GDcrqqqhSiUTY3ClTfnHZTlS6VeJytTT/ZKS9e790pjX+Y+CjISBJ4\n+D32B4H/AHwOeE89229961vv+6E/a+X9UW1HIi38fhN37hgJBi1cu7ZHsdikKjmJ9EXwuvToLQb8\n4SH8fvP/x96bB8dxnnf+n5np6bnvA/c5IG6eIkXSlERZknXYa2WdxHGta53dcmJXnK2K7ewfm+Nn\nx5uy1055165N9pdNbbxR8nMSZ+P4ikRTVnR4TUqkSPEED5AEiPuYATD3PT3dvz8GHGEIEAQIgLjm\nU8UqooF+++1++3je5/0+z8PwcBibTUdtbQO3eifRO9UY7Hqa6ypx5ca48fqPyVprmTl7i1Q8BQpE\nhkeI6qtRtcglx3cbjdwOBJBSKapqmwhndQQULZVmN9WVcbKhGZTAIDU6LRXmFBZVslhvp8JioWlO\nroS62lrk/n5G+/rIZzKYAUGlRnYamLp1m5oPtmC1mti3L4goatBqjWg0KnbscOLxGFGpSq9PQ0MD\nFy+mSSQKD4tOV1jjlGUFSZKXfb0fhMpKE83NDm7dmkFRCoZIba2V6urFlw4ymcJLy2bT43YbUavf\nnx3u2OEkk8kXl0oEQUN9vRWDQYvBoEUUNezeXYl9jvIdQNKaSXo7sFbuII+Gm5M59NkgGY+dZM0+\nFMWFTY4Q67sO+hSOpgZ6Tlwu7p+Kp5ByeaRcaQ2JfDaLnJeR5cLLMReaotklEVNy+Bqc5EQtxmwQ\n0VRT0C3FYiiyQiyexaTVkksmcUhhamsdjI3FUBQwGrXs3l2JwbC0AnhbnVOnTjE+Ps5HP/rR9e7K\nQ0GlUvHv//2/56WXXtqUxojfH8fvLwhPq6osOJ2GeR5SKETRZbMylZVmtFoNLS2lhnR1tQWdTsBi\nETEatezc6eX69eni7yVJpqLCRG/vNCmPDcF3EEElE9RqMU8l2FGtIZcTcZgLHhaHTYvQXI1WyREO\nGggNDqGduIpYaeXyv5xi975awjMx6psqEJPjZAWB8MAA0fFxksEgplmdiJzPI6VSZHOl5yRLErl0\nriQ6cDOznss0XwK8wA9nf34BmO8/3mAYjSL19Xb6+kJMTsaLYkhZVhB1WgS9DpNJi8VSmGVWVVnw\n+ZyMjkYxGER0HiN791UhyGnUajVGtxtR1KLVashrNajUKux1tcSmZezm9z9umYxEEhMVBw4T9U/z\n9rsTTEwWdCl9/iB1dhuNtjyZSBhBq6X26FHSkQj5bBZBr8fT2VlMVgbArJhLlt6fPUjJBF6HDlOL\nndodTkSbnSNH6vD7C9EpXq+J2tqF0+oLgoamJgczM6VRFpWV5kU9E6uJIGg4fLiW+nob09PJWSPQ\nisl07xn/0FCYs2fHiEQyaLUamprsHDhQg15feDREUWDfvipisQzJZK7k/AyGQk4Wl2t+qJ3P52Rs\nLIY/kEZRJFwuAyaNk+M/Okc2m0fJ57EaRA4feQrRYCCtMhL7yYmCLlYBh8eKrcpLdZOHmyNjxZer\naDbjrHBgErLIskw6HMZaW4tNq0WRUsSMDky19WgsFpRUHEVRELQarFYROVRYbtPp1DzxRAN+f4Jc\nTsblMswL3d7OfPOb3+R3f/d3EbZQvpT78eu//uvs3r2bb3/72xg20XJbX1+QU6cKOZGg4AU9erSB\nxkYbQ0PhucVqcToNOJ364v9nNa9FqqrM7N5dgclUMEa0Wg1TU8liqvhoNENDg514PIfNpiMazaBS\nqTh4sAK3OkwyEkGobKAiFyMdDqNCpv7IEQx2O46JCWqbvKg0GpLxKZ7/+EH0ei0Exxm82ItaraK+\nppHs2MC8aESNIKB3OKivE7h5ZRxp1igRTWY81fZFM0pvJtbzafutdTz2spmZSZJM5jCZRDweE93d\nXi5enKSy0kRHh3tWR6EvzjLvfAC1Wg0+n4NUKksy6QUpSz6V4FZfmL1ddtpefJHw4CCJWJLxkQju\nHS1gdbG/SUdVfcEyHh2NFj+YFosWl8tDQp/H1fr+R9afEenY14xXncLk8RRTvOdSKdRa7bzsexqt\nFnNFBU6fj1B/fzFduWg0UNvRTHNnXTG1+0If24Vob3eRTGYZHo4iywoVFSb27at8qOvQOp1Ac7Oj\nUDr8PiQSWc6eHSMYLNjA+bxEb+80Ho+J9vZS9brFouOJJxo4c2aMYDCFRqPG53Pg8y18HIfDwDPP\nNDM5GSebzWM2i7xxrIdULImSl1FrBeKSjri5gb2Hfbzz6kV2vfgcoxevotfCzsNtVB19inRORVOT\nnZs3Z0ilJNx1XnY+Xo0w2Utao0FrNGJvaMDV3sHli+OMjcewehxcuzaFy6HD7HXja7BgUeJkZRmN\nKGKprsZs1mE2b64aMQ+DmzdvcuLECb773e+ud1ceKnV1dezfv58f/ehHfPKTn1zv7iyJTKYgvL5j\niEDBYLh6dYonnqhjZsbLhQsTRCIZamos7N1bWUxkVlNjxedzMjAQIp9XEEUNnZ0eKistJZ7R9nY3\nwWCKiYk4slyYwP3bf7uTbDaPJCm4XAakbJZX/r8rTA5MIuq1tHZU0FZnwVJZicHhwLv/IOJMHEEU\n0EpxUn4/gXCejCwQy75LJJQoFNQUPXTu3o3D55uXxdrd3k42e4VDR1u5fmUCWa2l+ZFOPvCB+ocW\nILDWbI2zWENkWeHixUmuX58ilZKKs+GdOwsx6IlElgMHqkmlJHI5Gadz/iwzFEoxPZ3i7NlxwuE0\nuXSGmmoTe55ooG5XNd7ubqoffZT4TJhUOg+ZBM7aSmx1dSSTWU6fHil+MNNpNVeuTBEO5/B63zdG\n8mgRrE68DaWhlYuJCl2trcWpwdT164gmE1V791Lz6KMPVGPGaBR57LEGQqFUwU3pMJQ82BuNcDhN\nNJot2aYoBePvbmMECvqR557zEQ6nEQQNdvvitY9MJhGfr+AKnpyMI4tGHE3NxCcnkfMSoslESmXC\nU+Ph0JOthCa97HlqH0a9mpzJy5nrCYLBQaLRDCaTlvZ2F/m8guCwUd9agZxJF8JpbTbGxqJcvDxF\nNpvH6TTw5JONSJJCZ1sr+uAAibFhjG43nq4uLNUPR1C8GfnmN7/Jb/3Wb2FaIK39Vuezn/0sf/qn\nf7ppjJFkMlcirr9DKJRCUVSIoobqaguVlRZA4fr1KZxOAyaTiF4v8NhjdbS0OEgmJWw2HV6vad77\nymbT8/TTTcVcJA6HocTTmslI/PSnw6QEGyp9jGQywZVr0zTteQxzRQWTkzFOnRolGEwVE0gePtzO\n7TcHiMdz7Hj+eQwWC9ODwzir3bT/m+eo2t017/2rt9loOPQo3rYQ+57ciUpnxOmxIAgbqxbYSigb\nI/dhYiLG5ct+stmC5yCRyHHhwgRer5HKSsuSXGSiVs2t3gBKPo9Wq0aWRQJBidGJJF27QGexoLNY\ncPkgG4+j1mqLlU2Dk9GSlObZbB6328jgYBiv9/0XZiEsbXlr/oJOR8WuXThbW/HF42gEAd1svo2V\ncCcuf6NT0MKUCl6BRYWcgqApJn5bDEVRyESjqLVaRKMRi0XEbBaRqqswejwo+TwanUhdkxuVSkVl\nSyPu+myhIq6o5/jxQuXkeDzL9evTZLN5otEsPp+Dd98dw/ohH7W17xtMk5Mx0qksao1mtuJyoYKp\nzmikqfMw2fhOBL3+nknMysCtW7f40Y9+xM2bN9e7K+vCL/3SL/E7v/M7XLlyhe7u7vXuzn0xm0Us\nFnGeQeL1mohEMvT0BIrvbSjUpmpoiNLWVnhuRFGYV+JiIURRoLrauuDvpqcThIJJ9DYbosVCPpNB\nURTGZyS6pTw9PQGmppLo9QKKojA0FKG62oJeryUQSDKaM+F44sN4jqQRjAaqH2nFcI9lZY1Wi9nr\nZfNLVRdm88cDrTHBYKrkhgbIZPLFF/5iKIrCTF8fmalJYpOThIdHMAtZvG49Dod+ntobCpqAPBr6\n+mZ4++1hpqYSJR/LXE5GFDXs2lWBRlMwGvT6e2sXloJWr8fkdqO32zdlaN+D4nYbaW52MPeULRZx\nSUs8i5EKhRh4801uHTvGrVdeYfLiRfQ6NXv2VGEyadFoBUSjvqineeedYS5fniSezKOzWEil8gSD\naSYmYoyMRBBFDSaTllCoMLvK5WRmZpJAobhf4OpVEsO3mbx0icjICPlc4b6SZQWtVo1aENDb7WVD\n5D58+ctf5otf/CLOLRohdD+0Wi2/+Zu/yV/8xV+sd1eWhFarYe/eqqI+T6UqPNOdnR7i8ey897ai\nsGBY+4OQlyQCV68SvNZD8MZ1IsPDZBMJwoNDBPsHiPhnOPlaD1JOornZjiwXkpR5vUZGRiK0tTnR\n6wVyOZnATBZ/TEN1vWdRfdtWp+wZuQ8Gg3ae0EmtVhUFjosRn5xkoref3r44wYkZ+nv99F8fY+eR\nbroeaaS2dr61nc/LnDkzRm/vNIpC0fOSSuWK0Q7pdI5nn20mlyskXrvjYtxOhsRqoFKp2L+/Grfb\nyNhYDJNJS1OTvcTjtFzkfJ6xM2eIDA0Vt42/9x6CwUBrWxtOp55QKI0gqJmZSXHy5DC52YiZW7eC\nPPVUU8GInUly61aQRCLL9HSKpiY7O3fayOcVVKpCBAwUihWOnTmD1V2Dy6FjcnAQJS9jb2ygqsq8\nonPZTly6dIm33nqLv/zLv1zvrqwrn/nMZ9i9ezff+MY3MK9TJuXlUF9vw2ptYXo6iVqtxus1YTYX\nqqsbDEKJnkSlWrr+7X4Eb95k9PRpdFYrDXVWLr7bjzAxgWA0kszrycQSnHzvKvbWdk6+W1geikYz\neL0mfumX2mhqciKKAoODYXI5mfp6Gw0NtlXp22albIzch6oqM9XVlqKiGqCmxkJl5f0f1MTUFONj\nUc79yzn27uwiGY0z5Y8yNTyB69mOeaFlAFNTCfr7Q0XjJxRK4fWasFp1pNMSVquOlhbn7DpomZWi\n0wm0tbmLrtuVkgoGSQQCJdsUWSbU34+7rQ2324TbbSIQiHPixPuGCBTcyKOjUfJ5BZ/Pid+fYHw8\nik6nQafT0N7uZmAgREWFmaoqC/lcjplbt1BkGSU0yZFDtQyN2QnHZbp2eWjr8JbDdZfIH/7hH/IH\nf/AHm+IDvJbU1dXxxBNP8Pd///d89rOfXe/uLAm73VBS4gEK+q6uLm8xI7MgqGlqsi84AVwucj5f\nLCiZDoVor63EavRx69o4lTubyaSyjF4bwF3l5Py5YSYmCmnnRVFDOJwmGCxE5NXUWKmpWXl/tgpl\nY+Q+mEwijz/ewOBgmGAwhdttoKHBvqSXvFqjIRJOE52OornWy2OHmlDpmjC7XTx6oBqbbb7bPJPJ\nl7gXFaVQuK2mxsLTTzev6rmVWX1UavWCHirVXYK0TCZfzG8yl1QqRzRayHJ75EgdkiSTzyuk0zkM\nBoFHH62hqclR0J9kMsXaMHIuB/4BWhwW9E12Gna6EE3lZZml8Pbbb9PT08MPfvCD9e7KhuBzn/sc\nv/d7v8dnPvOZTettValU7NlTSEgYiWQwGrVUVJgWLIexbBQFeU5NpuzUJA5J4pGaNK4dRr73Ug/Z\ndA5HtYdsJobLZUKjKYhXrVYdsqyQz8tbImvqalK+GkvAatWxa1cFTz7ZSHd3BRbL0kIi9Q4H9Z0N\n6C0mouEE10+cZ+DsZWKxNBbrwiJPi0U3T4iqUoHTuTruxTJri8HpxDI3nwug1mrnFaiyWHTzhLKF\ncTZQUWEinZaYmkoSiWSIxTLodALd3V52764s5m0RdLpCKv45H4xsLFYQ0y0SDZJLpYiOjRH3+5Hz\n85NDbScUReEP/uAP+MpXvoJOVw51hkLxvFgsxrvvvrveXVkRarWKigozra0uamutq2OIUKhM7vT5\nSp47tVqN0eMhn0riqPYgWsyoBYHqxsrZ5V8H9fU27PaCVqxsiMyn7BlZI4K3bzN+9ixWs41Hn32E\nS6dugEaksr2FQ8/uvedavtNZKB1/4cIEiUQOUSzkKamrK7vzNgMqlYqa/fsRjUbCQ0MIOh3ujg7s\nd2WYtdv17NtXxfnzE8RiWURRQ2OjnZoaK/m8wvh4rLhkYzRq2bu3akFPmqezE1mSCA8MoCgKtvp6\nKnbvvmf/YhMTjJ4+TToUQqXRYK2pofbQoXWrtLzevPbaawQCAT71qU+td1c2DGq1mv/wH/4D3/72\nt/k//+f/rHd3NiTu9nby2Syh27dRZBlrTQ2ujg7i4+N0+SKcHBhgpCdC12MHMJr12F1GVKpCpE9H\nx+osCW81NrIPTlGUzZnmNh2N0vfTn5KJRgEw1dSRFGxo7R48DVULxrPfTTCYmp0Ra/B4TNvCklap\nVGzWMV8IKVsItV0sZ0s4nCISySCKhXEWhMI4ZzLSbMVQCbtdf99w4my8kG11saq5+VyOvuPHiU9O\nlmyvPnCAqr17l3Fmq8t6jbssyxw4cIDf//3f51d/9Vcf+vE3MrFYjKamJs6cOUNz89osD2+F5z0b\nj6PIMjqrFUVRuP3GG0RHR8HqJaM2oNOqsVZVoLJ7UatVeL2mJRej3IrMLvst+PEre0bWgEwkQib2\nvuA1MTYCjGA1dVJZuePeO86hkLr4wfN1FGrC5IsZB8s8fATx/i+du8V3hTBuBZ1OoL5+6er6pXg2\n0pEI6XB43vbI0NC6GiPrxQ9+8ANUKhW/8iu/st5d2XBYLBZ+8zd/k29/+9v82Z/92Xp3Z8My97nL\nxuMkp6aQs1mYHkULyEA64af1ox9ddlVrSZJRFGXVlpc2Ouv5pfp14DcAHfC/gL9ax76sKhpRRCOK\nhQRWc9AaH47uY2AgxPXrUyQSOaqrLXR1eeapzctsLCRJ5ubNGW7dmkGSZJqaHHR0uFc1GkYjiggG\nA1K6NNeCuIg3ZasiSRJf+tKX+O///b9vWpHmWvM7v/M7dHd385WvfAWXy7Xe3dnwaEQRQacjO2ci\nCiDo9Wi0S3+OJUnm1q0Zbt6cIZeTaWqy09np2fKRcevp+/974CjwAeC317Efq47R7S5oBOa85HR2\nO/aGBqAQMTEwEKK3dxq/P76qrsrx8SgnTgwzOhojFEpz9eoU77wzSjY7P3KjzMbhTsEvvz/BzEyK\nc+fGuXRp8v47LpFMRmIyKJN0tSFX+BBtBa+LYDDgbmtbteNsFr7zne9QXV3Ns88+u95d2bBUV1fz\nr//1v+Z//I//sd5deahIUp7R0SjXr08xMhJBkpYm8hZ0OjydnajnGB4aUSxsW0bRxf7+IO+8U3gX\nBIMpzp2b4MKFiWWfx2ZjI0wJDMCrFAyTuWxazQgUIhYiQ0PExscRLRYcTU0Y3W6i0QwnTgwVCy/p\n9QL79lXS3V1x77ZyeYLBVDFpz2L6kVOnRujpKc1zodWqee65FqqrN/YMeCusIS+FZDJLJFKIkHE6\nDciywssv38DvT5T8ncUi8q/+VeuSo7cWO97Jk8MMD0eRchJyMkZHs4m2ei2W6mosVVUran+lPOxx\nj0ajtLW1cezYMfbt2/fQjrsZ6evr49ChQ/T29uJ2r67wciM+77lcnnffHeXmzSCSJCMIalpbnRw8\nWLuk5RJFlomMjBAeGkKlUuFobkZldRGPF5JW3q+elaIovPLKTSYm4iXbLRaRD394x4Ii9s3ERtaM\nfBn4DPD/rHM/Vh2twYC7vR13e3vJ9oGBUEkCtXRaoqcnQG2tbcEbNRhMcvr0GIFAApUKqqstHDxY\nWwzvvJt8Xp63TZaSh1IJAAAgAElEQVQVZHljPfTblaGhMGfPjhUjaFpanOzZU7ng+CgKqzJuw8NR\nhoYiKEoh943aYmc0LtBd34LFs/0ytP7Jn/wJzz77bNkQWQItLS382q/9Gl//+tf5b//tv613d9ac\nycl40RCBO8unQRoa7NTV3V/DpVKrsTc0FL3gN25Mc/FkH8lkDp1OoLPTw86d3ntOKBUF8vn5z/x2\neIc/DGOkAviHu7ZNAv8G+GPgG8AbwA+AEnPwC1/4AnZ7oZBRe3s7hw4donE2RHJwcBBg0/08PV24\nyTOZaQB0OjfJZI5bt/rxeEwlf68oCv39MqOj0eLfZzKFcvRVVfkF26+rs3PrVpB4PFBs3+k0kEgE\nGBwMrvv53+/nrUw8nuXdd8eK9TFyOZmengBer4nmZgfT08mSsgN3kiStlJmZ0nYBUilpwYqnW53h\n4WH+4i/+gkuXLq13VzYNX/7yl+nq6uJzn/scLS0t692dNSUazcwrnClJMpFIhrq65bU1M5PkvffG\nSSQKz1kul+XChQncbuM9M8Gq1Sp8PgdTU4l574L7eVU2O+u5TCMC2dk+/Bz4V8Bc5c+mXqa5Fxcu\nTHD27HjJNrNZ5IUXWuZVu41G0xw7dotYrLTMvcOh58UX29Dp5tuSsqzQ2zvNtWsBMpk8LpeRffsq\n8XpXN49EOJwiGs2g1ZaGpK6Ejei2XU1GRyO8+mr/vBlOW5uLQ4dquXzZz+3bIWRZobrawt69VSXG\nSCyWIRRKo9Go8HiMS46UunZtipMnh0u2GQwCzz3nW/X74kF4mOP+sY99jD179vBHf/RHD+V4W4X/\n+l//K6+++ir/8i//smqC3434vA8NhXn99dsl3gmNRsUzzzTT0HD/Cr9z6eub4c03B+dtP3Cgmr17\n7700mskUvOX9/UFkWaGqysK+fVVLmphkMhLT00nyeQWn07BoBfL1YKMu0/w+8CSFaJp/oNQQ2bI0\nNzsYGYnOClcLZew7Oz3zDBEoVKXUaud/5HU64Z4ff7VaRWenh6YmO9lswYuy2jlKbt2a4b33xuck\n67Jx8GDtlld7rxRB0CAI6nnVRI1GLTqdwIEDNXR0eJBlGau1dBY0MhLh1KlRIpE0Go2amhoLhw/X\nLekFVV9vo67OyuhoFEUpaIja2914ttkSzQ9/+EN6e3v5h3+421Fb5n584Qtf4Hvf+x4vvfQSn/70\np9e7O2tGVZUZn89Jf3+QfF5Bo1Hh8zmpqlq+0a7ValCrVfMmH/crsqrTCezfX017u3vBd8G9iETS\nvP32CBMTMWRZweHQc/hw3aapf7MRBKz3Ykt6RgASiSzj4zFSKQm320hlpfmeSdB6evycOTNWtNS1\nWjWPP96wYJG9h0Ekkub48T6i0ffDllUqePzxBtrbVyZw24gzpdUkn5f5xS+GuHUrWNxmsYg880zz\nooZBJiNx/PgtAoFkyfZHHqnikUeql3TsZDLLxEScRCKH02mgstK8Kt6s1eBhjPvMzAy7d+/me9/7\nHo8//viaHmurcuXKFT74wQ/y1ltv0d3dveL2Nurzns1KTEzEiUQyWK06qqrMC3qh70c6LfHWWwOM\njESL21wuA88807wmQtQzZ8a4eLE0Aq+y0swLL7RsmFwlG9Uzsm0xmUR27Fha3H5npwejUcvAQBiN\nRkVzs2NZybBWm1isUMRtLopSEH6t1BjZ6mg0ag4erMHrNTE6GsViKVRgvp+HIhrNEIlk5m0fHY0u\n2RgxGkV8vvUxYNcbWZb5d//u3/GJT3yibIisgO7ubr71rW/xy7/8y7zzzjurHl2zURBFYdlLMguh\n1wscOVJPf38Qvz+By2XA53OsiSGiKAojI5F52yORNNFoBpdr49c2KxsjGxyNRo3P57znh0RKp8lE\no2hNpkWLo60Wd8rZp1KleUtWQ2i5HTAaRbq6vHR1eRf9u7wkkQ6F0Igier0enU4gkyld3tnqgrbV\n4utf/zrT09P88Ic/XO+ubHo+9alPcf36dZ5//nnefPNNrNbNsQSwXlitukX1IauFSqXCbtczM5Mq\n2S6KmgWXhaRMhkwkgmAwLFpC4mFSNkY2MeHBQSbOnycbj6PR6fB2d+Pp7FzTjJJutxGfz8G1a9PF\ntVCn00Bj48pnEmUKxP1+xs6eJR0MotZq8XR20rbDzYVLgaLS32wWaW0tZ8W8Hy+99BLf+c53OHny\nJOIS0vOXuT9f+9rXCIfDPP/887zyyis4ndvT47bR6OhwMzkZL0bvaLVqOjs9mEyl931kZITxc+fI\nRqPFpGyerq5Fa2g9DMqakU1KKhym7/jxktTDGlGk+UMfwlpTs6bHzmYlhocjjIxEsdv1NDbaFxTg\nLpeNuoZ8LxKJLFqtelXr/0iZDH2vvkrC7y9uU6nVNHzwKeKCk/HxGKKoob7etmUEqGs17n/+53/O\n1772Nd58803atmGW2bVElmX+03/6Txw7dozjx4/TMJtXYzlstud9vUilcqhUqvsKXwECgTgjI1Gy\n2Tw1NRZqa20lesRMLMatn/6UTOT9JR21VkvTU08Vc6OsJWXNyBYkHQzOq4GQz2aJT06uuTEyNZXk\n9u0w6bSEJMm43cZVMUY2C5FImkuX/ExMxNBqNbS3u2lrc61K1FIqGCQdCpVsU2SZcH8fvmefXZW1\n7K1OIpHgP/7H/8ibb77JiRMn1qzq7HZGrVbzzW9+k9raWg4ePMhLL73ECy+8sN7d2lIkk1l6egIM\nDoZRq1W0tDjp7PQsKqb1es2LhuunQqFiNfk7yLkcsYmJh2KMLMbGkNOXWTZqQUClnj98mjV2RYfD\nad5+e5jBwTCTk3EGBsKcODHM9HTi/jtvAfJ5mdOnR+ntnSYSyTA9neT06VEGB+dXw30Q1IKAagF3\nqUZf1ofcj1wux9/+7d/S3d1NIpHg7NmzZUNkjfn85z/P97//fT772c/yxS9+kVhsW2RoeChcuuTn\n0iU/kUghv9B7743T2zu9ojbVGs2C342lVBhfa8rGyCbF6PFgqqws2aaz2R6CVyRBOFwa2RGPZ+fV\nVdmqzMyk5p2rJMncvh26xx7Lw+hyYbsr1aOg1+Msf1SLyLLMxMQEp06d4nvf+x5f//rX+fSnP01t\nbS1/+Zd/yUsvvcR3v/tdbLb1izrbTjz++OOcP3+eUChER0cH3/nOd0jfVRm6zPKIxTIMDZVGxyhK\noYjeUgv3LYTR48Fy1zdCNJuxLje97BpQXqbZpGgNBuofe4zgzZvExsfRO52429owlMVka8paV5tX\nqdVUP/ooerud8NAQWpMJd2sr1tratT3wBkJRFILBIP39/dy+fZvBwcHiv4GBAYaHh7FarTQ2Nhb/\nHThwgD/8wz/E5/Otd/e3JR6Ph7/+67/m7bff5mtf+xpf+tKX+MQnPsHHPvYxDh48iL7s2VsVVhqc\nIIgi9R/4ADNuN9HRUXR2O+62Nkwezyr18MEpC1jLLItIJM3PftZX4h0xm0Wee8634lj2zSBoy+dl\n3njjNoOD789aBEHNk0820tzsWMeebV7ujPt3v/tdvvWtb3H79m1UKhU+n4+mpiaam5tLDI+GhgZM\nDyGMvcyD09vby/e//31+8pOfcO3aNbq6uti/fz/f+MY3ih6rzfC8ryd3V2BXqeDgwVp27bp3hfeN\nzmIC1rIxUmbZTEzEuHzZTyiUxmoV2bmzYkkVLe/HZnk5RSJpLl/2FyNb2tvdtLaujoB1O3Jn3Pv7\n+wmFQjQ3N5fDRbcQyWSS8+fPc+7cOX77t38brbZQNmKzPO/rRTKZ5cqVqVkBK7S0uOjsdK9q9N7D\nZlNG0xw9enRN82WU2XiUx3x7Uh737cMXvvCF4v/L474tmZ8mdpaNfCcs2zMyODhYLEm/1mynY+Ul\niduvvUZ0dLS4TS0IND75JI4VCCvvPtZSZkqrfS1Ws70Hacvf08Po6dPMrRfubm+n4Ykn1r1vD6Mt\nePAZ8mr1YyO1s1p9Of/GGyi3b5feV52dNDz22EPvz73auNe4r/SY5f037v6LeUbKfuUy9yU1M0Mi\nECjZJksS4cHB9enQFkHO5wn29ZV8MACio6OkI/ecQJQpsyiyJBEdG5t/X42MkL4rx0SZMhuFjeAZ\n+SLwy8DdFazKmpENQtzvp+/VV8lnSkN6nTt20PTBD67acbbbGrKcz3Pz5ZfnGXqixcKOj3wE/Tap\n+7Hdxn2tkSWJGy+/THJqqmS7aLHQ+pGPoNsg91V53LcfG9kzogN2A+U7cgNjdLkw35XTRK3V4mhq\nWqcebQ3UGg3OHTvmJSGy1ddvG0OkzOqjFgRcra3z7it7Y+OGMUTKlLmb9TZGfgP4G1bJQzP4EJcN\nHtaxFEXh2rWbZDLS/f94FVjovNSCQO2hQ3g6O9Hb7ZgqKqg7cgTbCtMHP8g1XO3rvprtLdZWIpEl\nkcjO2+5qbaXm4EGMbjd6h4PKPXuo3Lv3ofZtPdtaCavVj4fRTiqVIx6fP/5r1ZeYTkfNwYMYXK7C\nfbV3LxW7dy+7ndXoz3LbWOkxy/tvzv3XM5pGCxwF/nwd+7ChCQZTXLgwweDgKNeu5ejo8NDe7l6X\nEFK9zUb9Y4+RS6VQa7VohA0biLWhmFtfAqCpyc7OnRUYDIXwRo1WS8XOnbja2kBREHS69exumVUm\nm5W4cmWKvr4gsqxQW2tlz54KzOa1HWeNIJTvqzKbivXUjHwamAF+ApxgAc3I5z//eez2QmGw9vZ2\nDh06VFTp3rG+turP/f39nD07QTRaKECXyUyj0ah5/vn9NDc71r1/a/FzU1PTlltDPnNmjIsXJ4s/\nq1Swd28V+/dXr2OvNhZbWTtw5YqfU6dGS7SkbW0unniiYduHtW7lcZ9LPp9HluVifpXtzEZNevYN\nYA8FvchB4EvA/zvn99tawOr3xzl+vI9strQOQUuLg6ee2pp1SrbayymVyvHyyzcJh0vrdDgcej76\n0bYllQTfDmy1cb+DLCv88z/fIBAorWVkNot85CM7sNm2d4r0rTruczl37hwvvvgi6XSaH//4xzz+\n+N1z7u3FRhWw/h7wPPACcIVSQ+SB2GqakTsTp0xmes62tbUfN/o13KyakbmoVEurcbNRdR5lzcjS\n21lonBcb+81wTmvdxmbVPNy9fzwe5+Mf/zjf+ta3+O53v8unPvUpUqnUQzv+Ztt/vQWsd3hivTuw\n0XC5jFRWmku2abVqmprWrv5JNpEg7vcTGRkht4SHpsziGAxafD5HycdHpSqkddbp1scrkonFCA8N\nERkdRborVLvM6qJWq2bLBJRaH/X1Nmw2PVI6TWRkhPDQEJlYbJ16WWat+J//83+yf/9+PvGJT/Dh\nD3+Y7u5u/u7v/m69u7Vh2ciLltt6mQYKNVCuXAkwNhZDp9PQ2emhpcW5Jt6R2MQEw2+/TToUQqVS\nYfJ6qTtyBKPLterHuhdb0W2byUhcuzbF7dshAHw+Jx0d7nUxRqKjo4ycOkU6HEalVmOqqKD+yBEM\njvUt8LcVx/0OkpTnxo0Zbt6cQZJkGhvtdHV5UGUSDL/9Ngm/H0WW0dvt1B0+vK2qM2/lcc/lctTV\n1fH666/T3d0NwLFjx/jqV7/KqVOn1rl368dG1Yzcj21vjNwhnZYQBBWCoFmT9mVJou+114jNpnvX\nmkxoDQbMVVXUHjr00IR2W/nllM0WQrOXU+RKzufJxuMIev2KoyGkbJb+V18lPjlZst27cyd1hw+v\nqO2VspXH/Q65XB5ZVopG6Mg77xC4cqXkb8yVlbS88AKaFQgdFUUhE4uh0WrRGgwr6vNas5XH/dVX\nX+U//+f/XGJ45HI5vF4v169fp/KuvE3bhY2qGVl1Nrre4UGZnBxdM0MEIBuPkwkXQk9jOh35bJbR\n06e58fLL3H7jjTVLTb6dNCOiKCzLEIn7/Zz6wQ+4dewYt44dY7q3d0Uv7r7r1xccx9j4OHI+v8Ae\n96asGVl+O1qtpmiIyPk8sYmJeX+TjkS4de3aAx8/FQwy8Oab3Dp2jJP/+I/4L19GllaWn6isGXmw\n/b///e/z8Y9/vGS7Vqvlueee49ixY2t+/M24/5YyRso8GILBgKDXoxFF5FyOwZ//nNj4OLl4nFBf\nH2NnzqDI8np3c9uQTSYZeecd4n4/2Xic5PQ0o6dPlxQqXC4anQ5BPz96Q2+3o9asnaFbZj5qjQad\nzTZvu6DXo3lAD1hekhg9fZpQfz/ZWIxsNMrY2bOEBgZW2t0yy0SSJH784x/zq7/6q/N+99xzz/HG\nG2+sQ682PuVlmjIATN+8yUxvL5MXLzJz8yYaUcTV2orB6UQwGNjx4Q+vuX5kK7ttl0NkdJT+V1+d\nZwB6d+2i7tChB2536to1Rt99FzmXAwrLcY1PPom1pmZF/V0p23Hco2NjDP785+QShbBfjShS8+ij\neDo7H6i9eCBA3/Hj8+pH2Rsb8T377Ir7uxZs1XFfaInmDrdu3eLpp59meHh4HXq2/iy2TFNOdFAG\nANeOHejtdhJTU0jZLAa7vVjHQqVWLy0WtcyqoLpH7O/dtUaWi7ujA53VSmxiArUgYK2txeTxrKjN\nMg+GtaYG37PPEh0dRZYkLFVVWFZgFKpUqgW1Xaqy1+uhs9ASzR1aWlrIZDIMDw9TX1//kHu2sdlS\nyzRbVTPycHKaqDB7vWja2nA2N5cU1LLW1q5JxMV20owsB6PbjcnrZXrOLFcwGLDV1T1wm4ODg6hU\nKqy1tdQcOEDV3r0PbIiUNSOr047J46Fq715qDhzAWluLSqV64L4YnM4SY2Y6kykUs2xeWYLEsmZk\neeRyOc6ePbvgEg0U3rNHjhzh5MmTa3L8zbx/2TNSpgRLVRVWt5vpGzfIZ7PYGxrwdHVt+9TVDxNB\np6P+yBFCsow+m0VrMuHt6sJSVbXeXSuzQVFrNNQ8+iiiyURkZARDNkv9o49iny23UObh8MYbb1BX\nV7eo1+Pw4cO8++67fPKTn3yIPdv4rOcXpgv4X0AeuAp87q7flzUjSyQvSaRmZoDCrHo1BImyJCHL\nMoIorritpbLV1pBToRBSOo3OakU0mR6oDSmTQaPVrniJZiOzlcZdliSSwSAoCgaXa10KSkrZLGqN\nZsMLk7fSuN/hN37jN+jq6uJ3f/d37/k3r7/+On/8x3/ML37xi4fYs43BRs0zIgB34s7+Cvgz4MKc\n35eNkSWQCoUYPX2aRCAAUMgNcvAg+lm1fnxyksjICHI+j7WmpugO3ohs1pdTXpKIjowQm5hAazBg\na2ggPDDAzI0bSJkMosVC9b59K3aZb1U267jPJZdKERkeZvjkSVIzM+jtdqz19dQePLjuSeU2Klth\n3OeSy+Woqqri/Pnzi3pGZmZmaG5uJhQKod7Ck4yF2Kh5RuYGwBuA8Eob3Go6jvsdS1EUJi9eJDoy\nQj6TIZ/JEBkcLCZTioyMcPv115m8cIHA5cvcfv11pq9ff39/WSYbj5Ofk4tgI5zXau+z1u1NXrjA\nwJtvcv3cOSbOnWPk1CmGT54kG48j53Kkg0HGzpwhGQoVti0xr8dG1LOsdlsrYaNoRqRslskLFzjz\n058y+NZb+C9fZvLyZYK3buG/dGnBfbLJ5ILp+DfKOa1mO9tFM/LGG2+wY8cO5PukQXC5XNhsNgbu\nEXa9Wc9/pfuvt2bkReBrwHtAOSB+mWTj8XkZNQFiY2PkUimmrl0jl0wWt8u5HIFr17A3NZGJRvFf\nukQqGCxoErq7cTQ1PczubwlSwSAzN2+izBoYgsFAdGiI+MREiSckPDTE5PnzJKemEK1WKnft2lap\nv7cyCb+fuN9Pwu/nzsJIJhIhHQ4Tn5wkG48jmgt1prLxOP6eHiLDw6g0Glw7duDp7FxR1tUyG4PF\nomjuZs+ePVy4cAGfz7fGvdo8bBR//Z8CLwP/Mmeb8vnPfx673Q5Ae3s7hw4donFWkHXH+trOP+ez\nWdKXL5MOBouRF26dDlNFBUJHB6OnTmGZ3X7n91VOJ01PPcW5114jE43ink2yFAJq9u+nY9++dTuf\npqamTee2jY2P0/eznxVzdwh6PXI+z+TFi3i7uoBCAcJgfz/NTz9NcmoKANFioeW55zA4nevW943C\nZnfXz9y8ib+nB/+lS4Ru3y5utzc2UrVvHzs+8pFiOv+hX/yC6d7e4t+o1GpqDx8u3ivbic0+7nNZ\n6hLNHf7oj/6IfD7PV7/61YfQu43DRtWMiEB29v9fBU4Bc/PkljUjSyBw9Sqjp08XZ+ZqrZa6I0dw\nt7YydvYs0dkKvHeSK1lqaqjYuZO+n/0M7rq+1bMhn+vFZnw5ZRMJbv30p6RDoeI2o9dLZHgY7WzG\n07jfj6DT4fD5ikJjgPrHH8fT0QEUlswy8TiCTrfiOjSbjc047gBSOk0+l0PKZBh4802UfJ6BN95A\nSqdRaTR4d+2i9YUXionM0pEIt44dIxuPl7Rj8nppe/HFLS1SXojNOu4LsViis4X40Y9+xP/+3/+b\nV155ZY17trHYqJqR54GfA/8XqAWOr7TBja53WO1j5XM5dHY7no4O9A4HtoYGGp98EktlJUMnThDo\n6SFw7VohIkOvR6XR4OnqWjSB2YOe18xMkqGhMH5/HFle2gtmK2hGRJOJ6kceQWe1Mp3NotZqMTgc\ndP7Kr+DduRNbfT31jz2Gq7WVVDBYsq8kyYyNRRi9McSNV39WUocmPjnJ+ddfZ/rGjVUpLz/3PBVF\nIR4IEB4eJjE9vaK2Vpt0JMJ0by/+y5eJTU4u+rFaL12ELEn4e3q48cor3HzlFQKXL+Pp6CCkKPie\ne47q/ftpfvpp2l98EVdb2/s7qlToHQ6MHg9Grxf9HWHrnOdxKX1JJLKMjEQYHY2QySxce6asGXm4\n+3//+9/n137t15a8f3d3N1evXl2142+F/ddTM/LPs//KLJO8JJGJRglcvkywvx+9zYbOakVrNqOz\n2Zg4f56ZmzeBwsdy+vp16j7wATSiyOTFi1Ts3Im5oqJEbyIYDFiqq8mkUsvqi6Io9PQEuHzZTzKZ\nQ6fT0NrqYv/+arTajR1auFIysRj5XA5bQwMGlwt6e2moq8Po9aIRhGKa9VQkQv/x4yWeKEmjZyAA\nwb5hohdOkJyaosXnwGLVc/2HP8Tb3c3U8DDK7dsYvV4ajx5dVlSGLEkkZ2ZQZLnQt1nyuVzh/rhx\nAymdRms04u3upmL37nWPskpMTTH0f/9v0WgT9HpqHn0Ud3v7uvbrbkIDA4V6TbPeyGAsRj6bxdvV\nRaXTidZoxOhwzPN0JPx+Ji9cYOr6dbQGA+7OTuyNjTh37FiyV2R8NMjVS2Mo6SRqjYbbdifdu6pw\nOjd2hd6tTC6X4yc/+Qlf+cpXlrxPU1MTk5OTJBIJTA8Y9r/V2CiakYUoL9MsQHxykvFz51AUhf7X\nXsPd3o5KrWby/HlyqRStL75IYmKiWBQtPDhIZHgYh89Hxa5dpGZmMHq91B0+jP/yZSLDw8i5HA6f\nD2t9Pba6OkSjccn9CQTi/Oxn/aRS78/QNBoVzzzTTEODfVnntlnctnlJInD5MjM3byJLEka3m6pH\nHlk0o2l0bIxATw/pcBjRaiVuquXKkEKNJcO1fz5GPifhchvZ0WQm0NND1b596Gy24vKaZ+dODE4n\nkcFBdFYrzpaWex4vE40ycuoU8clJFFnG6HZTd/gwRreb8PAwA6+/XlLNVdDr8T33HOaKCrLJJNlY\nDK3RiM5iWd0Ldw/ujPvwyZNM3VW1Vu9wsOPDH37gPC0PSjYeJ5tIIJrN847d/9prhO+a/Ql6PS3P\nP4/J612wvXQkQt/x40THxwn19REbH0djMPDIZz5Dw+OP31fAqigKM7cH6XlvgJuv/5zg2CQmt5vq\n7nbannqcnfs3n/h8szzv92O5SzR32L17N3/1V3/FI488skY923iUa9NsEXKpFCOnTpGcnkZvtxc+\nVIrC9X/6J2RJQqXREB8fJzoygqW2FtFoJDWrZZg788pGo6jUaqofeQQ5nycXjxMdHSU8MICzpYWG\nJ55AvcRkTdFopsQQAcjnFaamkss2RjYL4YEBJs6fLxayiwwPk8/l8D333D2TxFlrajBXViKl00ho\n+OnxftLpNFiLDyjxeJZ0Kks+lytx3Sv5PP5LlzC6XEVtSmR4mOann8bods87VuDqVSJDQ8Wf4xMT\nTFy4QPPTTxMbHycdiaA1GovHldJpMpEImViMyQsXyCWTCHo93u5uPJ2dK/aYKLJMXpLum0AvucCS\nUS6ZJJdIPDRjRFEUpq9fx9/TU/QcVe7ejau1FVmSUODey5yLXKdMNEoqFCIyKzw3V1YCEOrvp+bA\ngRJjJB2JoMgyeru9eO1jExNMD44xeuYso5cLAth0LEkuI2HzOGjbVYcoll/n68HcJZrl0NXVxdWr\nV7eVMbIYW0oxtRF0HGt5rFQwWPgYKQpqrRZ7YyOJqSlkSUJvt2Opri4YKg4H0uyMWms0otHrqdi9\nu6BncLnQGo0Iej2hwUGiw8Okw2G0JhMGl4vh8XESsxEfS0Gv1yIIpbeRSgUWy/0zt25WzUh8chLR\nYkEz5+Oampnh1mx+l3uh1mgQTSZEnYhOV/hwJGQD7oZqAERRg2jQFeqMVFUxMWt4ZOJxTB4Pgl6P\nweXC6PGg1mqJ+f3zjiFls0RHRwGQ83mSwSDR0VFuXLrE5OXLxCcnCVy9ysyNG+Rml+RUGg2yLDN2\n5gzpUIh8JkMmEmH8vfeKS3mKopCYmiIyMsKNy5eXfK3CQ0P0vfoqN37yk0JCsDlC37u584Gei2g2\nI97DQ7MWuoi438/Y2bNkIhHymQzpUIiR06eZuHSJGy+/zM1jxxDNZu6ez1uqq/FHo/c8hqDTFXLO\nhMNI6TS5VAqVIGCtqysYP5cvEx4c5PxbbzH8zjuMvPMOo6dPk5ltMz4xgVrOkJx+/9mUs1nymSwp\n/wRqSnNbrKVmRMpkiI6OEh0bWzBXylLaWM2/X8/97yzRzK1Fs9T9Ozs7uXaXJ3C5x1+Izbp/2ZTe\nRKgEAaPbjXU7H6wAACAASURBVJzPo7NaafzgB/Ffvoy9qYmE38/wyZP0v/46HR/7GI1PPgmKQuWe\nPRhdLqR0mvDgILKiULl3LwogJZNFwWWwr4/E1BRpm410KISlqgpJyjM4GGFoKIwoamhqclBbay3p\nU0WFicZGO/39waIkorLSTE2NdV7/twKBQILeSYGpES3VVQ481jSJkQES09NobTZGczmcO3ZgXCRk\nVxDU7Gm3YJJCJOJxnG3taPVa3CYZd1MlDYcPER0bA0VBpVbj3bmT5NQUI++8g2AwYK+vR6XRcPu1\n15AzGdwdHWgNBc2ARhDQGo2kZmYIDw4WlmryeTJuN8G+PsxVVTQePUpsfLzgAZltT6PVkrsryiOf\nyZAIBDB5PExcuMB0b2/hPgLsKhXe7u5FvSaxiQmGfvELpFmjJx0KkY5EaH7mmQUjhlxtbYV8HYEA\nKApak4nKPXuK5/YwSAYC5O/6wIb6+hB0OrLxOEo+Tz6dxt3aSjoSIZ/NYq2pwdnayuDAAHGzGZVG\nQ/DmTVLhMJaqKpwtLRg9Hhw+H+PnzqERRTSiiKejg7EzZ0hMTeH0+ZBSKdI2G/FQiFQwiNPnQ63R\nUH3gAGpBQEknqa134b89QS5b8J6JeoHqBvc9084risLoaJTBwTB6LXhMORwOfcG4XWAMYuPjhXtP\npSpqnkquz/Q0I++8Q2JqCpVKhdHjoe4DH8A4R5e0nbiT6KzuAYpYdnZ28td//der36lNypYyRu7k\nrNiKx8pEo0yeP8/w7Lpkxc6daEQRc2UlVfv3c/K//BfUajX5TIZkIEByaorWj34UtSBw7R//kZvH\nj5NLJPC0t6O32VAB5ooKDNPTjL77LtGREQCEYJDRM2ewVFdz7XaKCxcmyOcLVsbAQJijRxtKll+0\nWg2HD9dSW2tlaiqB3a6nvt6G2Xx/z8iDXMPVvu7LaW9qKs61cwPIiShGTZax4RAhmxF3Iomo12OV\nJPyXLhEbG6P5mWdKKh/PZbq3l+DZsySv9pFISFh3ddPw2B5M2hze7m5EoxH71BTeUAjBYCA0MMDw\n22+Tz2RQqdUMvvkmjU8+ibWmhvFz55CyWeoOHQIKy3Hujg6C/f0k/H6UfB61KNLs85GYnGTi3Dly\nyYL40d3eTt1jjxU8bH5/waV11xq+oNMRm5gg0NNT1JnYgcmLFzFVVGC+h0YCCktJ0l2C6ITfT3J6\nesEPncHhoPmZZ0gEAsi5XMELtMhHbrXuhbntaO76QOclieT0dKHOy+y1yUQiCDodTR/6EBpBIBUK\nMfyLX5ANh7n+3nsoilLwUgYCxEZHSQQCNH7wg9Q8+ij5XI70zAzZVAqjx0Pc78fs8aAzm0mFQkyf\nPk3t4cMkZo0yQa/H3dGBtaaG0MAADV1NZMMhZoIJRIOehu5mfIf2zhPA3jmngYEQJ04MU2mH8cvv\ncXZknPp6Gzt2NRWMiDnLfMG+vuJ9BjB9/Tr1jz1W/L2iKExeuvS+t4yCx8Z/+TKNTz55T8N0ueO0\n0nF9mPv/0z/907xEZ0vd/84yzUqOvxCbdf8tZYxsZQJXr5IKBqnavZtUJMKlv/kbUKmw1dVha2xk\n/+c+x+ipUziam8nG4wydOEHj0aOEh4cZfOut4qw3cOUKKpUKS1UVgl6P3ukszHI0GgS9HntDA3I2\ny8z4DDdvpoqGCEA6LdHbOz1PC2IwaGltddHaurVnR/5bgwy8/hoRf5BMIoHFbsb66AHM3QcwyfHi\n8lZyeprY+PiCxkhyZobxc+cK+V/GBzAIArHzQTxOkel4HEtlJWJ9PSaPB5PHg5TJMHr6NPb6ehKB\nAMH+flCpSAQCVOzdSyYcJjoyQqarqyg4dTQ10fDEEyDLyPk8tro68rkcPX/3dxicTjSiiKIoTF2/\nTuNTTxUEyxUV8yKsDC4X5upqQv39JYJXACmVIhMOL2qMKAukxVZkeVHRomgyIa5jJmBLVRUGl+v9\nfDCKgrWuDpVGU3I+UiaDavY8Rk+fLupdYhMThG/fpvlDH0IwGJBSKaKjoyQDAay1tXh37WLy4kWk\nXI7pa9foO34ctVqN0evF2dyM0e1GEEX0DgdqjaZQVyqXw+h2U3vwIKGBAbosFjKRCEaPB3d7O7Z7\nzMplWeH69Wn0eoHkwFUmbhSSXI+PhHDZtQjGizQ//TQqlYp8Lkfg6tUSr5A0m8XZVleHWhDIJRLF\npH1zSQQC5FKpZQnftwK5XI4f//jHfPnLX36g/X0+H+Pj4ySTSYzb7NotRFkzsgmOdfPaNeJ+P9HR\nUfKSRGR4GI0oImcyoFIR6Okh4fej1mgIXL1KqK8Pg8uFzmYjNjqKLMsokoQiSaAoxCYmgMIL1VJV\nhberC293N97ubpKzH7RMTiaXK62hYjRq0WhU3LgxTX9/kHg8O6+vy2EzaUbyksT4+YtE/IWwU53J\nRDankJ4OoLPZSQQCTKfTxb+/11p6JhIhl0iQz+UKws5slmwshqIoiGYzY2fPMnHhAqlQqNA3lQqV\nWo3R7cbh82F0uzF5vYVMr2qRpLGaGbWHqZl08SOvUqkwV1Zira/HWltLNpHAH40WtUGyJCFLElqD\ngUwkAoBoNFL/xBNU7t2LuaoK786dNB49iv5OxeE5s97pTKZovC6GtbYW9V1RIganc9Vc+muhi9BZ\nrTQePYp3507MVVXUHDhAy/PPz8sRY6uvRzSbSYfDxWs4nckUM/GGh4aKy0tKPl805lzNzVi8Xowu\nF5HR0WKhtGw8zvj58whtbZirq9FZragFAYfPRzIUInD1KoJeT/0HPkDL88+z85OfxPehDy1oiEhS\nnrNnr3L9+hQajRqPQ0t0bHzO72UkSSE5NVVMwCal0yWlI+4w5vcXBNUUvEaaBcZcazCU6KcWu75L\nYbNoHt566y18Pt+8jKtL3V8QBFpaWuidk5F3Ofvfi826f9kzssFJR6OFglv//M9MXb1K49NPM/jW\nW9jq64uuY4PdjkarRWs0ks5I4KjEe+goWZ0No9eLwekkNTNTzItgqqhAMBgwOBzFpZ7sncRamUwh\n90SNE+eowthYYbtOp0EUNVy4MMnt22FAwWbTc/RoI5WV5nW6Og+PXDKJWkoSjRWih0RRg8kkIqfi\n6Mky1/TQiOI9w241ooh6VtehFgRkScJaV0dqeprx8+dxzmZpDfX3o2lrQxBFnC0tjIVCmLxe3I8c\nJnjjGt7Dj3HynXF6z93C3dnFYMLBnj0yu3ZVAGDyeLDW1jJ19SqyJCGazVTu24eg06HWaDB6PJi8\n3pIoFYPdTs2BA/P6bKmunuc1sdbVYaqoWPSaWWtrqTt8mMDVq0jpNEaXi8q9e5etAclmJTKZPCaT\niFq99tkIjG53yfJFLpVCmi1CqSgKtvp6KnbtAgrLWBqttuhR0FmtqDQadGZzsSCiaLGgt7/vTbT7\nfISHhhBmn71UJEpOrUdjVKN3uRk7f4HJs2cKOp50GpVKhUqlInD1Ko1PPrmoNyqblXj33TF6esYR\nhDRjY1Gammx4m2sJTRS8N2aziEEvFPo+a0SIJhNGl+v998AsOru9aHRqtFq8XV2MhMPks4WJiEan\nK9TWWWL03VZioSWa5dLV1cW1a9fYN1uGYzuznnfQQeBbgAycBf5/9t4sSK4zPc98zsl937fKqsra\nV1QV9o0Ed7JpqZvdklrutmSHbMdceUZjxcT4YkK3czXhC4U9F57whT0jta3o1S31xuZOgiR2oFZU\nFWqvyn3fM0+ezDMXWUiyCBAECJAEW3ojEMFM5n/+c/6Tlef7v+/93vd/e9gD/i5yRsqJBK21NVRa\nLZr9VN7t4ME9Pk6r0UCWJEJPP43W4SIXjmH0BSjqfPz2tS1OjIwQPHkSlUZDMRZDb7Mx+s1vYuvu\nxuT1IpVKBI4doxiJUEkkCOl0bVE0t4vjx3XI8h6ZTBWn08DKShqdTk2pJLG2liEeL7G3V+D55/s5\ndMiLWv1gImePE2ekuu+oq9brMbrdd9a/1VoErRGTSUuhUKdcllCrBYam+nGFuqjF9/CWy52WWHMg\ncGB4U5Ypx+M0ZRmDy0VTkrAEg5SiUZxDQ6Rv3cLkdqPfL+3ENiPY9B4uVffo8vXgPmXk6ocbrK3m\nsfueAKWLre01TP4AaoOBcrHG/Hyc7m4rTqehTXw8dgxrMEi9UEBjMpF0u8nv7HSIsSafD8tduBu3\noSgKtVwORVEIPf00+Z0datksvR4Ptt7ez5StFwQB99gY9r4+5HodrdncDqDvE4qisLaWYXExQbUq\n43IZOXzYh9drPnDvHhafdRyNwUDP6dNt/xhFOVB+09vtOIeHic/O4tbpUDQafNPTdJ85Q6Naxej1\n4hocpF4sUs1k0DudWPx+3GNjhC9dwjE8jKqsUKk2sPk9eFw+Lq2/g713ALVOQ6MlEJ5bZPDZZyju\nbpNeWblnMBKNllhdTaNWtwnUTqeR1dUMA0+PYppfRS00CYXsqHRaPBMTnXsoiCK+mRmkUqmTBTK4\n3Yw/+eSBvwXn0BBqvZ787i7Cfpn4Xt+h+1nfh/38VzFelmV+9rOfcfny5Yeaf2Ji4g7eyNfh+r+I\n8V9lMLIFPEvbn+ZvgEPAvXsjfwfx8dT63SCVSjQlCVGrZeSVV1DpdOhtNuJzcyAI1AoFgidO4J2a\n4tqrF8hnS8jLMdRGE96xw6zEdJz9/VcIHDlCvVTC2tWFtbcXrclEfG6O1M2bNBsNtBYLgWPHsPb0\ndPQgfD4zL788RCZTpVZrkMlUKZUkZmcTLC+nkGWFGzfi1GrtneupU19PF9rE4iLx2Vmk/WDCNTJC\n4OjRA9oPqUwdfAP4euLYbDpQwOJx4JqYxNHXh8njQSoWURuNtCSJ8KVL1PN5zIEAlmCQ+Oxsu5tJ\nlrEGg7hGR3EOD7eDTJOpTSAWRaRymZqiZXU1jV8bo1p0Eg4XqddlMpKVptZKXRaYW0iCtx9dq0gt\nn6fVkKhU1JTLUkeNU1SpMAe6OmRRo8tFbmuLciKB3uHA0df3qcJmUrlM9OpV8ru7oCiYAwG6TpzA\nNzX1wOur1us/s6RzN0QiRT74YJd6vZ1hKBYlymWJb3xjEKPxswnSjxqftlb+w4cxOBzkd3c7gUr0\n2jWq6TSO4WFyGg2F3V2kYhGtxUL3qVN4p6YY/da32Lq6QDydotXU4vSFCG9naNqC6L1aYtevk9na\nwRLw4RwexeL2HPA2uhvy+foBnpfBoKanx47R5eL3/tfvIyUiiKKAvbcX6ydKPGafj8GXX+7MYXS7\n78hi3Q5APo2n8g8F77zzDn19fQ/94J6YmOCv//qvH81Jfc3xVQYjHxdJaAB3N1l4AGxtbX1pGYuH\nnavZbLG+nmFlJU2zqTA46GBkxNXRn7gNvc1G1WrFtK8Zsffhh2iMRnqffBKtxUL/M8+AIFDY20Mt\nV7EJJUr5GBZTN+ZGnFzNQSEv4tlX7Lwd9GQ3N4lcudIp3cjVKrEbN0g3Ggx/TH5bp1MTCFioVhuY\nTJpONkSW2z94Ho+BXK7GjRtxJic9mM33b/L2edbwUd/j5dlZpPn5Tr1crlZJLCxg9vuxh0Kdz1Wr\nMtGqGe+ZZ2mVMu11NDkp0n5AaU0mIskkPp2Ozbfe6oiT5ba20NlsiBpNh09Q2NtD73Aw+OKLNPbX\nvV4oUE4kUGm1CHYvVlULg0uN3gwNROauRdDJJSqpJKJsxtHVxepSjAG/gFqnR6XTYTBoMBrbAVSx\nWGdnYY3I8gY6vQZdwMqpZ862d/f7DrGtZpOmLN81xZ5cXDzgLptdX0dUq+l7+ukv7e9sb6/QCURu\nI52ukk5XMRq1j+w8HvY4Ko0G59AQBbUaTbXK5f/0nyju7tKSZbbeeYfec+foOn4cqVikWa+TXlvD\n6PXSe+4coqebknUZqSaxm2siV/bIbYRRZWRa9TIGkxary05iaRn11Bjdx+9M5yutFvndXQqRCDQt\nNEoFWhoJna5datLpVPh8ZoI9QRi7t2W91mg8QER9FGv8oMd42Dm/jPE/+tGPPrVE8yDz3y7TfN7x\nDzv/4zT+cSj0TQMeYPmzPvi7hLW1DO+/v4sstxn6yWSZWk3mxImDKU+5WqUlyzRKJVIrK3SfOkUt\nlyMxN4dKp8Ps9dJsNFDpdGQXr3Hzt+92WhAnvvUyod/7p5TWFsnfyBM4erSzsy3s7XUCkduo5XIo\nn2LKZjBomJ72E4uVO+fc32+nu9vGjRsxBgYcSFLzrmMfZ0il0h3EPaXZpJJMHghGbDYdiqKwlVDQ\nat0oioJSh/GjB3f8+d3dAw6+AIn5ebqOHz/w3m3NjfTKCtV0muDJk4QvXSKzvkE9XcB/6hzR9TAa\nOc7oN16gsLWBUCujQmZ3c5Npj5WxqW5axQyWrgA6vYbxcTculxFZbrL03jWu/Y/XqVfapFqNz0jQ\n5cRsM1KKxahms1TicTQmE46BAdxjY51dsCxJ5D6m4HobxUikI8L1ZeBu/BBBuKfQ6VeO6PXrpJeX\nqRcKqDQaavk8m2++SeDwYfQOB0qzSeTSJUqRCJ6JCay9g8QKq1x6c5VCrs6xpwL0Hx1HunUNtSgg\n2myYg92svv42Sq3I0Esv3DFn8uZNwpcu0Wo00Lh8uNQi0XI7GBEF6PaIKLE1trer2EMhrN3dX7kP\n0dcZzWaTn/3sZw8s/343DA0Nsbe3R7VaxfAl6uk8jviqgxEn8B+Bu4aYf/EXf4F9n/g1NjbG6dOn\nOxHXbcbuJ1/fxqf9/0f1+vZ7n2d8q6Vw9eoS5XK1s3up1VLMzxcYG3NjsejY2tqi1WxSvHqV8qVL\nSB4PeUWhNTeHb3q6fbxWC8v16wSOHSOayRDe3UKrFWlITRouO7u7OxzS1SklCsQLBTIXL2Lt6cFg\nt5MoFsnU67j3a8apeh1RreZ0d/ennr9WC3/wB2NYrTr29nYAWF5OYTCo8Xgk0ukoTufgA63HJ+/X\nZ+FR78hDvb1srKzc0bqqNho7HBJRrcbjMXH4sL9jCKjXqxkZcREIfJS67+vrY+/ixTvm+GRbKNA5\nbi2fp1GpoDEa6T59GsfgINVak4bFT+7dWQwWI0Jik75eK5GtKqKgxxIIELm1wx/9+bdR6/RITRGX\ny0gg0OZSpBMFNi5c7wQiAEqmxubb7+Ab7KGWzbLx+uugKDiHhqhmMjQlie5Tp9rnK4p3dMFAu+wj\nqNVfWvaxu9vKzZsparWP7o3bbcTlau/cvyzOyIMc5/Kvf90O2FotlFYLlVZLPZ9HURQEQWD99deB\nNqk1duMGjkKBmWkfC5eMlIoN1uYLHPmzU5jHA1STCcrpLPndPXwj/biGBqlls9g+xtGQKhWSS0ud\nrFsjk2Ay6GXEFkLl6UIjlVDCyySvtzvosuvr9D75JM7Be2dIHuXa/K5xRt599126u7sZGBh46Pk1\nGg2Dg4OsrKxw+PDhBx7/sPM/TuO/ymBETZsr8r8Dibt94K/+6q8+dfAnL/jr9LrVUtDr3eh0HwlC\n6XRu9HotrZbS+Xw5mSSWSLQfhkYj7tHRjoGXTVGoF4voHQ4K4TBd4+PcKpXQ2vTIjRaCIOMxaqln\n2mqWbp0OQRBolMsY7HbGjh5lM5PpZAXcOh22UAjjfhfIvc7/xRcHeOMNWFhIEAxqOHrUz/HjwTse\nzA+zXl8WTD4ftt5eshsbnffUBgPVVIrE3BxaiwXf9DS2nh6mpnwEg1ZKJQm9Xo3HY7xjh2n2+Uio\nVAeyTo6+PnR2e0eLQlCpcAwNYfb724q6soxKq6WWyxG9dg1TsId6y4BKJaDRa8lubXByKkik28r2\nZhatTsXYmJsenw57d9cd1yTX69RKH3239AY1dpNAJRFHd2Sys4uGti6GweUiu7GBZ2ICncWCSq3G\nPTrK7sc6sARRxDk8/KVqSQQCFs6d62VpKUmpJOH1mpia8mEw3NtU7quEa2QEnc1GPZvt2DSEzp3D\n4HIRu36dZqOBPRTqZKGK0SjuXj1PnPQi6PuhIZHf3MTcZWL1/BUMJj2tSgmdVoXBaiG7vo57dLTD\nZ5JrtYOKsYqClI5jFFsMPTHJ1rtzNJoSBpeL1r7bd/LmTex9fQ9EJv5HfIQf/ehHB+TfHxa3Say3\ng5F/qPgqg5E/Bo4D/9f+6/8DuPAwB/y6cEbUapH+fgfpdPWA4GUgYMZq/YhzoSgKZp+P3MwMBkUh\nOT9PJZmk9+mn8c/MUIxE0JhMaAwGDG433adPdzQP5HodWZLQmc3U9tnxGoMBzX4rp8Xvp++ZZ0it\nrFAvFLD19OAaGWF3b+8zrysQsPD97x8iHi8jCGC36z8XoXBlbo6A04nGbMZgvz9TvUd9j/ciEbrP\nnsUSDHYUL2u5HOlbt9oy6sVipzXW4HDgdBo+1a59a2uLnmAQ38wM6ZUVmvU6GpOJrmPHMPp8WAIB\npGIR437brahSYe/vJ7e5SXJxEZ3dTu+TT2J0uynG4tTHHTj0JgZOTJNdu8WQXcvQaTuC0kIUyujM\nd5rHleJxxHoRm8NIYmMHj9+GUEyQKlVxm3qp5/Ptdk6hrbbalKR2wKEoNBuNjtOvra8PjclEZm2N\nRrmMc3AQx9DQF3IP7oX+fge9vTbq9SYGg/pA8Pe4cEY+fhznyAgT3/0uycVFBJWK4MmTtBoNYtev\nI6jVDL70UseJGWiLqgX8qBuL7C0s0zAI+JwevL/3NC8N9pC4cZ3i3i4Wn5fY7Cwmrxfn8DDeiQmg\n3UqsdzjuKDWWdDrkep1qKkX40iUalQq27m6svb2dQOl+gpF/5IwcRLPZ5Kc//Snnz59/ZPN/kjfy\nOF//Fzn+qwxG/vv+v689UqkKiUSJQqGO0ailr8+G1Xrv7oGxMTe1mszWVg67VY3f3MDnqlFOJDC4\nXBT29ignk8iyjEqnI/b++2Q3N6mmUohaLb1PPIF2f7ftm5rC3t9P1/HjrL/6KvViEcfAAMGTJ9tm\naIqCSqfDOzV14KFv7e7G2v2JDphPiDt9GtRq1V39ZxRFIZut0mqBw6FHpbpTV09ptYjPzbF3+TJl\nUURjMOD9HF0ajwpaoxHP+DiefRn1+Oxs+32LpS2HHomw9+GH+I8cwfKJlt1PQqXREDx+HOfAAHKt\nhs5qRWtul0/04+MoikJua4utt95CbTCQWV2lViigMRpRZBm5XsfgclGStehtXRjcvSTVZuReGyax\njpCLolWrcAwMUE2nqeVybb0Qo5FiJMLmW2/RajYZP3uIVqVAJbxNIZ7EdXwce08X66++indmhtzm\nJtVMBq3ZTKNSwTk0RHJpicLODlqLhXIyiUavxzk0RODIEQwOxxd+Hz51TVUiRuOj1WdsNltks9W7\nfj8fBha/n+CJE+hsNnRuP3N/9xq5ZJau4V409RxyvYY1EKBRqWD0erEODFI3ehj91jcJPZUnl4sT\ntJvJzl5EqJfQmQyIPd1Er13D4HCg3/eRcvT3U0kmkRsNXKOjyLUatWwWQRQxeDzUrVY2XnuNYiSC\n1mwmMT9PYm6O0DPPtAMkWYbPaM3+R9yJ8+fPEwgEGNoPzB8FJiYm+MEPfvDIjvd1xePMYlLuJRv9\nWZAkmXC4SC5Xw2bTEwiYv5D0bjRaZG4uzsWLYTY2soDC8eNBvvOdsTtM5e6GfLpI9PIFipvr5HJV\ncmVwDQ/hDflIn38dpSVTTae5+dOf4h4ZaWuMlMvoHQ4GXnqJVqOBJRhEyuep7nuZKM0mgijiP3oU\njdFIo1RqS3v7fF8oca1clrh6Ncrubjs709dn59AhLzbbwcCsGImw/tvfdoSToM2hOPxnf3ZPqfDP\nwu26/MMgvbrK1ttvtzkdGk1bSr9SwTk8jGNggNBTTx0gtn4Wavl8m8yo1WJ0u8ltbbH97ru0ZBmD\nw8HqL36BNRRC0tpJpSrYPDYsM2dZ3aywsJikUof+QReK3KAlSZw6082QX6Rya64tUCUImPY7M+Kz\ns2Ru3QLa62kfGqYQiaI1GlBrNVQzGZKLixj3HYBj16+3HYK7u7H39ZFdW8MaDLL74YcUw2EMTifB\nU6cQ/IM0bN3oDFq6uiw4HI+WaCcIwkPd9wdFOl3h0qUwsUgejVZN/4CTo0cDd/19kCSZtbUs6+sZ\ntFoVE6N2zEIFRW6gt9vvUJNtNZtsvH+RVEVD8tY6a2+9S7MuUWu0GB72YlYKdJ06RWZlha6nnmen\nGWBzLU29VsfqtHJoxELhzR+S31hDazJRjEYZfeUVjG43tVyOZr2Oc3gYuV6nGA6jNJvobDb8hw+j\n1utpShLlRIL43FzbJykaRVCpcI+MsPP++3gPHWLiu9/F2t2Ne3T0y1ryu+LLvu+PAn/+53+O3+/n\nL//yLx/ZMZeWlvjOd77D6urqIzvm44r93+e7/kh/1QTWLwSy3OTChTC3brXbZgWh/WB88skeKhWZ\narWB2azFbn/4H9WtrRxraxlWVz/q/5+fj+P3m/n2t0fRaO6dCq1Ht9l98zVSuzFyhQYmfxc7+RI6\nYZJEvIC/2wGiiNHlopxKYevro7y/q5WKRRrlMnqbjVu/+Q1ak4l6oUCzVmv7l8Tj9L/wAt7JyS+l\nPry8nOoQWs1mLR9+uMe1q2FmJuwMDVhxuszobTYq6fSBQATate/Pi2q1wcpKms3NLHq9mtFRF/39\njs8VmBi9XnR2O6JKRfTatbazrV6PzmKhHI+z9utf4xobQ2s24x4Zuav/TDWbpV4sUs/nKUajbeVS\nRcFz6FBbnr/RQFCpaO2TWpOJMhmphUUrITWsvPV312gYXaTTNapSi+XFCN94rpcbH6wyPWbh0vuX\nCXo1mExaUBTK8Tipmzc7ip+311Mq5KlnUuy+M0+jXEZrseCdmkJjMuHs78fe14dUKqExmdh44y1U\nBjPoTW2ZcqHdtpJu2fnwp3MYggVMbhc2m46nnw7h999dc+NxR7PZ4sN315k7P0+9UESlUZPa6cJs\n1jIz47/j83NzCa5fj6Io0O1Vc+G/vY1dVcNuVaGzWgkcO4Z7ZKRjVFfKFrkyn2d5u4a5GGd5KUNv\nrw2dXBTTiQAAIABJREFUIrG9meHQIS8mt5tWC5J1AwvzO1RTSVqSRDVrJX2zyGGPta2s7PHS6j/K\nm+8nsA7ZCQV99Ha3y2uFnZ3OOdbzefYuXOiQkddefRVFllHr9QiiiFQooLPZ6Dl7FrVeT71QOFgq\n+kfcF1qtFj/5yU94++23H+lxh4aG2NnZoVarof8cejy/K/idCkZu16pisTLr65mO+I+iwNJSEkVR\n2NnJY7PpMZk09PU5mJi4u2z3/cwVCoUolxtEIu122Far1SaJNlqk0xUKhXqH+S/LTVQq8cADstlo\ntLU9VlfZ281RLUnozSbGT0+iESSis/Po5RCtYFfb60RRaJTLFMNhQs88024vbTYpJxJ4xsZQ6XQs\n//znqFQqDC4XUqlEbmMDo8tFQbGwtZVFlhV6e22EQra7pqg/b71PlptsbeUAsFh0vPnmJjQlguY6\nscYucthAqM+Ga6C/zVsRBFK1Wqeb5377NT95foqicPVqhKWlVOe9WKyEIAj09392aeGTxzPY7YSe\nfJL0rVvt7IXT2VGYTC0vo7fbacoyyfl5PNPTjHzrFfItM7FYmXB4h26DQG1jCR11BKWJ3m5Ho9cj\narVUUinKiTZXW63TYXC56Dp1inhWpstmoJRIoekboLQepiEVqWe3yCZU1AsVykUvBk2LRqlAYm0T\ni7oLk8nZOe9SLIZvepri3h5NSULYL3/ltrfJbm5Rdzqwp1KEL15k6k//tF3yy+URBQHFYCZfgUY2\nQ11tIp2qYHfocQZ6mFtMUc5X0PvbgU4+X+eDD+b5wz88e1/364vE5/muplMlbl1Zohxv3we5CpnW\nTZZnXUxPH8wcJvcSzH6wQjFfxe53oSkkEMo5KsioFTXVWpPsb96kL5PD4nWTV6mQakZ29krsrmeY\nGrAgKC12d/NMHfJSKlRpKrB2/iLR9Qjl7irxaJ1yNgelDOauLgRtjVaoF9RacoZu3vrtOoqi4DeX\niYXzOL//BEYhicHtplEud1yRsxsbncC4USqRV6kw5XK0ZJliJEIxGsXodGLt6aEpSRg+Jnf/IGvc\nkuWPjPFMJkxe7x2OwZ91jAed80HxRY3/4IMPcLvdjIyMPNL5tVptp6NmZmbmsb3+L3r871Qwchvl\nskSj8VErZaUicf16jGy2RjxeolqVOXkyiCwreL1GHA4D6XSFZlPB5TKg1d7fsgiCgNdrxGrVddRJ\nVSqB3l4bVqsOg0FNJlNlaSlJLFbCatUxMeHplG8q6TStVotqvoBao+XoK08gF7LsvPUm3adPMfbc\naeJXLiKgMPHHf0xmbQ2t2czIt79N3zPPIJVK3PrlL9Ho9ejsdlrNFoGTZ4heuoAgijgGBqjl88R3\nElzaSFMutzso1tcznDgR7PiYPAoIgoDJpKFel0kmyxSLEjMDKlQ7t1i6sAyyzLEnhug7OsngN76B\n2e8n9bF2XkvXnV0h94Nstsr2dv7Ae4VCnevXo3i9pnb24C5QFIVMpko6XcHrlQ4QcC1dXRg9Hmr5\nPKVIBEEUye/uIlerqLu6yG9v02w0yK2vE7m1x2paz6XraZzmPPPXb6BR6jz54iGyF98itbyM99Ah\nVBoNoaefxt7XB6JIJZEgevky9oEBLNl1dt9+n/xehME/DWK1aEhEM7RqFRoVVdsdVythtRtRqwRE\njQaBjznI1mo0ZZliIokpEEBptVCbzKR3ImwtbKDVWamW61g0Ina/HwWIRstsr8YQRRG9MYt3aJhS\neA+T1USrViG3l8N3zkl5t4Zar0Nr+qiLpliUkOUWavWdD6HG/sPxQf1nviy0qmWaterB95otlHrp\nQCCSWVsjurxFem2LfKaEWQgiOirc+s1vqWRzWNR1jB4PM3/yffI1FcVoma10AUVwkdgMI0oK125I\nTD97hujcIga3G0e3Gv9UHxd+8HNUag3Bfh8f/OLv0drsWKxG5EoFq9cGrSZNi5elpSzFTBGr10Vd\nVhg/PEg5sks4ukQtncQ5NITGaiezF6NeqaG0WjSqVQSNhnouh6ZaxdbXh1yrYevtxejxYOvpQWsy\nHeA+VXM58tvb1AsFzPvdZXdTzG02GoQvXSK9ukprX9vIMzlJ4MiRfxCdOfcSOntYTExMsLS0xMzM\nzBdy/K8DfqeCkdvRmNWqQ6tVdUS40ukq2WyN6WkdW1s5ZLnF/HycQMBMPt9WDw2HC7RaCm63kdOn\nu/F47uxUuNtcvb02hoedXLwYplyWMBg0mM1aTCYN+Xydy5cjxGJtZ8xMpkoyWebFFwfa/hr7WgSe\n8THcWgOxa1ex+b24hoYo7IUxu12MvfIKl/7Df6Dne9/jxL/5N6Ru3qReKpFcWmL3vfcoJRKodTo8\ndieKRkchU0DTM4Z3agiN0UglkyFXUqhUGp1zbzYVlpdTDA05Og/hRKJELFZGEAwkk+V7Xn8mU2V1\nNU0sViIYtDDUb0Ws5ugzZnHTpOq2EovZcKljzF6+jkHXzgjVS2V233+fruPHCT31FLaeHirpNEaP\nB8d9RtKfjLibTaXTDq0oCpFIkXC4SLEo7ZOJ7YyNuQ/wSSRJ5saNGKVUhlY+xaW1KAPTg/SOf3Rs\npdXCNzNDq9HoiJjZQiGMDgfJdJa8YmZ7V0JMVMmXRZLJCsM+M7FMkZmzY7QqRaqFUltnolBAZ7EQ\nn59n5l/8C/YuXODWr36FJRikUa+z+urruIeH0Vht5GcvEvQeJrdXxufpwuVR43X0Md5v4OhhPzuL\nGww9cQJ1dofrH65id1rQCRJWnZNL77yO1arFN9KPrrcLWVVEkkWKuTJGixHMRlR6PZkiSHo7NWmP\nSqlMKp3m92cmGRkfYm92kfE/+A6F7S3UUgm7w0HN4OmQcAH6+/vvCESkSoXE/Dz5fbE0x+Ag3kOH\nPtO/5jZWV9OsrbXJ04ODDgYHnXcNdu71XbgfmA0iw6MeriTzne+NFiMjwx9xPxrVKvG5OcRmk0C3\nnXymhE6USS4ukouncdj1SPkcrWiEajqFEZHN5SQ3t2qcOWsnm6lgspkoVtR8sCgxMf0Ew98Yw6KH\n7Pu/weG1IysqfC41/VP9lCQ1GlULpdng+KmjDAZbRDUyGsmMSiWQrWspJjI0NkrMbm1w+EiAwt4e\ne1dv0Pvs80iKBuv4DHuLt1BKORwT06Rfe4taU8Tv8TExPY2lu5tqMolreLgjelYuS0Q3oyz/+nWq\n6RQejxGLtW2H0PvEE23F3Y+tcTESIbW83Gn3btbrJBcWsAaD9yR2P+h9etjunS9ifKvV4sc//jGv\n7+vEPOr5JycnOx41j+P1fxnjH+tgpNVqd2aIovBApDmv18TEhJulpRSS1KTVUjh9Okg+X+2oh94W\nrtrczLOxkcVi0aLTqWk0WqyspHE6DffFtFepROx2A//2354iEikSj5fQaFRcvRpBEATW1tIHJNLL\n5QbpdAVRFGhhoNUCSyCAc2gYRZLQ6rTc/MlPyUViOHr8PPnv/h0v/vt/T71QoBAO72dAmoiiSCWT\noZxMond52F1awzF5FHtXkJ5Dh8gns5gUDZ7JSdZKZhSlXUpSq0V0OhU6nUguVyMWK5HP17l2Ldop\na5lMGs6dC9Hba7vjestliXff3SKRqBDw6NDkdtn4zRaxix+gUqsoZIoYfEGePfMchb0Wel17DS12\nIxpFolGp0qrX0e+T7j4LstwiEinsS4BrCAatmM0fZTEcDgNut5Hd3QL5fJ3t7bbAVF+fnVSq3AlQ\ncrkaDoee8XE3lUqDYjTO3vn3yEaTAOxcusaL/+qb+CfHSN+61XG7NQcCeCYnCZ45Q2Jujt0LF8jU\ndKTzdYweH5EM3NxIYTCocPtsfPOPDkMhSXa2vXs1ut0YnE4ElQq1Vkt2c5PNN99s+5SYzWTX12lV\nK5TicfQ2J5LcYiykY/TwKWJ7WcRGBU0tR+Lt9zBOTTAyOoK3P0gxHyDkz+Cw66gWS4iNCn1DHmav\n7LJ08wqTLxmJZVr0PvEE22+/hVzKEd7dwH3oEKmcTMPgZuaVF2hUKsTSTer2Hm5du0gmVsJkt+Ac\nmMTdY+XUdDdLYZFKrc29crmMdy1tJubnO11I0PZmEUSRwJEjn3mPAd57b7vz/YtGizQaTQ4dunfm\nrlKR2pkd/f3/jOntdiZHbJiMY6yvZ9HpVIyMuBgc/phLb6WCVC7TrNeZGu2h2QqiERrIcovQaDfV\nZIwm4B4apJqMs3vxKpvXbzE4EiLgGeDs8+NceGcZs16DfcDP8JgHVSUDlSqFZAb/ydNYR8axWfW8\n8k9VJFNV6nWZvok+yvPvc+XvLmBwu6lgwW9zoFQ1SC2R3dl5fG4tQquBpTcEFieJjV1Czz2Hq6+H\nnSvXScWLVG/m8IYm6Ds6icrpw+bRU1heQGezYXC0uVSy3GR2NoaSiZDPVSlkJDLpCmPjHpSbN9E7\nnajUaoxud8eBuprJ3KHa3JQk6oXCZ3aZfd1x4cIFHA4H4+PjX8jxJyYm+Nu//dsv5NhfFzzWwcgb\nb2wQj5cRRYFQyPapjPfbuF2rUqlEjh3roqfHRqFQp1Lp4ubNJOfPf0T6cjoNeDxG1tYyiGLblKvN\nK2lnO9xuA2Njn84nuT2XoijE4yV0OjXz83EKBYlCoY7JpEGSmjQaTYJuERVNaooOUaNldjZOtVyj\nsL3Dock+tNYKtXwOi9fF1tvv0JRqGG1G+p56ivClS0heLx69HrXBgNnnQ2sykY3HGf3Od4jOzrNx\neR6bz4Z9bBJVcIiGK8DyTYmNio4BsxuHy4hqp4TDYUCWW+RyVbxeE6+9toHZrGVhIUE0WmJ42IlW\nWwTcLCzECQYtdwRkmUyVcrnBYL+VoBilkUmi1qkZfOEFVn/1S+rRHUS5SmuvC7fXj6fbQ1Oq0xs0\nQ72ALRRC73QeWMNPg6IoXLsWYWEhiSy3EAQwmcp885unOnosarXIyZNBRFEgl6vicOgZG3NjNLY1\nKS5fjgDg95tJpSrEYiXGxtwU1lfIRpPIBgF1VSGbzLN16TpGm5m9Dz/sCEnVslmMbjcDL71Es15H\narRobcYxuqrYRya4slNFo9Pi0CsIUpjswnXCV64QnBwhvbJCa2CgLZoWClHY3aUcj6PSaDB6PBg9\nHkxuN76ZGSx9g+zltSzd2GVvrsTkKRGtEifxm19gdVrxjc+gcXrx+a3IOjvvXl+FJpwaFyhv3KK0\nsYos6unqCrG5WyaZLPPzX+7wzVfGOfWv/4y1y+dxaPT0PPU8P/77DWav7CKIIofPTdLVYyOVraOt\n1igks1TzeRxaF+VEDaOi8NILT1OoKKhUIg6zSHRvFZtptFOKkcplcp9U0FWUtpDa5GTHePFe+Li5\nW7OpsLKSZnj4Tq8maAfE8/MJlpZuYbF4GRpyMjHhuetnPwm1TkfXoTHU4hJ9bgVRq6Wo0WDt6mq7\nFGezyLUa5kCAws4OreQux4ccaL0DJAw58haR5KYZjVqgWa8jq00IhRS1zZukDFVqaz6muxQG/3AI\nwWxHLhXYefeXpAeGKfhDZLtOI4kOElEF7c01iqkMelULt65M4fwCO3u7SDt77NxYInj8GIVslN4T\nT5Kta9DJFoang1jdNvLhKI6gBWuol53dNGtLUaa/933e/2+/RFeu0vD7eP+9TQr1Hb79Z8/i9Pux\n9/d3MlyZZJFGeJ387EVa8SS9w0Nk8w1K2TzF1V1MPh/FWJxIRWboxBMYu0MY9caOPs1tiGp1x038\no1vfJlVXMxnUej0pSTrgd/VZeBw5Dw8idPZ55v94ZuRxvP4vY/xjHYxsbuY6/724mMRo1HDkyP1F\n4CqVSCBg6Zi85fM1Dh3yEo22A4dnngkxOelhfj5BoVDn5z9f6QgrKQpcuhQhGLRisdw7zWy16gkG\nraRSZZLJCtWqjCC0ZaudNg0D+gTxdy/QqEt4B3vQjR0lU5NpFrKktsO8cWuDI0+OcXzCRqNapV4s\nYvb78c/MkNvcoJbLoZmcZPvNNzn0ve8Ru3YNwWBm49IsNr8XR3+I8e8dYmm7wfkrWeSdHOl8klOn\numk0mmxuF8gVJA4f9vPBB7tcvx5leNjF9naefL7GE0/0ksvVKJUkIpEit79DxaJEpVhBziQoJ5Oo\ndDoalQrh9TBDnl4MxW22LrxPcW+PyOXL2HuC9D71FDqbnejSLZS1HQa6ezn7rTMUtzdoVSvoHQG6\nz5zp7LQ+C6lUhZWVdCebpSjtktvOTu7ArtnlMvLCCwMEg1ZWV9NIUpNUqorHY2RrK8fQ0EdEz2JR\nolKuU8/nDsylUgkoUpViNHpQ0ZL2jrCWzeIeHSW6cJPY+i674RKJV2/Sf+oo3vGT9DqblCKrNHN5\nnEE/Fr+f0NNPU47HMTgcbL7xBlKpROTyZfzHT9AS1bz3X37EoZefRahX2M1pefs3CzSbLXrOnGVh\nKYtFVBh8/kV28wbmV1JULq3Qc1jFzIu96DQirUadZirN1f/3B6hooegt1IRlRl55hZLWTEVW8+Mf\nL+H5n09hCg3gdTmJJGqUyzKiKJDNlrl2ZQ9UKl55ZZS8MQXVIk6XEbu9zRnQ2+14Ag48QOrmTfYu\nzRPLZmmtrRE4cuS+ZcUfFLLcQpZbd5XCmJ2NsbCQpF6XkOUaV65EUKnE++ZAGd1uQufO0SiXEbVa\n9iIR5FqN6LVrHWdlALPfTzEWoyKr2VzNYgkeorCTR+dVMBpFaqUael8XG6+9hs1hwu628eH//f9g\n9jhQ6Y1ojEbGv/kyytHDqOweVCYrXq+RosZDOtfg1de3CN/cwOYwcuKJAY6HtFTmZtGpBTRqkfzW\nBlpRR9DepM/pwnbiLLV4mOv/5b+ye22WRl1i6IXnGP2jP6ZRltmJVFmLCVTSFeTwTYwaGya/n52F\nNVSmLMr+NZk8HjLLSyy+9i5WoUxscYXk6jqT33qZSqSIXrfvw7SVYydbpph+H/sJNS6nHruvi2o8\nAorS4aWZ/Qe7kBKLi8SuXWt3yAkCZbOZnkAAve3OTOvXAYqi8JOf/IRf//rXX9gcw8PD7OzsUP/E\nb88/JHyVwUgA+CUwDpiA1r0/DpubWaamfJ9aS/60aMxg0PDkkyFGR91IUhOLRYfT2eZGBAJmbt3K\ndNxBJamJ3a6jXpfJ5+vIcrszRqUS8XpNqFQipZKEz/eRP8TRo36Wl9P09lrZ2Sng8Zjo6bFCLoYm\ns4XYrNGSm7i9ZrLrc2jSOZw2M2MvDxHbjNJIxWhpfPinp9npfZdKNovJ4yG1sozWakWdziLavZQy\nOQStgVJFxtUfopjOo602MU6fpJzaQlZbuLkYYzcu4fOZOXasi0ymSrHYli9vNhXGxjz09dk4f36X\nXK5OoVDH7TaRTFb2Cbg+NBqRYMDE5o1VUosL6FslRFHBPz1N13AvDanJxtsfgCwRvniBWj5PORZB\n1OmwDw5h8vvQ2t2sXt9i5PlzDB8+jNioYnS7sQSDiPsusZ8VPddq8gFfEmjL5mcyd7YBq1QioZCN\ntbU0hUK9s4EzmzUHVG0BNFo1zp4uYuth1FUFhHamzOZ1tJVWXa52V1S12m6BFAQQRYrhMHK5SEUw\nEc+XELQmwsubHJ+ewmPTITZs7Iky0aVFKpFdPJOTjH372+2dts9HZHcXUadH4+9j9/y7GB12mi2o\npHPc3NSiILR3kisruI+epKz4MMwMsvyff4Vcq6HS6CjXBOZm4wyOeDE3tdRurjH27Fl2r86hMhip\nFUGUykQTZWwWDd3dLvLZElNPnsVMgSu/vUhPPU/v0QBZuhCNVia6FcyNNF1np/D7TeQ2N0FRMPl8\n+A8fRhAEitEo4cuXadbrOESRWibD3oULHa0No9tNbHYWFAW9w9FWqx0cPJAVyedrpFIVBEFo8xPu\nEegHg9a7ko+LxXqHsHzb10lRYG0tzcSEG7X6/oiUgiB0sgR9fX3EFxZILi11dv2KopBL5rBMn2Vl\nJc3W1h7yWpaRY09j0TUJ9dpJrW9w690LSJUqE89Okby5jNluQlCpMNlMlHIlKtkCQu8U0UQZZWcb\nt7FGQqiytFElsh4hHU1TrdR49ccppv7P72Ku1cFgxDXgwD48iqg34p8YpVWvYrIaSV27gFQq4uzp\notlskrp5E9vFCwz9k99npyrSEgRS4TSHnjtB19gQogh9IzasLRMtSSJ67Rr+o0ehlGFoIohKrcFo\nMbJ16QaZtVt0j/Zi93vIJnIkEmXUjRaVXAF3q87iqsTzTx3FNz5CLZfD6HJhCQY70vTQ1tVJzM9/\n1KqvKJiKRbIbG/ddsnvcOA8XL17EbDYzue92/UXMr9Vq6e/vZ2Vlhenp6Qce/7DzPw7jv8pgJAM8\nB/zsfgdoNKq7OnneD9Rq8YB3CrRt4avVBocOeVlby9BstnC5jB0r9my2ynvvbVMsSthsOgIBM4WC\nBCjodGpCIRsjI27MZh3Hj3fhdOq5fDlCpdLA6TQgpLfxe410+U2oLXZqqV12zy9j6umnVoxz8Sf/\nHa3NgcZqozxqQSoWCRw7Rn5nB425LfOudXpIrG6i93gRVWoiN2bZ3khhNOvxD3Rj7+5i9laevKSl\nnK/RbDRwO/UUCrUD3bKtloLR2L4utVrEZmt3AEUiRQ4f9pPPV2k0Wuh0Kvr7HUT3Urzx6tugNdI9\n4GXMJ7H805/iP3oUg8NBNREns7YOTRmD1YJUFqnn80j5PN4jJ8k1DOhUejYSAkavl/HDD95CbTJp\nMRo1nS6g2/B6706utVh0PP10H2trGdLpKoGAmWKxfsCGXqtV0dVlJeQ5gVDNE98MY7NqCfb78U1O\nUoxEiF69it7pxD44SEtvRUZNDT3NYgy1SmSg30EuVyOXq6FWC/g9WlQGI3qHHXt3kPjVK1SSSXbe\new+zz4eo09FqNlHpdDTdfawt7JDYSNBz6hSFVJJKpUVdatEoV0AUqKtMSDtpzCYtV6/skWsYUeVi\nGCxmFLWW5asr+FUOYuvL5K5+iN2hZ+i5p9CYzdgiecKxKgmKaGoZRnucRFd3KPeBXEmRWl0lshlH\nbVjlqX/5R+RiW4TfC2NPu7G47HSdOIF7fBxaLQxOZ6dLopxI3JExapTL7axRLkejVsPR309mbQ2p\nWPzoOPsIhwucP79DPt8OFJ1OA+fO9baJ3MDQkJNIpIiiKHR1We6Z5bibfszDit3dDsCgrUWys5Mn\nFt6kp+ljayfH8IibbKrE4uU1XGPjOIc89E4IFJYXaLh0+IYGSF29hFQo0mxIWCwGNCYzs+cXESed\nbM2ukgtHmTkzim/czY0fvIHNbiK9K1IvVdHYDGxupjj+J3/CzrvvUC1WiMwu0HPmLBvXbxIYHURJ\npIgvLbeN9xDQmM3kwltU0mnMDhs+k56X/+XL1OTfZ+1mjPfeWsbhMuF3aTA7RFZ/8Qssfj/FcJjN\nt9+mUqhQlNSEzpxg7OXnsJg1DD51htTiIuVMAXm/I9FoM9MQdCiKRDwjM3Bm+FPX8ePtxh/HbV+m\nryN++MMffmFdNB/HbY+ahw1Gvq74KoOR+v6/T8XHy5NqtcjYmPuewciD1qrMZi2ViozFomVkxEky\nWaFWk9Hr1fT321ldTVMsttt1XS4Df/M3c2xu5nC5jAwPC5w+PYXVqsfvb/+gDgw46eqyks1W0elU\nFBeTpG62xdAMJh251TRTT81g9PqY/+nfI5UrGG0WBkf9LP3wh3QdP465bxCN3YXeYsQW6qMpaFAN\n9WPXGVHrdEhViWqhhNZsZmtpm+BTz4DWgKgXyEUTTEwF2YnWAIFGo/0Q9niMeL1GDAY11apMsSgx\nNeUlm61hNGpoSXW+/WIXTq+VTD7F5maKW8tx3JMzCIUEl3/2OvlhB4e61Nz6xS8Inj6NymBAUIlU\nkimMXg96mw3X6CjWvgEMvQPko2UMvSPsJWqdroUHvV9Op4HpaR83bsSoVmVUKgGbrUpv76cr2zoc\nBk6cCH7stZ5r16IUixI6nYrJSS/BoAVBsPL0v/ojVubm6PJ4MLpcpFdXydy6hWNoiNzOHhf/83/F\n3j+IaWiCkn4Ln7vttOt0GRgaclKvyVgcJrx+GxgsSGKOgZdewtLVRfjiRTRGI/7jx6nE44S3t9H3\njhBJNVDECka3l71YFa/ZQDm9Q9/EGIlYAZXBRDKSwm4P0t8vIjRlYmmJ6WNnKCxeI3JzDYPVQnwp\niVnbxDE0yNxv3qU7Xab33Dl8p88x1BtiNFNld05k/co1Jk4fIhvbwCbVeer732D5+ialUp3S1gbl\neAKv24FOp0YqlYjNzjL8e7/XMcSTJYlSNEqz0aBeKKDW68nuGy8iCAiiSHxhgUo8jtZspvvUqbb+\nzb6wG7RLLjduxMjn23/ut8ttCwsJnn22HVg++2wfmUy1cw8/7e/cYtERCtmYn09Qr6fQ6dwIQjuY\nud+sCLR38AgCequVra2tA63IuVyNcLiIRStgFsrsvPEae28oHHtiiKFQPxmpTqPRwjIQpO/J05gc\nFqqZFA2fl9zcAihN5Fod76lzOEYmWdvcoxrZpac/QEPUExzwoTVoUVkdDB7X06xV6BntJTQzTsOY\nZfBP/icSuymcpQKZ+WvoK1US+TjOUBDX4ADRuQWkuoxR26Lr+DG6jh1BFjW8/84aG2tJIjk1Hr/C\niXMjzP/2fX76H6/zrT8+gtrZFvRb/dWvEFUqRLmG22altLrAyMsvoTO31ZrLiQQaJPQGNbJZh29m\nhlip1Sk/34ZUqdDYF83T7nteaYxG1AZDWx14H6l6na771DWBx4vzcLuL5kFKNJ93/pmZGW7cuMGZ\nM2cem+v/Msc/1pyRs2d7WFvLoNG0Ge8DA4/WH8PpNHD0aIDt7Rxnz/Z0duADA3YCAQvr6+2WTodD\nz+xsnPfe20GjUdFotKhWqxiNCYaGnJ1gBECvV3cyMOrBQXLb26g0GsxdXXhqNXI7O5S38hRW5uke\nHMTqdSEXsogaLdpAH+/8f79k6/oS/SenOfzMEZIrq5h9XroHBylFI/ScOUVFXKSaK2INeNBa7Yxq\nkavxAAAgAElEQVSHXKg0BRxmKDUUvF4LQ0MOFhcThEJ2AgETigJHjvi5dSuDUajhdgqc/F+maBZz\nJOeu04wXKG4ZSGLm0gc11tdyVLJZDk246BoIsru2yfEjU+xdvMjGa6/R//zzGOx2MqurHSt6x+AQ\n5qlT5LUBaj6IJ9rBjs9nvnPx7xOHDnnx+Uzk83V0OjW1WuqBTPl6e+34fGZKuRKCXMXitHR20Vqz\nGUtXF66+Pmr5PNmNDVRaLSqtlp0bi5RKTZrhBJmmFWOugea5F/AOjCDubBAKKdTKNUyBLuRMDINq\nj/DaKjVJoiXLTP/zf045m0Wt0eAeG6PVbLK2sE1DqmJ3Owk9d5rNDy/j7g+yfXWOPinNmRemuTaX\n4Og/mcDuc1LNbqIVdVhdNop1NVg8iKLIQMiMtLxEXq1D7/HRd/oo3VOTrKX1hF/bxT+uJ7e9y/iA\nkZmZAKO9sL28Cc0mol6PKrnGoWeeZ+/SVXxeI1pVnfzuLlqzGalSIb+9jS0UopJIsPHGG6RXVzHv\na6/ktrZoms2g02H2+doicNUqCAJyvY5ULoOi0JJlmpKESq2mUpE6gcjHkUpVO+33giB0BAI/CzMz\nPlQqkcXFAhaLnqEhF6Ojrs8eCNSLReILCxR2d2lJEiafj7rLRdfICIVwmGa9TqkooVKJ9B8ZYfmD\na5TzJWrlGvF1HbpknqHv/gnBLhPx2evkNjdxjoyy/PO/w9rdg+bwFIVIlEa1jjXYRcFgJbY8h294\nkPXtIqZyCv9Iglf+2RmuXw1jNHhppcIYpAw2Ocn2doWdjTTz71xFqFc49eQAIVOV6NWr1DNpgmfP\n4tmOsvHu+6hk6D96Et+Js9yKCaQqWnR2N9nZeWp5BVVVoXfAw+5yhVJDy7GXXqAS3kMURbRmC+r/\nn7s3DZLrPO/9ft19et/37ulZevYZzAxmww4QIEACEClKlC3Tpn2vl1u+cRJ/iW8lt8qVLzeVKiWV\nOFVRua5Tjq+s8MqSbVqWLIoUJe4kCBD7NgBmX3vf971P98mHBkekSFogaYmU/1X40N3n7efMeQ/e\n8/Tz/N//X29ALrVpSxIKhQy5XE5mbQ2L349MLqfriIvFaIlU24YoigwN2ejp6fA+0mtrxG7fplku\nI2g0uPfuxTE2hsZiwTU5SfTGjU4lTSZDa7Nh7e9/oPn5vOHKlSsfq0XzaTA7O8uf//mf/8LjfF7x\nuU5G/st/+d+w3Dd2KxTGEIRDuxnX9n32/s++fhcf9fnPvlarTQSDBWKxICqVwOjoIAMDNhKJMO12\nFug8vGKxEBZLjXJZT6FQR6FosLW1Rbs9+qHff/v2EqVsia7pw4jhNa489xyleByfx4Olrw/NcB81\nhYTHbKAUj9NwuWkY1Gh1AmqrjVStwc3FAFN7xlCYbBT0aqLFLTweH4f/YIpALEY+XaBUaWF3Fhnu\nLpNxm0ik1Hi8RjKZGIVCnkBAhsWi4fbtVfbt8zLbU6OaTBJa2qEc0uPQamkmwuyEQpTSBVq5Bo9+\n6SkSoQ10PjV3r2/z5a/sQWxlyLeaSO02+UCApRs38J88ydmvf51KKkUOsE5M4BmaJrWQpFQKYjAI\nHD06hcOhe+D5+ll0hOUMu+V8+PgkuHI4QOLWLRrlMoJW21k476sovns+9ZpIq9VGLgikVlcRKxXa\nyBBFCSWQj6aoZvNYj81g8Tgox+NIQC2ToVFKsvr664i1GjK3G6ndZuO11xh94gnyOztsvf46OoeD\nua9+ka1QDZXDTXY7gGtqkmyxybE//vektoNYdDJ+/98fpt5SIG9WSBaHiWUlTp3x0JYpufd2jIe+\nOIujneSNV8OIGguBS+vsP3uQvLabUD7PzlYC71AVnbxGuShxYEBH4uoFTFot1uFhdDYbvfPT1CNb\nDMyPE7hwgWIuh9poJL2ygt7tphAKkVpeJvjOOzSrVeSCwM4bb+yaMeqLRTwzM5h6elCoVFiHh8lv\nb9OsVtFYLB3lWrt9t9qg1SrR65WUSu+3ADCb1T/XLuHDoNOpOHDAx9SUC7lc9kC7aACazRaxxRUW\nn32WyLVr0G5jGxlh4qmnUPf303/qFOm1NRqaNNZpO410kuC1W1j1RioqPSqNEo/fjbO6QfbyKmKt\nhlyppFKqofX4qK0u03vkCAqtlkalhmlojOvnInhH+nD0utnjV1EK7KAJ3sQzNsHY7+zl9k/eBlsd\nr1kkv7PD5Vd3ULu66JudoBCL8c6rd/D+3lEMXV6MfX0kohnGf/O32fu7/5ZGoUhZsHBjuUwkVeD6\n7RRTMz5MXjeZnTCBepSeOSulSBiZOEby7l00Rj35VB4NKtpmL2aHGZtJidpsphgKdVSeKxVUJhN6\nnYIDe/toqs0IGi1utx6lUkH5XSfg+5LyrXqdyNWraKxWjB4PrslJdA4H1XQaQaPB4PXuVk4eBJ8n\nzsMnadF80vizs7PcvHmTvo/hffUvGf+zHv95SUY+tCb79a9//SMH/Owf/Ele12oiL764hiSB291D\ntdrkzp0ESqWCo0d7OHzYwqVLYdptCZnMAhRQKjtun7kcjI7aMBpVH/j+hRtBzv3wHvl0EeoV+txy\n3HIlNUlLIlHGPKBidHqG3PY2ocuXKSZSeOfmkIfCjB/eS6PRZnNhnWYkjVMs07VvH3dvJbFrzaRi\neWR3F6iks7j37MFs0XP5h2/T1efGNX+MdK7EwkKca9diNJttdLoAU5MubAYrRkmAaonkzWvoNRrs\nXjeVZBK1yUS3y0UkW+HOrRvYR0eZHPPz6stryNU6VEYjE3122NnB2t9Po1Ijc+cukUSC+sgI41/9\nKiNDQ5h7ewE47TZSrfai0Qi7ZOOPOz8fB41Kher9nrTWbn/fwldJpwldvLi7cIrVKuHLl9GYzRjc\nbrLZKrdvx2k0RIxoSd+4iiBrUkvGkAta7BMjJGotVDo1ap2KViLEyg++D3R2lxQjUQZOP0roynW0\ndhuGri6QKToaIpub3HrmGdqiSCEUwr24jvnUb5IIplh+8XV6Zie5eS9PrVCgx+9kfs7E63/9Peq1\nJjaHgarKwVrRQl2m4atPTRIVSixfWuL0lyZxDvRSrrZRhrIo5G3WVtPUSg3OPtKHVZ1CdLbROXSo\nXSasAzkSd+4QiEYpxmLM/Lt/h9RqYR0cJHrjRsf9N58nFwgwcPo0sZUNJL2dSl2imU4jViqI1Sqh\nixexDgygMhgQdDq233wTrdVKIRwmtbJCORZD0GjoO3ECz/T0bgVKqVQwNeWmWAzuiu8ZjSomJ12f\nmAMGPLDxpSRJrK2lCW4mibz0Mql7cVyeHmqRHdJLS4SvXsU6MIBzfBxzTw/ucoM3X7hBejvSWZlq\nBYb6XEztG6RVKVBLRIlGkqy9/CqCSolrYhz3kB/13gkKgRBGjwur34+528X0jBKZVk/uxnne+vvn\n0Chl6A0qRh85ztTjjzCiCVPKxihtVWlZHqWQzuP2dpNZXkSSwDs1iaS3M/nkl9h86zyXX7xIS1Lg\nPzRD78On+e63r+NyGRjdP46iWSO8GsTqtpNYXsPUY6ScyWC06HA7VFRjEWILd/DumyN2b4WKVCVd\nUTJ3cqbTO5OkjkGkILD1yitoLBbMvb3oPR48x47tJo61TOYD3jZirUYlkcDo8SCTyTB6vb/y2iOf\npEXzadDV1YVMJiMSieDz+X7+gH9l+CyTEQH4CTANvAT8z8CVT/OFH7dXVSzWd3+tFQp11tYy96Xk\nW8jlMvbudXPmzACpVAVB6Ci6rq5mUCrljI0pOHXqp7EaDZFUqkKl0uTOtQ3KmSwtUUZmK4hW7qLo\nGuXahefQu13U/BpOnn4M4+ICglaHvd2mnM5x9W+eZfzMSfpGu9hZ6ehAWDwO6vI6Rx4eIZvM4+l1\nUonHaJZLhBNNfvTsJQx6gXqtjqHdWXR1OhVGowqVSs6JI172DqpBlMhXROrRIrquHtRqgXv/8A/E\nbt1CJpdj7O7G3D+I8/AslXSKiUOzrKxYcfd5mTvQR+XaKplsm6EvPkk9n8c5O4dcBj375rAPDWHq\n7t69FgqF/H3CZP9S8/VhY8rJJIHz56mm00iShEKjwTE6SrNcxtTdTbvZ/ODCWa1STiRQWWxcevMi\nFoMdtdaAzN6F1j+CUdPGFQzTRIFMUCCTy+ieHGZ0by9r3/or7v7t3zJw+jSBCxcw9/TQajQx9/dR\n0+sRK1WSq6s4hoc7qrPVOrRETN3dlAI79EtJ7L3DvJPM48pkMJv17KxGmZ3zceuF1zE5LEwc9bO9\nHCaZjvHQ8XFurDd4/eU1jjz6ENfevEulKvHoH/8bmtUawwvbqI1G8gEZbnOC1MJ1AuEguXCUqROz\nTI48xuL587S7u0n9+McMfuEL1PJ5NBYLxXCY3lOnqYSDFCNhBk6fpm7u5eLrK9SaKUo7MvbO7Ee6\n8wYKtZp2u41Yq7EdCHTaM/U69XyenXPnMHV14ZycBElCrFZpNztJhyRJ1HI5uuxyHntskHC4hFwu\nw+s1PHBb5tPeP4FAngsXgjj1TWIbIaIbUeo+B/4uH6LYJtGUqIs/TYqEdp0eQwnHgXEa4Q3kjTIm\nnYjZZaUQqdKSZDREibbBwfrCMq7xUeQKObFMgXYiTvT6NXQOB6NPPonPbMHY7eb5/+82OiUIggQK\ngci9ZUaPztKWK4kWlURjNfwjLdp2E82WjHqhQL1YpFku4f/vTlHZWqBUbuIZGySfKpAJZ2je3UGw\nOvH26ej2qNl/sJtoKEPPoBWbaQ8To33IMiFOnt1D+u2XMHvdRBZX2HfoCKahPZRqMrB6qJocNKWO\n+J/SYCB8+TKNYhFTTw/JahUpEiGzsUHX/Hzn+mi1u95X7yU1Kz5CbfdX1Zvmk7ZoPml8mUzG7Ows\n586d47d/+7c/9vhPG/+zHv9ZJiMi8OgvMkA2W6Xdlj6SEKfVKtFoFNRqItFokXK5k5jY7Try+TrX\nrkV47LEhPB4jjUaLkRE7TqcelUqBTlem1eoY41UqDe7dS7C+nmFrK8va3QgT4704tCIUUzTVZgrR\nIntOHSV4b503/vr7uExfQR1ZI3r7FmKlSqOQp9kEtdmMf2YK98wMWoMeWavB1sY6Bm+VdGwDxcQo\nGrWBO997kVuXA3T12vF3axnf14/GI2fI0aRUKDA/JHD8oW70hQDxV64iGIw4xsZQymuUigViV+6x\n8vzzKNRq9E4n5VgMZDJ8M/MoGiryWxtMjVnZ//AABnkZYe8hDPuNhNMN8I4hdIHTY8I/2/1zZbt/\nUZAkifjCApVkZyGt5fOklpcpRSJYBwbIbm5iGxr6gFDTu2PXXnuTxNI6a2UT2RJkIwlc3XYeeXSQ\n6d/zEL1+HUkmZ+7kaSwjo7SyMWrFIiNf+hJd+/ej93ZRiETxzM5QjIS5c/ESLaUapVaNwdtFo1JB\nb7N2iJIWMyiUSJUCNpsOl13D8js36d2/D5fXhN2hp/vYFFIhSWX1DjaNEeNML7VYgIluD/19Nmzm\nBrbHxzG77chUTcRMkqkTs2yvxjh+zMrtH9xBIVaR6mX84z143TrCly6isViQORyM/S//K6Ebd7j4\n7I/xToyj1Klx9veh0GjQud2k01We/6tnia11KmAGr5cr7+xwZHov9dXr6Oz2Tgmz3e6oACuVVLNZ\npFaLajaLqbcXuUKB1G7TqFSo5fNEr1/v2NjLZJj9fsZnZ3/pvjWBQJ5ms01LocXS00V8eZVGo0nD\nPER4O4G9bWBho0ZNm2Zw0Ear2SRz/R2qySRTB0fIh0IYvV5Sy8tsX7iETK0jvrpJ36lTNBsili43\nqcV71FQqihubNMsl5EqB6MJtnHv2IvjcHPrqo8jVGuIr68RXt5Ar5Bg9HsrlOsaCHElTxCA0mHto\nnK1NCe/UHmzKCqOzg2hqKWKpLHfevoN3YoiqICewHKNHtc6eI4/Q54btYJmqqMBgtzE65kTelWbA\nnCdfSbL2zH+lEAww8/u/i6TUE1oNImqtSL49FLMabEqB+cMTZNq1TjJZr2Pp70djNlO6n2wUo1HE\nRoP06iqpxUVyOzsYu7pQ6vXUMhm0dvuvfCXkZ/Gd73yHp59++pcac3Z2lrW1tV9qzM8LPi9tmn8R\nvJuNVSoNbtyIsrOTp1JpotUq8fvN6PUq+vutu4JOBoOKyUk3ly4FKZUayGTg91vYs8dJPF6iVGpT\nLjdRqQRsNh0+n+m+ZHwLm82CTieg1QrEYiWWl9P87d/ewenQcfVSkEvnt/hv/vtDHHr8AJnNHVIr\nW9Css2fERMJnJ5Fq4DdaKewEaCOnVigxcPIY7WqJrTfeIr68jrxVwzY8QjEUptXtY+zUMVRakXS9\nyaGvnsXtX0TdKuEc6qews0Xy3l0ePXiQaFpLz5CX2Ms/4N5rL9Os1dGYjAyePoPJ56WWTVNJJmnV\naigEAbFSQWUwoBCUjI0Nk9jYpn96Ao3VhtJgwtTdzdtvbhDfKoJShbJcQyaTka8UGJ8QEYQHJ5R+\n2Hx90jHNavV9WwYrySStep1yIoFteBip1aJRLqPU62mWSrvHae5LYidXVtHofVy+HaMuqcklRcrU\neOXHyxwbbaMyGHDPzKCQiVDKUEkmyW5u0iyVCF69hkKlwdTXy/VvfJPRLz1Buy2RD0cRlALdRw4T\nvHQVlc1JIRggHwgiU8gZOnOG6FaUuTOHWb+xiNXUYv6pYfrnRrn9zH8lux0kn6sS3YnjHR/ikT/9\nD2y9eY7QC2sUTCpMPT3oLPtpygTSy6us/f23aYsiE089hVuRxdpvpmnx0kgnqG0tIRw+xNDZs2yd\nO0+k0mblJ69iG/RTyJUI3w5wyKjDOzlBNZUgk6pSKnQM1wqhECqzGUN3H5LTSL/P1PE6SqVwmUzI\nFQoa9XrnWsrlnZ0196+vQq1GZTQSu3mTzPr67nVP3r2LUqPBOzf3sef9590LD4JcqUXvkaOUkhms\nZiWBnTQqjYaB2YNshUvcXV3iyJEe+i1VWvU64StXCF+9in10FIVSSSXVsZdo1YtItTKpOwsMH5hH\nIcjIbW8jaLVU0ymktkRmbR3H8DDF7Q1alQIL3/42MqWKid98mlIkTM/sFLmdLSJ3V5FV6oxP99Es\nF9G1KowcG0Kv97L2o+eJ/NN5sgYNrokpBo/MEri3hbPLicPWR9eUH+eUjds3gkSycuT1IoN9VmTN\nCl02C5FLb6I16uh7+ATlZILUyhq+qTGsQ0NUDT7aOhs2pRyzAarxKDqnE7XRSL9MRjkaBcCh0YAk\nYfR6Sd671+HaSBJyQSC5tIR3dhbP7CzW/v5d1+BPO0+fB85DvV7n7//+77l69eovNf7s7CzPPvvs\nJx7/aeN/luN/5ZORdLpCItGRjHe79VgsWpaWUiwupqjXRZaXU+TzdebmvPT0dMiqjzzSvyuoND7u\nwGxW43DoEEWJZrPNzZtRnE49fr8Zna7Tl/Z6DYRC2l1lyHa7zcCAFZtNRyCQ5+rVMGaTEo9TzaNn\nRwkHM/T1GjBV11h640coBAGFRkNwaZXRLz5GWVLinpqka/8+UotLKI1GfPv2k1q8h9ZmJXblIgq1\nGrFWY+jMabav3MQxKyDKlPSO9SHI2piePEN6O4Qg1WgLavRGkY2/+X+xjY6iMEwTePUnNCsVavkC\n+e0tlFot47/+a4jVjty1ymikWamgdTgQtFoc42O0JBl9hw+gdPYSTEuUEgIjljoyQcXqVolaTcRg\n6HjE9PdbHrhv/3HxUa6w74WgUqHU6ajnOyJY7wotqQwGJEmi1WhQTaXoOXaMUjTaUUN1OHCMjRG/\nfRuL3cR2SsnqappcpozBpKWQLuJ396KxWEhfvk01k8E+MoJcLid06RIyi4dybodMOINeK8czOUG+\nVmfxhZcY/+IZ7MM5lDo9xVSWwTOnadVKNHJpTF43vn3z1IolSskY7tk5HHYVG+cvEboUxmiQI9Wr\n5PM1jAaBqs2AVquilY6RXrpHZnmRXLuBweNBQMQxOY1teJjQm69i7vKQDwQwmFSUwmEK68uUMjmK\nSPQeO0q9UECU5IiZLJVMZ4eYaY+FXCpPcCnA5BNn2QwGMPu86OwRBI0GsVajmk5jHx7Gf2Qf2vg9\nkvfuYRsZwTk+TjEaRWOxIFcqce/d23GLVSiQ5ArUPj/ZfIPY2jbCewwKAbJbW7j27kUh/PKWnr4+\nC+vrHWHDjMrBsT/6t5S215EM21gHBnjpxWW2dvKMzY+QiempLq5j7O6l9/hxEnfvIpPLaZRKiI0G\npp5uUlsh3HvGaDfrWD1OCrEI7qkpUktL1NJpTD3dtOoKNFYr2a1N5IICqS1RDAZZff6HHPqTP6Ge\nyxK8co2KqKd3fJCVHz4PbRHB5sHdbtMoJhEKMeqlHC2ti0IowNjRk9RrLWLrAQxuF0b/IDa3lf7h\nJsbbNwhubJKMKune38d2LIJJ2SK1E0HndDD6G79Du1FHqZBI1zU0JCM7oTLXL+9gNws4WxHmxvQ4\nHBp0djuWoWHS+RaNlgyDSYOpu4edt97crTCq7m/nlclkuKenH0jy/1cJP/rRj5iYmPjUD+aPi5mZ\nGf70T//0lxrz84IHXRGO0REpWwQeBvYBN4HXfjGn9WDY2clx4UJwl/ehVBZ4/PF9uzLyhUJHYfTd\nY4eGrIBEKJTHbtdhNmtQKhX4fCbqdZFvfesW6+s5bDYtuVwdh0O3682iVgscPtxDLlejVmsSiQTx\n+YyIYgutVkm/34TVIGNlKcHQoIWHvzqAVwyw+eLzmIUakXAehVKJq8tNZmOd8TMnidy8wcRTv4mg\nUSMXBHKBIJLGRKNawzE8gChKNFpywk0lC+9sc2rvEeqlAjqHlVo8RvbKOQSNFp3VhF7e4Nbf/S1y\nhQzD/ZJyNZVCYzYjiSKSBPlogrYEMqUKncPJyJe+RPjqNSSZDNfUXtzHThGqgMfo58Uf7rC6WUKh\nkHHqVD99fWb0+o4QXK0mYrPpGBtzfCqxqQ/rLcZiJRYXE2QyNZzOjinbex2E3ztGLgi4Jiep5XKI\n1Spam42WKGIbGiJ67RqVVArb0BAKpZKeI0fI5+uoVHI0KjlIEo1yCUFnpJQt0mqImB1ejhzrRZdY\nZPviGum33kCs1XCOjzP/R39EOFQgtJlBTBZIpevULHr89QamoRHSWwFS1Ro6UaS4toqgj6BUqbCP\njCEXVKh0WjRmE5VkCqPJQLuQ5uJffhNDdw+JopzuaJx6rc74sVkqiSjWbi8FnZF6No3QLKHTqVAb\nbVQyWSI3bmDs7cO5Zw/9J46js9tQG434Dh5k+bkfUslkkavUWIZHUegtJNa3oN+PQybgGhmg1ZbR\nbtRQG02o9ToquSLmgWGSdxfoG/WxtRRCoVIh6HTYbVo01SRam42+48dpFIvcu3IFbaGA1Grh3beP\nkS9/GZlCQb1YJlmUsZqSI19Ikd/MYRCadHebdu8TuSB8aoGyf+7++TD09Jg4erSHxcWOx5FC1kZS\nallZzzHilqPQtXj0sJPM1g2yF9eRGyU0HjuSJOEYG0OSK5Cr1DQSabKBKFqXF5nFRv+YH6xOlCIY\nzVqyyHCVqrSbDZwjQ+hcLlqNBkqdnpHHv4hcJVAt1cFgJXhjhWpNZOLEXm49+13Wz11EY9BhPKBl\nxKwmencLlVZDU6tF6/ZSaOlpRcvop49w8PhxzDoJZCLZ5Xukb29w8R9fZmBqkJH9Y6y//gpqrwWt\nUUs+VyVTTCBcu0k2XWJg/yQlVKQqDWqVJhMTLu6ev0P3pI10Jo8sE6I9ICIMzRMqlckVEhgaVpTR\nKq2fMckDaLdaH2iBftJ5+qTH/yLGP/PMM/zBH/zBLz3+8PAwWq2WbDaL1frJpCw+D9fvF8UZ+d+B\nk4ACeAM4TkfG/T8Bc8Cffeyo/wJoNlvcvh1/33bBUqnBxkYWpVJOq9Umn68Ti3UIcz09JrRagatX\no7zyyiY2m5Z9+7zMzXXh85lIJis4nXoGB+0kkxXK5cb98UUMBhUbGxm2tnLUai2USjmRSIALF0pM\nT7uZmnJitWr5/rMLOOxqVi/eJrGq5zef6EWqValGgzhMZrL5CjqNgMNvpbR8k3Y6jM7uIHzjFtVc\nDsfQEPHVdfoPzFBHg9qkIZ6oQCpPSwKUaoZnhlj//j8SeOcdpDa0RJHJp76KQqmgUSphdLuoZDId\nQzqrFYVSiVwQqDXaGJVKNA43t37wY4aOHKD3+Anc+w9h9HqRWxz8zT9sUKHBFx7vJp5uotMpUSrl\n3LvXMRA8dqx3V55doZDRbv9cBf9dSJJEIlGmXG6i1QofqaJ67tw2uVwngcxkqqTTVU6fHvhI6XBr\nfz+CRkMxEsE1NUWr0WDn7bcpJxLoXS7sIyOE18NcvF0gnW8hVkr4zCJ+p5rc1haqAStTM10Igoy9\nE3Z8pjzRe2uoPQa0PYOks3UCKYlJmZYWCmRqDRqbFSmSoioqqCtNNBtFrH09YPUQCm/h8A5i1EmE\nLpzraFl0ddGq17n5139Nbnsb/6On6Tp4CP/cHlqNBr4hJyargVSrSTmZYu2ty+gNasxHDiGXy6hn\nU+itZiK373R2/TgsBC9dRmsyYe7rJXnnDjtvn8c6PIRtYJDp3/s9coks7VaLRChGZKdAuW7FZdDi\nPvIwS29epsfhYLTbwuSJvRQjEYy9fVidFg73WnE5NCTTDfomB/Boq0ReeR7/yZPQbnck3+8b/LVb\nLeqZDIYjR9CYzWxv57h2fZNWS8JoVGEdGCRw5RoWiwajUY1MocAxOrqr6vpxUak0iMfL1OstbDYN\n0kc8BAuFOhsbGaLRImq1cF/csMH4uAOXS09te4XqSowTT+xDbnFRa2ZZev4cdRGUkhOFrkq7lMZq\ntxO/d49iIs3EU0/RbMsJ31lC5ekhkZcz0DPCq//5W7hcetyz86QFD6NP/yH2LgeCSomSOhqLheXv\nfY/IzVvI1Fr6T55CJghk8y0C6zmGH5ZQiFXMdiNKnQ6jSU0znepU9poNlCYzK3dCFCowZuIQHbsA\nACAASURBVOtifXGFxWqNwwfc5K++jv/M46jEEvO/9STBYImWxoTGbEGQt8jHEqy+eZXxEweQ1Sv0\nDPvIikbevhRjcatKtdZmeMTJmV+bJ3/zAue+/QKHHxqiqVCjyF5GLbZoZsto5RLZnAGbzU3zPWJm\nAJa+PoSPIK7+qiKZTHL+/Hm+853v/NJjy+VyhoaGuH79Oo8++gulVH7u8CDJyJPAXkAFxIFuIA/8\nX8BlPqNkpFxuUiy+X0hJrXYQj5cZHXVw40aUUqkjBS6KbUZH7bz1VoArV0IYjRqy2RqJRBmFQoFG\nI1Crifh8Zq5cCRMIdMr+a2sZNBoFg4M2XnxxnVyuSjhcYns7yyOPDFCvF6hWmyiVci69E6CFDKXU\nZHMlzJGTe1hfTzEwuYfotSsYFQocNiMms5qeqRFygRBdx79C4OJlln/yGpIEtv5+DHYbhXQRU28v\nxUSa4YePIhls/MZ//D3MLgPlwDabr73ekeHO53CO72HlhR8x9dtPY/APkU6VyK5E8J98hKHHH6cY\nCqHQGdB219nz61/l3isX6TpwGL2/H53PRWEzQrWi4bVLBW6tNRgYcRGMdgzqHA4tExMuajWRcLiA\nViuQy/3UF0aSHuwXbrstcfNmlHv3ktRqIiqVgpERGwcO9Hzg2HcTkXfxbhvu3WTkwzLu924jzAcC\nVDMZXBMTHQVQs5vXLmVZWgtgNKoRiglubC7zxaeP0DU/j76p4uwTE6iqae69coGBExMUtjfR4CVe\nUdNWCEgqHZFoiaETR1C//QZiTUerVqPckCPqHWjUKgxj07z12hrbV5cYO74fD1GErUWQ2ij1OjJr\nazQqFRRGC1JbInzjNuqufm69chWbt4HSaMZ//CEK0QRqs5muqVE843uoVWq4JyaJ3byB1Gqh1qjw\nzsxSiEZJb6yjs5hZ/O53aZQriI0GYqVC7NZtXAePUogmyOcqjB6d48qFdc6tbzEw0cvM7zyNfbCX\nQKhCWSbHrKyTunkN58wcckHAaFRhcDoQq1WSS+sIajVqk4l2s4nB49n1IpErFNQKBcrxOGqTiXi8\ntOu+Wyw20Dn89D+kRt1KY3AYsI+MdAjFnwD5fI23394hGi0hSaDVCszPd33guFpN5Pz5AKFQgUKh\nzvJyCqdTx8GD3aytBRgasjE/4sRg1JC5e4uqY4TK0ha5nR2G5sagDTWFCZ0Eiv5pGrI+hse6sdrV\naG12hh4+Rl2hZzsO4XwZa08XktbIW+ejiOUi4jEb2e0aoe0Q//F/PEjkhR8TvnEbuVxGGznldIbs\nxiaOiQlSoQjFZAbX2CiFzXUMXhdSPEas0cD/8HFufevb6PpHKFXrOPw9yMwugj98kVK2hEkYx12u\noFbLsYyM8uqzC4S204CErirHKZegJaK3mpCqRcxdHkLRApeDO7z0/F1kBhtNmYr1rQL79lqRNatM\nnNjHwNFxdE4nl7/7E5RaLU2lhY3QNfpqNfq+fBKdRkExHAaZDHNvL86JCcR6nWo2i0wuR2e3fyDZ\n/FXjjHz/+9/nd3/3dzEajT//4F9A/NHRUS5duvSJk5HP+vr9IjkjDTo7X0Rgg04iAlDlAcztflHQ\n65UYjeoP+JYYjWq8Xj0zMx7W1zP4fCZMJhUKhZxAII9G0yGdQmfBjMdLpNMV/H4LwWBgNxGBjkLr\nzZtRWi2Jl1/eoNVq02p13l9cTHLwoI9aTby/8DWQA1qdEptVR6VUJ5tsoB4w4j/5MNVMFrlGw+hj\nZ2m25ASv3aTelNi4voJ9fIJGvUEqWabr+EmMehVmlw2dw46EjLU33yF64U1WggEGTxzrKIWq1Zj6\n+mmUyx0vmz/6b1F3D2LUZGnLBN7+xzd45I+ewjU5RaMlQ6XTEF8PgEqFaHQRKqpQWQbZUZu5dilK\nPF7B53fichtJpcq7lYuOk68Fq1VDs9nercharRrs9gfbFZFIlLh7N/E+M8KlpRQ+n4m+Pss/O1aS\n3m8v/8HPO1tHJUlCa7XSajZ3d9cIrm7WN6ucf22NqihDarcxqkRcejOLN7exzhjQa7UM+Fzc+uEd\ndPI68rbI8L49xONFVAYtwWgVj9WAyaojW1fR88jjFHe26D10AIXZSbMlobfb+btvnKOQyCI3mNm+\nuch2PsmjDw2TuX4BvdNJ8MJFvPP7yMXSVGsipWIdszpLCxmbt9YppPI88T88Tf/YKG1kFGMxNt66\ngHV6HyO//huozRYMPRtY+gcopNOdB1s0hsagR6FSodboUZktNCpVFAoFSpmIXGpiHxoi29DiH/Ji\n7/aQKKsQ3UPcDbdYe+suI/snOHNygpp7ksubJQqVFl2uHoYkFbJsBI3JhM5uxzk2RjmVIr+zs3vd\ny4kE5VQKS18fhUgEnWngfXMTTzUwGr3MP3YEh6PDL2i3WpSTSZCkjvfNA3JHNjezRCI/JSFXqyIL\nC3G6u42YTJr33GtlIpHOr/dcroootgkGC0xMNFCpFASDeWZmhmmLItlIknKsSv+Am3rMh82mIpst\n0DbZWNlukHHWCCdVXLt+lfEBHebkAjqvF938I6yERVq1Nn1HH0Vv1LDz2jL2njlEk4lzL6yg1qjY\nWgzSkAT6Tp1CJjZoyVSIChWRpXWkPSeYe/JRlNUMereH2T/8Q2K3bgFg6unF1DeA76GHUTncMKRC\nVJtZuLxOWy7QarURW50kvFkusxOXU8lkcTs1ZMMx+uZGqEZDqIUySrWSrrkZmpKcukzH+nK8Y9xo\nBbEpISEnk28wNdlLcuEW6dV1Apeu4PA6aCn1xAMVNBqB1OYOtJr0HT9OvVAA6Oy2SSQIX7pEJZ1G\nJpdj6u7Gd/AgasMnV13+LFGpVPjGN77BxYsXP7NzOHToEM8888xnFv+zwoOsBHVAB1TotGXehYXP\nMBlRKhVMT7splRrv44xMTo7QaLSpVpv091vvE1Cl+667OpLJCuFwAY1GidGoum++J8fnM2Iyqe67\n27bv63QoyGY7rZ5Cod7hXeTrZDJVjh0zIAgKTCYF6XQFg0lLNJTBpDYhtiCXyjP9G0dIvPodxEYT\n/6lTqOwuZBod5WIbhcVJIlqgkMySjSbpmd/LhYtRjig1TB0cRmPQkbyzQHYniGJ4CGO7zvJzz2Gw\nmfDs28+d7z1Hv9NFo97E0NtPVVSg6J+i1VhGbTZj0Bt551KYPeMOlK5u7kbbeAe9lGUp7uwUEYxG\nbAWRUklEFNt0dRloNts4nQ10Oiebm3nqdRG328DYmAO3W0+xWEevV6JUKpid9fyzrqvvRT7/frM6\n6CQYq6sb9PXNv+/9d/1z3oXRqHqfH8Z7+5GNcpnojRvkAwGQJAxeL86JCdRWK81SiUxFIJcsIlfK\noSUhSRLJWA7nHgf9Y07aYobt7W0GlUrmHpogfusm5eXreKenaepTFAJ5hme8DE35uXk9wve/dR69\nUcPcyRkspjb7D0gYlTUWFzu+K2qbilS4jqRoIpbryMxOVAYj1VKFpthC0BnIxVcw+odYur7GVx4/\nS13tILG8jGd8lJbeSb2YxepzUYuG0I8PYDMqqGVzDJw+i9Jxi+TSCjtLEbRqGa7hAdQWC7ViGc/8\nPJn1TVrNOr59+9HYHVSDGXRaEy/81U+wDznZc/wkN95IUrwcxemxUBUsJLcClE9P8NLby7z63A1K\nlTYqlYInf2MvXz07SmttAfvICHqXC4VaTcpsJpxIoK9UyG5sYB8ZoVmrUQiFMA4r8bqtROMdjxm5\nXEZ3twmrVdfRXCkUCF+5QjESAUDvduM7ePCB7qF4vPyB97LZKOVy324yIkkSzWaLRkMkm60Tj3eI\n7SZTx4VbpepoBdUrDVQGA5a+PhLLCRQeK2OjVjZuLtNuSpTlTTR2H+tbZSSgEovw+q0kv/b0PIvh\nOqtffwHT+DTb0QbpPiNnvzhE25Sl1KoSuF0lGsqi1WuoN32sL2zTzsbpHnQTDwSoVtuM9gxRSJWJ\n7mywd64bhclGKRyi+8hRKnodfX4/5/7zN0ktL9N34mHCjS7SpSwiSjRWO5JcxdhcP0bRRDlfoooL\ny8AgUqWAWq9hNQLdg4NMzRzHtx3E2u9n5+4qgqTG5jR2ZA5qZby9fVQlFaMjNkyZIHWbiWKhhqmv\nl50b9xg9c5ql+CZSVaTPpsVsUiGTydCYOyrIbVEkev06pVjsp3OysYHGbKZr374P/T/7IPgsOQ/P\nPPMMp0+fZugTVvA+bXyA3t5eLl26hPQz5O9fVvzPM2fkBPBubf69yYcA/P7HjvgviL4+CwaDimSy\nglwuo9FI4/EYqddFdDoliURl13xrcNCCw6Gj3W5TqYhUKiI2W+fXvcOhQxAUTE97CAYLVKsiWq3A\nwkIcuVyGTCYjHi/R1WVCrVZQKjWw2XQ0GiL9/dYOIdah4+QXJohGckw8fICpITWGegxhYBDXnnGa\n1To777xDu1LB89AjDD3+BNGtCM5eD8FrN6mgw9erwe3SYfJ4OPe1r1GMRMiHYxgPHuDQrz2J/+gh\nqrk8PUeOsfLjl2k3mzhGRvA9+kWCJT3BjIB79jgyQUk0UqLVbKJ091JuaYikCtxbzxAOl3A4DIx0\nmbh9O8bDD/dz5EgPjUaLTKbK2toGCoWcL3xhCIVCRihUYH09QzRaQq2Ws3evh7173bvE3geBTqdE\noZC9r8Ihk7G7U+m9OHy4h4WFOJVKE6NRxcyMB5vtwyswycVFUktLu6+zGxvIFQr8x4+TuHOHWFii\nKbbYe3iMi68vIbU6CcHQWBf6WoiVV16A/n7yKhW1fB6FXEb81i2SKxtM/PF/QD6uQd6skCrX+cHf\nvEKj3kSQS4QXNyi67ExPOoisXsXoP4Bj0E8huYVvbBAqeVoGAZPdjPnIURRaPYNnz5IJRuk9epRG\nW8HoaR/3lrMsvLWM2awjv1OlK5bFLGUR+vcyNTnNlee+z+ZPXkSSwD4+jm1kDLlGS9dwD75jx8Hk\nJK1Usf8//R9UV2/SajTQ+fx4p8ZZOneDnet3sM+IuPvclKtVQoubjIwN47LIWF+JkAhmmRvtIpko\n88bLK+QrMur5EnWViheeW+HhR8eYPHMGo8eDXBDQ2e30nzxJ+fJl5OEwvceOoXM6dytR5e1VDp46\nS6bqoljsEMB9PuPurqj4nTtkNzd35yu/s/PAfAOnU/e+qiVwX+9HST4YJLW8TKNUQj0wRSZdYXUt\nS6FQJ52u0NVlpKfHzM5ODqtVg9mmp+ZwYLXHMdhqtCUZBl8Pmq0kGoWAdWyESE4gGU6jVUM10/HH\nMvcPErl0nkapglbo8C2q9RaFZBarskx0J4LbPojZbkKpkFjbLDHxpbOs/uCfyG1somhD7+w+DEOT\nbG6XGe81Ezr/Nkuvvo13oIu+2XFawxME8hrcZ34d2+g9arEwB4762choSexEwO9jen8fXSaRfFBF\n3/wUlZ02qytJvEM9GEw6SrEoLUSauTQqalh7vMSieUpbAQ4dnCBfaBJPlNEZ1Az5XYz1KLn94yus\nXbhGqVTD3e2g58B+qpUG3X47+obI1OExjK73O2/XCgWq6fQH5iq3s4N3bq6z5ftXCJVKha997Wt8\n85vf/EzPw+l0olar2draYmBg4OcP+FeCB0lGah/xfur+v0+D/xuYB24Af/IgAxoNkVKpgVarRKtV\nYrfr3qPk2DHLUqsF9u/3celSiFyuhkrVqX7s2ePA6dSztJRCqxUYH3fQ3W3c1R3x+Uzs3+/j/PkA\n8XgJpVLO9LSH9fU0J074WVxM4HLpmZvzcvz4JLlcjdFRB3I5pKI5VNSYm3bj9JjoH7HgUqVI1svU\ni2UWn/sh6fUtHEN+IleuUNNvI4zuJ19TMv7kE1DKYLCZ8Y4NsfHySxQiUdotaNTqNO7dI+Cw4//C\nE1z9p1fo7xvnoa/9nxg0MoTeMZ5/bploMs7yrQAGq4HH/81xgoUGA4NdrCTVXLgQ4ORJP1pdlUKh\n4zhaq4kEg3mKxQbz8170ehV37sR54w0FCws7OBxaJiddxOMlens7rZR6vc3ycor+fgsWy4MLV7nd\nevr7rWxsZJCkTiLS02Nmdrb3A8d2zLhMlMsNDAYVKtX7b9F3M26x0SD3IX42xWgU79xch3C5mSby\nVoAxhx69TsHS9U1sHhsnHu5m6+9ewXZfwl6h0VAPBjH6fAgWO5lImnpwE7X/CPdeuonSZKVeayIo\nZLs8CZPbTjZXI7UUZHr6EP39Vu7myuRTMQb2jHH06CO4VEUKKTvliohxfD+ycZF2uYDFaaGxEOHF\nv/weOpsNhcOH2WnGN+wjGrFQzCjJrK/QShQ7Yl31KrVcgdTSPdzThykrrbz2TohaIYJzuB9Zpc6h\n00/TUN0gnGkQTxpx9w0ju7WIt9dOuhDFhIaHn5wn09Ty3b98CdHowd9vZnLaRyjXoF0pIsjltHV6\nmuUS+XSObK6Kpef9dvF6l4uDX/oSsdu3Sdy5Qzke/+mHkoRGkBgb+6BDq1irdbgGHzJfD4KBASvB\nYJ5ksoIkgVqtYG5uAkUtz8abb+7a1je0EfpccjIpAbGQw+xVMDPvot1q4/Ua2bvXjU6n6uzCymYZ\naiuoZvNEl9ew7NlLq9kGk5NXvvkSXXMz2F1O8m0Jk1WPIGuRy9eJxwpIGzHUDglBanLphSVm9zpp\nl41oTRIH97mRFErylQbi5DSH/qcRxNgmOiXY90yQbwhgEXEJGV57dpFWU8TQ3UPFN8et1zdR25tU\nKnVcnn5OPH2WVLLE1LwbzdEBbr9+lcv/+DImi5bpY1PcWSnTPdrLo7/1ENcuB7lzK4Xf7+PEySGk\nZopEI057M8XAgRlyBRGhmubMmUHSNRUGu5kTDw/QCt8in8qitLsw6Bs0ZALJ7RAjMwdpxrJ0j3TT\ne/jQB5ILQaX60DabSq9/37G/KpyRv/iLv+DQoUOcPXv2M4n/3vEHDx7k0qVLnygZ+dfMGflFYQ7Q\n09md8//Q2S587Z8bEAoVuH49QqFQR6sVmJx0Mzpq/9BSls9n4rHHhshmayiVchKJMuvrGcxmDadO\ndezKV1fTKJUC+Xyd6elO28FoVDEwYEWnc5HPV9nYyLG+nkWnE3jssRF6e82MjzuYm/OgUimo11us\n31xDVY7R5zQjKCvE7kVwW8bRl5bYfP1NBKWC+MIdJr/6FUzdPvQuNwZvFyafh2oqRTYYoaJQcPcn\nb5FeXkKr1yCXyVBZTaiTOlptiVy6gClTReHs4aWfrGHxeTl4ZobrN8LcWYjQ3W2mf3qQXFXBpesp\njh3rw2hUkc3W2L/fx+3bCTY2MiwsxAkGC3R3m/j9358mkSixvJzEbtexvZ3j8OFudnY63JpSqfkB\nye5yuUmp1PhYyYhKJXDkSA+9vWbS6QoWi4bubtNHuu+q1cLPNT+Ty+UoPkTbQCaXIxME5AoFvf0O\npvNNlpfT2D02znzZhMdQR4quUYnHUer1lBIJDG43rXodhVJJ3+kvYA7FCF27TpdKx4FHp6lVGrSe\nPkA01CHpeVwauof7GNzTC5kptHoV+/0NRr1d3LvVYu+8G72YYOG7Pya5voPg6CJe0WKdO0xG08MB\nt5uZ091IaiPx7RBk4+ybsXDu+WssLqXoPTBP7eo1pGoL//A8rVKFpk6N0aLHPtDL9mKRdlvC6HZR\ny+bJxdP80z8sMOBVs371JqlkkbH5Ieaf+CKJWJpyOMTBL5/EYtVw8TtvcfTUOAaLAavdwLWra/TM\n2Zg9Mowkybl9K0psp8rQuBezsVO5qpfLVJJJ6sUiMqWSptKMTG2k2Xg/X0vncKD7CKt4mSAg/5D5\nkisfTKfGatXyyCMDxGIlqlURp1OHx2MgePHibiICUK212L56h8k9I0x0O2k1m6SCawjjJk6emUSt\n7qjG1rJZ7ON7kJx9tMsFpHySUi7Cxt0QNn8v+09OUNVYEJQKho/OM+Rq04xsojHoMXRpyZUlBvwa\nQrc3GJx3cPFb/4R/0o9WkeWhyXFso2O8fW6Hcz+5QyOwgqfPxcEvP0Tl7irlRALDvkco5VVoewfx\nzU3jm5vhe8+8RTlfQu9MYuz1E061eP3VdWRaHQNKB4urSdQyD0d/qxdtM8fW7TUq5RrNRB+Cf5JM\ntobdbsDlNnDz/D3GegUKkSjZrBWt1cLhrzxELluj2ZYha7fRaeX4esyEVquYXU7isSLlSotWroZg\ntqLxduMbmWF4sgeNWfOBOVEZDNhHR4ne6JCroSN45xgff99x7VaLciJBvVBApdejd7t3SdCfF+Tz\nef7sz/6Mt95667M+FaDDG7l8+TK/8/9z915Bkp3nmeZz0ntvK7OysrK8r/ZoAzTQcARAgqIROKKW\nQ0qiViFppdXsRGzEXmyEeKEJTcRqRzEbWuliZXa0GlJDUhRFAiA8iO5Ge1ve2/Tensw8eTL3IhsN\nEY4AaJqc9yoz6/z1n8r/nDrf/33v975f/OK9PpWfG+5lMHIMePHO65eB43xAMFIs1jl/fveuFbko\ntrh0aR+zWUMg0FX+e2etymDQ3H3gdXdT3W6QW7cS7OwU75QBBBYXM3Q6cPRogN3dAs2mjCDAwkIa\nl8vIU08NkcmISJJMT4+Zw4d72NzYRJZMGKpRvPI++9om0ZU1NAY9Dp8DnyrPzvV5LH1hkOrMPPM5\npFqNWipJq1JBa9CxeuUi688/j0KtweD1YvGF2Lh4g8lHToLOgCyKWEMh2sEg7uEJjOEhzJogq/MF\nbt+qYwgUuHAti+Top2bQkIqLaHRqPB4Dk5MeWi2Z9fUcXq+JhYUUS0vpu99VJlNDljuoVAK3b6do\ntdq43UZisV18vgB6vYpisU4mU70rEAfdHek7A4VKpYlSKXygAJpOp2Jw0MHgoOPuZz+JN41CpcI1\nMkItk7n7j1BQKHAODaExdAMolUrBoUM9hMM26nUZRaNM7uo5lDod1r4+xGyWdK2GvtlEa7Ggs1i4\n+vVnqaSz6IQmvukpPCEf+3PX0Key9Bs0TJw5xtKlJaJXLmInS9+gj53XfwjVHKlKhdlTpzHqWkTP\nXmfr0m1a7Q7KchNPZJDs5iraMS+NaoPVUp3Hnp5i92yBym4KWRS5/uYq1ZYGczxNeHyci6+eRR0t\nk1teoi42OfXMI4TaTXLxPLGbt9DotDgHI4gtBbvXVuh9bAhnpJ+2LktdacU8e4za3AJhZy/KgQA1\nWYOxL0IuX0dvs7G4VSdkN1C++AIjgky+ruTXn5ni6i0np073MzDoIr20RHppicSNG0hiHXUgQlJt\nQeMYJuAbQ1PcR6OQMXo8eKen37fsolSpcI+OspfL0W51OUGCUolrdPRDr313s/D279/e3obmjzoB\nq9t1WrUqe2v7NMsVDCYdgeEQlUqTSxf2cNuUEF2kFt3rdsflwHt0HF3vAHp3GVNvGCSRWb8flb+P\nRr2Fsu3A39PlU/zqmJVzF5O88eoqBr2KIycHUBb3EcsVVla3UBXmeDJoolPpIX3hVdooUZksZEtt\nzj13lYcfidDCwtf/03cZHu+hUlcQ6OmlUq5TyuTR2BQISiXpxUVsw2OYxyeYPNhHtiQzMWyhHt+j\nuB3lhb/5r9gcRgaPTNBsylx97gqJmMDwmAdrfZ+t21cpXJI4cLAHi1VH7NoNxEUZ71AYk1pJbCtJ\nvAbphhFDR4vR46J3tE1ibRulzoFzaIhiScJpK2CzdbNjstymUmmi0729WfBMTaE1myns7HQdnPv7\nf8SnqtNuc+2ll1AnEsjNJgqVCvvAAMH77vux9/jHxccZ/2d/9mc89dRTjI2N/UJwLo4dO8a3vvWt\nezb/Lypn5GcFG/BWAbkIfKAbUT5fvxuIvIVGQyaRqNx9wH4QVCoFfX0Wrl9PIMsdgkELU1Oeu2TJ\nQqHO+nqO1dUcoigxMuJiYsLDD36wTk+PmSNHug/o6REThbnrLJ+/Qa9Jg2Won3ZmlyFNifCIAZPH\niMNvIr+/g/3oacSKSM9wH5UbZ9l943U8k5OkE3NU4jEaxSKZ5RV0Tiel/X0cYyJGp5tmQ2LqmS+w\n+fyzKCxWVBNTWGdP88Mrebx9Ply9BhTmOoJC4MTJED/4wQZ78QbZbIORESNarYqtrTzXrydotdr0\n9dnIZmuEQjZkuc3hwz3Icge/30yx2MBu17G+3v27TSbNXbE4r9dIINDVa0mlatTrEvff34da3c1E\nFYt1bt5MkEhUUKkUDA05GR93oVJ9PB2JjwrH0BCCQkF2bY22LOMYHHxX66ggCLhc3c6gzEqcRrGI\n2mgkePx4VxitWkVrNuM/eBCt1cqRX9eTiedx99ix+L28/h/+FHv/ABpZwuXzkjj7GsPTs2xcX0JQ\nqVn83g+Q1UYEtRqt2czeay8x+PgnaNVquAYjrNzeolMTMbnz9AwHCEw7WFhLUyuU2J+X8HRy6ON7\nGA/0o9BbSG6XMaequHxBAmP91PfjCAoB/1gETXicYlOLtceHOTxIeWsNQalGazXgC3bIbmxRLjax\nB3uQDB5WNirkCzqmD48iCTVuL+YQHAGOHLNTzlVI7G+wPP8m1d0trE4LBn8P3uYWf/g/PYIj6MWk\nFIneWGb9hRdIz89TkzVIinm00zP0zNhYavQwPHiI8QNutHfUOD8IzuFhlBoNuY0N6HSwRyLYfsKU\nsDUUIrex8fbOvJrh2OlRlrZE8pUqoYkIi8t5tFsZ3ANNSrvbTI076TObEYp1ivEU2mgc38QJrp5b\npRxP4vIFOBjuo7lxi6v/8C36Ds1ie/pTNIt5Ni9eImJ3MPFbkyj0FlwWB9/7z+dRGc3YQx68w1p8\nQyFu3VggNbeAymhC7faTTpQYOjyM3unm9RfPo1JBW6Vm/IGjaDtVKskkzoCLpkqmtBdFZ7Ui5TOM\nj7lQqhRUKiKr8wk6YpN+v5H+w1PsXLyCopTCMDBGYj/G8PAgM4N6Ln79BzQ6DQJWA6XNVbbeOEf/\nmQeJLs5Rj20RPP0Il8+tE3ngFM18BqXYQudwYKrWGDxxEIPFhO/gQYROjWIsTadzJrcCJgAAIABJ\nREFUmGSywvXrcfL5OlarjolRG36PDq3Z/J733VuopFIUt7ex3ynbtFstcmtrdx2+fxGQSqX4i7/4\nC65du3avT+UuDh06xNzcHPV6HZ3u3Vmp/x5xL4ORIvBWFGEFCu884I/+6I+w2bp8BY+nj04ngFrd\n5YU0Gl26ikrVtVrefgd/4K334XCYvb0iL7xwjU6nQyjkx2TSYLPVKZeztFoWNBolhUKCV17ZZn9f\nQS4nkkjsc/BgD1/60jTZrIhSWcTl0FOcWya2vIlcKrIVK5Cbu44l2Etsfxtbb5Dq7XUCA59jw9HL\njdeuU9kv4Z+WsVusOB99nNZWl22+n0x2Teo8Hpq1Gu1AkFSlgs8/SDZbRz8cYuD3fx+3t5eG2syL\nb6zgCuqZm89waz5DZEBBu6Nifr5BKGSl3c7jdivw+cx4vUZWVtaJRrPcuFHHbtcxNaVhd7dEtWqk\n1WojyzlaLStWay9Wqwartau7EggMks2KNBoZyuUKjz12gBs3Emg0FUymrhz+q6/uMDqqZGkpgyDY\nUauVlEoJbt/OYDCoGRx0/Mj3/871+KD1+nH41xG3QqnEOTyMc3j4Q43VWiwoNRqkahWVXk/vyZP0\nCgLuiQns4TAr81G2gZwhQEVlYQQRo81Kq5ij0bFQTSVY/sErzJgtpBYWGT00xPr1ZXRODyaPG+VG\nlHKtgGNwg0ZLQWlvB0/Ix8bcNtlsleHBXqqSgu31JKX1FSwOM0vRbc48NIRNqhIa8pGrdOjoTVye\nrxLyzXDmkfspJ+JUO0ZeupAislVCZzEhWN2o+nWIpTLhQzO4Twxw47k30FoM3TKg3cT4iAXLfQGi\nsTI3zyfQ6HUYLTVupTMMTvfjdet56eYWXq+JFkpaTYlOIYUuv4nG2ibbFJB1NioiGLw+0uspGvU8\npmyOZi6BIuBna6fM6LgXnenHs/4FhQJ7JIL9p0TKC4fDtFsteg4dIrO8jCxJ6Ox2Zid6CEVqKA1j\nrGyJ6IUYCoWCjiBQL1VYmmvSc9qP0VjA6bVit/p4/WwUGQuWARsGl4mbiyn6VRr6jhwkcmyGG3/7\nt5T391B5gmwurqJb3mDgsUcxjozwyd/+JCuvvI4stQnNjuEcGiJQ28XSG0CWOygFGU/ATmgsglpo\n4R7oY2FrjfVX9zh2vI9HHhyF5k3ue+wgr/231ykn0hgcTqYemMHuMPDi2Tjf/Zc18ru7uFxGcv0a\nQjYvQ9P9KKQazWyCySkfeVmglsvQqjdRdmD4iIPCzVXapTIWgwK13UxyYRHX4RPMfP5XKMt6xOw+\nBoeFmnIKQd9LLZej1hHI/fAa5b0dpn/lSfKZMufP75PNilgtGtTFfS7+l5cIBYz4BoL4Z2fftzzX\nLJfvBiJvodNuvyfx9V+v6096XXwU/Omf/ilf/OIX7477ReFcjI+Pc+3aNU6ePHlP5v95j7+XwcgF\n4HeAbwIPA3/7zgP+/M///O5rUZR46aVNEomu1oBW6/qREs07vwC3u4d4vMzNmwmy2Rpms4disUE2\nKxKLlYnHYWKi61RqsWhIp43odCaCwRbVapOFBYl8PseZMxZmZ/1MTY1T3N9n4+Zlms0WqlKVrTdv\nslWtcN8XAji1WnxuF7rhIfKVDnOvriDIBhTKKtVcge2z83z63xxFSsYRs1lsQGlrG2u4j+z6OoZ6\nHUFQorM7SORkjHObjH3xaS4viexsrdE/1sc//dMSi/NJFFodCaOd69dF/H4j09M+otFu+aNalXjx\nxU3sdh3NpgWNpsWLL27yG78xQ7O5d8fzRcDpDHPhQpnDhwvMzHix2XyMjpruaKl0cDqHmJ72UijU\nKZfrGAwuHA4DWm2XY9Pp2LBYlOzsFMjn67RaqjulnhyDg453rcdHff9xIYoSW6tJoltJrFYt4UE3\nnl4v0CVfuicmSC8udm3uWy2cw8MIVi/XbiR59tktNBolNpuZaKJKPVOl9/Ah8gu30BrVFKJJBIUC\nhUKByaimXq5iMuvQu2zoNR3KlTI2lx2t3QmiEr3bi85spD0aIHLiCN7ZWb793D61YpVcsoBS6OAe\nGKBiCiDUSnjCPoa0HlRGM5ZGG61OyYWLMbaWdjB4fWT2s5gbMuWGAv9gCM9IL+GQBWUpjsbmgE+c\nJFYQyKZKjPUbSV86T2n4IH/5H5+n3lEj6MxoVW0ee2IErUZArVWhszuRVErUJj2NQg4x3aAYS7G3\nvIPa5sRgt6L2hWg3fTilVeJr23QApVqDQqlEpVKg0fx8MmHvBYVKhW92FvvAAHKj0W11zufJrr5C\nYTFJdF9PWwJbeAiVRoNKr6cuirQVGrT+PtxmJW2rj7FghsrOKq14BZvaj8rjQa4Y6B0JUd5cQ9zf\nRKXWoWmVCQfsWEJOXG491y/v4vL7OPxbv4GYzlAUBf7mb27x0OOjzH7qEdaudV2kQxN9nHp0go5U\n5eKbu9y6vkdLksllStREiacfGkJ643mOH3LSOh6h7/AMRrOWaKLOpTc36XTauNxmxFKZhmAlV6gS\n6Q9SWp3H3qxw6MAI0ZaXWnQHjVaJ36OnmslRzFZoV0u0qhXQGFAGRtjcKbOtkrCbWgwE3WQyZW7f\n2Ce1sMDGlTmUWi1HHzmAJp4jvraHMFBif7+E0ajBqS6z+so5mmIDtWRBJzRpiSIDjz32niU6tdGI\nQq2mLf0rfpEgoL3THnyvEY1G+bu/+zsWFhbu9am8C6dOneLs2bMfORj5ZcW9DEZu0O3UeePO6w8k\nr+r1ak6dCrG0lCaRqGCz6Rgbc7+nBkWp1OCHP9wmkajQaMisrmY4cMCP2ayhXG7i9RppNmVsNh0K\nhcDIiJNGI0m53EQUuwRNq1WHwaBGr9dw61YSn8+EWpZpt2SqVYl4vkApV0FAplxr4zp4jNr+JvV8\nnpSUYeW5VzD7/YTPnKEci2FwuUnuJPHq9BRrdXzTU6BSE781h396GksggP/YcWJ5UFX38R86QKph\n4KVvPI+srNMQWzQqIkePh6kUqqjNBhYX0xw44Gd+Ps32dh6zWUsqVeX27RRms5rjx3vp67PSaHQ7\nZwIBExMTbl58cfNOFqiIWq3k2LHuDs5u1yNJWY4fH7mTLarz2mvbnD+/i9GoIZcTmZz04HYbkOU2\ntZrEG2/sEo9XMBrVzMx4iUa7qrQfxkDvJ+GMvBeazRY/fGmZS98/T7PWbQKLTAR54rOH6BnpR6FU\n0nPoEJbeXpqVChqDgc1UgRsXYsRiZVYW48j1BoGQjf6QmWxOZGBoDF18j3IshqolcuSZp+m0atit\nGhIbu4w+fIpCpoSuVSHeaWFuQ6slU04kcU1MMHD8EI2OhljNyHJSzd5ukbYoIhZLJFoSJp+fZAmS\n2TJqpwGvz4XTb8frs7Kyvsn8loxap6WNkqMnImxcvkVL7+S1b58lPORh+Hce4Nz/9X+jNhoZPX2E\nR5/8FV5+tcTrr2/z6c+d4vLtEti8GNVV1uazNJsyff0u7jsNTZeDiSMRyukcJkMbk9NBtdWh3NaR\nXr1NJXcN99gYu2+cxdzjI3joIFKzRdPpxBweoFiWGR93f2i9mZ82/vW1oDWb4Y5iZn6zex8q1Wr6\nIm6i57ZolkroLBYsgQCaRh6j1cT8SgGzVQ/1fZb/+VmK0QQ2t53cbhyzz8Oxzz+GKqWgWSogtRW0\nahIbSysMnzjAwoUlLCUtN5a6LbLh44cZGdfz7LNbxBI1Li7c4rOfGeYzvzuCyaBAqGZpbt9iXbRh\nMysYm+kjES+h0iiJZyR0/gC2SD+VRIqRsJtqZg/ZOMD8QgqTUUtxMYPZrKHd7gq7TZwZx+3MYNTI\neKYG0fUHWLyUQ5YVHHlwkoWr15ByLQxmC70HR4mv79ESRZQOP3Z/ABIy3/ovVxgfd9FSaDGrZDoK\nFUaHnWq1ydpSnNPHhkmLVZwNmf39EgcP+invrdEUu+VyxZ1kWC2TQcxmMfe8WxHX5PHQcLnQpFLd\nUpogYO3r+xFeyQet6096Xfw4/Mmf/Alf/epX8d9RcP55z/9B4++//37+9m/ftUf/uc3/8x5/r117\nP1Q771twOPScPBlCltsfqHOxtZUnHu9mUNTq7k72xo0EDz0UplxuolQqGB628cADIQRBgUqloFhs\nMDeXolJpIssdNBol/f12Op0OtZpEPl+nz+9AZTaTT2zSLFVoVioER/tQWuzs7xZor29i8zqQpRpK\noUNxd5fc+jpStYrB46Z3epD8m7t4jx4neHCa0P33Ez69BzojpvAw6ymIZaJUOmbkWBtDLU21IuHu\nM9FsSqzN71CXOqgUHZDVCEJX6CmbrbG0lCEctuH1mpBlmVKpw/Z2AbNZyxNPDOHxGBDFFn/91ze4\ndi2OJLWZnfXS12fl1q0kktTmwoU9gsE2kUgLrVbFzk6BcrmBxaJlYyNPNiuSz9d5/PEIyWSVs2d3\nWVnppltLpQaFgshXv3qQcrn5M3Pz/SCkUjVuv7lwNxAB2FqMsjXuwx3yodbrERQKzD7f3Z9vX9kl\nkVBSL1epxOK0WzK7lSI2fRANTcyDs0iVCuZwik6riXt8lFKqgMpgoKm24j9xHE8hRWFtmbDbjbZQ\nYvl7z1JSufBY3URbLr7zvS20pgajkxq0Bg2VloXgzASlZIpyVWJAIbK8naK612T5xhtMnLmPgUE7\nJbHIQ08dJOjTkE6UOPfqKsbIGJlomp6xQTwDfor7CbKpInqDyN6lq6DS4VD6GHlyBtloJZ1LU28p\nsBg1CEolCkFGQoFSCa+/EeWRh+/HLMZYv7ZENi/hnJgkWdNSqwu0mhKirMYYClNNxDDYLRz94qfJ\n6h0Y/AFOzRiJRD6emdfPCs1KhcLW1l1J8j6vlvxsH/vRAnR68PX7OXZommSizH65jjO7h9FcRyoW\nqNeaZOMZ1JUmdQkalQpVhQOVO4jZ52VzbhOrx0kHBaVSBaHWJroRI9BrZ/v2BlpTH29ez5EvNJFa\nHbajNzl21M///JuDvPG//a+ETz9AxjaLot1isN9EZKyHjkqL261DqopUGwqsw2M0lXragkRB5UWl\nLuL1W0hGbyN57Xg9HiTaBPtcKPRGDM4QueQWjfg1dnZtzF3Z4LOfn8Q71aC5n2XmwScxaTvc/G//\njKO/j55Tp4nj4PUXrlApilTFDrLQoiG30JtM6D0+lDURZ9CLymKiruoK1jkceur1Fvo7JRe1RoHN\n/q866t6HL6S4Q1x2Tk8j5nJoLRbMPT2o9R++G+9nhWQyyde//nVWV1fv9am8J06ePMlv//Zv0263\nUfySabZ8HNzrYORj4f0CkbeisWz27VY/QRAIBCxsb+fv3i8Oh46ZGR9q9dt//sSEh2pVolRqYDJp\n6O21MDTkoNVqE/aAVsojKHvomZ1h+eo67oaVyOcewT01SzJdw+B00EyaqWSLyOU9Zk6OcfvSGpIo\nYu4J0D8VQWU143/4SdavLKKq6mka3MjBfubnU5Rv79GsVLoeJm2BXzs1Rb6m5tRnHuD21U36hvzM\nHqtTE2VCgz7Wt8qMjbkZH3cDHUqlBul0lUJB5JOfHCGfF7HZdNhsOiIRG81mC41GRy5Xx27Xo9Eo\nOH68l2azTS5X59Klfer1FjMzPqzWFJGInWKxcbeD4a2OmUZDwuUyIkky1WoTh0NPtdpEELrdDuVy\nE5PpwwUiHyd6/qAxtWqTWuFHjbw6nQ7FXBVJFH/kH2Cn0+nqntTVWNs5eoJ65v0WkrECUrOF3Gqj\n93lYuLVPuWwnMjSCFNtk/+wyqnaddlVk4JET1NVmtEE7WlOQ/kaB+MVzaCwWfBYT4089wrNvVkkU\nBSqxIjuxGo8+EkGsNWmKXnTCIANDLvYXNtAF+insphmeDGI0abFYjdTrMkIpQVNvQWqCKGjZWN5F\npdFisZuJDDhYe+kfqZVF7G4rBosRoS0RHrCwslckeSuDWG/RE7CSztToHzXTrtd46OEhClWBmUNB\nLAEbGxt6Kn4D0cIeb35vDYcJjh0KYbOb2dotk0urcbqGMXp9TH/6MdQ63U/NefcnwXtdC+80z2um\nohyIOJmaHsI+MoDDaUSS2nzzOxtIYovoxg7hgJ4enx6dTkU6XcNsUBIOmymXmogaJ0YhT+ThM1Sb\nKhTI2EK9BAN2fvjyOgpFt8tE6MiYDC4mBmLkKnq2dmsYjBqUSiXKjsTpf/8HqA16vLYhlmMLJLNV\nAh4b8WQVjbrJVlIm1RlEk5ZwWAS2t0WiC5v8yq/OcvH8Nl/6zWNs7pRp1hs8/sQwOoOG5//pPFqT\niVNPHMBQy3Nm0E+p1GB+vYqqpKNYsJC/kCPibmEcP8zYEyeJ51WsrZSQOwrQm9jYqfLEpye5cnYV\nb1+AYr5GutBkOuiikCsweugoiUSJBx7oI58XMdhDuHe38Lg0WO+0+5q83vfljAAMDHW7cWx9fR97\nXT8KPuz4v/qrv+KZZ57B7f5RMbdfFM6Fz+fD6XSysLDA1NTUz33+n/f4X8pgBLop+Wq16yz7zlZT\nt9vA+nru7nurVcvhwz1MTXmpViUUCqFrXNXudKWRAYtFy0MPhRkedrK0lO4+fDsSnegS6Z0NVHNt\nYlYz3okJemYnackTqBslLv/TixQTaWY/8QBjn3yS1//jn2HQK/HKq3zmyw9gmjiKrLexv7LD//N/\nPEdwuI9jDx9jOa1ibm6TpSvLjB2McObRYRZv7uA6OkZfxM3AWICX3ojz7e/vINUabMfmOfOJCQwm\nHcWyhNNjpr/fTr0uMTTkJJcTSSar3LyZpNGQefrpUTqdbutuPl/j9u0UTzwxxFe+MsPycpaeHhM6\nnRKVSsV3vrNErSaRTFbZ3i6g16s4diyI3a5FEMBk0jA87ECWuwJmNpuOZlMmEDAjy23K5SYKhYBG\no6Svz/q++iE/a9jsOhx+N8m1t6XDVWolnh4rmnd4ZSSTFWLLm9RuX+Dm+WXMBgWnTpxkN2wjkxG7\npEy9hqXtBns7FeZ3khw5FKHneC8+l5pbl7dY2GpQjxa5divFxpvXGBrx8tCj9+EemqG1u0zbYGd1\nfZ/lxQTVShOtQU82I/LlfzvF2CEnuxspelxqrmzFaCuMFNZXkZpNwkM+Dk4O8ebyRVa/l2BdpWTw\n0Ciff/oIq6M2qtUmw9NhXNIe39/cJDzkIzAURO/yoHX7WduucXk+g6QycPj4ANlcA3tHoDdoYXDQ\njtllI1dskq+0Qa3j5df3aDVa6CQ1lZqMUa+iipnIWIAr3ziLVqNErVWjstpJXL9Os1zGNTr6E3fC\n/CygNZux9vWRmpvrftDp0MhlCQxE8IW7vKrV1SySJNNBoCO3UeoM7G2l0SnbmFUgV9vsJJs4tRZe\n+WGUx88MYdMUmf2CC7QG2q0Wz//lWdLxPIGhAFqLGYdDT8jZJr+5Tr0mcWR8gOB4hMNhmdzl14nf\nXkQyuFCHK0wdGOD6tRilisT0bA9aQeLbf/0qGqsDsa3i8OEgksqGRtXGYlRhNylwu5wcOtaHJNaY\nu7ZHYqmGo7eHxbUSt/7zBRyaKjNnDvPpZw5y8/I2eVUHZaWBXS9z6dlLDB+dYERlQ60TsdoMVBoC\nsWiRwWEP1VKdUw+PoVN3iAx76ekxY9J2qDYV7O/lcYUdrK5mMJm0aKwORh57EEV2F62yjcnnwzM1\n9QunG/LjUK/X+cu//EteffXVe30qH4hTp05x7ty5jxSM/LLilzIY2d0tcONGousMauhyFQYGHHdr\nVV3TuxKxWFccSqdTcfRol9C6tpYjk6lRrUpMTro5cMCHz2eiWGzQarWx23XMjFlZW4pDMcX+6i10\n9SyZ3SxGt5tqMolzZJyF1U3it7bYi9ZwBfpZX4rj6PUx/YXPk1tfxRYK4R4apKDRcu7yLlsxiZ5j\nx1EpBdajbeymJj0OAd8nZxgcD6LWKXni84fptFpkMjX2k3WWljLojDocbhlZtpDMNnn8cC+SJHPu\n3C6FQp1KRSKTqWAwaPjsZ0eZnHRTKjX4h3+Yw2hU8ZnPjJFOiywspO/oqvhRq5U4HDoUCgUXLuyT\nz9dpNGTa7Q5DQwpqtW6mo1ZrEYnY7/j/SKhUCgYG7CiVAjqdmqkpD0aj5u53Fwxa3tNJ9f3w0+aM\nuN1GTjw+ww/rIrn9JHqjjukjESLjvajeIbhVKdXIzt+mXC8S6LURXd1m8bvf4+Hf+iy+T82gFSS+\n+YMEa3vNO+aAbV47F+fppyKkt8vcvBHFN9jHm5eX2dyr4bR5iCai/Mu3qswM6bj/wUmqNRmXy0i9\nJqEQFOj1GgqlBjqDjmypw9B0GKNc5FP/w4Ncefk6uYCbwECA++8P0dqew6CtILWbCJKCeipBc2+F\n4emDONxm2pU8BsHDp//33yOztUc8KaIJB4klaijNJjQmI5mCgpW1ArMHA1gsIn5/EKtVh0ajZH09\nSzxW4drlPcxGFQVJZi+vRB8aROsx4hryUcmucnTKQrNUxNZnp1xXUG4qaBWzVJI/JKJSfWDt/2eN\n97sWvNPTIAgUd3YQBAH7wMC7hLisVi3ptEzvxCjR+Ar+YyfoJDZJ7qYITE9RdE2xut8lXUptBTWM\niNSoF9tQF3nsk1OsjfZSLtWwB31MRAxU9m7ye79/jNvzGaqVJg8ds9Jau4pUrRFNNUlktsm9us4j\nv/frDPZq0Zt0NFoiCq0ay8AQYq5IqE+Nxmzh0IyXdKJCXeqwvFZk6eZtLE4zNVFmfNzDfQ9NsrWR\nI5pI4nAaaFTKZON5LP46T35qjCtX5nGeOElHLOMfjZCKl7h+YZ1PPXMUzE16eu2EgmaMRjUbayns\njhB9fXbknIjb0mFzV2RlvYAzqKXRalOvt5GkOvl8nZhGw+jwESZm3WgNhnd9/x92nX5ax3+c8d/8\n5jeZmZlhfHz8nsz/Ycfff//9vPLKK/zu7/7uPZn/5zn+ly4YyeVEzp/fI58XKRYbiGKXnPn5z799\nUZnN3SzHWwRWu11HrSaxspIllxNZWspQLNaZn0+SyYiYzWqGB6xUk0kchhaUcoT8TlJb60jLlyhk\nMigUCiRRRJXJEDhyFCm9j9etp1SzI4l1ZFFm/fY2x776ZYxTKaJXb5C8sUcakbUruxh8fmJpI7G1\nPZwuE//j792HMh9l6NgkhbaRa1dj/P0/LCA1Wzz+5AiHDtlptTp4vUZcLhWbm9yRYrfj8RixWvW4\n3UbW1rLMzPh5/fUtrlyJ4fWa2N4uIssyk5M9TE66SSar9PfbkaQOxWIdQRDodMDjMeJy6TGbNXQ6\nTQYGvNjtTeLxKsViV0/g8GE/stzG7zeRydRYXc2yuZnnS1+aJhSy0deXY3+/iMWiZWjIidd779w6\nBUHg8H39BHttFDIlNKoO/qAd/TuY+6IoUU4X2Fzao06DsMuE3zNKOZWG2AqGXj1KuxeFzoAgSHdT\n/waDGpdDyzeeW0LnGWQ726Ha0SHToGOyYHHoqBUUeA6MoO2xs7cdxes18sgnRtnZK6PVqhgatKPT\nCmh1Kv7x/7uODhGvW0f/ZJjDJwZYubyIVMiSfPMNtKoONqVEMVcmt16i3FRhVIR47Y19KgURm0NP\nIDRK+MAopniS6PI62wvbPPqVSZIKNfWVNDaLirrYZHMjzvq6jCx3GB11UyyKtBoNqpUOjzwyRDor\nIjVatDuQyYkYXC68XqioZbIFNytbOSrXvsXMoyeQdBpcJshvb9/TYOT9oDEa6b3vPrzT0wiC8C5+\ngk6npFSqd1tVwz5Csyo2L20RPn4/kac9XF7v8L3ntvjCF7z0h604bWqahTL2YC8WMyi1RnL7CRw9\nJQSlgt4+O7eee41sR4nF0eLoyQiKVoOwp8P1c0kKRYmWxkK9U8Zg1pFf3+TCxSRmj5NiDR54MILX\nb2e9oSZTqVDfLiOoFGjVAi/81x9y8MgkWqOO2H6B4SkXBw4HuTkXZXMjh8JgpWfAi0JyonG7uHQl\nht2hZX4xy8rcDqEePQ6Xgb6hPnrDTnZSLXZ2Cpw+HUapFKjVmsT2S1y6HGV1NcvMmI18pcLtKxs4\nQz0YLXqWl3M4HHqUd3g4zabM1k6J8Ukv94a6/JPj7//+7/nqV796r0/jx+LUqVN87Wtfu9en8XPB\nL10wksnUKBTqbG4WSKWqtNtdoubAgJ1HHx24e5xer6a//21y3Y0bcWS5QyrVfdAmEhVarQ6pVIVz\nZ9P4f20IbWGP6LVVjC47lv5+CtkKuXwDtaCiGI2islgRxCYYbThcAeqZJOEeHRurKRr1Jg6fi/n5\nJNpKgvlrW2jMJppmK/VGi62ra1j7IkgKLdlMmdtXNnEq22ytJsh0mrxxbpdioYHFquW559bJZkVM\nJjXz8ymWlrq+GgMDdq5ejfL66zscO9aDXq/C5zNy5UoUnU7Nyy9vEok4OHjQh8djoK/Pxs5OgZWV\nLC+8sMHv/M4hdndLbGzkyGZFPvGJQY4dC5LLdXc8yWSFvT0Fs7N65uZS6PUqBgbs7OwU6XRApVIS\nDFrRaBRIUhuTqWtkNzvre6+l+rH4aXNG3oIvYMcX6K59o9Eimayg06mwWnV0Oh2uXo2RjtWQBTXR\npQRZXZmpKQ9Wr5PA+GA37Wy28mA9htuqoKNUo9BoCfdZqZRr7CdE6pJIMGhFoVLT7KgoliTS0Rou\nt5mSCKVskXatSjpeZS9aJhCw0Gy2UCpBSZtzLy1y68YevX4D1UyOmy/ucOz0CDtvXqVv+FMUMiWo\nlUjnmpRLdRpSkhPjU0RzEhcu7NMUm/gCNl5+dZdPPj3KsdkIK7dj3PdrnwJnEFsuR7NWR61xcP7N\nKE+e6aFTyVEu1qmmYWI2wuSYAxB45eUNNraK7G7lmD7g5yu/eZhKqcrKm3OkdpPE97JIlTI+r55m\nOo5lfBaVRfzRds17gB93LWjeY9cuihLz8ylGR90IgoJYokYoPITvVD+3V7MsXkqjVit5+OEIJ04E\n2d3O8epz8ygbJUp7O5x68gj5ioRRo0RvUKNWa0hlami8Id74xwXWV1ZRKhXpcDw8AAAgAElEQVTM\nHO7l9/6XM2RKUMrVie/lMDkdVPIVWiiolKrojRomZseIL61iGZlGrVFx65bI6dMCW9slHn9skNJ+\nnNvXdjB5XIxOmRgbdXP1eoxKrorPb+PWrRS511YZjFhJFmTUej2lkoTB0kNbvUvPUB+XLu/x+tVl\nHnygj16/loOHg/y/fz/PmUcG+e53V4hGS8i1Cr1BM5lMnSefGiSaE9jI5phS2RBFCa1WiUbzdlD3\nYSwbPuw6/aTHf9Tx8XicK1eu8N3vfveezP9Rxg8NDSGKIru7u4Q+pFDcL9L5fxT80gUjSqVwl6zZ\nbnd3rO12l8CZSFTo67O95zizuct/aDRkyuUmrVYHo1GNRqPComtT3Vohev0c6WuXMfQNkk0U8Y2P\noLU7iV+/ik6rpZ4vMvPlf8vyag59ZJJcssDK+TcxuV34p3oJH5nh5Td2UBaj7G3nKIsZjjwZwBdy\nU5XLuH02VAaJIwdcbNxYIPjoKPFkg41cnnJZolyREBQKZLnDzk6RT3xikHpd5jvfWeLUqV4yGZFy\nuYHH01W73N8vYrXqWVnJ8vjjA3zuc+PcvJmg0ZAJBi0Ui3UsFg0bG3m++MVJqlWJCxf2OHDAh9tt\npFptks+LfPnLMywspDl/fhePx4hGo2R3t0gkYieTqd314FEoBPT67iXzTqLgLyL29opcvhxle7tI\nudxgfNzFzIyPzc08CoWCmUePY1TL1Mpd1+fwZITw6QcwuN1EL11CWtvBpHIyvxhHoTOg1ysRy3Wc\nbhPZXIMjx4JsbORRa5SUS3X243UOPDpAq1Ilut9m48o8p3/lUTRmK9FoGZvNyAOn+1HR4sqrt+i0\nwTQVxGFsgdwkkW7QMzlBPpEhcuIIy69dRKNto9GpkVVKfJNjPP9SGr1OhZoWao0KhUrBlctRwmEb\n1/dUFLU1nPEYi1dWOXZqFKmt5BOn3ZRuvsn6rU0azTZGh4UDY1+gY/bw3e8s8i/fvsXIVBCXQ8fu\nZpYLF/Y580CAlkmgoOzaBJj7rVj6Imzm2yhXKminbUxN9N7rJf7IyGbFu512AwN2hoYcKBQCExNu\nrFYtDocetbqrJiyKEnNzKSwKmUI0htmgRmF1osptsvTiWVRKBS2NgcHJEPrwKBvLcZoS1Ko1CqUW\nt7ZljMF+SoVFOioNNquW0JCfdFODWqdmYDLMiQfCiLUe6kojiWqer3xlFp1GycJ8kgsX97HZXFx9\n7QY9w3DwoJ/VtSzRaIUet5ZgwIReLRPdLTA128PWRoYHHhljcy1JNlvn3/z6QV56aR29UYfZpCW+\nl+Xsc1vQOsaTjwQpNVvcuJHAZFITCjjQKRvE72STBYUCtUbP3l6JmRkvtZrE8nIaSWrj9Zo4eNBH\no9H60AHJLxK+8Y1v8OlPfxr9L0BHz4+DIAh3eSP/vfvU3Du1oh+PP/7jP/7jd32oVitYXc2xs/O2\nnbjPZ2RgwEG1miYS8b9rDIBKaJFNFCkUG2xtFxgcdPDEE4PIcof7ZiwkL59HrpQxmbVU23oqmRw2\nnwvnyAg6ox6t3UnoyCHcs4fZLWpYTVcZnBhCbnfFtFSuAPpAiO9/d45QxMPe7RXKtQ6pvQxf+vdP\nozRbqUkKenrMWO16wsM92D02zC4H61sVLl2KUizWkeU2nU7X1TabrTE97WV8XMX4eIibN5MsL2do\ntdrYbDokqU2r1aZalVheznD6dB8TE+475RcjDz0UptGQGRpycuVKjOXlDNeuxclmawSDVoaGnJRK\nTYaHHUQiDlQqgWYziyxrCQTMGI0aenosdzwp3t4F6/UqZmd9mEw/GVF1e3v7rsIuwNe+9jXea80/\naMz7oVJp8tpr2ywvZ1haSpPNimxu5vH7TWxs5HG7jbR1FlpGFQaLC9dAhNHT9+EMBShHo8QuXwab\nl2tX9rHaDSiFNp6Ak3xJYvZAgFxe5NnvrzI66mJywsuRowEePOPErIJXvn0RlUZFNVvAGuihgZbR\nUTdKpYJKpYFGCds7JZpiA7/XQDpbxzM0iC/kRhTrOPuClDI59KMRBsb6cQ/0M/nEGQz9I5SbSpQq\nJdU6RKNlKpUmrZaMLMn0h604HEZiuxmEXBStVoXN56IV36LaqmBze1FrlOgUEnZ9G9/4EP/8T/Nk\n0jU0aoG23ELQdtufHzwTwa1vIJWLSC1wTU7xwnNLFKqgtCgoVxRonW5CIetP3FnzYdb9Lchym1Sq\nQipVZWtrG6/X9ZHmL5cbrK/nkOUO9XoLUWyRz8fx+12cORPhwAE/U1Me7HY9tVoLqdWhJdYQanls\n/f2o1UouffMFEjspWgiodVqy0QzOvgAtq4F6XY0zFMAWCrGzV6F/JoLeZmXiQB+mcD9jp49itel4\n8On7QG4xf3GZFipMXh8dFJw7N8fzz+0hNlqYTRqsVi0Go5bxqR7m5tI4XUauXo2RjOcRK00OHPAS\nGXAxPumjP2xjP1ZCrLWJ7u+g1prZ2yvj9RhYXojhcpnRGTRo1FBK55k+3E8qXUOvVyMIHQw6BQ6P\nlUjExm60hqDRoVaXsNnsnDgRpNXqoNWqsFg0iGKX8F6vt3C7P9gK4P3u2fdb9w97j3/U+d7CH/zB\nH/Dv/t2/Y2Bg4D1//rOe/6OOj8Vi3Lx5k6eeeuqezP/THH+n5PSedadfurDWbNby8MP9NBot4vEK\nLpeBwcEuydLne++HY25jg/iNG/RrTXgfCjA95SYaLfHC80uUyzLOp7zE9gqM9NtIJ5XsRkuoVAIH\nbDbKJRGlw0urJoNWR7VQQoGNubkM+aQLMamgI1aoXd6hZ2YSi8PCZkrB0H0zpPfTHHriBFduZFle\nK6PSa2nkG3z323McPNzDcMRCaLSX0VEXVqsWSer6a7hceoJBC+vrWZLJCg5HE6WyiFIpUK1K+HxG\narUWpVKT3l4rnU4HWW4jSW1isQpOpx5ZbnP27C6pVJVEokKnA5OTHtbX8wiCQDRa4uTJXjodcDgM\nKBTCHeM8BUZjd8eg1Srp7bUQClm4dStJLidiNGqYmvLcU27Ih0E+L1IodMtxstzN4khSm2i0jN2u\npdPp8P3vr6JUltBonIR1VqRbZT7hb1IvFEAQaCm12LxOXnh+mUS0SO/NHJNHBjCbdZw9t4tapWBu\nLo1Gk8XhMDDUL3HpuWVqdRlvwIFjqpc3l+rMz+8RClkxmTTcf3+I9bUso4eGiG9bMVrUaO06itUO\ngbCTpUqD8z+o8sShXuTiJjtbFUZOzpLReLl+tcDQkBujUcuLP1jHbNXjcRt54qlhblzdY3QkgEEh\nEetIIEtsL2xw5NEDLEb17KfbpKMVIoNBDo+b0CkrILcYmw5RFTso6ab4G20l4bCNVqvNwNFDyGIN\ni6/I7X0Jc48f38ggZmcHk8XPzk6JiYk6DsfPZ4cpSTJXr8ZYWemKt7XbeWTZwsGD/g/UHfrXcDoN\nuN3Gu0rOABpNt/woCAI6nQqdToXZ3O0YW1pKY/L5sFuUvPrCCr/6jANaEo2mTDpVQW+zYjJqEHN5\nxI6erMKFoiWQWclz4kSIpqzklUsljh5w4vS7qSqtmLwK1tfzbMYhVjQT3e7g6+TRaJQUSw1SaRGz\nVUe93sLr0XPy/oN8/9kNFhdTWO9sQnRGLYVKi8SbO4yO2KnH96h1tKyt5LDbtDgcBjKZbnt/LFqm\n0xZYX0mSiOYYn/CiUktItSqTYw72d3M0W3r6B5047Xr6BtyM5lp3srB67HY95XITm01HIlFhcTGN\n1arjwQfDXL8ex+nUfyh/sF8ErKysEI1GOXPmzL0+lQ+NU6dOfSzxs1823Mtg5Ang/wQywP0fZWB/\nv4377w+xt1ei2ZQpFBoMDNg5eDDwrmPFXI7opUs0KxX0ToHmlecJThzn4mYKqw4sahDbCnRmE/ly\ni/h+HrPLjX1knJtJMxpzkMDpccJqkdjiCks3d5h8epRrGy1uzqd4+MAs7cQG9iOD6IwGnvjcIS69\nuUdDM8wnn3mS3f0K16/vsbNXpl6XcTgN9I/2gFqHwmzj4qUYJ0708od/eIylpW7Hy9iYG7fbQE+P\niViszPi4G6/XiFqtQJZlQiE7167FGB11MTzs4FvfWmRkxMUbb2zT6QgYDGoaDZmXX96gv99BLldn\nYyPLE08M8/nPj7K/X8Zs1mIyaThwwI/T2a2tHz/ey82bqjuiZSomJ734fCYEQcDjMVGrSXfagX86\nCbWfNmekLcs0SiWUGg0qlQKlUqDV6gYi3bKSgCAITE15WVhI026DINgwmTTo9SryebEbcJnNaIxG\nTE4HN64tkI4XUaiU1OptqpUmhUIdp9NILFam0egGkPF4mYMHhxg4aeLBHiOhPiuSrMCRiTM66kKr\nVXH0aIB2u4PZoiM04WFswsvaaoaBkA2Xx0gsVrnDc+qg6w9jIsTgSRUXr+V449lNBIWS8aSIz2fi\nT/7Do2xsZsnl6xQKNR59fIBWrYZe3eGxR8M8+/UowUgfi4sZVtfy5PZqNGotoptJhoecBANGtAY9\nT39mnGKlxdpaDlFsMTho7ZYDVnOEwwOMfvJJwsUixVf20AQktPq3KYvdAFj+yGv4cZFIVFha6mYG\nARQKO/8/d+8VJMl13nv+KjPLe1/V1dXezrSZHtcYg9EYGAKkKFBQULQi5UhJjN1QxN7Q0z4pFKEb\netCVVqEN8e4NUbEUyCUpgRQEEQRhZoDxfqZnpr2v7i7vvc19yEZTICj44QD8v8xUdZ+u05nZmd/5\nzt/cvRujrc38rh+GOp3E4cNBpqYiZLNVbDYdFoufWq1JoVB7U7evrc3M4KCTlZUMWlsbNdUaxarM\n6EQ7t2pV6mgQRYH+ASede3uZLlcZHVVCI6uVBo880ovcavBbX9jH3HwKo8PChQtbtAfN5BoakgUB\nb18QQRS5cmWTEye68fuDTN1epFSuKwRRo561tSyrqxkEUSAcLvAnf7KfmekE1Wqd8ad2IVZznPnh\nRYKj/Xz2syOcfnGaoeFBuntdVKtNXnlliXqpxMJMmIFBD/l0nrpGhcUs0dcGjYyM1qhlZNDI2GQ/\n8/MJ+vsdiKJif2A0qsnllI6SRiMyOOhiczMHKGTWRKL0tsf/o8QZeeaZZ/jc5z63Q8b9ZX/++xm/\nZ88eVlZWSKfT2O3vbDL4UZv/u8WDzqYZB155rwMlSWR01IvHYyKfV0zKfD4TavVbL7ByJkOtoKyC\nVIJAamEBleBCFUvhs3uQkRDVWvqPHSJ8/TrOgAffwYd47Wqa5dshGoTp6rLx+OO9SP4h+sZ02J1m\nHjsRRJSbaLw2Og7sYnYqxPW5Mi25Qne7lmIqw9StMKFYA7vTxPpaBodDRyyWZ3jYg8GkQ6eTcLn0\nTE1F8XqNTE4GkCSRaLRINlulUmmQyVS4ezeOLMPJk910ddlIpcocP96F12tkeTnNZz+7G5/PxOnT\nqyQSZZaXlfThZlNGEKCz00qrJdNsNpmcDNLebsVu13HoUDsm088eLl1dNvx+E/l8DaNR/SYXVUFQ\nfeBtmfuJYjxO+Pp1Ssmk4vo4todgu5nFRR0bG1ny+RptbSbsdi1qtcDu3YoEWhBUGI3K7yUIKiRJ\npKKysdb009gqobY5sPsrFEpNYqk63kSJ7m4HIyNuOjutFIt1LBYN3d02PB4jS0sZCuUWKlFNR8DE\n0JCLqakoU1NR9HqR115bx+HQYxvTs7qawWDSkS/WufDcHI8+0ouKFrKshA+uRaAVb/Ds88uoVAL1\nhoxOnwaUrcnNrTzZTJX+AQerK1kkoUUzEcLl0PP0Vx5G721jdj6N+sgIDruGlXtr5LJVbtzY4sDJ\nx2kKGsxm+P3fn2BlJYMsKx49qVQZUVR8Y9R6NWq9nuE9AukLIf4zVcjh0P/SuiLAdgZS603v1est\ncrkqgbeuQ/5LuFwGTpzoZm0tw6VLGywspFCplK7Jww934HYrKc+CoKKjw4Ykieh0Il/930+SjiSx\nDe5mqNqiWKjS3mHFGgyymtHR1WWgu9u2rSxzMT0dZW42CSq2fXt0qCWZ4WE3586V6ex20pKhUmmw\nf38bJpOGr31tH16PAa9Hz8ljAf75/36Z/acm8PqMXL2mLFz+x/+4hM2m48iRIEsrWdoCZn73//wc\nqXCMf/3WOQKdPvZMBLg9FWViwsepU73cuanjoUk/QqvJretr7Dk0QD5ToZyvcPxYO36niLqeJejX\n43J1srmZo15vodWKXLgQ4uLFELFYiUikwMSEj/3723Z4Yzrdx6PBLssyzzzzDN/73vce9FTeE9Rq\nNZOTk1y4cOFdb9V8HPEgr6K3pPS+F6jVIu3tb67Gf5G+WZQkVKK4EzHeqFQwCQ0kuQ75FCogFdah\nHuhhz2930CgXmV1vkGi2yJVK+P1aGo0WU1NRnnqinUY+y/kXbyFZRb74hVFq5TIv/tttyoUqequR\nSq5E1Wyize9kfatILpzi0KNjzM5EUalUNBogiAI6ncS9e3FKpToPPRRkfl4xWpuejqPXq7mwfeN/\n7LEebt+eRZIETCYNd+5E6etz8vrrq0SjRfbs8REMWrBYNDSbijX84cNBUqkKly5tsG+fn1qtRa2m\nbGsVCjV6euzbnI+3CvPC4Y0PXBm/W3xYPiONWo2NS5cohMM7721ePM/YsUdQCV1IkoDNqmWkS6S0\nNYuothEY6CbaY2djYx1Q3CO7uqw0qlVeenGeYhEcNlnhS3S145SVlXk0nMHrG2BhUYUkqTCbNZhM\nGlwuA4uLy9jtVmRZxcJCiv5+J9FogbNn1+npsfFv/zbP7GyCP/qj/dy5E+Pu3RgAExM+fu1YJy+/\nvMTCYorIVp6JCR8DQ2p8vgC1OtRqdYrFGuPjXmRZRq9X4/OZMRq1qGSYmY3jd6khXyOSgpatQWVp\ng2vXI4TDeY4dtdFtcnDn5gZqn5cXzyfp64PHHusll6uxtpahXm+xspJBFFUcOBB4UzHa1+cgl6uy\nvJymUIgRCAQ5cCDwCxcA9wsmk2bHrBCU5G6Dwb1TTL4XNJsy9+7FyeVqVKsJtFoXiUSJu3djHD/e\nRaXS4Nq1LVZW0lgsOrLZCplMhfZ2J9js9Lf50TfzeLv8XJqu8sw/zzEwIOL3txOPl0inqyQSRZ79\n4Sy5XJVSqcHhw+1YrDp+9MMZNreUTunUVJRmU6avz8HIiAejMY/dosYgV0jMzbKr14jJIKFRC3zx\ni2NEInni8RJWq45kssS1a2FsNh3xaJCeHhuf+sqjhBMVXvzpDTY2VIgCzM+nOHbQSTO5RSYS5/O/\nNYA5EOD2rQ2K+RJGvYhLI9Iqp2k1GlgsZopFHdeubZFKhTl3TsmwamszUS7XiUQKBAJmIpEibrcB\nv//tt2w/Kj4jly9fRpIk9u3b90A+/4OMf4PE+m6KkY/i/N8NPh4l7QeA0ePB7PeT29gAFOtiTSHG\nnsO7uDe1pahqHDb8bRYaejVbaYm7ixtsbJWRZTCZtESjRSwWLS1BzU9+cIVmvYmr20DLZ+T2pSXC\nl+5SrskY7DYks5VKqcxQd5CBoJrV2wniG0ke/cQgpVIDnU6kr8/J/LzidZJKVchmK3R12YlGi1it\nOmKx4k4aarMp8+ijveRyykptfNzPf//v59jYyNFsymxt5Xn66WEKhRrXr2+xtJSmXK7z5JMDVCp1\nVCq4cydKLFZgzx4lVK/RaDEy4nmTA+3HGeVkklIi8ab35EaD7NIskqaPEye6MNXizL10hnKhTHJa\nxUR8jT0Tk8iyBVnW09trx6vOcf30dRbOztISJFS7+xg/0MErLy8jt2RCq0kGh9zo9Yr0c3ExRbXa\nZP/+NjY2cmxuVqlWy0iSgNutdK3sdh0dHVYqFYXv8OUvj9FotHjhhQUSiTKSpGJ2NsnXv76PSLSA\nz2PEZBBpD1rJpFMMDupxuQyEQlmGhlyUSnXcbiOXLm3wgx9M8+ST/YTrDW5dWcF0tIPNu2G8gz28\n8OMF+ncHMBgUxdjr50Ls3buLdN1An9XM3FyKcrnJY4/10ttrR60WWF5O02zKdHfbCAQsJBJFNBoR\ni0WHVitx6JDCb1pbUzM01LNNCk5hNmtxuQz33SLe7zfR0WHZkZqrVNDdbcfrNb7nn1Us1shmq296\nT60WyOWqzM8nWV3N8OMfL9DXZ2d+PkU0qmy/xGJFegNqLLoUyfV1SjWYulFkcrKdYjHG3/3dVQYH\nndTrLXp77Zw61cPaWpbp6QRHjnSwtVXk/Lk1Tj3axz/+401KpQadnVZqtSayLNNqqRja5UbdqrJx\n6wrL0xuYvR52DTmRBZH2gBmVSrWtHlRsCvL5GolUhavXZ/mt3xqmt9fJ1NQ8oqgnHi/z9JMBrn3/\neQqxGLVShfzKIhOPHCS9liO2kSQyI5A/0MUnnuhDazZTqTS4dGljpztbrTap1Zp0ddl2ruVmU2Z0\n1ENPjx2LRfdhneL7imeeeYYvfvGLH4kog/eKo0ePvmuS98cVv4xixAv8fz/3XgT4/DsN/NM//dMd\nVu7Q0BAPPfTQTsW1uroK8JbXb+A/f73j6FHuXr5MKptl8KmnyK6uAlUOPdKJ1dOJtztIvZEinc6j\n06kZHnaSTG5hsehotdR4PEZ8vgbReAS12YpYKdLVaWN1+jbVTIO2Xj/GTicqUaJZFCg3BErlBGKj\nwsnPTHLuSoJ0McTBg+3YbF5eemkJg6HIgQNOlpYM/Md/zHPsmJVUqkS5bMJoVDM6qkGlUpFKldnY\n0FEsbmKz1dBqnVSrDbq6oNGQqVSavPLKCk884aKtrcWxYxOEQlny+Qhf/Wo3y8sywWCJ/fv1bG6u\nsbkpkUqVgSx9fXZOnNj7luPVasmsrKwgisI7Hu8P+vrnz9c74RdV3CpRRPULgqRUgkSp1KBWqRGZ\nukEyquxzG4xqGpUqtY0lfuPTT4JKoJyIE7owTXyrxsZamlq9QWQzw8DD+3jykwMIAhw/0YXVpicS\nKfODH9zbXskqqc7z8wnyechm4zSbMlqtiN9vpKPDwuCgg6WlNF/72j66uqycPbuOyaSlXG7QaLRo\nazOxuprB57MgN2qY9DpCa0mcbjNWq5Yvf3mUO3fiZDJl1tezfO5zI3zzm9dQq0VKpRqCICBIEsVS\nk6YMbUEHvbtNuNxGstkq3d02zpyREUUVTz01SD5fJ5EooVKpqNdbqFQqOjttO7L4SKTASy8tkclU\nkCSB/n4H/f0ONBoJu12PTtfHhQsbrK5maDRaGAxq9uzxMjLifVfn8P3ijeTu7u486XQFh6ObQMD8\nvuSl1WoDt1uPXi/RaLQjScK2sqa8U5TlclWq1RZzcwnUaoFIpIhOqyJ0r8pXvzqOEFqlmEyye7iN\noqznekjHl740RjJZJJOpsrKS5sSJ7m1vmzDZbBWNVkJv1NBqysiyCrVaWXSYTBoWFlJ4PUHGx/QY\ntBrUu3eTK7YwOBxceG2LXKGGy2mkt9fORijLlath4vEyY2MewuECjUaLTKZCIGCmUjFy714EtVog\ntZTBoavQ1u+kUatTa4lMX7xL1559bKyliacriAsFRk/Y0UYVwncmo2yJeTwB9PoS5XKDQkEhzGu1\nIvv2+fH5zO/qWH8UOCP1ep3vf//7nD9//oF8/gcdf+jQIW7dukWpVMLwDq63H8X5vxv8MoqRKHDi\n/Qz8m7/5m//yaz//C7/da63Fwr5HH9153ThwgGo2i6TXK9HjwL17dZaWiohiA7fbwMmTe9gKZUin\ny/T0uDh5xE8lneTUp8aweF1UZq6yenmRoQMnePVqgdM/WqGQr9K7q53f/r0jBIUwq6sZbs9uMDLe\njc05SKFQ41vfuq1EgO92s7KSYHDQte1c6kOWCywuJunosHPpUgpZlnE6q9y4EcZo1NBq1XA6s/T1\nOVlaUhGJFBgYEKjVmlitXvr7Jb71rVs4nXrCYSOi6GB4WGk/nzsXIp0usXdvG3a7DrPZQyYjUSzW\nMBo1dHV1Ua8r6oH5+SStltI6fsNL4L0c7w/j9XuBwenEEgiQXl7eeU/UavEO9ZPahNhmmWqhtPM1\nl1OPpBaplUo0azU0BgOlRIJcLI7B4KbelGk2ZfLJLJsLW1gdVjr7HJw+vUq+2MRs1jIy4uXWre0t\nkGOddHTY+PGPF6jXW1QqyjFTiMMpOjpsVCpNvve9e5TLAW7ejDA/n6S93UKrJbOwoPjE5HJl6nU1\nkqQis5igXq4iqRr4vAZiMQPHjnVw61aE5aUUpVIDs1lDKJTn1KkuSqUa3UNuTjw2QKkiMzUV4ebN\nLQwGNfsPtPPwwx3o9WpisQLJZBlBENi1y4XL9bMbWyql+Ni89toqGxt5BEGFKKq4fn2LI0cUw6Xe\nXodiIb6U2uGPlEp1bt+O0tZmue8cEoNBQ3+/832Pl2WZu3djTE1FWV/PEo+XOHiwjVqtwfJyBpVK\nxdmz6zzxRD8+n4lGo0WrJTM/n1S4I6KKRCbDxmaBoeEe5lZqXDq/QkWy8tzzi+h0Er/3exP4/YqM\nWC2CzykyMmDB4zGwvBDlxLEOMvk6gYB5p+PSaDRZW8vyxBO9/NtzMwwOuMilaxx76nHOnV/jzt0Y\nyWgWh12D3WnmkU8MMDcXY3zcy/iYh1dPr/CZzwwjSUpCucWi49OfHqTZlImEFqnkmuzf50arUzMz\nkyAWytLpsFGxdWB0qVA5bKxulsmVI4yMeBBFxdiwXm9y6FA7N29G0OkkjEY1IyMffTXdz+Pll1+m\nu7ubvr6+Bz2V9wWj0cj4+DgXL17k1KlTD3o69wUPMpd4H/ASMAL8FD64s/C7XV1LWi1Gj2enEEkk\nity6FaFQqJPNVqlV6vi1GR47YOALn27jE7sq5M4/T+jMK1z57o8IX77ERjJN2/g4mXSZrY00cqul\nrNAEieXVHIa2DoKjQ8h6O1vRKq1Wi1deWaa314bTqd/+w9bQ1+fg2LFO/vVf7yEI0NZmIZst0dvr\nYHDQycCAE5OpxNpamnJZya2x27VUq00CAQvRaJF9+/yATD5f5StfGeFAWHEAACAASURBVGdw0InL\nZcRgUFOrNanV6mg0AmNjPmRZplCocfduHEFQUanUyWYrTE/HefXVFa5cucv6epbXXlvj+9+/x7Vr\nWx/0tHzg8/VOYwRRJDA5iW/PHvQOB5b2djqPHcMaDDI66qW9242rsw2dXqKj04rBqGF2Nk6yKHL1\nwk3iy2uoBIFCpkwrG+PQsV6MOhCaFbxeA8P9ZpamN4lGi8TjJV58cZFwOI/fbyKZLDM1FcHnM/HI\nI3YcDv2O2uull5aQZRUXL26QzVaIRwuEQpkd9VIqVaaz04YoCtvjFAXD6vwWpXgMnz3H+ecuUEun\n+PVP9iBJAtFogUi0wPi4B4ddh9WqXEOf/exuREFAFFRsrqdxWLVkkkWmb23yk+em6eqSGRpyUirV\nsdl0PP54D4880rPTVZibS/Dii4vMzyd5/vl5Tp9eYWkpxdWrW4RCOTY38xgMahYXk9y5M/8WKW2p\nVKdQqL7l3NxPvJ/rJxYrcvNmhGKxjtNpoK3NzPT0/HaXsYFGIzIx4SOTqTA5GcDnM9JotJBlFUaj\nGp1WxGLWUSuXyTcNzC0kKYa3aPPqOXXcQmeHkhCu0QjYLWrsZoFWscBvPOZnyFUioMtRT2zS7tPz\n5Cd6OXasg+5uO+Vyg9/8zWHy+Rg/+rcFzl/YoFCWmV/OEUnU6egwMzpsx+XUEwyacTv1fONPDvLQ\npJ/ZmQiPnurCaJQ4e3ada9fCFIsxlpfTDAw4GNzXj7/NwsZmgZXVLA6ngUC3h82kTLYElaaE3WFg\nZibB2lpmu1Nm3T5emxgMGh5/vJcvf3mMJ57oZ3zc9562Ot7reXo/5/Wdxj/zzDN86UtfemCf/2GM\nP378OGfOnHlgn3+/xz9Izsh14NF3/K5fAgqFOsViHbVaQJIEPOo0hlaJ9IXX0Rn1zDz3PHq7HfPg\nCDN3EtjEMj2PHURIxNlKNIjeuondasXaFcDk1DF9O8zBA350JgOrm0sUK2VAWQEPDbmZnAyQTlcw\nm7V4PEYuXgzhcCjeIfv2+dFoRFotJVn29OlVVKoGpZJSRLjdBrq7PYpLogra260cPBggm61gMmn4\n7nfvotNJtLWZuXx5kxMnuvjDP9zHCy8ssbKiKHq8XhO3b0cxGCQOHGjjzJk1YjGlIMvnowwPK5Hf\nKysZfvrTJQYGHLjdH+2VkNZsJnDwIP69e5Vtm+2bpdGoYe/eNro8xwn5NKQ3la5EsNuDSpS48uxL\nrBl1PPTEJBa3ndlzC2jVah7e78DSPoK1PUAqUWQrlKTNZ0HSSAQCFi5dCvG1r+1DqxVxOPQYjRJ6\nvUQwaKHVanHzZhiXy0ChUGVpMUWw3UhPt5VUUpFBPvxwB3emoui0Inv3+lChJCyf/LUg616Z2IaE\nztBkPabi2X+5y29qDXgCdj71yX6uXd/CYdciN5oE2y3UKzXuziVo5VKEKiZOPzfFvoeHGRhwsbau\nxm7TIgmQzVbo73dis+kwm7U7suRMpsyNG2EkSbUdt1All6tRqzXJZiu4XAby+QrXrm0higKdnTJ2\nu5V4/GfdpvdiD/4gkU5XqFQaO68FQcXaWhazuUiz2SIazePzmSkUqqhUMqOjXkRR4MyZVer1Jlaj\nyECHl9h6GL/dR7Nex2ER2bg7h9kqYFJVKGZ1VMsWHj3VyWCbzGwohCaW5tpPztM3cQhBZcNoFujs\ncHDqVBe3puIMDDgoFmvcuRNFElXo9WoymSrpjBJSaTVrWVkJYXLaeOm523jsavo6DRzY62Oo34bZ\npObFny5hNqqpN8Fq1XHy5CgajUgqJmPt7Se/vsbtmxvsP9zL6GN7WcoYOHBAhYY6lWSY0HqaYspP\nV5edo0eDOBx67t4t4vMZ6e93/kL5brFYY2UlTTRaxGbT0dNjx27/aDmbFgoFnn/+ef76r//6QU/l\nA+H48eP8+Z//+YOexn3DR//u8R7wflv9ep1In0+mnkthsJrQyjKRy1Os/fRV/OMjJBaWsXidNCU9\nfV1BxHKK6twCapcNZ2cAz+4RNEY9DUHH3N0Q/k4f9UqdlduLdPs1vHQ2QqPRZPduD41Gi9u3o+Ry\nVUZGPMzPJ5mairGxkaOz08rCQhKdTs3FiyEmJ9tpNJo0GiaCQYFKRVnVTk/H6e21Mzzs5vXX1/mn\nf7rFH/3RfjY28gSDVvR6CVFUIYoC8XiJYNDGoUPt2Gw6ZmcT3L0bZc8eL4GAmbm5JMlkGVmWKZcb\nLC9DqRRmcjJAIlEin68Rj5fuSzHyfs7XO40RpF98STva/Vg+/Ulmby6h3VWlHN7gztkbqKp1ksUG\noalZeiYnOGDzcefVK4iSQDJdp6avsJUoc+XcEpY2P6WaivZ2C1/84hjlstJar1abbGzksFp93Lp1\ni1isyN69fpxOPfPzKQRRhcWio9Fo4HIauXxxlYlxL7/71TFcTj03r61z7/oKXUPt5LJlxYBvOMC1\nKyF++uN7WB1WLl/eJJlc5MjDnQwP2DFqYXdQpGPAz7WrWwjZCHM3l9l3cg9Gm4XL51Zxu7SUmhoS\n4TSVUz1shZNshssMDCgEyzt3Yuh0IpHlTerhFew+CznZzNiYl7Nn16nXmzgc+m05p5+pqSitlkyr\n5eb4cdNOMSKKKvr7HTuS2F8W3s/1o9NJb1LkpFJlEgktxWKdCxdC5PN1rFYtf/zH+7lyZZNkssxv\n/MYQdrtiNgYQ30xgMbVjMTTZva+bs68ssDm9js6ow+11MbrXQUevHZtQ4LVvfp9GsUSnf5JCPE3l\n6hWK2g7yhTov3w5z9IlxyjUdUzc2yJWamIxG2oMt9kz4WFtOUq3UGB52sRHK4PLbmZtN4HEb8DjU\nnP7uy2i0asZO7sXd3oWREnqDAUeHH51Ow+uvr6NWC3R22qjZ+hG0Hk4dOEKhoebmep2jR13oKXLp\n1QUsNi39/Q6MBpliVpH1jo56GR39r3lA1WqD8+fXWV39mRv22lqWU6e6sVp/Rmp90JyRZ599locf\nfhiPx/NAPv/DGn/48GFu3rz5jryRj+r83wm/UsXI+0UzvET62llCKwmaLdgz7kUtQrNaQWs2Yw74\nsfnc6K16jCao5gVqxTLTFy8T/PRvoxIEpq/MozFb0JjN7D3Ug92q5l9evcuBR/byhKGHe/NZPvnJ\nftLpMpcubeLzmTCbtbz88hI2mx6rVUtbm5lnn53B4dDx5JMDRCIFjh3rAmRUKvB6TdRqLX7wg2mC\nQSvLy2kaDZlduzz4/Was1tQ20a6Ax2PEbtfhcump15tEIgVu344Qi5VotWRu344yMuKlUKgBinfL\nG/v92Wx1R7LZ1WXbuXF/HNFotEilSsgyOJ16Mk0TuVKdaiyNs7cHmg3KqST1ao1caJ2RJz6F2h3g\n4iv3EAUVgiiiqueo12VklUA8XsTlMtJqyczMxHA49MTjRc6dC/H44/382Z8d4caNMMGghVyuSqFQ\n59q1Leanw3R2OTCatewZ91EpFJGoE9mq4nZokTQiZ15ZRKuVuHl2iVimiddrYfduD7LeRiJRZOrm\nJm6njjvn77Bnog2DxQRaDbN3N2nkSzi7OlCptYwd6OH8a4vUKjXKNZnhXW4W5+I4vFbcbsUvRpIE\nBAGi8yusXbzC1ItTGIwa7O1+Jh8+vi2XlTEaNRSLivS31VJIsCoV2O06Hn64Y6dbFwhYPhbKLJ/P\nRHu7hfV15QFaLjfw+82sr2coFhuEw3m2tnIUizVGRtzcuBHh5s0wPV0WohtJGvUmew90UG2AChlz\nbgqv18iWzUA8ViDY2cJvqqPTCtRbevo+9WlaxSypQpJcTUKfK6Dx1LF4zeiNSZZnQnT0tbFn0EAk\n3cLTZufUIz3cuxvlO9++hdmi4U//j2OMjbdRKzlo73TisanYuDuPUCtSrgqsXJliT4+IU07QrNto\ntdqYnVUsAs6dW+cHP7jH3r1+DAYNY2MejEaBzc08UqvJ8kISd4ePrUiJhVAeg1RHNlp3umZvh1is\nSCiUe9N7iUSJzc38m4qRB41vf/vb/OEf/uGDnsYHhtFoZGxsjEuXLn2sHGTfLX6lipH3o28up1Ik\npu8R8OrQCHZC61kKG2s4OtoRdXoko5F9v/MlkgtziIJIoVzEO9hLUaumXmtRuneF3/39TzK3uotM\nroGnzUqg3UY2U8ZgNnH9tbt0jA1iMGi4dy8OyMiyTK3W5MKFEHNzST7zmSHa2szbq04Zn8+kJMvG\ni5jNWh5/3Em1aiadrqDRiHzmM0NotRKxWBGzWUMuV+PZZ2cIBCzodBL9/Q70egmzWYNWqyaVKhON\nlggGLezZ42N1NUMkUiCfr9Debt32NJFxu/WMjWmo1SxoNAL79/vp7rbdtxvLh+Uz8l8hm1W8VjY3\ncySTZXQ6SeHXaHQsprQs3QthdKoYHezC2QFqowGdQYvXbyVgrtBqtrh9PUO1AY89tYeFtTKOUpPB\nQSdqtUCt1kCWVQSDViqVBjduTLNv3xBtbSa0WgmHQ+DVV1eQZZmZ6STZbIUv/s4E+54epFXKU62r\niCUrpNI1RElkZjaD3WVm36E+spkS8/NhBna1kSlCqSHj8DkQNGo8bXaMXh+jY36iKyEGd/t56ccZ\nFmeWmZtLMjbZz+99/SGS4RSyqIZ6hbVwmL5dbTSaRXK5Km63nrXlBDcXlnA5jBz+jSPMXp2Dcp7E\nzDQ6Yzf9/Q6sVh0//vHiNklai89nwmQqodVK9PS8sxvk/cT7uX50OomjRztYW8sQj5fo7bVz7twU\nL7+cQq8Xt38vG5ubOUwmLZlMhXK+RPTKXQqxBP0DLkzRMFpXL+dvFxmQyowEmuwdmyBbLSCVZSS7\nmavXY4RWEixPLdHZ4+KrXx1HK1eIrW3hnpjg2p0EvXsHGdvXSSlXor1HxWNtVlKpCMvrMj/5yRI9\n/W6CQTM3r2/QN+DmC58fYW5qnTM/nkKlsVNVm6mmkgzv8iCkN3nsySHKkpW51QqGQZF/fz6yIz+f\nn0/SbMocPNhGtdrE5TJw5fIGnV1WLl2NcfnCCmqNGr/fyOJcnFAoi8djfNtjXKs1d6IW/jNKpTen\nOT9In5GNjQ2uX7/Oc88990A+/8Me/wZv5O2KkY/y/N8Ov1LFyPtBrVSiUS6jVos4nQYS8RI1wQCC\nQPDIYeztATYvXaSaz6K12Og59BA1RKr1JpqeESIaP1d+cAHfUB/7joygE1W8/C+vozFZGT8yzL//\nv68xMKnB59NRq9VxOAykUlGSyTJ9fXampqLcuRPj8cd7mZjwMTMTR6tVVjThcAG1WqC3V8XVqyGe\nemqYwUEn58+v09lpxWzWcu7cGplMFVmGjo4CJ050cebMKvF4mcFBFxaLhm996xbJpOKqub6e48SJ\nLkBGrVbUNG/ICtPpCj09dsbGBlGp2Jadmmlre3cSvo8apqairK1lCYWyrK1labVkvF4TW1s5QrEm\npUIFWWwxfTtE78AE3SM9CKKIrDdj6B9FquYYsMncms7REHRMTioqDodDx8ZGHofDQKslY7fruHUr\nisVSYX4+zU9+ssDnPjdKuVwnlVIKSJfPis2moxhPISXL3L0d5sxP7yFp9fhGdpEqyPzayV5m5tNY\njCqMeiOpQp3BsQ4uXQ1TyZbweM2M723H5zGwvJLhhf+YQaLOE091MXagSiFfQRJVaDQC1WKJPQc6\nmbq5ycJKnuG9PsXWO5mjs93EKz9eoTNoIrq0xXrIyPC+HrofOkC9VKS/346uu5dGQ8Zm07J/v59M\npoIoCgiCCo2mhcv10eIFvBeYTBp271Za9plMiXv3Fra7jkqXpL/fSSJRRhRFzGYNHmON5QuzNOsN\njGKVQMCCqtxk9+4xyKvI3H6FxtoWJanJxORerkdUhKMlZElL20AnpWKRS5fDHNo7hrd/P6dfXkRr\nNOJuc/P9793FaNJiMWvxe3LotRnUkpfeHiUrR9VqEo8V0Rm0hCMFzG4HapePtYUwLreLY79+AJvL\nxFqhgK1QR9MMkb0xi28syK4+J9evh9FohO1IBwPlcoN4vMjwsIvZexEmhoxIagGHy0SrKeMN2Onq\ndbK6mmF83Pe2x9Fm02E0qikWf1Z8SJKAx/P20tNfJr7zne/w9NNPfywSet8Njh8/zl/8xV886Gnc\nF/xKFSPvpxpT6/VIOh31krLas1i1JOJNerv60feNkLz0Glu376B3OgnH68zPPMfxr3wKr9NDaayN\nK8/fRGe3c3cdXp+d4beeHmTkyBjx9TBOp44vfOMR4iUtn5j0oFIpe9VqtciVKxvodBJ//Mf7KRRq\nWK06trYKjI56uXMnCoBGI2y7qWoplbIUClWMRg2HDwdZWkpx6dIm0WgJm00RIt2+HcHnM3L4cDu5\nXI1du1x8//vTVKsNDAYNs7OKRbzZrMVi0XL0aJC1tSzDw26Gh900Gi28XiPj416KxTp6vfq+SjXv\nB2fkDZRKdba28tRqTaLR4s5WUzpdZmsrh87lYaTTSbOkSFhzggNbZycATqeRMgZyVZGOIQvnbt3j\nwktLeL0m3G4DTz01hM2mZ31dMd9Sq0UkSWBsbIjXX1/dUb2Mj3vR6yUkScBs1uNyG7HqW4RWEty6\nsko1lUJtUlNYEalZe9mMlHG5jBQW1xDlFhN7hiiVq8TDOSrVBsNj7VQqTV746Rp2q0RsLYIkyKhf\nXcHjt3Hy1ydw2STKNbh4JYLGbCZVVPHIr48RCJhZX4xw9CEv0UgBbS1NKpTB4rKxtFnn3/91iiee\n6OPepWlE68N85hMuDAbF2VSjkbh7N0Y+X8Nu1zE+PvCRMLp6N9dCo9EkHC6QyVQwmzX4/YovSbPZ\nIputoFYLTE7upl5fo9VSpL+zswkmJ9uJRoscezhIK3YPjQSiVk2zqXQ1NeU8Qr1CUe1APXgAIR3F\nJIJ5YITk/Do3bkQolRpUKzV8bj2jahOGtg5++vwSFZ2bPQfaef75eaZuhjBbtNgdBgRZ5vf+YAKP\ny4DdpmErlMVituO26TAY1KTTFV59dZVarcHhU7sZH3Fw+fQ016/MYBbKlNJpdh8Zw9XmJHp9kY6A\nirExL/PzKYJBK1arwgsZGnJhMmkIhwu01Do0QotgmwGVKOD3mzE7FC8RQVC97TF2Og3s29fGrVsR\nisUaOp3E0JCLtrY3E10fFGdElmW+/e1v8/d///cP5PPvx/jDhw9z48aNt+WNfJTn/3b4lSpG3g8M\nTifuXbuITk3RrNUItFtx93YhBIbIbmxRLDcQHV5yFZlcroRWI1DMFXAP7WXm/DQap5uKZGJ+IYvZ\naeHc+U3a201U6laODnYiqiVMkSLpdIW5uQSSJNLfb2dyMoAgqGg0WjQaTV56aZnZ2QSf/exuXC49\nbrdxR3o7NRXDZNLQ3W1ndjaBSgXj437C4aJCTqs1WV5Oo9dLJBIl4nFFeTM87CYaLWE0qkmnlc6I\nIKgolep0ddlYWEhup3uWUKlApVLRbLa2yZcG1OoHqfz+YNBoBLRaxcH2P3NelPAvFfl8ha4uL5Lk\nBsBo/9kNVGnlKwXf9etK0N2RI0G0WglZltnayuH3W3jqqSGq1SbJZInBQSeRSJFqtYXLZSQaLWA0\nBnnyyX7W17NYrVri8RKqfIKaxkSmJOPoCKDTCogaDZ1ddpqCCo9bR1ByQiFFd7DB9FKBow95KFRV\nJDMVpqai2BwGJEnA0e6nVmuQyrWwu2WuXY+xa5ebO3diaLUS1WqTYrHBxYshTp7sJrkRY/Vmivbh\nbuR6nXK1hdHZTja1giwr0vRAt49MRWJrq0BfnwOAzk7FkbVabaDXqz8W3BBQOntXrmwyO5uk0Wgh\nCCp6emzs2uVhakrhT4miivFxD6dO9TAzk0ClUvHkk/07RPF6vUUr2qJYqhOPl8hkqyQTJUYmBxga\nDTC3mCPbNBIpefD5TBTqaprNFqKoXH+iqKXSUGFxmCnVVaQzNbxeI+VynfnFFKWqjFiqE+xQ08xn\nqaZT2L1NnnqimxdeXsXtNZMttLDbdeTzNZLJErdvR3ZSh1fiAo5gB83oCpLFwfXLq3z604PEVjbR\nFhNM7h9jeNiNXq9cux0dVgYGHLRaCnm3Wm0ycrCfM68sImoknH4nWp2aoSH3uzrPQ0Mu/H4ThYJS\njLwhW/8o4PLly5TLZY4ePfqgp/KhwWQy/cryRn6lipH3u1fl27MHk89HOZVC0usx+f00VRJTxSJb\nghXR4oJYHIdNh683gMVhZfbKJdZvh1me3cLd2UawZ5C6oN7+g1dMrmLJKqOjNrw+My+8sIjFoqPZ\nlInHyyQSStjd88/PsbaW5ezZdXp7HXz3u3f40pdGGRvzcONGmHK5yeHDZjo7OymVaoTDhZ297t5e\nO7dvRzCZtAwMOInHS+zd69+5cYVCObxeI5VKnUJBMesymzVMTPjQ6STi8SJut1JwyDLbdtRpZmYS\nrK5mMBrV7Nrl3k6S/fBxPzkjkiQyPOwmlSpjteqoVApotSI+n5lisU4kUkSSRKrVBGaz9y38B4fD\ngNGobF+JokCrJXPu3DrpdJnRUS8dHSKrqxkOHWqnt9fGzZtR4vFN3G4DoqjC41F8Xo4cCTIx4ada\nreP3m1HHF0htxOgb9JJP5VDKJIFyscKRk1045DixuoqW1sK9OzNkFhO0XF3MLjbQu9x0eczkchUi\nkQJjYz4lZdioZnzcRy5XJZ9XHgqjo14WF9OsrKTJZqt43DVMOiuiVcDf4aSht2PQi7QECVu7n84O\nCzafG8nuRq3XUyzWfu54CkiS5n2ft/uBd5pHLFZkbi65E67XaslkMlXOnFkll/uZJ8qrr97i5MkJ\nPv/50TeN1+kkpqfjqId3MXVxHpNJgyxDtSVQtwfRmww89JCV3l47m5sFNjfXaW+3cPhwkOXlNKFQ\nDr/fjNttQKMRKBbrfOITfdy4sUW12kSnU1OpyeyZ8GAVC8zNzZOK6LhwaxOd3c5XvnScWKrJZrRC\noVBjcTFFV5eN1dUMkiQoickqATRqtAY9cqtJtVRjI1whUiwz0mVgfI+ftVCeQMBCIGBhdNS7Q04/\nerSDqakoDoeez31pL/l8DZfLQH+/g64u27s6xqDIiN+OV/agOCPf/OY3+frXv47wC9yZfxmff7/G\nnzx5kpdeeum/LEY+6vP/r/ArVYy8F8iyEipXqTQxmzVY29owt7W96Xs6hjvILg9gdluRywVS65u0\nTY6Ri8apZLIcPtZLOpFDqJXwGBsUtXoGBpyk01Xm5xPMzMS5cmWL8XEvJpOGixc3qNdb2Gw6AgEz\nGxtZjhzpwGpVwrI0GhGrVcff//01HA4Du3e7sdnA6VQC0qamYpw9u4bBoCGVKtPebiGfVyLtC4Ua\n+/cr7qr37sV2VBCHDweJxQrcvRtHkhTXTZVKxdxckocfDiKKIul0GVBuKoJQ3ZFwFos1cjklFdlk\n0uxsR3xc0N/vRKMR8ftNbG7mt91GZQ4daqdebxGJFKjXjUxOdhIMWt8yXqNRipdotMC///s8q6sZ\nmk2ZdLqCx6N0J15+eRmv14QgwK5dbtrb9VSrCtlzczNHpdLg+PEums0W1WoTi2cAfS2NztHJ6dPL\nrC3HcXa00Tfgp9On4af/ss71Cwuomg2sfi3t3g56ehzcSza4fTvCiRNd1GoN9HoNBoN62zBNh0oF\ne/e2odWKLC4mkWWZUqlOLlel0WhRq8vcXc1w9HCAbK7OwG4/S4tJ/C4b/UYLPp+Jy1NJnE4DPT3G\n+7bCbTWbCG8T3/5holis7chx34Asy6yuZt60/SjLsLSUZtcuD/V6k5WVDMvLaVQq6O21k0iI7Hn6\nU6TX19Fotei9PsI1Pel0Bb2+yaVLmyQSJSqVLJnMBlarjuPHu7DZdKyuZlhaSnPnToxEokx/v4PO\nThuCoOLAAR8ejwGfU830qzfo7vdiNUJN1SCzsYWYj3Hzag6Ty4XdrmzjtrWZOXIkSEeHFbtdz717\nMco1CYvZQStXwNNmwyDW8PqtWHr6uXorth182M7goOtNwYZer4lTp5TFilYrvcXI7uOMdDrND3/4\nQ/7qr/7qQU/lQ8cTTzzBN77xDf7yL//yQU/lQ8WD7Ld+Dfjd7f//X8B3f+7r8hsR1R826vUmN2+G\nmZtLUqs1MRjUTEz4GRpy7XxPo9Hk2qVVNLkNNq9eIxtP4xsdxd7dxcv/z79g11Sxex3ktD7WNwto\nXH5Mnb243QaeeeYOyWQZh0NHW5uZUqnBI490s7mZZ24uCSgy0y98YYTeXic3bmyxsZFnZiaG3a7n\n7/7uCgaDwtcoleq0t1s4dqwTtVrg2WdnkWWZ//bfDvOG9DKXq1Is1nf+L8syarXA8LCLer2JLKsQ\nBEV2d/NmmOXlNH19zp3gM0kSkGUZWYZXX1UyaUwmDeVyHYdDTyZTBhQjpt273fT02O9L2JRKpeJ+\nnfNWSyadLm/LUvWoVCoqlQa5nNKqttn0mM1vNQGORAp861u3uHEjzNZWDq1W2laZaBkZ8RCPFwkG\nbWQyFXQ6ke5uG0tLaTIZpQjo63MwMxPHYtEq2SQagVOTNshEiCSqNHQOii0tM/Npjj3k4Z//+kfE\no3mSiTJmiwaz1cSjnxohKXgol+t4vSYsFi2hUAZJUh4ssgyvvLLMww93cuJEF6+/vk44rHBhFhZS\nO1tvogCtRoMr55bYvduNRq1i974eOrvtPP/8AolECafTwGc+M8TRox0f6sMpv7VFfGaGSiaD2e/H\nNTyM3q50o+7XeQ+H87z44hK12s9kqm63gVAo95bY+44OK5/4RB9TU1GuXt3cUYlIkkAwaOb06VX8\nfjOxWJGFhRQul57/7eujzN8Jcf31adR6PTqXh9VIg2DQSrXaIJOpcObMKoGAGbNZS7PZYn4+yZ/9\n2RGsVi1arcStWxEykSSVcIi+bjMLF2/Q12nEYtbiGR6k2TGOWqvh9OkVnn12llZL5umnh+nqstLZ\naWNqKsbp0ytoJJjYZWa4W8/qnSUEq4tk00qgXXFp/vznRxkcO9yAoAAAIABJREFUdPFRwv38e//b\nv/1bLl++zHe+85378vMfJBqNBl6vl6mpKQKBwIOeznvC9nPjFz48HmRn5EXgf27P4RJvLUbuG7a2\n8ty5E9u54eTzSuKt223YWRGm0xUy8zNsXrvB0lIKQVBxb/EyJ37Hjc5sIp+rY2vUcBuz9BxuQxvo\n5vRUjVKpRi5TJh7N0Wo2GR52odEojqC7d7sRBNjaUnxAnE4D6XQZs1nLvXuL9PQ4sNl0PPKIkvSp\nUim+CNWqEqg2O5vYVtFotj0fBLRaifX1OMlkCbfbiMWiweczEQ7nuXUrilotMDLiYdcuFz/5yRJu\ntwm73UC5rPhfNBotHn+8D0kS2NhQvBd0OolXX13B4dCxuZknk6lw8GAAq1VHOl1Gq5Vob3+rG+NH\nGYKgetNqv1Cocv58iM3NPM1mC4tFy0MPte+Exb0Bl8tAR4fCl3jDGrxabVKtNpEkkdFRhewbDFrQ\n6UTm5lLMzyfp6LDi85lYX88yM5Ogo8NKKJSl2ZTR6SS6u4O8PLVErZYkm62iUqmwGCX0Rj25XBKV\noEKr12Jzmth1cJBUWeLs2bWdbTq7XY/FosbtNvIP/3CNhx5qR6+X+F//6yYTEz48HiPFYo1Pf7KH\noEeiki9g8vn5x3+aIldWkcjJ1BpN5n40xze+cZATJ7pptRTZeV+ffacQKcbjFGMxBEnC5PWis735\n+LwbFONxVs+coVZQeA7lZJJSMknPI4+gvo8qB4/HyNCQk5mZBPV6C1FU4febcTj0zM8nd7J11GqB\n3m4z8dUNbl1cplyU0ZgUk79Go0UolGd42MWlS5tcuxZGpYJdA1ZmXrvKvdk05WyeeqFIKpxAdHSw\nvNzk+PFuVlfTuN0GbDY9y8spxsa8TE4GABXXr21x6FCA3bs9VDt0rJxZZvq1K5gMIrNzKfbtb0Pn\nCxAttWjkimSzVex2xY9o1y4XN29GeOmlFQYHnXzhC6PbW3RVJLeTNbnG3XNxGo0cBw8GOHKk/W3/\nXt/guPyqQJZl/uEf/oFvfvObD3oq9wWSJPHYY4/xwgsv8Ad/8AcPejofGh5kMbK2/W8TaLzdN75b\nvNu9qmi0+BZ9fLGo5NK88cBqVcsk5heRWzLVapNKpY7QrDP78lkCo4Ms3bhKcm0Ta4dA94SVss2F\nKEQx61Xo1DJaSWZ02I7TrudWKMbCQpLduz0MDTkZGnLT3m7m3Ll1ZFl5+DcaMnNzCYaHXTgcOlIp\n5aFfKFTp6lK2cIJBC/39DkKhPFqtiNms3SZKqrl5M0ssVmL/fj9LS2nm55OMjnpoteDevTiyDLdu\nRVhf/5lJkU6nWJvXag0kSYPTacBkKjI1lSaVKvNGwqzVqhQlFotiIb6+nvlQipH77TPyBur1Jsmk\n0hVxOpXtlYWF1LZ7agKt1kU2W+X69TBer+lNq2Zla8tNqVTH5dITiRRJJkuMjXk4eNDPmTPrLC+n\nkSQBu72MSmVnaSlFpdLA5dITjRZotWQKhSrNpozJpMFu15NMlpiaiuHxGBFFAVH8/9t78+C4rvPA\n93e7b+/7ikZja2wEuIAbQBKURImiZFGylOh55MyMHHvieF5cfiNHznOSmky9vBfFcXnKlakoVtWU\npXmx68U1kR1viSKF1mKPJWsjJVAkKJIghZUgdnQ3et+X98cFmgQBLgAaG3l/VSqhL/uc8/X9zr33\nu+d8i0AyA5baWowDQeoaXVQ0WRgdV/HhmRBGs459+6qIRKSts/7+IDMzSTo7q6iuthCPZ/nZz3pK\nzsx791Zy/yEvudA0l35zipyQoG73QZTFHEqNBoVKjaKYx+GQqjjPGVlarVhayg/29zPy/vtkE1Km\nVa3Nhu+++5hOJJakg8joaMkQmSM+OUnC78dSU7MkXV7NzeaCUqmgo0M6P5FIGrNZjdstJayzWLQM\nDs6g0YgYdSGE4TOMRtJMX5wmHE5ia2jA4JKcmwUB6uutvPXWMF6vEZtNR0uNyEDXAOmCmanJGBqt\niN4O+VgEq7ea06fHAejrkxITTk3FS/48L/38LCfeG8JkuBtRUcTqMFC/q4nUTIBAPIbTYMa7YytZ\nnRMTSkDN4OAMarWSffsqOXlynAsXAgwOhhgcnOHDD8c4fNjHqVNjBIMpPB4TkcgkAwPSVpXTaWBi\nIkZjo33e+QkEEvT0+JmcjGG369i61bmgEm85/IPW2mfkpZdeQhAEDh06tKz2m8Hn4tFHH+XnP//5\nosbIZpB/MTaCz8hXgH9eywENBtWCY6I4F31RYGBghpg/RCKeIRZNS1k2p/KkwhGi034uTTbRfF8n\nxngMs9tO3eH7mPBnMaouo07H2d/h4SMhh6PCxM9+fg5RJeL3xxkfj3HkiA9RVDI6GiWbLVAsgtUq\nhRqKohKjUcP99zegUl1iZiZFU5MNrzfP6dN+2tu9DA2FueeeWjweAx98ME5PzxR79lTy6KNb+M1v\nhkincwwPh6mrs5QeKvl8kZ4eP42N9nnGSDqdw2zWSE55s5ESVVUWPv54Gq1WqjXicOhQq0WSySy5\nXAGVSskqrayuCsFggvffH5EiWQSorDTS2VnD6GiEQkEK0xRF6c0wEkkTDqfQauenvm9tdZJK5Rga\nCmGz6fB4jOzdW8nJk2NMTMSIxzOcOzeN2ZzkySfr8HpNBINJpqbiuFwG/H4pA+yWLQ5EUUFPjx+v\n18g999TO1oJJMTQUYutWBzWtdeSUGixmLR+duoiocdNzMUg0muHwYR81NWbsdi1Go5qPP55kbCxG\nR4eXt94aIh7PzupNycR4hPd/HWFXi4GGBjuf9EVJTk1Q5xaJZ/RXFWtUYTComJpKIIoKtmxx4HIZ\nyKXTTHZ3lwwRgNTMDFPnziHU1y9JB4XcwneNYrFIMX/zLJ8rRRQVVFebCYWS9PXNcPr0BA6HnuZm\nB7t2VSAIAh8eO0Z4ZASt1Yq31kqwK0zk8ghaiwWl+kqVYINBhVJpQBAEkokMA+eGOfDYIfyTYfxT\nUVRGNWa3mt3tlbz99iUGB0P8m3/TSiyWxes1olAIHDxYzbPf/jUCcGlohv0dHk6fvEwOJVs67sWl\nnKGpsZ5YQc/57mm0WhVbt7p48MEG3ntvBKtVx7lz01itWoxGFSAQCCSJxzM0NNgxmdTkckVyuQIe\nj5nGRhuTkzH6+oKllw+QjJS3377E1JSk30BAmq8PPdS44WrLLJWf/exnPPXUU6uylbxROHr0KF/9\n6ldJJpO3TQ6VtTBGKoAfXXNsHPgccAB4GPjfyjHQrVpj1dVmnE4ppHWO2loLLpee3t4g7747jMWi\nwdfWwJlfn8Tl0mOzqJgS49R37ERhMxPvv8TI2BR1LSn2qJU0NBjZu6eCrjc+YmdrLXfdd5j/9eYl\nvF6L5Pk+W5NmYiLKZz+7HaNRhcOhw+9PkkrluPvu2tlcDtIb3Je/3IHfL2XLDASS/N7vmXC7DRiN\nagwGFW+8McC5c1NMTcV59dU+Ojq8/Pt/v4N8Xtq+0enmG1yCUMTns9HfP8PISGS2yJ6ZqioT//qv\nvSgUsGWLk927W5iYELHZdLhcerZvd9PbG0SvVyGKClQqBbW1C509V1Nfy21TLBb56KNxRkejpWND\nQ2GMRg0mk4aengHi8Rxq9RRVVSYaGmwLfAkAdDoVBw/WsH27i3y+iNWqxe9PMD4ubbcJgsDYWBRB\nkHKPPPbYFrq7J0mnc3R21mCzafH740xNJejqGqOhwUYikSEYTNLR4eXkyXEqKw04HAYaGqw0N9t5\n9dV+NIZKFApIpfK43QZ6e4Ok0zk++SQ467BaSSiUJBZLUVtr4YEH6slmC2g0SuLhOIV8EZfbgDku\nYleryUxPcOSedrbnHRQK0u9oaXGi1YrMzKRwOnVUVpoQBIFMPD7PEJkjGQjQusQ3TlNlJdNqNfnM\nlQgdjdmM1m6/Qaubc6tzIZnM8s47w4yNSaszY2MxxsaiPPhgAxaLFmMqRQJIhcNsra8hm6lmbDSM\nWixS32Rn164Kstk8W7e6OHlyDKNRhT+mwF3lID99icP31zMdzKBSidz16H4CsSIOhx6TScO+fd7Z\nkgRJursnGR+LUuez43brmRn3k09ZOXy4jt+8O85EVEVr61ZefnOUs2cvUFNj4fBhH8Fgkk9/uhmL\nRYtarUSrVeH1mtBolPT2BgHJD0qrVaJUKujqGuPSJQGvV9pmPHNmiomJGCaThro6C9u3u5iais8r\ndAhSGYixseg8Y6QcUVNrmWekt7eXV199leeff37ZfWyGPB0ul4v29naOHTvGE088sebjr0b7tTBG\nJoH7FzleBfw34LeBRd+1/+iP/gjr7B51a2srnZ2dpR86V6Z4OZ8tFi3NzQqMRhBFOx6PAUEI03f2\nY6L+AjX2IuPhKQp6K9sO7SE5NYHRo6Hp7kaMxgrGB8ZIWXU4Kppo3OZDpdUyPHIZqy3DQw/UMJnQ\nMhMfxWxOotOLqFQiIyPDCEIGUTQxNhZhcnKEbdtcOBwWAoEkMMPevTo6O1uxWrVMT4/h9cLOnXWI\nooKJiREgQV2dm1OnxvH7xzAa40xNSQ6MFy/2YbensdkqaWiwlX6vRuNEqRSoqYHJyRH27fPS0VFJ\nPD6NWq0s+YSk034mJ0fR6drZu9dDIDCG3x9l926peqcghNDr4+zfv53qavOKzv+NPpeTaDS94IYL\nMDg4Q0ODbTaPS45UKkc+X+TQodobhihenejr6pcuvV7EbNaQyeRxOHQUCgW8XiP19TZ27/awc2cF\nAwMz/OQn52htdZLLFSgUYOtWF3a7js9/vo1oNItWqyQUklK1ezxGKXQTKdfM3MrNxESMVCqHzaZj\nYGCGw4frEAR4990RLl0KSW/IdRbMFg172l14LHmysQzbtrpIpXPUNBh4YF8bsVgWne5Kpd1rFzvU\nBgMqo3GBQaJ3ua5bjPB6mLxeqjs7mTx7llwyidZioXLvXrTmtfE7mpyMMTERn3csEEgyNibVUNE7\nnST8figWKUyPsLfBxq6dzVTs3IbbYynl2/h3/247jY02hodDDA2FufuJo4QudDP+cQ8V9R5aDu5h\nS1sN+XQSh1XDL4718vJLF0lnpYy1tbUWivk81RUigYkpFIKA06Gl2RKi7j/sYnomy8svf8I771xG\npVIyM5Pivfcu8+CDDSiVCj7zmVb8/iTJZI5EQvJTqqmxkM8X6OysJpvNkU7n8XiMHDxYg1arpK9P\n2rJVqRTk8wXOnJmkWCxit+sWXeGcC4PerHznO9/hy1/+MgbD2hZtXA+efPJJfvjDHy4wRjYr67lN\n838DbuDns58fAVJXf+Fv//Zvr9v4WuvL5/PNe6At9u9X09bWQttsWoFiscjUxxOMnvmY7vcHKAgi\nVbu2k3M3EVN7cPpa2dvuRVnIMvJRN8N6F0O9QygLeoomEdNoDJ/PR6G6mk+6LvDuS+9jdNqx2yqJ\nRfsJBKNcupTHbNZTW2vho48m0OtVmM1KisUolZVGMpkK2ttrqKoyz94sPCiVCgwG9YI9uFQqh0bj\nxOGwEgj4Z53X9FitHqqqTDQ22mczukYRRYGWFietrU7i8QzDw2Gi0QwWi5OhoRBjY9KqgUYjedp3\ndZ3nyScP8ZnPHGR6Oo5CIXD//T4EQUCjUaJWi7d0fm/l8430dT2Wsh+pUikXTdxWKBTx+xMcPuxj\nZGQYsOLxGJe0PG2366msNDEwMIPBMJfZM0o6neenP+1BqxUJBlNEoxnuvbcWr9dEY6OjFEZtMKhR\nKgXsdj1HjjRw7twk58756e6WnI6l6rJh4nEDyWQOUVRQUWFAqxXZscOA0aghEEgwPh5nYCAord4c\n8DI1EUZJgccea2ZbjUDk/CkoFplKpjAbHUSVDs6fn6a21loyRBZD1Gjw7NrFyPvvS/4egoDObse1\nbduS94QFQcDZ2oqlrk7KdGw2o1Qt3CpdKrcqRzZbWLTY41yUTcJsRme3kwwGKRYK5BNxqtp24PTO\nd9a12XQ8+GADg4MhzpyZYHgqTm+4DoXRxeCEkpHTk2hdYzBwEoVSxd6tbtTFFEm0NDRJK1Bjo2Gq\nKw04zQpaWpzUGqOoDSbqt1eSPD2JIIRKfkuiqCAUSpFIZNFolJjNWsxmKQX76dMTpfD+HTvc+HxW\nXnutj1gsQ39/kN7eQUIhLY2NNurqLKVt6HC4yOBgiNpayRE+Gr2yWqXVilRUzH+IbyafkWAwyD/8\nwz/wxhtvLLltOcZf6/ZPPPEEf/zHf0w4HMZiubJavVnkv5b1NEa+so5jzyM+Pc1EdzfFTAq7XcfI\n5QhDH5xm62MVDEW0VFTYsVZID+tiLRAcplqjQqtxkcgpOXFidNb5Uw2WCgy1jfQPhtjuUXLo3jq6\nuqT6EPv2VRGLpclmC9hsOtxuPZcuhWludlBTY8Fu1xEOpzh1aqIUmtnc7MBkmr+37vWa6Onxo9NJ\n6ZfD4RQmk4a2Nje1tVIOg3vvrSMWy6BSKUoPHatVh9UqPXADgQSnT09c95zY7bpVTQW/Fuh0Klpb\nnZw4cSVUUwp5dnH27CSZTAGVSoHBoGVmJjW7EnFrKBQC+/dXodOJjIxEZhPJGenuTuLzWbFatWg0\nIpcvhxkbi1Fba8bl0pPPX3nzFARpezCTyRMOZzh2TAqvdbsNHDlSjyAYiUalNi0tUgrvqak4RqOa\ndDqPw6HH7TYQCCSIhRN49ClqGpVQBFV8kvRInMrduykUigT7RomKVfSei5HNRujrm+HIEV9pPiyG\nrb4ejdlMwu9HUCoxVlSgMZmYjsev2+ZGqHS6VY2euR52u25BDRWNRonLJT14dVYrngcfJDYxQT6b\nxeByYfQsXpdFEATGx6MYjVLhyw9PTpLJ5Nm924NGI3LxYoAtdhfZ8UHUyRkaXXY0TgMZtRqdTuTg\nXXUUD1SjETLY9EX0Rg1GjwdBocBs1uB2GwiHi6Wkc4LAbPXtK5FgFRVGPvWpxpKRMucbVlVl5gc/\n6MbvT2C1qsnl1Jw/P80XvrALg0E1b1vabNZw1101nDo1TjSaQa9X0dbmXuDAupl44YUXePzxx3E6\nN1YI82phs9k4evQoP/jBD/jDP/zD9RZnxWwEB9aysVxrLptMUixIDwmv10Qumyc4kyIXCdHSsp2d\nOysA+OQTPy+90k9vbwCDQcXOnSI2m4ZIJE0olMJoVKPTq8iLWkIJgXfeG+XQoRq++MXd9PUFCAZT\nDA+HsNm0tLRITnEWi/SmY7frKBSKfPjhGAMDMyXZTp8e57775v+u6moze/Z4uHDBj1qtpKrKTHt7\n5YKwVKNRfd3fbLfrqKoylfacQUqV3t6+dVnncDmsts8ISFsher0UjaBUCtTX23A69Vy+HJ7dwrHN\n1uERF9TUuBlms4a7764lmcwiigoGB0OMjg7N+06xCJFIGrVaZP/+Kj74YJSZmSSiqKChQcqi29sb\n4OLFACqVsrSN8/HHk+zcWcuWLU5GRyMMDc3wzjvD2Gw6OjurgUypj7GxKIp0jIlzA6UNz7YdbhSK\nJLlUCk3DdqbOCcSDVx7Gfn+C4eHwDY0RkMol6B2OecfK4UdQDm5VDodDz4EDUoRLLJadzVDrprLS\nOK+fWw1bNhrVTEzEZrP7avD5rKhUCn79v4Kko8M8dLiSnQ1uJi+dZ3L4IhVNNajbDjE6GiUez/LI\nI02lHDFXU1FhoKGhAYUixPR0nEQiS0uLk/b2ytKK5BwKhbDg+jYa1bOZchVEo3qqqvT4fBZisTSF\nQoFstoAgQEODDb1eTV2dlAYgFpOMkWv9zK4+NythLXxGEokEzz33HK+99tqm9ZlYTvunn36aL33p\nSzz11FOlTLObSf6rua2MkaWSDAaZGRwkcvkySrUarcUC09M0NTtIJnP49tRStbMWhUIgGExy4v1L\npGMxtGqBSCTN8eOX+fSnm1Grr2wHeDxGqqstnDo1QbEIb711mUOHati1y1NK4+zzWTGbpVolcyG6\nIBVxm6s5AWA2q1EqFRw71svWrVI4cE2NGYNBw549km9IKiVFxCx2I7kRgiCwb58XrVbk8uUIKpUU\nSdHQsDKnwo2GUik9sK9N9z6XCtvvT5SquHo8xuv0cmPmzr3ZrEajUZJOX1lhkbZipAe+x2Pk4Ycb\nmZlJoSjmMWqLCMU8o6NRWpqt2FUxwsMjxBNZtJ5qCoUCUJwtyCcVPZucjHP+/BQPPdRIba0Vl0vP\nyEiEczNhFKKIgiK77msjEIWP++P4dgo02hZf9YlEMguO3a40Ndnxeo2lVYDFEtzdKrW10gO+rVmP\nmE/h8Jp46aWLKACTtkgwkOT4xBgtjR6Kl/yoDAZyOclKjMezpRw112IyabjvvjoqK43E41LxzMZG\n+7wVykKhyODgDL29AeKBEFUuJV6bgKXCgdEoFcELhVIUi6DXS3VyamosZDI5VColDQ02tm1zlfrT\naMQbbtdtFl544QUOHjzIzp0711uUNeXuu+/GbDbzT//0T5ved2Tzz8KrWMpeVTIUYvDXvyYZCFDI\n5wn29WHyerH6fCQDAdyNtVQ0+VAopCyBY30j9L93kmQsRSFRxFVjJRC14Pcn2LmzorSMKi3ZVpBK\nZZmaSuB26zGbtYyMRDh6tJHJyQSffOJnejqBViuyfburtFysUAglx0hRVKBQKHjjjX5aWkT6+5W8\n8UY/1dVmDh/2sXWrc7YmxPLPl9Go4eDBGnbvzqJUCqjV4prWHVmrPCOL4XJJWyEXL/bR1NRYljT3\niYSfHTvcnD07RTqdR6VS0NwsPQTnUKmUKGdGmDx7lvFUCn1FBTplFSffHqTnxEVsDj1eh5Kxd39D\n5+8eIRQyzTM0q6pMZDJSnSG9XsoJcvBgNZWVRvo8IjazSM+FAJfO9qPS6ckNp5hOjKDTxclkrjzU\nBIEF/gG3ymapTXMter26VIl4Rf0osziivUxP9+Ar5hBQU+PVkyeK3ewgn00TDcVRGbyYHFbMjVu4\nFJBq4czVqRkZiZDJ5DCZNDid+lIYajQ6hc/n4MyZSQYGZggEkrS1uUshuf39QalG0sg4wb5+uily\n4N4m6ky9uNvaaGiwcfFigHTaj0LhxG7Xs29fVSmdwVINj83gM5JMJvnrv/5rjh07tqz2Kx1/PdsL\ngsC3vvUtnnrqKX7rt34LtXqhj+Fqjl/O9reVMbIUIiMjJANSanaFUomtvp50LCalqm5txVJbW8rC\nGB0dJTU5CrkMolDAoMxSiExT6XbT0uJk927J2XR8PMo77wyTyxXQ6aSiebFYhmJRqnHhdBqoqDDi\n8RhIJLKYTJpSdV4Aq1VLba2Fnh4/ZrOGixf92O160ukEp04NA5SSd4mi5PtQDpa6qnK7IAgCWq2q\nbPV2FAqBPXsqZ2sGpdHrVbjdxnn9R8fHGTl+nHwmg6BQ4I8KvPHKm4STEA9HCU7OwLYqDnTUYhRi\nCBYtIGXGTSSy9PcHKRSK+HxWzpyZpLOzmvp6G1u3umhutNB7bpSZ9y5j9fnQ2myo9XqSyRwWi4hC\nIfnGqNVKGhqsZQvRvtOYOH2a+PAAJk2BtKFIRohTZc5StFgoFg04PTbyNi2+tka82xr55HIOyOJ2\n69m61ck771xmcDBELldAr1exe3cFO3ZIW8GxWIYPPrhEKCQZL+FwmpmZJA8/3ITFouXCBT/pVJbo\n+DjFfJ48cLFniuq7HAQuXqTjyEM4nXp6elLU1npoaLBtet+vm/HCCy+wf/9+du/evd6irAsPPfQQ\nLS0tfPOb3+Qb3/jGeouzbG4rY2Qp1lj2Gic8pVqN3m7H5PViqqllZCTCxPkRjEY1msAwmkyIxhYP\nF86MoNWqIA/bWqzs3u1Bp5OWQ0+dmmBmRgoIcjr17N1bicWioabGjNNpKKVcvp5vgiAI7N1biU6n\nIhRKlpJQdXdnEYQcer0KtVpJMJji448naW11lj2xz1q+8a6Fz8hy+8vnC4yORhgfj2EyqdFoRNRq\nJWaz5rrhv3N9VVQYqahYfMsnOjZWyrehMhjoG4mSDocwWZ2EkAzDdCyOu64ep1jE0mBjYGCGaDTD\n1FS8lJo/lysQjWY4dWoCj8eITqdCVKvR2aw0dmwnGs3Mq8lSV+ejrs5COJwuOW8uNwX4RlgVgfLJ\nsZR+0pEIkdFRQPL3ymYT5HR5rPoiGb0Dp0vShWerF6XFTjKYZMcODW63EaNRzfR0nIGBmZJDdSKR\npbt7Eq/XTDabJ502MjZ2ad4KTjSamc0ToiaTyVPI5ShkrySSy2fzFIoK8qk4KmWR7dvdbN/uXvNz\nU64+lvL9YDDIt771LX71q18te7yVjL9R2v/d3/0d7e3t7Nq1a8XbNbLPyBpjcLsRlMp5WSDVRiMa\ns5nu7klOn56YXeEQ8QpRxMnL7NrSgMfTysRkDJtNz5776rBapQdTPC5VzwXJEIlG05w+PYHBoOKx\nx7bgdN7akrjBoKajw0s2m8du1zE0JL0VG41qAoEkkUiKmZkUoigwOhqmunrptUJkbs65c9OcPDmG\nxaLh8uUIAwMz1NRIZdj37auiqWl5vjXX5ugoFqQwWp1RquQMoNVpUKqUmGsqcbkMPPBAPQMDIXK5\nPDt2uNHpxFL+lGg0XQrPvHgxwLlzUwwPh6mvt6HXqwiFUmg0Stxuw7xoKpnlISiVCLOOgoIgSFus\nyhh1v91KylJHOJLBbFYTDKZ4993LKJUKXC49Fy4EEASBeDyDw6EjHE6XfIt0OpHjxy8TDCYRRSVn\nz06XahvNUSyCKCqpq7MSCCTRmE3kklKYeGWNDXUhgb6iApV+daotb1SeeeYZPvvZz9I2l6fhDsXj\n8fDKK6/wyCOPcPHiRf70T/8UVRnC59eS26c6EktLnGWuqcHd1oZKr0dQKtGYzVR2dJBR6rl40V9K\n/pNM5sgbnYRTCrJTo7iKk+ypzWOzJamovvJA0mpF9HoRk0mN35/gV78aZGBghtHRKO+/PzIvauVW\nUKmUbN3qoq7OTGOjglyuQCCQwGzWolQK1NZa6eqaIBZsVu52AAATMUlEQVQrrxPiaiQfK+dY5ZZv\nsf6i0TTnz08DkE7n6eoaIxBIMjEh1Rfp6hojEkktaHcrspmrqkrbf9l4nNoaE+ZKN6bKSjRGI0ql\nkqqGCjxVdiKzhovbbaSzs5r9+6vIZPLzErlJ805Fd/cEH344SjyepVAo8u67wygU4HRKNW1SKf8y\nzs7irOUcuRHlkmMp/agNBuyNjfOy3gmAp8qGy53jwQcbyOfnnI6lsNwPPhjltdf6GR2VjNq5ek/A\n7BaewIULARKJHNlsAItFw/BwmERCuraNRnXJv2frVietrQ4qWxtw1HrYsrOGtlYLKoMBz65dpZXS\n9Tg35erjVr9/+vRpfvSjHy3YmlipzJu1/Z49ezhx4gTd3d34fD7+7M/+jLfeeotsNnvzxmUYf6Xt\n79iVEaUoUrVvH/aGBnKpFGqzGa3ZzMREbF40BMBkVKSl8x6M6XHC00HMHi8quxVRe2W5Xq0WaWur\n4Pz5abq6xigUimg0SrxeE4WCVASvudm+pKVxnU7F3r1eBCGC2ZzGbNaiUgmzKbyVBINJwuHUDUN4\nZZZOMpkjEkmjUAhcvhwuZapMJKSLOhbLEIlk5mVkvVUMLhd1993HdE8P6VAIT72dxxpb6B2M4fA6\nsJuV7N7tobLWxaXh4Xlta2ut9PfPlLZfVCqpiF+hUGBwMFSS0+UyYLFoyeeLfPrTzej1aoaGlpcb\nRGYh7rY2lBoNM/39CAoFji1bsDc1ER8ZASjl8xAEqS7UpUthlEqBbLaA3a5nejpBNJpGrVai04lk\ns3n0euktNpHIcvfdtfT0TKPRiNjtWrZtc2M2S9E/BoOaQ4fq2LHDTTazDb2QgnwOndOJqL5z7gOp\nVIovfOEL/M3f/M0dk1fkVqirq+Pb3/420WiUn/zkJ/zJn/wJAwMDPP7443z5y1+ms7NzvUW8LutZ\nSeg/AP8R0AD/A/j+Nf9eLK5DRbZEQko+FQxeefMtFouzxbKKJOJplKKSpiZHqYDW1QwNzfDTn/YQ\nDqewWLSlm4jTqeO3f7tl0ZC+W+H06QkGBoKAQDKZLeXGeOSRplveAtroCIIUubSeFItFenuD/PjH\nZwkEktjtOrq6xjGZ1NTWWvD5rGi1Ig8/3ITbvbLzXsjlSts2mUyOTKaAwaC6oR9QMJhkdDRCJpOn\nosKI12siHE5x7FjvvKReIEVuPP54a8lBeqOyEfS+HIqFAgjCAn199NE4XV1jKBQCFouGl166iNGo\nZscON2q1klQqx7ZtThwOPXa7jmAwyYcfjpXai6ICq1WqIzMxIfkJmc0a9u+vuq4v0mZkJXp/+umn\nGR0d5ac//eltXRCvHIyMjPDjH/+Y73znO+zcuZPvfve7VFdXr4sss7paVGHruU3zInAfcBfwn9ZR\njnno9Wra270lI0IUFTidepLJLH19M4yNJ7h8OcoHH4zi9y9826yrs9LR4aWmxlLqQxCgvt62bEME\npERnuVwBvz9BPJ5FoRBoarLjcNxZe8SrzcREjK6uMVpbXYiiAr1ehcWinl0qlyqvNjbacLlWft6v\n9h9Rq0WMRvVNb6x2u462tgra271UV5tRKASsVu2CHCmCAI2N9g1viGxmBIViUX01NdmprbUgCNJ2\na22tmbo6C2q1dP1brVp27HCzZ4+UqLC+3jovw2o+LyUnk5LoSYnSxsdjnDgxSiazsALyncYLL7zA\n66+/zve+9z3ZELkFqqur+frXv84nn3zCgQMH2Lt3Ly+//PJ6i7WA9TRG5q4qDVCWNeRy7ZPW19t4\n5JEmjh5t5OjRRrZtc5VquMwRDI7PWz2ZYy4iprnZjsGgwmSS3ohaW5e/lDg0NITTqeeBBxro6PCy\nbZuT++/30d5eWfaL8U73GZmaihOLZUgkstx1Vw1btjj4vd/bzb/9t9vZu9fD4cM+Ojq8i573tfBn\nWQxBEOjo8NLYaCvNuZ07K9iy5crKXTllu5N9Rm6lH7NZw5EjPh5+uIn29kq++MU9bNvmQq9X4XTq\n6eysnpd23WrVcf/9Pg4cqMLjyXL4sA+Xy7Dg/hIMJhe956zFb1rLPm70/RdffJFnnnmGV155pVRE\ndaXj3SntNRoNf/7nf87LL7/MV77yFZ577rk1Hf9mrLfPyP8D/AHw5+XuOJfLEwymEEUFNpt2yQ9t\nKaGY5BMQjfrnVbhUKgUUCq6bn8Js1nD4sI9wOI1CwbJ8CxbD4dDLKyFlIpcrMDMj+dwUi8XS/JhL\nCjVXzRekVYajR6WMpxsVi0XLkSP1hELSnF9JhlGZlaNWi6VEZQA+n4VQKEU+X0SnW3jbtdl02Gw6\nLJYUPp+D0dHIgu8olULZcuJsRp5//nn+6q/+il/+8pc0NTWttziblgMHDvDee+/x6KOP0tfXx7PP\nPotSufxV+3KxFmtcFcCPrjk2ATw5+7ca+BVS1d7YVd9Zts/I9HScEydGCASSKJUKfD4L7e3eZSf3\nikTSvPFGP+m05GiWSuWwWrXs3+/FbpeNg3KxVr4DwWCCEydGmZ5OoFAI1NSY6ejwYjCoCYdT/PKX\nAwQCydL3PR4jDzxQj8GwsR0EM5kcExNSTROrVcptsRm2aTarz8hSGB+XtnbnjMWmJjt79njm1ZzJ\n5wtMTsaJRNLk8wX6+2dK5SEEAVpbndxzT+1tszVxq3pPpVI8/fTTvPPOO7z00ks0NzevgXS3P6FQ\niCeeeAKj0ciLL76IwbD6voc38hlZz1mtBjKzMrwJPAZcvRdS/NrXvlZaimttbaWzs7OUUGVuKeja\nz9XVNbz2Wj8DA4MAaDTO2eJQAo2N9pu2v97n7u4L9PcH6epKUCwKOBxpvF4jjz66H4tFu+T+5M8L\nP9fX16/6Q6lQKPKrXw0wOBiad7y9vZL2di8gRUN88kkAvz+Bx2OkudmOzbax83Mkk1nee+8yQ0Mh\n8nkpkmvHDjd795Z/K6/c3O7GSDqd49ix3nkh2YIA995bR0uLtH2bzxfo6hrj/PlpstkCoqjA7dbj\ndErRNz6flaYm+22VLflW9H7ixAl+//d/nx07dvC9730Pk2nzVhXeiGQyGf7gD/6Anp4e/uVf/gXP\ndapVl4uNaoz8BXAYyWfkR8C1G1hLXhkZGhrCaHTxi1/0kUzOd/SqqDDw+OOtyxY2Hs/wyiufEA5L\naZrTaT8ajXPeQ2y1GNrg9WLKNdat3JxWKt/MTHJe5MmcHp1OHY8/3rrsrKTlkG0l/fX2BnjzzaF5\n24k6ncjRo1LUTzllK/fvXK4xUi45Vruf8fEor77aRzZbmHe8vt7Kpz7VCMDYWJTXXusjFptCo5EM\nFKVS4IEHGvD5lr49uJHOzfX6uJ7eh4aGUCgU/OVf/iXHjh3jueee47Of/ewtG9UrlflOa18sFvnG\nN77BCy+8wPPPP8/OnTtXbfyNGk3zl8D9SNE0i3vSLJHjx48jispFHygrfaOIRjPzDJze3m6AeVV2\nV4vjx4+v+hibZayVyqdSzZ8fc3rUaMQVb2mU+9wtpb9AIMm19/VkMkc8nllyX+WUazUplxyr3Y8o\nKhb19dBqr2zRRKNpstlCaT6ClKNkLqtzuWRZj35utY98Ps+bb77JU089xZ49e6isrKSnp4ff+Z3f\nWdLq3kplvtPaC4LAX/zFX/CP//iPfP3rX+dLX/oSx48fX/Zq5XLlv628oS5cuIDVqqWhwXp1gkQ0\nGiUtLQtzgiwFg0E17+YxONgHMC8kb7W4cOHCqo+xWcZaqXxGo5rm5ishr4ODfahUirLU+Sn3uVtK\nf3NlCa5Go1GWjPByyraWc+RGlEuO1e7H4dAvKEqo04k0NtpKnw0GNaKoKN1XQCq8OJceoFyyrEc/\nN+qjUCjw93//93zuc5+joqKCr33ta+TzeXp7e/nmN7953YiZ5Y4nt78+hw4d4ty5c+h0Oj7/+c+z\nZcsWvvrVr/L973+f119/nVOnTjEwMMDk5CTxeJxCobBoP8sdf72jaVaFPXsqMZs1DA6G0GrFUtz/\nSjCZNLS1uenqGitlaHU69TQ3L69Gicz60dbmxmBQMzAwg9Wq5fBh37KWwjcSNTVmamrMjIxEZuuY\nKGhpcaw4MZvMylEoBPbvr8Ju13HpUgiDQU1zs2NewUyPx0Bzs71kECsUAj6fFa/39vaRUCgUHD9+\nnCNHjvDtb3+bmpoannnmGex2+b66Hmg0Gvbt28crr7zCyZMnefvtt3nzzTcZHx9namqKSCRCPB4n\nFouRSqXQ6/UYDAaMRmPp/xMTE3R3d5c+Hzp0iN/93d+96di3lTESCklOiRqNyLZtbrZtK0/lyjm2\nbXNht+uYmorz/vsKHnywYdlvLkth7netBRt9rHLIp1aLtLY6aW118vrrCurrbTdvdAuU+9wtpT+D\nQc1999UxNhYjFstgt2uprDSVVoDKKdtazpEbUS451qIfnU5FW1sFbW0Vi/67KCo5cKAKt1vJ/v1V\nmM0avF7TvNXYcsmy1v3crI/vfve7ZR1Tbr/y9lLuog46Ojqu+718Pk8ikSgZJ/F4nHg8zrPPPsvn\nPve50jGXy3VL425kN/s3kTK0ytw5hIGVLWHJbEbigLyEc+chX+93Hm8hBa7IyMjIyMjIyMjIyMjI\nyMjIyMjIXJf96y2AzKog6/XOQtb35uWO1N1G9hlZDlpgeYH5S0cDpFeh3w7gIGAFQsD7QNcqjLNY\nWLcAvAY8uArj7UAqjnh13FcnsJSgdCOSjNGbfXEJlHvOLHdelEvvq6HXcuhujj1Iv28Q+BRSJuZf\nAIvHCV6fcs+FcsyD5eh+pXovp77Lpefl6rhcOl2pLpeix5Xorxy6W6nOynU9zvEU8N+X03CzGiNP\nAn+MpIR/Br4NFIFfIyVSWwteBx4qc59/izQZfskV564HkH7n18o8VpLFJ+wuoNxxdX8DuIEs4AK+\nBExxc319CfhPSA6O3wf+d6SL5GcsPVHeWs2Z5cyLcuq93Hpdru4W47tIN3od0sMiCkSAauCLN2lb\nrrmwmvNgqbovh97Lpe9y6XkpOl6pTldLl7eqx5Xqb6W6W6nOVnI9AryNdL6vtiO2A2eBe2+h/W3B\n+0hhyQLwfwAvATYkJZSbt6/z38wqjPWbJR5fCR8hWfPX8stVGOvtq/7eieRRvY+b6+s40tuDDriM\ndOELwHvLkKHcc6ac86Kcei+3Xperu8W4+vd8fNXfb91C23LNhXLMg3Lpvhx6L5e+y6Xnpeh4pTpd\nqS5XqseV6m+lulupzlZyPQL8n8D/x3zD5xe32HYBmznPyFxu9u8iKfVfkKzEcuNEslQz1xx/YxXG\nOgn8DyTLPAqYkSztj1ZhrEeRLPNreXgVxlJwpTDiGeAzwP9EsqJvRBrpTSkJ/L9c0cFyt8fKOWfK\nOS/Kqfdy63W5uluMq+uU/19X/X0reafLORdWOg/Kpfty6L1c+i6Xnpei43LodCW6XKkeV6q/lepu\npTpbyfUI8CzSysp/BL4CvMgKdluUN//KhkQJ+JGWxgBGkSZELfBKmccaACZZuAd5Hhgv81ivIf2W\nLUA90u/8ZyTrs9zEgPwix5e7V3gjziHdYOKzn5PAPwLDSEt616Mw27bAFWtdDdRw69b7HOWeM+Wc\nF+XUe7n1ulzdLcYJpLfOAnBx9pgamL7q8/Uo11woxzwol+7Lofdy6btcel6Kjleq05XqcqV6XKn+\nVqq7lepsJdfjHHngQ6RVqU6kLaPVWF3fNLy4hmP9cA3HkplPOc99ueeMPC/WlnKd73LMA1n35WGl\n53GlupT1uI7cLoXyKtdwLM8ajiUzn3Ke+3LPGXlerC3lOt/lmAey7svDSs/jSnUp63EduV2MERkZ\nGRkZGZlNimyMyMjIyMjIyKwrsjEiIyMjIyMjI1MGFq/LvfnHkplPOc99ufUoz4u1pVznuxz9yLov\nDys9j+vdXkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGZtPyMFIp6F7gP6+zLDJr\nw/eRUlJ/fLMvytw21CAVMzuHlLb76fUVR2aN0CKlYD+NlHL+v66vODIyi6ME+gAfoEKasFvXUyCZ\nNeEQsAfZGLmT8AC7Z/82ItUBka/1OwP97P9FpKrF96yjLBsKOc/IxmE/kjEyhFRs6EfA4+spkMya\nsJzS8zKbmwmklw2QiqX1AN71E0dmDUnM/l+N9AIaXEdZNhSyMbJxqAIuX/V5ZPaYjIzM7YsPaWXs\nxDrLIbM2KJAM0Umkrbrz6yvOxkE2RjYOxfUWQEZGZk0xAj8Fvoa0QiJz+1NA2qKrBu4FDq+rNBsI\n2RjZOIwiObbNUYO0OiIjI3P7oQJ+BvxP4J/XWRaZtScM/CvQsd6CyMhciwj0Iy3bqpEdWO8kfMgO\nrHcSAvAD4Nn1FkRmTXEC1tm/dcBvgAfWTxwZmevzCJJnfR/wX9ZZFpm14YfAGJBG8hn6/fUVR2YN\nuAdpuf40cGr2v4fXVSKZtaAN+AhJ72eAP11fcWRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRk\nZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGTuIP5/xRHll/wr\nALgAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x1155cf1d0>"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Train and test the scikit-learn SGD logistic regression.\n",
+ "clf = sklearn.linear_model.SGDClassifier(\n",
+ " loss='log', n_iter=1000, penalty='l2', alpha=1e-3, class_weight='auto')\n",
+ "\n",
+ "clf.fit(X, y)\n",
+ "yt_pred = clf.predict(Xt)\n",
+ "print('Accuracy: {:.3f}'.format(sklearn.metrics.accuracy_score(yt, yt_pred)))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Accuracy: 0.763\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Write out the data to HDF5 files in a temp directory.\n",
+ "# This file is assumed to be caffe_root/examples/hdf5_classification.ipynb\n",
+ "dirname = os.path.abspath('./hdf5_classification/data')\n",
+ "if not os.path.exists(dirname):\n",
+ " os.makedirs(dirname)\n",
+ "\n",
+ "train_filename = os.path.join(dirname, 'train.h5')\n",
+ "test_filename = os.path.join(dirname, 'test.h5')\n",
+ "\n",
+ "# HDF5DataLayer source should be a file containing a list of HDF5 filenames.\n",
+ "# To show this off, we'll list the same data file twice.\n",
+ "with h5py.File(train_filename, 'w') as f:\n",
+ " f['data'] = X\n",
+ " f['label'] = y.astype(np.float32)\n",
+ "with open(os.path.join(dirname, 'train.txt'), 'w') as f:\n",
+ " f.write(train_filename + '\\n')\n",
+ " f.write(train_filename + '\\n')\n",
+ " \n",
+ "# HDF5 is pretty efficient, but can be further compressed.\n",
+ "comp_kwargs = {'compression': 'gzip', 'compression_opts': 1}\n",
+ "with h5py.File(test_filename, 'w') as f:\n",
+ " f.create_dataset('data', data=Xt, **comp_kwargs)\n",
+ " f.create_dataset('label', data=yt.astype(np.float32), **comp_kwargs)\n",
+ "with open(os.path.join(dirname, 'test.txt'), 'w') as f:\n",
+ " f.write(test_filename + '\\n')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Run caffe. Scroll down in the output to see the final\n",
+ "# test accuracy, which should be about the same as above.\n",
+ "!cd .. && ./build/tools/caffe train -solver examples/hdf5_classification/solver.prototxt"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "I0905 01:07:27.099238 2129298192 caffe.cpp:90] Starting Optimization\r\n",
+ "I0905 01:07:27.100469 2129298192 solver.cpp:32] Initializing solver from parameters: \r\n",
+ "test_iter: 1000\r\n",
+ "test_interval: 1000\r\n",
+ "base_lr: 0.01\r\n",
+ "display: 1000\r\n",
+ "max_iter: 10000\r\n",
+ "lr_policy: \"step\"\r\n",
+ "gamma: 0.1\r\n",
+ "momentum: 0.9\r\n",
+ "weight_decay: 0.0005\r\n",
+ "stepsize: 5000\r\n",
+ "snapshot: 10000\r\n",
+ "snapshot_prefix: \"examples/hdf5_classification/data/train\"\r\n",
+ "solver_mode: CPU\r\n",
+ "net: \"examples/hdf5_classification/train_val.prototxt\"\r\n",
+ "I0905 01:07:27.100630 2129298192 solver.cpp:72] Creating training net from net file: examples/hdf5_classification/train_val.prototxt\r\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "I0905 01:07:27.100988 2129298192 net.cpp:275] The NetState phase (0) differed from the phase (1) specified by a rule in layer data\r\n",
+ "I0905 01:07:27.101011 2129298192 net.cpp:275] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy\r\n",
+ "I0905 01:07:27.101022 2129298192 net.cpp:39] Initializing net from parameters: \r\n",
+ "name: \"LogisticRegressionNet\"\r\n",
+ "layers {\r\n",
+ " top: \"data\"\r\n",
+ " top: \"label\"\r\n",
+ " name: \"data\"\r\n",
+ " type: HDF5_DATA\r\n",
+ " hdf5_data_param {\r\n",
+ " source: \"examples/hdf5_classification/data/train.txt\"\r\n",
+ " batch_size: 10\r\n",
+ " }\r\n",
+ " include {\r\n",
+ " phase: TRAIN\r\n",
+ " }\r\n",
+ "}\r\n",
+ "layers {\r\n",
+ " bottom: \"data\"\r\n",
+ " top: \"fc1\"\r\n",
+ " name: \"fc1\"\r\n",
+ " type: INNER_PRODUCT\r\n",
+ " blobs_lr: 1\r\n",
+ " blobs_lr: 2\r\n",
+ " weight_decay: 1\r\n",
+ " weight_decay: 0\r\n",
+ " inner_product_param {\r\n",
+ " num_output: 2\r\n",
+ " weight_filler {\r\n",
+ " type: \"gaussian\"\r\n",
+ " std: 0.01\r\n",
+ " }\r\n",
+ " bias_filler {\r\n",
+ " type: \"constant\"\r\n",
+ " value: 0\r\n",
+ " }\r\n",
+ " }\r\n",
+ "}\r\n",
+ "layers {\r\n",
+ " bottom: \"fc1\"\r\n",
+ " bottom: \"label\"\r\n",
+ " top: \"loss\"\r\n",
+ " name: \"loss\"\r\n",
+ " type: SOFTMAX_LOSS\r\n",
+ "}\r\n",
+ "state {\r\n",
+ " phase: TRAIN\r\n",
+ "}\r\n",
+ "I0905 01:07:27.105614 2129298192 net.cpp:67] Creating Layer data\r\n",
+ "I0905 01:07:27.105664 2129298192 net.cpp:356] data -> data\r\n",
+ "I0905 01:07:27.105698 2129298192 net.cpp:356] data -> label\r\n",
+ "I0905 01:07:27.105710 2129298192 net.cpp:96] Setting up data\r\n",
+ "I0905 01:07:27.105717 2129298192 hdf5_data_layer.cpp:57] Loading filename from examples/hdf5_classification/data/train.txt\r\n",
+ "I0905 01:07:27.105813 2129298192 hdf5_data_layer.cpp:69] Number of files: 2\r\n",
+ "I0905 01:07:27.105828 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.109418 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.109501 2129298192 hdf5_data_layer.cpp:81] output data size: 10,4,1,1\r\n",
+ "I0905 01:07:27.109522 2129298192 net.cpp:103] Top shape: 10 4 1 1 (40)\r\n",
+ "I0905 01:07:27.109531 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n",
+ "I0905 01:07:27.109560 2129298192 net.cpp:67] Creating Layer fc1\r\n",
+ "I0905 01:07:27.109570 2129298192 net.cpp:394] fc1 <- data\r\n",
+ "I0905 01:07:27.109590 2129298192 net.cpp:356] fc1 -> fc1\r\n",
+ "I0905 01:07:27.109618 2129298192 net.cpp:96] Setting up fc1\r\n",
+ "I0905 01:07:27.115136 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n",
+ "I0905 01:07:27.115190 2129298192 net.cpp:67] Creating Layer loss\r\n",
+ "I0905 01:07:27.115198 2129298192 net.cpp:394] loss <- fc1\r\n",
+ "I0905 01:07:27.115206 2129298192 net.cpp:394] loss <- label\r\n",
+ "I0905 01:07:27.115214 2129298192 net.cpp:356] loss -> loss\r\n",
+ "I0905 01:07:27.115224 2129298192 net.cpp:96] Setting up loss\r\n",
+ "I0905 01:07:27.115237 2129298192 net.cpp:103] Top shape: 1 1 1 1 (1)\r\n",
+ "I0905 01:07:27.115244 2129298192 net.cpp:109] with loss weight 1\r\n",
+ "I0905 01:07:27.115260 2129298192 net.cpp:170] loss needs backward computation.\r\n",
+ "I0905 01:07:27.115267 2129298192 net.cpp:170] fc1 needs backward computation.\r\n",
+ "I0905 01:07:27.115273 2129298192 net.cpp:172] data does not need backward computation.\r\n",
+ "I0905 01:07:27.115278 2129298192 net.cpp:208] This network produces output loss\r\n",
+ "I0905 01:07:27.115288 2129298192 net.cpp:467] Collecting Learning Rate and Weight Decay.\r\n",
+ "I0905 01:07:27.115295 2129298192 net.cpp:219] Network initialization done.\r\n",
+ "I0905 01:07:27.115301 2129298192 net.cpp:220] Memory required for data: 284\r\n",
+ "I0905 01:07:27.115622 2129298192 solver.cpp:156] Creating test net (#0) specified by net file: examples/hdf5_classification/train_val.prototxt\r\n",
+ "I0905 01:07:27.115644 2129298192 net.cpp:275] The NetState phase (1) differed from the phase (0) specified by a rule in layer data\r\n",
+ "I0905 01:07:27.115656 2129298192 net.cpp:39] Initializing net from parameters: \r\n",
+ "name: \"LogisticRegressionNet\"\r\n",
+ "layers {\r\n",
+ " top: \"data\"\r\n",
+ " top: \"label\"\r\n",
+ " name: \"data\"\r\n",
+ " type: HDF5_DATA\r\n",
+ " hdf5_data_param {\r\n",
+ " source: \"examples/hdf5_classification/data/test.txt\"\r\n",
+ " batch_size: 10\r\n",
+ " }\r\n",
+ " include {\r\n",
+ " phase: TEST\r\n",
+ " }\r\n",
+ "}\r\n",
+ "layers {\r\n",
+ " bottom: \"data\"\r\n",
+ " top: \"fc1\"\r\n",
+ " name: \"fc1\"\r\n",
+ " type: INNER_PRODUCT\r\n",
+ " blobs_lr: 1\r\n",
+ " blobs_lr: 2\r\n",
+ " weight_decay: 1\r\n",
+ " weight_decay: 0\r\n",
+ " inner_product_param {\r\n",
+ " num_output: 2\r\n",
+ " weight_filler {\r\n",
+ " type: \"gaussian\"\r\n",
+ " std: 0.01\r\n",
+ " }\r\n",
+ " bias_filler {\r\n",
+ " type: \"constant\"\r\n",
+ " value: 0\r\n",
+ " }\r\n",
+ " }\r\n",
+ "}\r\n",
+ "layers {\r\n",
+ " bottom: \"fc1\"\r\n",
+ " bottom: \"label\"\r\n",
+ " top: \"loss\"\r\n",
+ " name: \"loss\"\r\n",
+ " type: SOFTMAX_LOSS\r\n",
+ "}\r\n",
+ "layers {\r\n",
+ " bottom: \"fc1\"\r\n",
+ " bottom: \"label\"\r\n",
+ " top: \"accuracy\"\r\n",
+ " name: \"accuracy\"\r\n",
+ " type: ACCURACY\r\n",
+ " include {\r\n",
+ " phase: TEST\r\n",
+ " }\r\n",
+ "}\r\n",
+ "state {\r\n",
+ " phase: TEST\r\n",
+ "}\r\n",
+ "I0905 01:07:27.115854 2129298192 net.cpp:67] Creating Layer data\r\n",
+ "I0905 01:07:27.115864 2129298192 net.cpp:356] data -> data\r\n",
+ "I0905 01:07:27.116004 2129298192 net.cpp:356] data -> label\r\n",
+ "I0905 01:07:27.116024 2129298192 net.cpp:96] Setting up data\r\n",
+ "I0905 01:07:27.116030 2129298192 hdf5_data_layer.cpp:57] Loading filename from examples/hdf5_classification/data/test.txt\r\n",
+ "I0905 01:07:27.116080 2129298192 hdf5_data_layer.cpp:69] Number of files: 1\r\n",
+ "I0905 01:07:27.116089 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/test.h5\r\n",
+ "I0905 01:07:27.117313 2129298192 hdf5_data_layer.cpp:49] Successully loaded 2500 rows\r\n",
+ "I0905 01:07:27.117348 2129298192 hdf5_data_layer.cpp:81] output data size: 10,4,1,1\r\n",
+ "I0905 01:07:27.117357 2129298192 net.cpp:103] Top shape: 10 4 1 1 (40)\r\n",
+ "I0905 01:07:27.117364 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n",
+ "I0905 01:07:27.117377 2129298192 net.cpp:67] Creating Layer label_data_1_split\r\n",
+ "I0905 01:07:27.117384 2129298192 net.cpp:394] label_data_1_split <- label\r\n",
+ "I0905 01:07:27.117393 2129298192 net.cpp:356] label_data_1_split -> label_data_1_split_0\r\n",
+ "I0905 01:07:27.117409 2129298192 net.cpp:356] label_data_1_split -> label_data_1_split_1\r\n",
+ "I0905 01:07:27.117419 2129298192 net.cpp:96] Setting up label_data_1_split\r\n",
+ "I0905 01:07:27.117427 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n",
+ "I0905 01:07:27.117434 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n",
+ "I0905 01:07:27.117444 2129298192 net.cpp:67] Creating Layer fc1\r\n",
+ "I0905 01:07:27.117449 2129298192 net.cpp:394] fc1 <- data\r\n",
+ "I0905 01:07:27.117470 2129298192 net.cpp:356] fc1 -> fc1\r\n",
+ "I0905 01:07:27.117478 2129298192 net.cpp:96] Setting up fc1\r\n",
+ "I0905 01:07:27.117506 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n",
+ "I0905 01:07:27.117519 2129298192 net.cpp:67] Creating Layer fc1_fc1_0_split\r\n",
+ "I0905 01:07:27.117527 2129298192 net.cpp:394] fc1_fc1_0_split <- fc1\r\n",
+ "I0905 01:07:27.117534 2129298192 net.cpp:356] fc1_fc1_0_split -> fc1_fc1_0_split_0\r\n",
+ "I0905 01:07:27.117543 2129298192 net.cpp:356] fc1_fc1_0_split -> fc1_fc1_0_split_1\r\n",
+ "I0905 01:07:27.117640 2129298192 net.cpp:96] Setting up fc1_fc1_0_split\r\n",
+ "I0905 01:07:27.117655 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n",
+ "I0905 01:07:27.117662 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n",
+ "I0905 01:07:27.117673 2129298192 net.cpp:67] Creating Layer loss\r\n",
+ "I0905 01:07:27.117679 2129298192 net.cpp:394] loss <- fc1_fc1_0_split_0\r\n",
+ "I0905 01:07:27.117687 2129298192 net.cpp:394] loss <- label_data_1_split_0\r\n",
+ "I0905 01:07:27.117696 2129298192 net.cpp:356] loss -> loss\r\n",
+ "I0905 01:07:27.117704 2129298192 net.cpp:96] Setting up loss\r\n",
+ "I0905 01:07:27.117717 2129298192 net.cpp:103] Top shape: 1 1 1 1 (1)\r\n",
+ "I0905 01:07:27.117723 2129298192 net.cpp:109] with loss weight 1\r\n",
+ "I0905 01:07:27.117743 2129298192 net.cpp:67] Creating Layer accuracy\r\n",
+ "I0905 01:07:27.117749 2129298192 net.cpp:394] accuracy <- fc1_fc1_0_split_1\r\n",
+ "I0905 01:07:27.117756 2129298192 net.cpp:394] accuracy <- label_data_1_split_1\r\n",
+ "I0905 01:07:27.117764 2129298192 net.cpp:356] accuracy -> accuracy\r\n",
+ "I0905 01:07:27.117774 2129298192 net.cpp:96] Setting up accuracy\r\n",
+ "I0905 01:07:27.117781 2129298192 net.cpp:103] Top shape: 1 1 1 1 (1)\r\n",
+ "I0905 01:07:27.117789 2129298192 net.cpp:172] accuracy does not need backward computation.\r\n",
+ "I0905 01:07:27.117794 2129298192 net.cpp:170] loss needs backward computation.\r\n",
+ "I0905 01:07:27.117835 2129298192 net.cpp:170] fc1_fc1_0_split needs backward computation.\r\n",
+ "I0905 01:07:27.117842 2129298192 net.cpp:170] fc1 needs backward computation.\r\n",
+ "I0905 01:07:27.117848 2129298192 net.cpp:172] label_data_1_split does not need backward computation.\r\n",
+ "I0905 01:07:27.117854 2129298192 net.cpp:172] data does not need backward computation.\r\n",
+ "I0905 01:07:27.117861 2129298192 net.cpp:208] This network produces output accuracy\r\n",
+ "I0905 01:07:27.117866 2129298192 net.cpp:208] This network produces output loss\r\n",
+ "I0905 01:07:27.117877 2129298192 net.cpp:467] Collecting Learning Rate and Weight Decay.\r\n",
+ "I0905 01:07:27.117926 2129298192 net.cpp:219] Network initialization done.\r\n",
+ "I0905 01:07:27.117938 2129298192 net.cpp:220] Memory required for data: 528\r\n",
+ "I0905 01:07:27.117985 2129298192 solver.cpp:46] Solver scaffolding done.\r\n",
+ "I0905 01:07:27.117992 2129298192 solver.cpp:165] Solving LogisticRegressionNet\r\n",
+ "I0905 01:07:27.118026 2129298192 solver.cpp:251] Iteration 0, Testing net (#0)\r\n",
+ "I0905 01:07:27.123764 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.646801\r\n",
+ "I0905 01:07:27.123847 2129298192 solver.cpp:302] Test net output #1: loss = 0.690777 (* 1 = 0.690777 loss)\r\n",
+ "I0905 01:07:27.123888 2129298192 solver.cpp:195] Iteration 0, loss = 0.689469\r\n",
+ "I0905 01:07:27.123898 2129298192 solver.cpp:210] Train net output #0: loss = 0.689469 (* 1 = 0.689469 loss)\r\n",
+ "I0905 01:07:27.123915 2129298192 solver.cpp:405] Iteration 0, lr = 0.01\r\n",
+ "I0905 01:07:27.127096 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.128094 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.129258 2129298192 solver.cpp:251] Iteration 1000, Testing net (#0)\r\n",
+ "I0905 01:07:27.135226 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.745599\r\n",
+ "I0905 01:07:27.135296 2129298192 solver.cpp:302] Test net output #1: loss = 0.573658 (* 1 = 0.573658 loss)\r\n",
+ "I0905 01:07:27.135315 2129298192 solver.cpp:195] Iteration 1000, loss = 0.49682\r\n",
+ "I0905 01:07:27.135325 2129298192 solver.cpp:210] Train net output #0: loss = 0.49682 (* 1 = 0.49682 loss)\r\n",
+ "I0905 01:07:27.135334 2129298192 solver.cpp:405] Iteration 1000, lr = 0.01\r\n",
+ "I0905 01:07:27.137315 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n",
+ "I0905 01:07:27.137358 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.138335 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.140410 2129298192 solver.cpp:251] Iteration 2000, Testing net (#0)\r\n",
+ "I0905 01:07:27.147435 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.746399\r\n",
+ "I0905 01:07:27.147514 2129298192 solver.cpp:302] Test net output #1: loss = 0.582127 (* 1 = 0.582127 loss)\r\n",
+ "I0905 01:07:27.147541 2129298192 solver.cpp:195] Iteration 2000, loss = 0.555272\r\n",
+ "I0905 01:07:27.147553 2129298192 solver.cpp:210] Train net output #0: loss = 0.555272 (* 1 = 0.555272 loss)\r\n",
+ "I0905 01:07:27.147565 2129298192 solver.cpp:405] Iteration 2000, lr = 0.01\r\n",
+ "I0905 01:07:27.148572 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.149441 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.152377 2129298192 solver.cpp:251] Iteration 3000, Testing net (#0)\r\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "I0905 01:07:27.158655 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.696\r\n",
+ "I0905 01:07:27.158746 2129298192 solver.cpp:302] Test net output #1: loss = 0.580239 (* 1 = 0.580239 loss)\r\n",
+ "I0905 01:07:27.158761 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n",
+ "I0905 01:07:27.158768 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.159765 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.159843 2129298192 solver.cpp:195] Iteration 3000, loss = 0.476517\r\n",
+ "I0905 01:07:27.159873 2129298192 solver.cpp:210] Train net output #0: loss = 0.476517 (* 1 = 0.476517 loss)\r\n",
+ "I0905 01:07:27.159983 2129298192 solver.cpp:405] Iteration 3000, lr = 0.01\r\n",
+ "I0905 01:07:27.163079 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.163602 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.164567 2129298192 solver.cpp:251] Iteration 4000, Testing net (#0)\r\n",
+ "I0905 01:07:27.170277 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.745599\r\n",
+ "I0905 01:07:27.170344 2129298192 solver.cpp:302] Test net output #1: loss = 0.573658 (* 1 = 0.573658 loss)\r\n",
+ "I0905 01:07:27.170364 2129298192 solver.cpp:195] Iteration 4000, loss = 0.49682\r\n",
+ "I0905 01:07:27.170375 2129298192 solver.cpp:210] Train net output #0: loss = 0.49682 (* 1 = 0.49682 loss)\r\n",
+ "I0905 01:07:27.170385 2129298192 solver.cpp:405] Iteration 4000, lr = 0.01\r\n",
+ "I0905 01:07:27.172350 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n",
+ "I0905 01:07:27.172374 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.173084 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.175192 2129298192 solver.cpp:251] Iteration 5000, Testing net (#0)\r\n",
+ "I0905 01:07:27.181659 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.746399\r\n",
+ "I0905 01:07:27.181710 2129298192 solver.cpp:302] Test net output #1: loss = 0.582127 (* 1 = 0.582127 loss)\r\n",
+ "I0905 01:07:27.181730 2129298192 solver.cpp:195] Iteration 5000, loss = 0.555272\r\n",
+ "I0905 01:07:27.181740 2129298192 solver.cpp:210] Train net output #0: loss = 0.555272 (* 1 = 0.555272 loss)\r\n",
+ "I0905 01:07:27.181748 2129298192 solver.cpp:405] Iteration 5000, lr = 0.001\r\n",
+ "I0905 01:07:27.182734 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.183248 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.186180 2129298192 solver.cpp:251] Iteration 6000, Testing net (#0)\r\n",
+ "I0905 01:07:27.192646 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.7684\r\n",
+ "I0905 01:07:27.192751 2129298192 solver.cpp:302] Test net output #1: loss = 0.574538 (* 1 = 0.574538 loss)\r\n",
+ "I0905 01:07:27.192766 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n",
+ "I0905 01:07:27.192773 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.193936 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.194007 2129298192 solver.cpp:195] Iteration 6000, loss = 0.464052\r\n",
+ "I0905 01:07:27.194036 2129298192 solver.cpp:210] Train net output #0: loss = 0.464052 (* 1 = 0.464052 loss)\r\n",
+ "I0905 01:07:27.194051 2129298192 solver.cpp:405] Iteration 6000, lr = 0.001\r\n",
+ "I0905 01:07:27.197053 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.198092 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.199162 2129298192 solver.cpp:251] Iteration 7000, Testing net (#0)\r\n",
+ "I0905 01:07:27.205195 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.7684\r\n",
+ "I0905 01:07:27.205298 2129298192 solver.cpp:302] Test net output #1: loss = 0.574549 (* 1 = 0.574549 loss)\r\n",
+ "I0905 01:07:27.205327 2129298192 solver.cpp:195] Iteration 7000, loss = 0.495483\r\n",
+ "I0905 01:07:27.205338 2129298192 solver.cpp:210] Train net output #0: loss = 0.495483 (* 1 = 0.495483 loss)\r\n",
+ "I0905 01:07:27.205353 2129298192 solver.cpp:405] Iteration 7000, lr = 0.001\r\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "I0905 01:07:27.207471 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n",
+ "I0905 01:07:27.207489 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.208534 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.210860 2129298192 solver.cpp:251] Iteration 8000, Testing net (#0)\r\n",
+ "I0905 01:07:27.216624 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.762\r\n",
+ "I0905 01:07:27.216704 2129298192 solver.cpp:302] Test net output #1: loss = 0.574515 (* 1 = 0.574515 loss)\r\n",
+ "I0905 01:07:27.216723 2129298192 solver.cpp:195] Iteration 8000, loss = 0.524565\r\n",
+ "I0905 01:07:27.216733 2129298192 solver.cpp:210] Train net output #0: loss = 0.524565 (* 1 = 0.524565 loss)\r\n",
+ "I0905 01:07:27.216743 2129298192 solver.cpp:405] Iteration 8000, lr = 0.001\r\n",
+ "I0905 01:07:27.217738 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.218291 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.221294 2129298192 solver.cpp:251] Iteration 9000, Testing net (#0)\r\n",
+ "I0905 01:07:27.227104 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.7688\r\n",
+ "I0905 01:07:27.227171 2129298192 solver.cpp:302] Test net output #1: loss = 0.574278 (* 1 = 0.574278 loss)\r\n",
+ "I0905 01:07:27.227183 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n",
+ "I0905 01:07:27.227190 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.228143 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.228210 2129298192 solver.cpp:195] Iteration 9000, loss = 0.461831\r\n",
+ "I0905 01:07:27.228240 2129298192 solver.cpp:210] Train net output #0: loss = 0.461831 (* 1 = 0.461831 loss)\r\n",
+ "I0905 01:07:27.228252 2129298192 solver.cpp:405] Iteration 9000, lr = 0.001\r\n",
+ "I0905 01:07:27.231314 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.232293 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.233417 2129298192 solver.cpp:319] Snapshotting to examples/hdf5_classification/data/train_iter_10000\r\n",
+ "I0905 01:07:27.233680 2129298192 solver.cpp:326] Snapshotting solver state to examples/hdf5_classification/data/train_iter_10000.solverstate\r\n",
+ "I0905 01:07:27.233795 2129298192 solver.cpp:232] Iteration 10000, loss = 0.49554\r\n",
+ "I0905 01:07:27.233814 2129298192 solver.cpp:251] Iteration 10000, Testing net (#0)\r\n",
+ "I0905 01:07:27.240015 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.768\r\n",
+ "I0905 01:07:27.240099 2129298192 solver.cpp:302] Test net output #1: loss = 0.574488 (* 1 = 0.574488 loss)\r\n",
+ "I0905 01:07:27.240110 2129298192 solver.cpp:237] Optimization Done.\r\n",
+ "I0905 01:07:27.240118 2129298192 caffe.cpp:114] Optimization Done.\r\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "If you look at the `train_val.prototxt`, you'll see that it's simple logistic regression.\n",
+ "We can make it a little more advanced by introducing a non-linearity between weights that take the input and weights that give the output -- now we have a two-layer neural network.\n",
+ "That network is given in `train_val2.prototxt`, and that's the only change made in `solver2.prototxt` which we will now use.\n",
+ "\n",
+ "The final accuracy of the network we'll train below should be higher than for the network above!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "!cd .. && ./build/tools/caffe train -solver examples/hdf5_classification/solver2.prototxt"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "I0905 01:07:27.466722 2129298192 caffe.cpp:90] Starting Optimization\r\n",
+ "I0905 01:07:27.468166 2129298192 solver.cpp:32] Initializing solver from parameters: \r\n",
+ "test_iter: 1000\r\n",
+ "test_interval: 1000\r\n",
+ "base_lr: 0.01\r\n",
+ "display: 1000\r\n",
+ "max_iter: 10000\r\n",
+ "lr_policy: \"step\"\r\n",
+ "gamma: 0.1\r\n",
+ "momentum: 0.9\r\n",
+ "weight_decay: 0.0005\r\n",
+ "stepsize: 5000\r\n",
+ "snapshot: 10000\r\n",
+ "snapshot_prefix: \"examples/hdf5_classification/data/train\"\r\n",
+ "solver_mode: CPU\r\n",
+ "net: \"examples/hdf5_classification/train_val2.prototxt\"\r\n",
+ "I0905 01:07:27.468351 2129298192 solver.cpp:72] Creating training net from net file: examples/hdf5_classification/train_val2.prototxt\r\n",
+ "I0905 01:07:27.469081 2129298192 net.cpp:275] The NetState phase (0) differed from the phase (1) specified by a rule in layer data\r\n",
+ "I0905 01:07:27.469100 2129298192 net.cpp:275] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy\r\n",
+ "I0905 01:07:27.469110 2129298192 net.cpp:39] Initializing net from parameters: \r\n",
+ "name: \"LogisticRegressionNet\"\r\n",
+ "layers {\r\n",
+ " top: \"data\"\r\n",
+ " top: \"label\"\r\n",
+ " name: \"data\"\r\n",
+ " type: HDF5_DATA\r\n",
+ " hdf5_data_param {\r\n",
+ " source: \"examples/hdf5_classification/data/train.txt\"\r\n",
+ " batch_size: 10\r\n",
+ " }\r\n",
+ " include {\r\n",
+ " phase: TRAIN\r\n",
+ " }\r\n",
+ "}\r\n",
+ "layers {\r\n",
+ " bottom: \"data\"\r\n",
+ " top: \"fc1\"\r\n",
+ " name: \"fc1\"\r\n",
+ " type: INNER_PRODUCT\r\n",
+ " blobs_lr: 1\r\n",
+ " blobs_lr: 2\r\n",
+ " weight_decay: 1\r\n",
+ " weight_decay: 0\r\n",
+ " inner_product_param {\r\n",
+ " num_output: 40\r\n",
+ " weight_filler {\r\n",
+ " type: \"gaussian\"\r\n",
+ " std: 0.01\r\n",
+ " }\r\n",
+ " bias_filler {\r\n",
+ " type: \"constant\"\r\n",
+ " value: 0\r\n",
+ " }\r\n",
+ " }\r\n",
+ "}\r\n",
+ "layers {\r\n",
+ " bottom: \"fc1\"\r\n",
+ " top: \"fc1\"\r\n",
+ " name: \"relu1\"\r\n",
+ " type: RELU\r\n",
+ "}\r\n",
+ "layers {\r\n",
+ " bottom: \"fc1\"\r\n",
+ " top: \"fc2\"\r\n",
+ " name: \"fc2\"\r\n",
+ " type: INNER_PRODUCT\r\n",
+ " blobs_lr: 1\r\n",
+ " blobs_lr: 2\r\n",
+ " weight_decay: 1\r\n",
+ " weight_decay: 0\r\n",
+ " inner_product_param {\r\n",
+ " num_output: 2\r\n",
+ " weight_filler {\r\n",
+ " type: \"gaussian\"\r\n",
+ " std: 0.01\r\n",
+ " }\r\n",
+ " bias_filler {\r\n",
+ " type: \"constant\"\r\n",
+ " value: 0\r\n",
+ " }\r\n",
+ " }\r\n",
+ "}\r\n",
+ "layers {\r\n",
+ " bottom: \"fc2\"\r\n",
+ " bottom: \"label\"\r\n",
+ " top: \"loss\"\r\n",
+ " name: \"loss\"\r\n",
+ " type: SOFTMAX_LOSS\r\n",
+ "}\r\n",
+ "state {\r\n",
+ " phase: TRAIN\r\n",
+ "}\r\n",
+ "I0905 01:07:27.469447 2129298192 net.cpp:67] Creating Layer data\r\n",
+ "I0905 01:07:27.469467 2129298192 net.cpp:356] data -> data\r\n",
+ "I0905 01:07:27.469493 2129298192 net.cpp:356] data -> label\r\n",
+ "I0905 01:07:27.469503 2129298192 net.cpp:96] Setting up data\r\n",
+ "I0905 01:07:27.469511 2129298192 hdf5_data_layer.cpp:57] Loading filename from examples/hdf5_classification/data/train.txt\r\n",
+ "I0905 01:07:27.469558 2129298192 hdf5_data_layer.cpp:69] Number of files: 2\r\n",
+ "I0905 01:07:27.469569 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.471978 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.471997 2129298192 hdf5_data_layer.cpp:81] output data size: 10,4,1,1\r\n",
+ "I0905 01:07:27.472008 2129298192 net.cpp:103] Top shape: 10 4 1 1 (40)\r\n",
+ "I0905 01:07:27.472015 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n",
+ "I0905 01:07:27.472026 2129298192 net.cpp:67] Creating Layer fc1\r\n",
+ "I0905 01:07:27.472033 2129298192 net.cpp:394] fc1 <- data\r\n",
+ "I0905 01:07:27.472045 2129298192 net.cpp:356] fc1 -> fc1\r\n",
+ "I0905 01:07:27.472060 2129298192 net.cpp:96] Setting up fc1\r\n",
+ "I0905 01:07:27.476827 2129298192 net.cpp:103] Top shape: 10 40 1 1 (400)\r\n",
+ "I0905 01:07:27.476857 2129298192 net.cpp:67] Creating Layer relu1\r\n",
+ "I0905 01:07:27.476865 2129298192 net.cpp:394] relu1 <- fc1\r\n",
+ "I0905 01:07:27.476872 2129298192 net.cpp:345] relu1 -> fc1 (in-place)\r\n",
+ "I0905 01:07:27.476881 2129298192 net.cpp:96] Setting up relu1\r\n",
+ "I0905 01:07:27.476888 2129298192 net.cpp:103] Top shape: 10 40 1 1 (400)\r\n",
+ "I0905 01:07:27.476896 2129298192 net.cpp:67] Creating Layer fc2\r\n",
+ "I0905 01:07:27.476902 2129298192 net.cpp:394] fc2 <- fc1\r\n",
+ "I0905 01:07:27.476909 2129298192 net.cpp:356] fc2 -> fc2\r\n",
+ "I0905 01:07:27.476918 2129298192 net.cpp:96] Setting up fc2\r\n",
+ "I0905 01:07:27.476932 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n",
+ "I0905 01:07:27.476955 2129298192 net.cpp:67] Creating Layer loss\r\n",
+ "I0905 01:07:27.476963 2129298192 net.cpp:394] loss <- fc2\r\n",
+ "I0905 01:07:27.476969 2129298192 net.cpp:394] loss <- label\r\n",
+ "I0905 01:07:27.476975 2129298192 net.cpp:356] loss -> loss\r\n",
+ "I0905 01:07:27.476984 2129298192 net.cpp:96] Setting up loss\r\n",
+ "I0905 01:07:27.477005 2129298192 net.cpp:103] Top shape: 1 1 1 1 (1)\r\n",
+ "I0905 01:07:27.477040 2129298192 net.cpp:109] with loss weight 1\r\n",
+ "I0905 01:07:27.477051 2129298192 net.cpp:170] loss needs backward computation.\r\n",
+ "I0905 01:07:27.477058 2129298192 net.cpp:170] fc2 needs backward computation.\r\n",
+ "I0905 01:07:27.477063 2129298192 net.cpp:170] relu1 needs backward computation.\r\n",
+ "I0905 01:07:27.477069 2129298192 net.cpp:170] fc1 needs backward computation.\r\n",
+ "I0905 01:07:27.477076 2129298192 net.cpp:172] data does not need backward computation.\r\n",
+ "I0905 01:07:27.477080 2129298192 net.cpp:208] This network produces output loss\r\n",
+ "I0905 01:07:27.477099 2129298192 net.cpp:467] Collecting Learning Rate and Weight Decay.\r\n",
+ "I0905 01:07:27.477105 2129298192 net.cpp:219] Network initialization done.\r\n",
+ "I0905 01:07:27.477112 2129298192 net.cpp:220] Memory required for data: 3484\r\n",
+ "I0905 01:07:27.477455 2129298192 solver.cpp:156] Creating test net (#0) specified by net file: examples/hdf5_classification/train_val2.prototxt\r\n",
+ "I0905 01:07:27.477480 2129298192 net.cpp:275] The NetState phase (1) differed from the phase (0) specified by a rule in layer data\r\n",
+ "I0905 01:07:27.477494 2129298192 net.cpp:39] Initializing net from parameters: \r\n",
+ "name: \"LogisticRegressionNet\"\r\n",
+ "layers {\r\n",
+ " top: \"data\"\r\n",
+ " top: \"label\"\r\n",
+ " name: \"data\"\r\n",
+ " type: HDF5_DATA\r\n",
+ " hdf5_data_param {\r\n",
+ " source: \"examples/hdf5_classification/data/test.txt\"\r\n",
+ " batch_size: 10\r\n",
+ " }\r\n",
+ " include {\r\n",
+ " phase: TEST\r\n",
+ " }\r\n",
+ "}\r\n",
+ "layers {\r\n",
+ " bottom: \"data\"\r\n",
+ " top: \"fc1\"\r\n",
+ " name: \"fc1\"\r\n",
+ " type: INNER_PRODUCT\r\n",
+ " blobs_lr: 1\r\n",
+ " blobs_lr: 2\r\n",
+ " weight_decay: 1\r\n",
+ " weight_decay: 0\r\n",
+ " inner_product_param {\r\n",
+ " num_output: 40\r\n",
+ " weight_filler {\r\n",
+ " type: \"gaussian\"\r\n",
+ " std: 0.01\r\n",
+ " }\r\n",
+ " bias_filler {\r\n",
+ " type: \"constant\"\r\n",
+ " value: 0\r\n",
+ " }\r\n",
+ " }\r\n",
+ "}\r\n",
+ "layers {\r\n",
+ " bottom: \"fc1\"\r\n",
+ " top: \"fc1\"\r\n",
+ " name: \"relu1\"\r\n",
+ " type: RELU\r\n",
+ "}\r\n",
+ "layers {\r\n",
+ " bottom: \"fc1\"\r\n",
+ " top: \"fc2\"\r\n",
+ " name: \"fc2\"\r\n",
+ " type: INNER_PRODUCT\r\n",
+ " blobs_lr: 1\r\n",
+ " blobs_lr: 2\r\n",
+ " weight_decay: 1\r\n",
+ " weight_decay: 0\r\n",
+ " inner_product_param {\r\n",
+ " num_output: 2\r\n",
+ " weight_filler {\r\n",
+ " type: \"gaussian\"\r\n",
+ " std: 0.01\r\n",
+ " }\r\n",
+ " bias_filler {\r\n",
+ " type: \"constant\"\r\n",
+ " value: 0\r\n",
+ " }\r\n",
+ " }\r\n",
+ "}\r\n",
+ "layers {\r\n",
+ " bottom: \"fc2\"\r\n",
+ " bottom: \"label\"\r\n",
+ " top: \"loss\"\r\n",
+ " name: \"loss\"\r\n",
+ " type: SOFTMAX_LOSS\r\n",
+ "}\r\n",
+ "layers {\r\n",
+ " bottom: \"fc2\"\r\n",
+ " bottom: \"label\"\r\n",
+ " top: \"accuracy\"\r\n",
+ " name: \"accuracy\"\r\n",
+ " type: ACCURACY\r\n",
+ " include {\r\n",
+ " phase: TEST\r\n",
+ " }\r\n",
+ "}\r\n",
+ "state {\r\n",
+ " phase: TEST\r\n",
+ "}\r\n",
+ "I0905 01:07:27.477839 2129298192 net.cpp:67] Creating Layer data\r\n",
+ "I0905 01:07:27.477850 2129298192 net.cpp:356] data -> data\r\n",
+ "I0905 01:07:27.477861 2129298192 net.cpp:356] data -> label\r\n",
+ "I0905 01:07:27.477870 2129298192 net.cpp:96] Setting up data\r\n",
+ "I0905 01:07:27.477876 2129298192 hdf5_data_layer.cpp:57] Loading filename from examples/hdf5_classification/data/test.txt\r\n",
+ "I0905 01:07:27.477902 2129298192 hdf5_data_layer.cpp:69] Number of files: 1\r\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "I0905 01:07:27.477910 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/test.h5\r\n",
+ "I0905 01:07:27.478999 2129298192 hdf5_data_layer.cpp:49] Successully loaded 2500 rows\r\n",
+ "I0905 01:07:27.479014 2129298192 hdf5_data_layer.cpp:81] output data size: 10,4,1,1\r\n",
+ "I0905 01:07:27.479022 2129298192 net.cpp:103] Top shape: 10 4 1 1 (40)\r\n",
+ "I0905 01:07:27.479028 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n",
+ "I0905 01:07:27.479038 2129298192 net.cpp:67] Creating Layer label_data_1_split\r\n",
+ "I0905 01:07:27.479044 2129298192 net.cpp:394] label_data_1_split <- label\r\n",
+ "I0905 01:07:27.479058 2129298192 net.cpp:356] label_data_1_split -> label_data_1_split_0\r\n",
+ "I0905 01:07:27.479069 2129298192 net.cpp:356] label_data_1_split -> label_data_1_split_1\r\n",
+ "I0905 01:07:27.479079 2129298192 net.cpp:96] Setting up label_data_1_split\r\n",
+ "I0905 01:07:27.479086 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n",
+ "I0905 01:07:27.479092 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n",
+ "I0905 01:07:27.479100 2129298192 net.cpp:67] Creating Layer fc1\r\n",
+ "I0905 01:07:27.480850 2129298192 net.cpp:394] fc1 <- data\r\n",
+ "I0905 01:07:27.480871 2129298192 net.cpp:356] fc1 -> fc1\r\n",
+ "I0905 01:07:27.480887 2129298192 net.cpp:96] Setting up fc1\r\n",
+ "I0905 01:07:27.480908 2129298192 net.cpp:103] Top shape: 10 40 1 1 (400)\r\n",
+ "I0905 01:07:27.480978 2129298192 net.cpp:67] Creating Layer relu1\r\n",
+ "I0905 01:07:27.480986 2129298192 net.cpp:394] relu1 <- fc1\r\n",
+ "I0905 01:07:27.480994 2129298192 net.cpp:345] relu1 -> fc1 (in-place)\r\n",
+ "I0905 01:07:27.481003 2129298192 net.cpp:96] Setting up relu1\r\n",
+ "I0905 01:07:27.481009 2129298192 net.cpp:103] Top shape: 10 40 1 1 (400)\r\n",
+ "I0905 01:07:27.481017 2129298192 net.cpp:67] Creating Layer fc2\r\n",
+ "I0905 01:07:27.481024 2129298192 net.cpp:394] fc2 <- fc1\r\n",
+ "I0905 01:07:27.481031 2129298192 net.cpp:356] fc2 -> fc2\r\n",
+ "I0905 01:07:27.481041 2129298192 net.cpp:96] Setting up fc2\r\n",
+ "I0905 01:07:27.481055 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n",
+ "I0905 01:07:27.481065 2129298192 net.cpp:67] Creating Layer fc2_fc2_0_split\r\n",
+ "I0905 01:07:27.481343 2129298192 net.cpp:394] fc2_fc2_0_split <- fc2\r\n",
+ "I0905 01:07:27.481360 2129298192 net.cpp:356] fc2_fc2_0_split -> fc2_fc2_0_split_0\r\n",
+ "I0905 01:07:27.481371 2129298192 net.cpp:356] fc2_fc2_0_split -> fc2_fc2_0_split_1\r\n",
+ "I0905 01:07:27.481379 2129298192 net.cpp:96] Setting up fc2_fc2_0_split\r\n",
+ "I0905 01:07:27.481387 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n",
+ "I0905 01:07:27.481392 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n",
+ "I0905 01:07:27.481401 2129298192 net.cpp:67] Creating Layer loss\r\n",
+ "I0905 01:07:27.481407 2129298192 net.cpp:394] loss <- fc2_fc2_0_split_0\r\n",
+ "I0905 01:07:27.481413 2129298192 net.cpp:394] loss <- label_data_1_split_0\r\n",
+ "I0905 01:07:27.481421 2129298192 net.cpp:356] loss -> loss\r\n",
+ "I0905 01:07:27.481434 2129298192 net.cpp:96] Setting up loss\r\n",
+ "I0905 01:07:27.481446 2129298192 net.cpp:103] Top shape: 1 1 1 1 (1)\r\n",
+ "I0905 01:07:27.481452 2129298192 net.cpp:109] with loss weight 1\r\n",
+ "I0905 01:07:27.481466 2129298192 net.cpp:67] Creating Layer accuracy\r\n",
+ "I0905 01:07:27.481472 2129298192 net.cpp:394] accuracy <- fc2_fc2_0_split_1\r\n",
+ "I0905 01:07:27.481504 2129298192 net.cpp:394] accuracy <- label_data_1_split_1\r\n",
+ "I0905 01:07:27.481513 2129298192 net.cpp:356] accuracy -> accuracy\r\n",
+ "I0905 01:07:27.481521 2129298192 net.cpp:96] Setting up accuracy\r\n",
+ "I0905 01:07:27.481528 2129298192 net.cpp:103] Top shape: 1 1 1 1 (1)\r\n",
+ "I0905 01:07:27.481534 2129298192 net.cpp:172] accuracy does not need backward computation.\r\n",
+ "I0905 01:07:27.481540 2129298192 net.cpp:170] loss needs backward computation.\r\n",
+ "I0905 01:07:27.481545 2129298192 net.cpp:170] fc2_fc2_0_split needs backward computation.\r\n",
+ "I0905 01:07:27.481551 2129298192 net.cpp:170] fc2 needs backward computation.\r\n",
+ "I0905 01:07:27.481557 2129298192 net.cpp:170] relu1 needs backward computation.\r\n",
+ "I0905 01:07:27.481562 2129298192 net.cpp:170] fc1 needs backward computation.\r\n",
+ "I0905 01:07:27.481569 2129298192 net.cpp:172] label_data_1_split does not need backward computation.\r\n",
+ "I0905 01:07:27.481575 2129298192 net.cpp:172] data does not need backward computation.\r\n",
+ "I0905 01:07:27.481730 2129298192 net.cpp:208] This network produces output accuracy\r\n",
+ "I0905 01:07:27.481742 2129298192 net.cpp:208] This network produces output loss\r\n",
+ "I0905 01:07:27.481758 2129298192 net.cpp:467] Collecting Learning Rate and Weight Decay.\r\n",
+ "I0905 01:07:27.481766 2129298192 net.cpp:219] Network initialization done.\r\n",
+ "I0905 01:07:27.481771 2129298192 net.cpp:220] Memory required for data: 3728\r\n",
+ "I0905 01:07:27.481814 2129298192 solver.cpp:46] Solver scaffolding done.\r\n",
+ "I0905 01:07:27.481822 2129298192 solver.cpp:165] Solving LogisticRegressionNet\r\n",
+ "I0905 01:07:27.481844 2129298192 solver.cpp:251] Iteration 0, Testing net (#0)\r\n",
+ "I0905 01:07:27.488900 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.4924\r\n",
+ "I0905 01:07:27.488932 2129298192 solver.cpp:302] Test net output #1: loss = 0.693168 (* 1 = 0.693168 loss)\r\n",
+ "I0905 01:07:27.488962 2129298192 solver.cpp:195] Iteration 0, loss = 0.692972\r\n",
+ "I0905 01:07:27.488973 2129298192 solver.cpp:210] Train net output #0: loss = 0.692972 (* 1 = 0.692972 loss)\r\n",
+ "I0905 01:07:27.488984 2129298192 solver.cpp:405] Iteration 0, lr = 0.01\r\n",
+ "I0905 01:07:27.495033 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.495604 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.497684 2129298192 solver.cpp:251] Iteration 1000, Testing net (#0)\r\n",
+ "I0905 01:07:27.504875 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.7744\r\n",
+ "I0905 01:07:27.504930 2129298192 solver.cpp:302] Test net output #1: loss = 0.486552 (* 1 = 0.486552 loss)\r\n",
+ "I0905 01:07:27.504955 2129298192 solver.cpp:195] Iteration 1000, loss = 0.660151\r\n",
+ "I0905 01:07:27.504966 2129298192 solver.cpp:210] Train net output #0: loss = 0.660151 (* 1 = 0.660151 loss)\r\n",
+ "I0905 01:07:27.504976 2129298192 solver.cpp:405] Iteration 1000, lr = 0.01\r\n",
+ "I0905 01:07:27.509419 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n",
+ "I0905 01:07:27.509467 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.510288 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.514822 2129298192 solver.cpp:251] Iteration 2000, Testing net (#0)\r\n",
+ "I0905 01:07:27.522342 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.8004\r\n",
+ "I0905 01:07:27.522444 2129298192 solver.cpp:302] Test net output #1: loss = 0.447153 (* 1 = 0.447153 loss)\r\n",
+ "I0905 01:07:27.522483 2129298192 solver.cpp:195] Iteration 2000, loss = 0.505697\r\n",
+ "I0905 01:07:27.522495 2129298192 solver.cpp:210] Train net output #0: loss = 0.505697 (* 1 = 0.505697 loss)\r\n",
+ "I0905 01:07:27.522507 2129298192 solver.cpp:405] Iteration 2000, lr = 0.01\r\n",
+ "I0905 01:07:27.524762 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.525921 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "I0905 01:07:27.533335 2129298192 solver.cpp:251] Iteration 3000, Testing net (#0)\r\n",
+ "I0905 01:07:27.541055 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.8144\r\n",
+ "I0905 01:07:27.541146 2129298192 solver.cpp:302] Test net output #1: loss = 0.421441 (* 1 = 0.421441 loss)\r\n",
+ "I0905 01:07:27.541160 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n",
+ "I0905 01:07:27.541167 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.542178 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.542261 2129298192 solver.cpp:195] Iteration 3000, loss = 0.242177\r\n",
+ "I0905 01:07:27.542284 2129298192 solver.cpp:210] Train net output #0: loss = 0.242177 (* 1 = 0.242177 loss)\r\n",
+ "I0905 01:07:27.542310 2129298192 solver.cpp:405] Iteration 3000, lr = 0.01\r\n",
+ "I0905 01:07:27.549348 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.550144 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.552340 2129298192 solver.cpp:251] Iteration 4000, Testing net (#0)\r\n",
+ "I0905 01:07:27.560089 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.784001\r\n",
+ "I0905 01:07:27.560227 2129298192 solver.cpp:302] Test net output #1: loss = 0.4395 (* 1 = 0.4395 loss)\r\n",
+ "I0905 01:07:27.560286 2129298192 solver.cpp:195] Iteration 4000, loss = 1.01631\r\n",
+ "I0905 01:07:27.560302 2129298192 solver.cpp:210] Train net output #0: loss = 1.01631 (* 1 = 1.01631 loss)\r\n",
+ "I0905 01:07:27.560315 2129298192 solver.cpp:405] Iteration 4000, lr = 0.01\r\n",
+ "I0905 01:07:27.565016 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n",
+ "I0905 01:07:27.565101 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.566145 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.570286 2129298192 solver.cpp:251] Iteration 5000, Testing net (#0)\r\n",
+ "I0905 01:07:27.577373 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.802\r\n",
+ "I0905 01:07:27.577426 2129298192 solver.cpp:302] Test net output #1: loss = 0.463582 (* 1 = 0.463582 loss)\r\n",
+ "I0905 01:07:27.577452 2129298192 solver.cpp:195] Iteration 5000, loss = 0.632809\r\n",
+ "I0905 01:07:27.577463 2129298192 solver.cpp:210] Train net output #0: loss = 0.632809 (* 1 = 0.632809 loss)\r\n",
+ "I0905 01:07:27.577564 2129298192 solver.cpp:405] Iteration 5000, lr = 0.001\r\n",
+ "I0905 01:07:27.579649 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.580368 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "I0905 01:07:27.586956 2129298192 solver.cpp:251] Iteration 6000, Testing net (#0)\r\n",
+ "I0905 01:07:27.594288 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.822\r\n",
+ "I0905 01:07:27.594327 2129298192 solver.cpp:302] Test net output #1: loss = 0.407026 (* 1 = 0.407026 loss)\r\n",
+ "I0905 01:07:27.594338 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n",
+ "I0905 01:07:27.594344 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.594861 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.594897 2129298192 solver.cpp:195] Iteration 6000, loss = 0.214342\r\n",
+ "I0905 01:07:27.594910 2129298192 solver.cpp:210] Train net output #0: loss = 0.214342 (* 1 = 0.214342 loss)\r\n",
+ "I0905 01:07:27.594919 2129298192 solver.cpp:405] Iteration 6000, lr = 0.001\r\n",
+ "I0905 01:07:27.601003 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.601380 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.603358 2129298192 solver.cpp:251] Iteration 7000, Testing net (#0)\r\n",
+ "I0905 01:07:27.610307 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.8264\r\n",
+ "I0905 01:07:27.610323 2129298192 solver.cpp:302] Test net output #1: loss = 0.403283 (* 1 = 0.403283 loss)\r\n",
+ "I0905 01:07:27.610342 2129298192 solver.cpp:195] Iteration 7000, loss = 0.894732\r\n",
+ "I0905 01:07:27.610352 2129298192 solver.cpp:210] Train net output #0: loss = 0.894732 (* 1 = 0.894732 loss)\r\n",
+ "I0905 01:07:27.610359 2129298192 solver.cpp:405] Iteration 7000, lr = 0.001\r\n",
+ "I0905 01:07:27.614289 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n",
+ "I0905 01:07:27.614297 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.614701 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.618602 2129298192 solver.cpp:251] Iteration 8000, Testing net (#0)\r\n",
+ "I0905 01:07:27.625637 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.8216\r\n",
+ "I0905 01:07:27.625661 2129298192 solver.cpp:302] Test net output #1: loss = 0.402446 (* 1 = 0.402446 loss)\r\n",
+ "I0905 01:07:27.625680 2129298192 solver.cpp:195] Iteration 8000, loss = 0.500503\r\n",
+ "I0905 01:07:27.625690 2129298192 solver.cpp:210] Train net output #0: loss = 0.500503 (* 1 = 0.500503 loss)\r\n",
+ "I0905 01:07:27.625707 2129298192 solver.cpp:405] Iteration 8000, lr = 0.001\r\n",
+ "I0905 01:07:27.627665 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.628075 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "I0905 01:07:27.634202 2129298192 solver.cpp:251] Iteration 9000, Testing net (#0)\r\n",
+ "I0905 01:07:27.641368 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.8252\r\n",
+ "I0905 01:07:27.641412 2129298192 solver.cpp:302] Test net output #1: loss = 0.404175 (* 1 = 0.404175 loss)\r\n",
+ "I0905 01:07:27.641422 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n",
+ "I0905 01:07:27.641428 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.641960 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.642004 2129298192 solver.cpp:195] Iteration 9000, loss = 0.201587\r\n",
+ "I0905 01:07:27.642016 2129298192 solver.cpp:210] Train net output #0: loss = 0.201587 (* 1 = 0.201587 loss)\r\n",
+ "I0905 01:07:27.642026 2129298192 solver.cpp:405] Iteration 9000, lr = 0.001\r\n",
+ "I0905 01:07:27.648680 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n",
+ "I0905 01:07:27.649211 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n",
+ "I0905 01:07:27.651327 2129298192 solver.cpp:319] Snapshotting to examples/hdf5_classification/data/train_iter_10000\r\n",
+ "I0905 01:07:27.651476 2129298192 solver.cpp:326] Snapshotting solver state to examples/hdf5_classification/data/train_iter_10000.solverstate\r\n",
+ "I0905 01:07:27.651564 2129298192 solver.cpp:232] Iteration 10000, loss = 0.935422\r\n",
+ "I0905 01:07:27.651582 2129298192 solver.cpp:251] Iteration 10000, Testing net (#0)\r\n",
+ "I0905 01:07:27.658738 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.826\r\n",
+ "I0905 01:07:27.658782 2129298192 solver.cpp:302] Test net output #1: loss = 0.400826 (* 1 = 0.400826 loss)\r\n",
+ "I0905 01:07:27.658790 2129298192 solver.cpp:237] Optimization Done.\r\n",
+ "I0905 01:07:27.658797 2129298192 caffe.cpp:114] Optimization Done.\r\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Clean up (comment this out if you want to examine the hdf5_classification/data directory).\n",
+ "shutil.rmtree(dirname)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/examples/hdf5_classification/solver.prototxt b/examples/hdf5_classification/solver.prototxt
new file mode 100644
index 00000000..04016207
--- /dev/null
+++ b/examples/hdf5_classification/solver.prototxt
@@ -0,0 +1,14 @@
+net: "examples/hdf5_classification/train_val.prototxt"
+test_iter: 1000
+test_interval: 1000
+base_lr: 0.01
+lr_policy: "step"
+gamma: 0.1
+stepsize: 5000
+display: 1000
+max_iter: 10000
+momentum: 0.9
+weight_decay: 0.0005
+snapshot: 10000
+snapshot_prefix: "examples/hdf5_classification/data/train"
+solver_mode: CPU
diff --git a/examples/hdf5_classification/solver2.prototxt b/examples/hdf5_classification/solver2.prototxt
new file mode 100644
index 00000000..32a3693b
--- /dev/null
+++ b/examples/hdf5_classification/solver2.prototxt
@@ -0,0 +1,14 @@
+net: "examples/hdf5_classification/train_val2.prototxt"
+test_iter: 1000
+test_interval: 1000
+base_lr: 0.01
+lr_policy: "step"
+gamma: 0.1
+stepsize: 5000
+display: 1000
+max_iter: 10000
+momentum: 0.9
+weight_decay: 0.0005
+snapshot: 10000
+snapshot_prefix: "examples/hdf5_classification/data/train"
+solver_mode: CPU
diff --git a/examples/hdf5_classification/train_val.prototxt b/examples/hdf5_classification/train_val.prototxt
new file mode 100644
index 00000000..b55b6644
--- /dev/null
+++ b/examples/hdf5_classification/train_val.prototxt
@@ -0,0 +1,59 @@
+name: "LogisticRegressionNet"
+layers {
+ name: "data"
+ type: HDF5_DATA
+ top: "data"
+ top: "label"
+ hdf5_data_param {
+ source: "examples/hdf5_classification/data/train.txt"
+ batch_size: 10
+ }
+ include: { phase: TRAIN }
+}
+layers {
+ name: "data"
+ type: HDF5_DATA
+ top: "data"
+ top: "label"
+ hdf5_data_param {
+ source: "examples/hdf5_classification/data/test.txt"
+ batch_size: 10
+ }
+ include: { phase: TEST }
+}
+layers {
+ name: "fc1"
+ type: INNER_PRODUCT
+ bottom: "data"
+ top: "fc1"
+ blobs_lr: 1
+ blobs_lr: 2
+ weight_decay: 1
+ weight_decay: 0
+ inner_product_param {
+ num_output: 2
+ weight_filler {
+ type: "gaussian"
+ std: 0.01
+ }
+ bias_filler {
+ type: "constant"
+ value: 0
+ }
+ }
+}
+layers {
+ name: "loss"
+ type: SOFTMAX_LOSS
+ bottom: "fc1"
+ bottom: "label"
+ top: "loss"
+}
+layers {
+ name: "accuracy"
+ type: ACCURACY
+ bottom: "fc1"
+ bottom: "label"
+ top: "accuracy"
+ include: { phase: TEST }
+}
diff --git a/examples/hdf5_classification/train_val2.prototxt b/examples/hdf5_classification/train_val2.prototxt
new file mode 100644
index 00000000..b6a75650
--- /dev/null
+++ b/examples/hdf5_classification/train_val2.prototxt
@@ -0,0 +1,86 @@
+name: "LogisticRegressionNet"
+layers {
+ name: "data"
+ type: HDF5_DATA
+ top: "data"
+ top: "label"
+ hdf5_data_param {
+ source: "examples/hdf5_classification/data/train.txt"
+ batch_size: 10
+ }
+ include: { phase: TRAIN }
+}
+layers {
+ name: "data"
+ type: HDF5_DATA
+ top: "data"
+ top: "label"
+ hdf5_data_param {
+ source: "examples/hdf5_classification/data/test.txt"
+ batch_size: 10
+ }
+ include: { phase: TEST }
+}
+layers {
+ name: "fc1"
+ type: INNER_PRODUCT
+ bottom: "data"
+ top: "fc1"
+ blobs_lr: 1
+ blobs_lr: 2
+ weight_decay: 1
+ weight_decay: 0
+ inner_product_param {
+ num_output: 40
+ weight_filler {
+ type: "gaussian"
+ std: 0.01
+ }
+ bias_filler {
+ type: "constant"
+ value: 0
+ }
+ }
+}
+layers {
+ name: "relu1"
+ type: RELU
+ bottom: "fc1"
+ top: "fc1"
+}
+layers {
+ name: "fc2"
+ type: INNER_PRODUCT
+ bottom: "fc1"
+ top: "fc2"
+ blobs_lr: 1
+ blobs_lr: 2
+ weight_decay: 1
+ weight_decay: 0
+ inner_product_param {
+ num_output: 2
+ weight_filler {
+ type: "gaussian"
+ std: 0.01
+ }
+ bias_filler {
+ type: "constant"
+ value: 0
+ }
+ }
+}
+layers {
+ name: "loss"
+ type: SOFTMAX_LOSS
+ bottom: "fc2"
+ bottom: "label"
+ top: "loss"
+}
+layers {
+ name: "accuracy"
+ type: ACCURACY
+ bottom: "fc2"
+ bottom: "label"
+ top: "accuracy"
+ include: { phase: TEST }
+}