diff options
author | Jeff Donahue <jeff.donahue@gmail.com> | 2015-03-09 12:45:15 -0700 |
---|---|---|
committer | Jeff Donahue <jeff.donahue@gmail.com> | 2015-03-09 12:45:15 -0700 |
commit | 77ab8f649f78844dfbbd7d91e984428c637df499 (patch) | |
tree | d0a8fdc2395b086cc839895acc70b351d39ad67c | |
parent | d9ed0b9cb8c432be302556d8453b9c4bc6745b83 (diff) | |
parent | 2abbaca165e8fbebf35dad683d985e87b58af8ba (diff) | |
download | caffeonacl-77ab8f649f78844dfbbd7d91e984428c637df499.tar.gz caffeonacl-77ab8f649f78844dfbbd7d91e984428c637df499.tar.bz2 caffeonacl-77ab8f649f78844dfbbd7d91e984428c637df499.zip |
Merge pull request #2076 from jeffdonahue/accuracy-layer-fixes
Fixup AccuracyLayer like SoftmaxLossLayer in #1970
-rw-r--r-- | include/caffe/loss_layers.hpp | 7 | ||||
-rw-r--r-- | src/caffe/layers/accuracy_layer.cpp | 67 | ||||
-rw-r--r-- | src/caffe/proto/caffe.proto | 10 | ||||
-rw-r--r-- | src/caffe/test/test_accuracy_layer.cpp | 98 |
4 files changed, 154 insertions, 28 deletions
diff --git a/include/caffe/loss_layers.hpp b/include/caffe/loss_layers.hpp index 62d6df71..d3eecd2e 100644 --- a/include/caffe/loss_layers.hpp +++ b/include/caffe/loss_layers.hpp @@ -78,7 +78,14 @@ class AccuracyLayer : public Layer<Dtype> { } } + int label_axis_, outer_num_, inner_num_; + int top_k_; + + /// Whether to ignore instances with a certain label. + bool has_ignore_label_; + /// The label indicating that an instance should be ignored. + int ignore_label_; }; /** diff --git a/src/caffe/layers/accuracy_layer.cpp b/src/caffe/layers/accuracy_layer.cpp index 186f9f86..90aad675 100644 --- a/src/caffe/layers/accuracy_layer.cpp +++ b/src/caffe/layers/accuracy_layer.cpp @@ -14,6 +14,12 @@ template <typename Dtype> void AccuracyLayer<Dtype>::LayerSetUp( const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { top_k_ = this->layer_param_.accuracy_param().top_k(); + + has_ignore_label_ = + this->layer_param_.accuracy_param().has_ignore_label(); + if (has_ignore_label_) { + ignore_label_ = this->layer_param_.accuracy_param().ignore_label(); + } } template <typename Dtype> @@ -21,11 +27,15 @@ void AccuracyLayer<Dtype>::Reshape( const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { CHECK_LE(top_k_, bottom[0]->count() / bottom[1]->count()) << "top_k must be less than or equal to the number of classes."; - CHECK_GE(bottom[0]->num_axes(), bottom[1]->num_axes()); - for (int i = 0; i < bottom[1]->num_axes(); ++i) { - CHECK_LE(bottom[0]->shape(i), bottom[1]->shape(i)) - << "Dimension mismatch between predictions and label."; - } + label_axis_ = + bottom[0]->CanonicalAxisIndex(this->layer_param_.accuracy_param().axis()); + outer_num_ = bottom[0]->count(0, label_axis_); + inner_num_ = bottom[0]->count(label_axis_ + 1); + CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count()) + << "Number of labels must match number of predictions; " + << "e.g., if label axis == 1 and prediction shape is (N, C, H, W), " + << "label count (number of labels) must be N*H*W, " + << "with integer values in {0, 1, ..., C-1}."; vector<int> top_shape(0); // Accuracy is a scalar; 0 axes. top[0]->Reshape(top_shape); } @@ -36,31 +46,42 @@ void AccuracyLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, Dtype accuracy = 0; const Dtype* bottom_data = bottom[0]->cpu_data(); const Dtype* bottom_label = bottom[1]->cpu_data(); - int num = bottom[0]->count(0, bottom[1]->num_axes()); - int dim = bottom[0]->count() / num; + const int dim = bottom[0]->count() / outer_num_; + const int num_labels = bottom[0]->shape(label_axis_); vector<Dtype> maxval(top_k_+1); vector<int> max_id(top_k_+1); - for (int i = 0; i < num; ++i) { - // Top-k accuracy - std::vector<std::pair<Dtype, int> > bottom_data_vector; - for (int j = 0; j < dim; ++j) { - bottom_data_vector.push_back( - std::make_pair(bottom_data[i * dim + j], j)); - } - std::partial_sort( - bottom_data_vector.begin(), bottom_data_vector.begin() + top_k_, - bottom_data_vector.end(), std::greater<std::pair<Dtype, int> >()); - // check if true label is in top k predictions - for (int k = 0; k < top_k_; k++) { - if (bottom_data_vector[k].second == static_cast<int>(bottom_label[i])) { - ++accuracy; - break; + int count = 0; + for (int i = 0; i < outer_num_; ++i) { + for (int j = 0; j < inner_num_; ++j) { + const int label_value = + static_cast<int>(bottom_label[i * inner_num_ + j]); + if (has_ignore_label_ && label_value == ignore_label_) { + continue; + } + DCHECK_GE(label_value, 0); + DCHECK_LT(label_value, num_labels); + // Top-k accuracy + std::vector<std::pair<Dtype, int> > bottom_data_vector; + for (int k = 0; k < num_labels; ++k) { + bottom_data_vector.push_back(std::make_pair( + bottom_data[i * dim + k * inner_num_ + j], k)); + } + std::partial_sort( + bottom_data_vector.begin(), bottom_data_vector.begin() + top_k_, + bottom_data_vector.end(), std::greater<std::pair<Dtype, int> >()); + // check if true label is in top k predictions + for (int k = 0; k < top_k_; k++) { + if (bottom_data_vector[k].second == label_value) { + ++accuracy; + break; + } } + ++count; } } // LOG(INFO) << "Accuracy: " << accuracy; - top[0]->mutable_cpu_data()[0] = accuracy / num; + top[0]->mutable_cpu_data()[0] = accuracy / count; // Accuracy layer should not be used as a loss function. } diff --git a/src/caffe/proto/caffe.proto b/src/caffe/proto/caffe.proto index 3b479466..e523efa5 100644 --- a/src/caffe/proto/caffe.proto +++ b/src/caffe/proto/caffe.proto @@ -367,6 +367,16 @@ message AccuracyParameter { // the top k scoring classes. By default, only compare to the top scoring // class (i.e. argmax). optional uint32 top_k = 1 [default = 1]; + + // The "label" axis of the prediction blob, whose argmax corresponds to the + // predicted label -- may be negative to index from the end (e.g., -1 for the + // last axis). For example, if axis == 1 and the predictions are + // (N x C x H x W), the label blob is expected to contain N*H*W ground truth + // labels with integer values in {0, 1, ..., C-1}. + optional int32 axis = 2 [default = 1]; + + // If specified, ignore instances with the given label. + optional int32 ignore_label = 3; } // Message that stores parameters used by ArgMaxLayer diff --git a/src/caffe/test/test_accuracy_layer.cpp b/src/caffe/test/test_accuracy_layer.cpp index 1c58b767..6cbf51df 100644 --- a/src/caffe/test/test_accuracy_layer.cpp +++ b/src/caffe/test/test_accuracy_layer.cpp @@ -29,6 +29,14 @@ class AccuracyLayerTest : public ::testing::Test { blob_bottom_data_->Reshape(shape); shape.resize(1); blob_bottom_label_->Reshape(shape); + FillBottoms(); + + blob_bottom_vec_.push_back(blob_bottom_data_); + blob_bottom_vec_.push_back(blob_bottom_label_); + blob_top_vec_.push_back(blob_top_); + } + + virtual void FillBottoms() { // fill the probability values FillerParameter filler_param; GaussianFiller<Dtype> filler(filler_param); @@ -39,14 +47,11 @@ class AccuracyLayerTest : public ::testing::Test { caffe::rng_t* prefetch_rng = static_cast<caffe::rng_t*>(rng->generator()); Dtype* label_data = blob_bottom_label_->mutable_cpu_data(); - for (int i = 0; i < 100; ++i) { + for (int i = 0; i < blob_bottom_label_->count(); ++i) { label_data[i] = (*prefetch_rng)() % 10; } - - blob_bottom_vec_.push_back(blob_bottom_data_); - blob_bottom_vec_.push_back(blob_bottom_label_); - blob_top_vec_.push_back(blob_top_); } + virtual ~AccuracyLayerTest() { delete blob_bottom_data_; delete blob_bottom_label_; @@ -112,6 +117,89 @@ TYPED_TEST(AccuracyLayerTest, TestForwardCPU) { num_correct_labels / 100.0, 1e-4); } +TYPED_TEST(AccuracyLayerTest, TestForwardWithSpatialAxes) { + Caffe::set_mode(Caffe::CPU); + this->blob_bottom_data_->Reshape(2, 10, 4, 5); + vector<int> label_shape(3); + label_shape[0] = 2; label_shape[1] = 4; label_shape[2] = 5; + this->blob_bottom_label_->Reshape(label_shape); + this->FillBottoms(); + LayerParameter layer_param; + layer_param.mutable_accuracy_param()->set_axis(1); + AccuracyLayer<TypeParam> layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + + TypeParam max_value; + const int num_labels = this->blob_bottom_label_->count(); + int max_id; + int num_correct_labels = 0; + vector<int> label_offset(3); + for (int n = 0; n < this->blob_bottom_data_->num(); ++n) { + for (int h = 0; h < this->blob_bottom_data_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_data_->width(); ++w) { + max_value = -FLT_MAX; + max_id = 0; + for (int c = 0; c < this->blob_bottom_data_->channels(); ++c) { + const TypeParam pred_value = + this->blob_bottom_data_->data_at(n, c, h, w); + if (pred_value > max_value) { + max_value = pred_value; + max_id = c; + } + } + label_offset[0] = n; label_offset[1] = h; label_offset[2] = w; + const int correct_label = + static_cast<int>(this->blob_bottom_label_->data_at(label_offset)); + if (max_id == correct_label) { + ++num_correct_labels; + } + } + } + } + EXPECT_NEAR(this->blob_top_->data_at(0, 0, 0, 0), + num_correct_labels / TypeParam(num_labels), 1e-4); +} + +TYPED_TEST(AccuracyLayerTest, TestForwardIgnoreLabel) { + Caffe::set_mode(Caffe::CPU); + LayerParameter layer_param; + const TypeParam kIgnoreLabelValue = -1; + layer_param.mutable_accuracy_param()->set_ignore_label(kIgnoreLabelValue); + AccuracyLayer<TypeParam> layer(layer_param); + // Manually set some labels to the ignore label value (-1). + this->blob_bottom_label_->mutable_cpu_data()[2] = kIgnoreLabelValue; + this->blob_bottom_label_->mutable_cpu_data()[5] = kIgnoreLabelValue; + this->blob_bottom_label_->mutable_cpu_data()[32] = kIgnoreLabelValue; + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + + TypeParam max_value; + int max_id; + int num_correct_labels = 0; + int count = 0; + for (int i = 0; i < 100; ++i) { + if (kIgnoreLabelValue == this->blob_bottom_label_->data_at(i, 0, 0, 0)) { + continue; + } + ++count; + max_value = -FLT_MAX; + max_id = 0; + for (int j = 0; j < 10; ++j) { + if (this->blob_bottom_data_->data_at(i, j, 0, 0) > max_value) { + max_value = this->blob_bottom_data_->data_at(i, j, 0, 0); + max_id = j; + } + } + if (max_id == this->blob_bottom_label_->data_at(i, 0, 0, 0)) { + ++num_correct_labels; + } + } + EXPECT_EQ(count, 97); // We set 3 out of 100 labels to kIgnoreLabelValue. + EXPECT_NEAR(this->blob_top_->data_at(0, 0, 0, 0), + num_correct_labels / TypeParam(count), 1e-4); +} + TYPED_TEST(AccuracyLayerTest, TestForwardCPUTopK) { LayerParameter layer_param; AccuracyParameter* accuracy_param = layer_param.mutable_accuracy_param(); |