summaryrefslogtreecommitdiff
path: root/boost/polygon/detail/polygon_arbitrary_formation.hpp
blob: a5a63833b1e479949d0abce08a3d68fbd8c1093d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
/*
    Copyright 2008 Intel Corporation

    Use, modification and distribution are subject to the Boost Software License,
    Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
    http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_ARBITRARY_FORMATION_HPP
#define BOOST_POLYGON_POLYGON_ARBITRARY_FORMATION_HPP
namespace boost { namespace polygon{
  template <typename T, typename T2>
  struct PolyLineArbitraryByConcept {};

  template <typename T>
  class poly_line_arbitrary_polygon_data;
  template <typename T>
  class poly_line_arbitrary_hole_data;

  template <typename Unit>
  struct scanline_base {

    typedef point_data<Unit> Point;
    typedef std::pair<Point, Point> half_edge;

    class less_point : public std::binary_function<Point, Point, bool> {
    public:
      inline less_point() {}
      inline bool operator () (const Point& pt1, const Point& pt2) const {
        if(pt1.get(HORIZONTAL) < pt2.get(HORIZONTAL)) return true;
        if(pt1.get(HORIZONTAL) == pt2.get(HORIZONTAL)) {
          if(pt1.get(VERTICAL) < pt2.get(VERTICAL)) return true;
        }
        return false;
      }
    };

    static inline bool between(Point pt, Point pt1, Point pt2) {
      less_point lp;
      if(lp(pt1, pt2))
        return lp(pt, pt2) && lp(pt1, pt);
      return lp(pt, pt1) && lp(pt2, pt);
    }

    template <typename area_type>
    static inline Unit compute_intercept(const area_type& dy2,
                                         const area_type& dx1,
                                         const area_type& dx2) {
      //intercept = dy2 * dx1 / dx2
      //return (Unit)(((area_type)dy2 * (area_type)dx1) / (area_type)dx2);
      area_type dx1_q = dx1 / dx2;
      area_type dx1_r = dx1 % dx2;
      return dx1_q * dy2 + (dy2 * dx1_r)/dx2;
    }

    template <typename area_type>
    static inline bool equal_slope(area_type dx1, area_type dy1, area_type dx2, area_type dy2) {
      typedef typename coordinate_traits<Unit>::unsigned_area_type unsigned_product_type;
      unsigned_product_type cross_1 = (unsigned_product_type)(dx2 < 0 ? -dx2 :dx2) * (unsigned_product_type)(dy1 < 0 ? -dy1 : dy1);
      unsigned_product_type cross_2 = (unsigned_product_type)(dx1 < 0 ? -dx1 :dx1) * (unsigned_product_type)(dy2 < 0 ? -dy2 : dy2);
      int dx1_sign = dx1 < 0 ? -1 : 1;
      int dx2_sign = dx2 < 0 ? -1 : 1;
      int dy1_sign = dy1 < 0 ? -1 : 1;
      int dy2_sign = dy2 < 0 ? -1 : 1;
      int cross_1_sign = dx2_sign * dy1_sign;
      int cross_2_sign = dx1_sign * dy2_sign;
      return cross_1 == cross_2 && (cross_1_sign == cross_2_sign || cross_1 == 0);
    }

    template <typename T>
    static inline bool equal_slope_hp(const T& dx1, const T& dy1, const T& dx2, const T& dy2) {
      return dx1 * dy2 == dx2 * dy1;
    }

    static inline bool equal_slope(const Unit& x, const Unit& y,
                                   const Point& pt1, const Point& pt2) {
      const Point* pts[2] = {&pt1, &pt2};
      typedef typename coordinate_traits<Unit>::manhattan_area_type at;
      at dy2 = (at)pts[1]->get(VERTICAL) - (at)y;
      at dy1 = (at)pts[0]->get(VERTICAL) - (at)y;
      at dx2 = (at)pts[1]->get(HORIZONTAL) - (at)x;
      at dx1 = (at)pts[0]->get(HORIZONTAL) - (at)x;
      return equal_slope(dx1, dy1, dx2, dy2);
    }

    template <typename area_type>
    static inline bool less_slope(area_type dx1, area_type dy1, area_type dx2, area_type dy2) {
      //reflext x and y slopes to right hand side half plane
      if(dx1 < 0) {
        dy1 *= -1;
        dx1 *= -1;
      } else if(dx1 == 0) {
        //if the first slope is vertical the first cannot be less
        return false;
      }
      if(dx2 < 0) {
        dy2 *= -1;
        dx2 *= -1;
      } else if(dx2 == 0) {
        //if the second slope is vertical the first is always less unless it is also vertical, in which case they are equal
        return dx1 != 0;
      }
      typedef typename coordinate_traits<Unit>::unsigned_area_type unsigned_product_type;
      unsigned_product_type cross_1 = (unsigned_product_type)(dx2 < 0 ? -dx2 :dx2) * (unsigned_product_type)(dy1 < 0 ? -dy1 : dy1);
      unsigned_product_type cross_2 = (unsigned_product_type)(dx1 < 0 ? -dx1 :dx1) * (unsigned_product_type)(dy2 < 0 ? -dy2 : dy2);
      int dx1_sign = dx1 < 0 ? -1 : 1;
      int dx2_sign = dx2 < 0 ? -1 : 1;
      int dy1_sign = dy1 < 0 ? -1 : 1;
      int dy2_sign = dy2 < 0 ? -1 : 1;
      int cross_1_sign = dx2_sign * dy1_sign;
      int cross_2_sign = dx1_sign * dy2_sign;
      if(cross_1_sign < cross_2_sign) return true;
      if(cross_2_sign < cross_1_sign) return false;
      if(cross_1_sign == -1) return cross_2 < cross_1;
      return cross_1 < cross_2;
    }

    static inline bool less_slope(const Unit& x, const Unit& y,
                                  const Point& pt1, const Point& pt2) {
      const Point* pts[2] = {&pt1, &pt2};
      //compute y value on edge from pt_ to pts[1] at the x value of pts[0]
      typedef typename coordinate_traits<Unit>::manhattan_area_type at;
      at dy2 = (at)pts[1]->get(VERTICAL) - (at)y;
      at dy1 = (at)pts[0]->get(VERTICAL) - (at)y;
      at dx2 = (at)pts[1]->get(HORIZONTAL) - (at)x;
      at dx1 = (at)pts[0]->get(HORIZONTAL) - (at)x;
      return less_slope(dx1, dy1, dx2, dy2);
    }

    //return -1 below, 0 on and 1 above line
    static inline int on_above_or_below(Point pt, const half_edge& he) {
      if(pt == he.first || pt == he.second) return 0;
      if(equal_slope(pt.get(HORIZONTAL), pt.get(VERTICAL), he.first, he.second)) return 0;
      bool less_result = less_slope(pt.get(HORIZONTAL), pt.get(VERTICAL), he.first, he.second);
      int retval = less_result ? -1 : 1;
      less_point lp;
      if(lp(he.second, he.first)) retval *= -1;
      if(!between(pt, he.first, he.second)) retval *= -1;
      return retval;
    }

    //returns true is the segment intersects the integer grid square with lower
    //left corner at point
    static inline bool intersects_grid(Point pt, const half_edge& he) {
      if(pt == he.second) return true;
      if(pt == he.first) return true;
      rectangle_data<Unit> rect1;
      set_points(rect1, he.first, he.second);
      if(contains(rect1, pt, true)) {
        if(is_vertical(he) || is_horizontal(he)) return true;
      } else {
        return false; //can't intersect a grid not within bounding box
      }
      Unit x = pt.get(HORIZONTAL);
      Unit y = pt.get(VERTICAL);
      if(equal_slope(x, y, he.first, he.second) &&
         between(pt, he.first, he.second)) return true;
      Point pt01(pt.get(HORIZONTAL), pt.get(VERTICAL) + 1);
      Point pt10(pt.get(HORIZONTAL) + 1, pt.get(VERTICAL));
      Point pt11(pt.get(HORIZONTAL) + 1, pt.get(VERTICAL) + 1);
//       if(pt01 == he.first) return true;
//       if(pt10 == he.first) return true;
//       if(pt11 == he.first) return true;
//       if(pt01 == he.second) return true;
//       if(pt10 == he.second) return true;
//       if(pt11 == he.second) return true;
      //check non-integer intersections
      half_edge widget1(pt, pt11);
      //intersects but not just at pt11
      if(intersects(widget1, he) && on_above_or_below(pt11, he)) return true;
      half_edge widget2(pt01, pt10);
      //intersects but not just at pt01 or 10
      if(intersects(widget2, he) && on_above_or_below(pt01, he) && on_above_or_below(pt10, he)) return true;
      return false;
    }

    static inline Unit evalAtXforYlazy(Unit xIn, Point pt, Point other_pt) {
      long double
        evalAtXforYret, evalAtXforYxIn, evalAtXforYx1, evalAtXforYy1, evalAtXforYdx1, evalAtXforYdx,
        evalAtXforYdy, evalAtXforYx2, evalAtXforYy2, evalAtXforY0;
      //y = (x - x1)dy/dx + y1
      //y = (xIn - pt.x)*(other_pt.y-pt.y)/(other_pt.x-pt.x) + pt.y
      //assert pt.x != other_pt.x
      if(pt.y() == other_pt.y())
        return pt.y();
      evalAtXforYxIn = xIn;
      evalAtXforYx1 = pt.get(HORIZONTAL);
      evalAtXforYy1 = pt.get(VERTICAL);
      evalAtXforYdx1 = evalAtXforYxIn - evalAtXforYx1;
      evalAtXforY0 = 0;
      if(evalAtXforYdx1 == evalAtXforY0) return (Unit)evalAtXforYy1;
      evalAtXforYx2 = other_pt.get(HORIZONTAL);
      evalAtXforYy2 = other_pt.get(VERTICAL);

      evalAtXforYdx = evalAtXforYx2 - evalAtXforYx1;
      evalAtXforYdy = evalAtXforYy2 - evalAtXforYy1;
      evalAtXforYret = ((evalAtXforYdx1) * evalAtXforYdy / evalAtXforYdx + evalAtXforYy1);
      return (Unit)evalAtXforYret;
    }

    static inline typename high_precision_type<Unit>::type evalAtXforY(Unit xIn, Point pt, Point other_pt) {
      typename high_precision_type<Unit>::type
        evalAtXforYret, evalAtXforYxIn, evalAtXforYx1, evalAtXforYy1, evalAtXforYdx1, evalAtXforYdx,
        evalAtXforYdy, evalAtXforYx2, evalAtXforYy2, evalAtXforY0;
      //y = (x - x1)dy/dx + y1
      //y = (xIn - pt.x)*(other_pt.y-pt.y)/(other_pt.x-pt.x) + pt.y
      //assert pt.x != other_pt.x
      typedef typename high_precision_type<Unit>::type high_precision;
      if(pt.y() == other_pt.y())
        return (high_precision)pt.y();
      evalAtXforYxIn = (high_precision)xIn;
      evalAtXforYx1 = pt.get(HORIZONTAL);
      evalAtXforYy1 = pt.get(VERTICAL);
      evalAtXforYdx1 = evalAtXforYxIn - evalAtXforYx1;
      evalAtXforY0 = high_precision(0);
      if(evalAtXforYdx1 == evalAtXforY0) return evalAtXforYret = evalAtXforYy1;
      evalAtXforYx2 = (high_precision)other_pt.get(HORIZONTAL);
      evalAtXforYy2 = (high_precision)other_pt.get(VERTICAL);

      evalAtXforYdx = evalAtXforYx2 - evalAtXforYx1;
      evalAtXforYdy = evalAtXforYy2 - evalAtXforYy1;
      evalAtXforYret = ((evalAtXforYdx1) * evalAtXforYdy / evalAtXforYdx + evalAtXforYy1);
      return evalAtXforYret;
    }

    struct evalAtXforYPack {
    typename high_precision_type<Unit>::type
    evalAtXforYret, evalAtXforYxIn, evalAtXforYx1, evalAtXforYy1, evalAtXforYdx1, evalAtXforYdx,
                           evalAtXforYdy, evalAtXforYx2, evalAtXforYy2, evalAtXforY0;
      inline const typename high_precision_type<Unit>::type& evalAtXforY(Unit xIn, Point pt, Point other_pt) {
        //y = (x - x1)dy/dx + y1
        //y = (xIn - pt.x)*(other_pt.y-pt.y)/(other_pt.x-pt.x) + pt.y
        //assert pt.x != other_pt.x
        typedef typename high_precision_type<Unit>::type high_precision;
        if(pt.y() == other_pt.y()) {
          evalAtXforYret = (high_precision)pt.y();
          return evalAtXforYret;
        }
        evalAtXforYxIn = (high_precision)xIn;
        evalAtXforYx1 = pt.get(HORIZONTAL);
        evalAtXforYy1 = pt.get(VERTICAL);
        evalAtXforYdx1 = evalAtXforYxIn - evalAtXforYx1;
        evalAtXforY0 = high_precision(0);
        if(evalAtXforYdx1 == evalAtXforY0) return evalAtXforYret = evalAtXforYy1;
        evalAtXforYx2 = (high_precision)other_pt.get(HORIZONTAL);
        evalAtXforYy2 = (high_precision)other_pt.get(VERTICAL);

        evalAtXforYdx = evalAtXforYx2 - evalAtXforYx1;
        evalAtXforYdy = evalAtXforYy2 - evalAtXforYy1;
        evalAtXforYret = ((evalAtXforYdx1) * evalAtXforYdy / evalAtXforYdx + evalAtXforYy1);
        return evalAtXforYret;
      }
    };

    static inline bool is_vertical(const half_edge& he) {
      return he.first.get(HORIZONTAL) == he.second.get(HORIZONTAL);
    }

    static inline bool is_horizontal(const half_edge& he) {
      return he.first.get(VERTICAL) == he.second.get(VERTICAL);
    }

    static inline bool is_45_degree(const half_edge& he) {
      return euclidean_distance(he.first, he.second, HORIZONTAL) == euclidean_distance(he.first, he.second, VERTICAL);
    }

    //scanline comparator functor
    class less_half_edge : public std::binary_function<half_edge, half_edge, bool> {
    private:
      Unit *x_; //x value at which to apply comparison
      int *justBefore_;
      evalAtXforYPack * pack_;
    public:
      inline less_half_edge() : x_(0), justBefore_(0), pack_(0) {}
      inline less_half_edge(Unit *x, int *justBefore, evalAtXforYPack * packIn) : x_(x), justBefore_(justBefore), pack_(packIn) {}
      inline less_half_edge(const less_half_edge& that) : x_(that.x_), justBefore_(that.justBefore_),
                                                          pack_(that.pack_){}
      inline less_half_edge& operator=(const less_half_edge& that) {
        x_ = that.x_;
        justBefore_ = that.justBefore_;
        pack_ = that.pack_;
        return *this; }
      inline bool operator () (const half_edge& elm1, const half_edge& elm2) const {
        if((std::max)(elm1.first.y(), elm1.second.y()) < (std::min)(elm2.first.y(), elm2.second.y()))
          return true;
        if((std::min)(elm1.first.y(), elm1.second.y()) > (std::max)(elm2.first.y(), elm2.second.y()))
          return false;

        //check if either x of elem1 is equal to x_
        Unit localx = *x_;
        Unit elm1y = 0;
        bool elm1_at_x = false;
        if(localx == elm1.first.get(HORIZONTAL)) {
          elm1_at_x = true;
          elm1y = elm1.first.get(VERTICAL);
        } else if(localx == elm1.second.get(HORIZONTAL)) {
          elm1_at_x = true;
          elm1y = elm1.second.get(VERTICAL);
        }
        Unit elm2y = 0;
        bool elm2_at_x = false;
        if(localx == elm2.first.get(HORIZONTAL)) {
          elm2_at_x = true;
          elm2y = elm2.first.get(VERTICAL);
        } else if(localx == elm2.second.get(HORIZONTAL)) {
          elm2_at_x = true;
          elm2y = elm2.second.get(VERTICAL);
        }
        bool retval = false;
        if(!(elm1_at_x && elm2_at_x)) {
          //at least one of the segments doesn't have an end point a the current x
          //-1 below, 1 above
          int pt1_oab = on_above_or_below(elm1.first, half_edge(elm2.first, elm2.second));
          int pt2_oab = on_above_or_below(elm1.second, half_edge(elm2.first, elm2.second));
          if(pt1_oab == pt2_oab) {
            if(pt1_oab == -1)
              retval = true; //pt1 is below elm2 so elm1 is below elm2
          } else {
            //the segments can't cross so elm2 is on whatever side of elm1 that one of its ends is
            int pt3_oab = on_above_or_below(elm2.first, half_edge(elm1.first, elm1.second));
            if(pt3_oab == 1)
              retval = true; //elm1's point is above elm1
          }
        } else {
          if(elm1y < elm2y) {
            retval = true;
          } else if(elm1y == elm2y) {
            if(elm1 == elm2)
              return false;
            retval = less_slope(elm1.second.get(HORIZONTAL) - elm1.first.get(HORIZONTAL),
                                     elm1.second.get(VERTICAL) - elm1.first.get(VERTICAL),
                                     elm2.second.get(HORIZONTAL) - elm2.first.get(HORIZONTAL),
                                     elm2.second.get(VERTICAL) - elm2.first.get(VERTICAL));
            retval = ((*justBefore_) != 0) ^ retval;
          }
        }
        return retval;
      }
    };

    template <typename unsigned_product_type>
    static inline void unsigned_add(unsigned_product_type& result, int& result_sign, unsigned_product_type a, int a_sign, unsigned_product_type b, int b_sign) {
      int switcher = 0;
      if(a_sign < 0) switcher += 1;
      if(b_sign < 0) switcher += 2;
      if(a < b) switcher += 4;
      switch (switcher) {
      case 0: //both positive
        result = a + b;
        result_sign = 1;
        break;
      case 1: //a is negative
        result = a - b;
        result_sign = -1;
        break;
      case 2: //b is negative
        result = a - b;
        result_sign = 1;
        break;
      case 3: //both negative
        result = a + b;
        result_sign = -1;
        break;
      case 4: //both positive
        result = a + b;
        result_sign = 1;
        break;
      case 5: //a is negative
        result = b - a;
        result_sign = 1;
        break;
      case 6: //b is negative
        result = b - a;
        result_sign = -1;
        break;
      case 7: //both negative
        result = b + a;
        result_sign = -1;
        break;
      };
    }

    struct compute_intersection_pack {
      typedef typename high_precision_type<Unit>::type high_precision;
      high_precision y_high, dx1, dy1, dx2, dy2, x11, x21, y11, y21, x_num, y_num, x_den, y_den, x, y;
      static inline bool compute_lazy_intersection(Point& intersection, const half_edge& he1, const half_edge& he2,
                                                   bool projected = false, bool round_closest = false) {
        long double y_high, dx1, dy1, dx2, dy2, x11, x21, y11, y21, x_num, y_num, x_den, y_den, x, y;
        typedef rectangle_data<Unit> Rectangle;
        Rectangle rect1, rect2;
        set_points(rect1, he1.first, he1.second);
        set_points(rect2, he2.first, he2.second);
        if(!projected && !::boost::polygon::intersects(rect1, rect2, true)) return false;
        if(is_vertical(he1)) {
          if(is_vertical(he2)) return false;
          y_high = evalAtXforYlazy(he1.first.get(HORIZONTAL), he2.first, he2.second);
          Unit y_local = (Unit)y_high;
          if(y_high < y_local) --y_local;
          if(projected || contains(rect1.get(VERTICAL), y_local, true)) {
            intersection = Point(he1.first.get(HORIZONTAL), y_local);
            return true;
          } else {
            return false;
          }
        } else if(is_vertical(he2)) {
          y_high = evalAtXforYlazy(he2.first.get(HORIZONTAL), he1.first, he1.second);
          Unit y_local = (Unit)y_high;
          if(y_high < y_local) --y_local;
          if(projected || contains(rect2.get(VERTICAL), y_local, true)) {
            intersection = Point(he2.first.get(HORIZONTAL), y_local);
            return true;
          } else {
            return false;
          }
        }
        //the bounding boxes of the two line segments intersect, so we check closer to find the intersection point
        dy2 = (he2.second.get(VERTICAL)) -
          (he2.first.get(VERTICAL));
        dy1 = (he1.second.get(VERTICAL)) -
          (he1.first.get(VERTICAL));
        dx2 = (he2.second.get(HORIZONTAL)) -
          (he2.first.get(HORIZONTAL));
        dx1 = (he1.second.get(HORIZONTAL)) -
          (he1.first.get(HORIZONTAL));
        if(equal_slope_hp(dx1, dy1, dx2, dy2)) return false;
        //the line segments have different slopes
        //we can assume that the line segments are not vertical because such an intersection is handled elsewhere
        x11 = (he1.first.get(HORIZONTAL));
        x21 = (he2.first.get(HORIZONTAL));
        y11 = (he1.first.get(VERTICAL));
        y21 = (he2.first.get(VERTICAL));
        //Unit exp_x = ((at)x11 * (at)dy1 * (at)dx2 - (at)x21 * (at)dy2 * (at)dx1 + (at)y21 * (at)dx1 * (at)dx2 - (at)y11 * (at)dx1 * (at)dx2) / ((at)dy1 * (at)dx2 - (at)dy2 * (at)dx1);
        //Unit exp_y = ((at)y11 * (at)dx1 * (at)dy2 - (at)y21 * (at)dx2 * (at)dy1 + (at)x21 * (at)dy1 * (at)dy2 - (at)x11 * (at)dy1 * (at)dy2) / ((at)dx1 * (at)dy2 - (at)dx2 * (at)dy1);
        x_num = (x11 * dy1 * dx2 - x21 * dy2 * dx1 + y21 * dx1 * dx2 - y11 * dx1 * dx2);
        x_den = (dy1 * dx2 - dy2 * dx1);
        y_num = (y11 * dx1 * dy2 - y21 * dx2 * dy1 + x21 * dy1 * dy2 - x11 * dy1 * dy2);
        y_den = (dx1 * dy2 - dx2 * dy1);
        x = x_num / x_den;
        y = y_num / y_den;
        //std::cout << "cross1 " << dy1 << " " << dx2 << " " << dy1 * dx2 << "\n";
        //std::cout << "cross2 " << dy2 << " " << dx1 << " " << dy2 * dx1 << "\n";
        //Unit exp_x = compute_x_intercept<at>(x11, x21, y11, y21, dy1, dy2, dx1, dx2);
        //Unit exp_y = compute_x_intercept<at>(y11, y21, x11, x21, dx1, dx2, dy1, dy2);
        if(round_closest) {
          x = x + 0.5;
          y = y + 0.5;
        }
        Unit x_unit = (Unit)(x);
        Unit y_unit = (Unit)(y);
        //truncate downward if it went up due to negative number
        if(x < x_unit) --x_unit;
        if(y < y_unit) --y_unit;
        if(is_horizontal(he1))
          y_unit = he1.first.y();
        if(is_horizontal(he2))
          y_unit = he2.first.y();
        //if(x != exp_x || y != exp_y)
        //  std::cout << exp_x << " " << exp_y << " " << x << " " << y << "\n";
        //Unit y1 = evalAtXforY(exp_x, he1.first, he1.second);
        //Unit y2 = evalAtXforY(exp_x, he2.first, he2.second);
        //std::cout << exp_x << " " << exp_y << " " << y1 << " " << y2 << "\n";
        Point result(x_unit, y_unit);
        if(!projected && !contains(rect1, result, true)) return false;
        if(!projected && !contains(rect2, result, true)) return false;
        if(projected) {
          rectangle_data<long double> inf_rect(-(long double)(std::numeric_limits<Unit>::max)(),
                                               -(long double) (std::numeric_limits<Unit>::max)(),
                                               (long double)(std::numeric_limits<Unit>::max)(),
                                               (long double) (std::numeric_limits<Unit>::max)() );
          if(contains(inf_rect, point_data<long double>(x, y), true)) {
            intersection = result;
            return true;
          } else
            return false;
        }
        intersection = result;
        return true;
      }

      inline bool compute_intersection(Point& intersection, const half_edge& he1, const half_edge& he2,
                                       bool projected = false, bool round_closest = false) {
        if(!projected && !intersects(he1, he2))
           return false;
        bool lazy_success = compute_lazy_intersection(intersection, he1, he2, projected);
        if(!projected) {
          if(lazy_success) {
            if(intersects_grid(intersection, he1) &&
               intersects_grid(intersection, he2))
              return true;
          }
        } else {
          return lazy_success;
        }
        return compute_exact_intersection(intersection, he1, he2, projected, round_closest);
      }

      inline bool compute_exact_intersection(Point& intersection, const half_edge& he1, const half_edge& he2,
                                             bool projected = false, bool round_closest = false) {
        if(!projected && !intersects(he1, he2))
           return false;
        typedef rectangle_data<Unit> Rectangle;
        Rectangle rect1, rect2;
        set_points(rect1, he1.first, he1.second);
        set_points(rect2, he2.first, he2.second);
        if(!::boost::polygon::intersects(rect1, rect2, true)) return false;
        if(is_vertical(he1)) {
          if(is_vertical(he2)) return false;
          y_high = evalAtXforY(he1.first.get(HORIZONTAL), he2.first, he2.second);
          Unit y = convert_high_precision_type<Unit>(y_high);
          if(y_high < (high_precision)y) --y;
          if(contains(rect1.get(VERTICAL), y, true)) {
            intersection = Point(he1.first.get(HORIZONTAL), y);
            return true;
          } else {
            return false;
          }
        } else if(is_vertical(he2)) {
          y_high = evalAtXforY(he2.first.get(HORIZONTAL), he1.first, he1.second);
          Unit y = convert_high_precision_type<Unit>(y_high);
          if(y_high < (high_precision)y) --y;
          if(contains(rect2.get(VERTICAL), y, true)) {
            intersection = Point(he2.first.get(HORIZONTAL), y);
            return true;
          } else {
            return false;
          }
        }
        //the bounding boxes of the two line segments intersect, so we check closer to find the intersection point
        dy2 = (high_precision)(he2.second.get(VERTICAL)) -
          (high_precision)(he2.first.get(VERTICAL));
        dy1 = (high_precision)(he1.second.get(VERTICAL)) -
          (high_precision)(he1.first.get(VERTICAL));
        dx2 = (high_precision)(he2.second.get(HORIZONTAL)) -
          (high_precision)(he2.first.get(HORIZONTAL));
        dx1 = (high_precision)(he1.second.get(HORIZONTAL)) -
          (high_precision)(he1.first.get(HORIZONTAL));
        if(equal_slope_hp(dx1, dy1, dx2, dy2)) return false;
        //the line segments have different slopes
        //we can assume that the line segments are not vertical because such an intersection is handled elsewhere
        x11 = (high_precision)(he1.first.get(HORIZONTAL));
        x21 = (high_precision)(he2.first.get(HORIZONTAL));
        y11 = (high_precision)(he1.first.get(VERTICAL));
        y21 = (high_precision)(he2.first.get(VERTICAL));
        //Unit exp_x = ((at)x11 * (at)dy1 * (at)dx2 - (at)x21 * (at)dy2 * (at)dx1 + (at)y21 * (at)dx1 * (at)dx2 - (at)y11 * (at)dx1 * (at)dx2) / ((at)dy1 * (at)dx2 - (at)dy2 * (at)dx1);
        //Unit exp_y = ((at)y11 * (at)dx1 * (at)dy2 - (at)y21 * (at)dx2 * (at)dy1 + (at)x21 * (at)dy1 * (at)dy2 - (at)x11 * (at)dy1 * (at)dy2) / ((at)dx1 * (at)dy2 - (at)dx2 * (at)dy1);
        x_num = (x11 * dy1 * dx2 - x21 * dy2 * dx1 + y21 * dx1 * dx2 - y11 * dx1 * dx2);
        x_den = (dy1 * dx2 - dy2 * dx1);
        y_num = (y11 * dx1 * dy2 - y21 * dx2 * dy1 + x21 * dy1 * dy2 - x11 * dy1 * dy2);
        y_den = (dx1 * dy2 - dx2 * dy1);
        x = x_num / x_den;
        y = y_num / y_den;
        //std::cout << x << " " << y << "\n";
        //std::cout << "cross1 " << dy1 << " " << dx2 << " " << dy1 * dx2 << "\n";
        //std::cout << "cross2 " << dy2 << " " << dx1 << " " << dy2 * dx1 << "\n";
        //Unit exp_x = compute_x_intercept<at>(x11, x21, y11, y21, dy1, dy2, dx1, dx2);
        //Unit exp_y = compute_x_intercept<at>(y11, y21, x11, x21, dx1, dx2, dy1, dy2);
        if(round_closest) {
          x = x + (high_precision)0.5;
          y = y + (high_precision)0.5;
        }
        Unit x_unit = convert_high_precision_type<Unit>(x);
        Unit y_unit = convert_high_precision_type<Unit>(y);
        //truncate downward if it went up due to negative number
        if(x < (high_precision)x_unit) --x_unit;
        if(y < (high_precision)y_unit) --y_unit;
        if(is_horizontal(he1))
          y_unit = he1.first.y();
        if(is_horizontal(he2))
          y_unit = he2.first.y();
        //if(x != exp_x || y != exp_y)
        //  std::cout << exp_x << " " << exp_y << " " << x << " " << y << "\n";
        //Unit y1 = evalAtXforY(exp_x, he1.first, he1.second);
        //Unit y2 = evalAtXforY(exp_x, he2.first, he2.second);
        //std::cout << exp_x << " " << exp_y << " " << y1 << " " << y2 << "\n";
        Point result(x_unit, y_unit);
        if(!contains(rect1, result, true)) return false;
        if(!contains(rect2, result, true)) return false;
        if(projected) {
          high_precision b1 = (high_precision) (std::numeric_limits<Unit>::min)();
          high_precision b2 = (high_precision) (std::numeric_limits<Unit>::max)();
          if(x > b2 || y > b2 || x < b1 || y < b1)
            return false;
        }
        intersection = result;
        return true;
      }
    };

    static inline bool compute_intersection(Point& intersection, const half_edge& he1, const half_edge& he2) {
      typedef typename high_precision_type<Unit>::type high_precision;
      typedef rectangle_data<Unit> Rectangle;
      Rectangle rect1, rect2;
      set_points(rect1, he1.first, he1.second);
      set_points(rect2, he2.first, he2.second);
      if(!::boost::polygon::intersects(rect1, rect2, true)) return false;
      if(is_vertical(he1)) {
        if(is_vertical(he2)) return false;
        high_precision y_high = evalAtXforY(he1.first.get(HORIZONTAL), he2.first, he2.second);
        Unit y = convert_high_precision_type<Unit>(y_high);
        if(y_high < (high_precision)y) --y;
        if(contains(rect1.get(VERTICAL), y, true)) {
          intersection = Point(he1.first.get(HORIZONTAL), y);
          return true;
        } else {
          return false;
        }
      } else if(is_vertical(he2)) {
        high_precision y_high = evalAtXforY(he2.first.get(HORIZONTAL), he1.first, he1.second);
        Unit y = convert_high_precision_type<Unit>(y_high);
        if(y_high < (high_precision)y) --y;
        if(contains(rect2.get(VERTICAL), y, true)) {
          intersection = Point(he2.first.get(HORIZONTAL), y);
          return true;
        } else {
          return false;
        }
      }
      //the bounding boxes of the two line segments intersect, so we check closer to find the intersection point
      high_precision dy2 = (high_precision)(he2.second.get(VERTICAL)) -
        (high_precision)(he2.first.get(VERTICAL));
      high_precision dy1 = (high_precision)(he1.second.get(VERTICAL)) -
        (high_precision)(he1.first.get(VERTICAL));
      high_precision dx2 = (high_precision)(he2.second.get(HORIZONTAL)) -
        (high_precision)(he2.first.get(HORIZONTAL));
      high_precision dx1 = (high_precision)(he1.second.get(HORIZONTAL)) -
        (high_precision)(he1.first.get(HORIZONTAL));
      if(equal_slope_hp(dx1, dy1, dx2, dy2)) return false;
      //the line segments have different slopes
      //we can assume that the line segments are not vertical because such an intersection is handled elsewhere
      high_precision x11 = (high_precision)(he1.first.get(HORIZONTAL));
      high_precision x21 = (high_precision)(he2.first.get(HORIZONTAL));
      high_precision y11 = (high_precision)(he1.first.get(VERTICAL));
      high_precision y21 = (high_precision)(he2.first.get(VERTICAL));
      //Unit exp_x = ((at)x11 * (at)dy1 * (at)dx2 - (at)x21 * (at)dy2 * (at)dx1 + (at)y21 * (at)dx1 * (at)dx2 - (at)y11 * (at)dx1 * (at)dx2) / ((at)dy1 * (at)dx2 - (at)dy2 * (at)dx1);
      //Unit exp_y = ((at)y11 * (at)dx1 * (at)dy2 - (at)y21 * (at)dx2 * (at)dy1 + (at)x21 * (at)dy1 * (at)dy2 - (at)x11 * (at)dy1 * (at)dy2) / ((at)dx1 * (at)dy2 - (at)dx2 * (at)dy1);
      high_precision x_num = (x11 * dy1 * dx2 - x21 * dy2 * dx1 + y21 * dx1 * dx2 - y11 * dx1 * dx2);
      high_precision x_den = (dy1 * dx2 - dy2 * dx1);
      high_precision y_num = (y11 * dx1 * dy2 - y21 * dx2 * dy1 + x21 * dy1 * dy2 - x11 * dy1 * dy2);
      high_precision y_den = (dx1 * dy2 - dx2 * dy1);
      high_precision x = x_num / x_den;
      high_precision y = y_num / y_den;
      //std::cout << "cross1 " << dy1 << " " << dx2 << " " << dy1 * dx2 << "\n";
      //std::cout << "cross2 " << dy2 << " " << dx1 << " " << dy2 * dx1 << "\n";
      //Unit exp_x = compute_x_intercept<at>(x11, x21, y11, y21, dy1, dy2, dx1, dx2);
      //Unit exp_y = compute_x_intercept<at>(y11, y21, x11, x21, dx1, dx2, dy1, dy2);
      Unit x_unit = convert_high_precision_type<Unit>(x);
      Unit y_unit = convert_high_precision_type<Unit>(y);
      //truncate downward if it went up due to negative number
      if(x < (high_precision)x_unit) --x_unit;
      if(y < (high_precision)y_unit) --y_unit;
      if(is_horizontal(he1))
        y_unit = he1.first.y();
      if(is_horizontal(he2))
        y_unit = he2.first.y();
      //if(x != exp_x || y != exp_y)
      //  std::cout << exp_x << " " << exp_y << " " << x << " " << y << "\n";
      //Unit y1 = evalAtXforY(exp_x, he1.first, he1.second);
      //Unit y2 = evalAtXforY(exp_x, he2.first, he2.second);
      //std::cout << exp_x << " " << exp_y << " " << y1 << " " << y2 << "\n";
      Point result(x_unit, y_unit);
      if(!contains(rect1, result, true)) return false;
      if(!contains(rect2, result, true)) return false;
      intersection = result;
      return true;
    }

    static inline bool intersects(const half_edge& he1, const half_edge& he2) {
      typedef rectangle_data<Unit> Rectangle;
      Rectangle rect1, rect2;
      set_points(rect1, he1.first, he1.second);
      set_points(rect2, he2.first, he2.second);
      if(::boost::polygon::intersects(rect1, rect2, false)) {
        if(he1.first == he2.first) {
          if(he1.second != he2.second && equal_slope(he1.first.get(HORIZONTAL), he1.first.get(VERTICAL),
                                                     he1.second, he2.second)) {
            return true;
          } else {
            return false;
          }
        }
        if(he1.first == he2.second) {
          if(he1.second != he2.first && equal_slope(he1.first.get(HORIZONTAL), he1.first.get(VERTICAL),
                                                    he1.second, he2.first)) {
            return true;
          } else {
            return false;
          }
        }
        if(he1.second == he2.first) {
          if(he1.first != he2.second && equal_slope(he1.second.get(HORIZONTAL), he1.second.get(VERTICAL),
                                                    he1.first, he2.second)) {
            return true;
          } else {
            return false;
          }
        }
        if(he1.second == he2.second) {
          if(he1.first != he2.first && equal_slope(he1.second.get(HORIZONTAL), he1.second.get(VERTICAL),
                                                   he1.first, he2.first)) {
            return true;
          } else {
            return false;
          }
        }
        int oab1 = on_above_or_below(he1.first, he2);
        if(oab1 == 0 && between(he1.first, he2.first, he2.second)) return true;
        int oab2 = on_above_or_below(he1.second, he2);
        if(oab2 == 0 && between(he1.second, he2.first, he2.second)) return true;
        if(oab1 == oab2 && oab1 != 0) return false; //both points of he1 are on same side of he2
        int oab3 = on_above_or_below(he2.first, he1);
        if(oab3 == 0 && between(he2.first, he1.first, he1.second)) return true;
        int oab4 = on_above_or_below(he2.second, he1);
        if(oab4 == 0 && between(he2.second, he1.first, he1.second)) return true;
        if(oab3 == oab4) return false; //both points of he2 are on same side of he1
        return true; //they must cross
      }
      if(is_vertical(he1) && is_vertical(he2) && he1.first.get(HORIZONTAL) == he2.first.get(HORIZONTAL))
        return ::boost::polygon::intersects(rect1.get(VERTICAL), rect2.get(VERTICAL), false) &&
          rect1.get(VERTICAL) != rect2.get(VERTICAL);
      if(is_horizontal(he1) && is_horizontal(he2) && he1.first.get(VERTICAL) == he2.first.get(VERTICAL))
        return ::boost::polygon::intersects(rect1.get(HORIZONTAL), rect2.get(HORIZONTAL), false) &&
          rect1.get(HORIZONTAL) != rect2.get(HORIZONTAL);
      return false;
    }

    class vertex_half_edge {
    public:
      typedef typename high_precision_type<Unit>::type high_precision;
      Point pt;
      Point other_pt; // 1, 0 or -1
      int count; //dxdydTheta
      inline vertex_half_edge() : pt(), other_pt(), count() {}
      inline vertex_half_edge(const Point& point, const Point& other_point, int countIn) : pt(point), other_pt(other_point), count(countIn) {}
      inline vertex_half_edge(const vertex_half_edge& vertex) : pt(vertex.pt), other_pt(vertex.other_pt), count(vertex.count) {}
      inline vertex_half_edge& operator=(const vertex_half_edge& vertex){
        pt = vertex.pt; other_pt = vertex.other_pt; count = vertex.count; return *this; }
      inline bool operator==(const vertex_half_edge& vertex) const {
        return pt == vertex.pt && other_pt == vertex.other_pt && count == vertex.count; }
      inline bool operator!=(const vertex_half_edge& vertex) const { return !((*this) == vertex); }
      inline bool operator<(const vertex_half_edge& vertex) const {
        if(pt.get(HORIZONTAL) < vertex.pt.get(HORIZONTAL)) return true;
        if(pt.get(HORIZONTAL) == vertex.pt.get(HORIZONTAL)) {
          if(pt.get(VERTICAL) < vertex.pt.get(VERTICAL)) return true;
          if(pt.get(VERTICAL) == vertex.pt.get(VERTICAL)) { return less_slope(pt.get(HORIZONTAL), pt.get(VERTICAL),
                                                                              other_pt, vertex.other_pt);
          }
        }
        return false;
      }
      inline bool operator>(const vertex_half_edge& vertex) const { return vertex < (*this); }
      inline bool operator<=(const vertex_half_edge& vertex) const { return !((*this) > vertex); }
      inline bool operator>=(const vertex_half_edge& vertex) const { return !((*this) < vertex); }
      inline high_precision evalAtX(Unit xIn) const { return evalAtXforYlazy(xIn, pt, other_pt); }
      inline bool is_vertical() const {
        return pt.get(HORIZONTAL) == other_pt.get(HORIZONTAL);
      }
      inline bool is_begin() const {
        return pt.get(HORIZONTAL) < other_pt.get(HORIZONTAL) ||
          (pt.get(HORIZONTAL) == other_pt.get(HORIZONTAL) &&
           (pt.get(VERTICAL) < other_pt.get(VERTICAL)));
      }
    };

    //when scanning Vertex45 for polygon formation we need a scanline comparator functor
    class less_vertex_half_edge : public std::binary_function<vertex_half_edge, vertex_half_edge, bool> {
    private:
      Unit *x_; //x value at which to apply comparison
      int *justBefore_;
    public:
      inline less_vertex_half_edge() : x_(0), justBefore_(0) {}
      inline less_vertex_half_edge(Unit *x, int *justBefore) : x_(x), justBefore_(justBefore) {}
      inline less_vertex_half_edge(const less_vertex_half_edge& that) : x_(that.x_), justBefore_(that.justBefore_) {}
      inline less_vertex_half_edge& operator=(const less_vertex_half_edge& that) { x_ = that.x_; justBefore_ = that.justBefore_; return *this; }
      inline bool operator () (const vertex_half_edge& elm1, const vertex_half_edge& elm2) const {
        if((std::max)(elm1.pt.y(), elm1.other_pt.y()) < (std::min)(elm2.pt.y(), elm2.other_pt.y()))
          return true;
        if((std::min)(elm1.pt.y(), elm1.other_pt.y()) > (std::max)(elm2.pt.y(), elm2.other_pt.y()))
          return false;
        //check if either x of elem1 is equal to x_
        Unit localx = *x_;
        Unit elm1y = 0;
        bool elm1_at_x = false;
        if(localx == elm1.pt.get(HORIZONTAL)) {
          elm1_at_x = true;
          elm1y = elm1.pt.get(VERTICAL);
        } else if(localx == elm1.other_pt.get(HORIZONTAL)) {
          elm1_at_x = true;
          elm1y = elm1.other_pt.get(VERTICAL);
        }
        Unit elm2y = 0;
        bool elm2_at_x = false;
        if(localx == elm2.pt.get(HORIZONTAL)) {
          elm2_at_x = true;
          elm2y = elm2.pt.get(VERTICAL);
        } else if(localx == elm2.other_pt.get(HORIZONTAL)) {
          elm2_at_x = true;
          elm2y = elm2.other_pt.get(VERTICAL);
        }
        bool retval = false;
        if(!(elm1_at_x && elm2_at_x)) {
          //at least one of the segments doesn't have an end point a the current x
          //-1 below, 1 above
          int pt1_oab = on_above_or_below(elm1.pt, half_edge(elm2.pt, elm2.other_pt));
          int pt2_oab = on_above_or_below(elm1.other_pt, half_edge(elm2.pt, elm2.other_pt));
          if(pt1_oab == pt2_oab) {
            if(pt1_oab == -1)
              retval = true; //pt1 is below elm2 so elm1 is below elm2
          } else {
            //the segments can't cross so elm2 is on whatever side of elm1 that one of its ends is
            int pt3_oab = on_above_or_below(elm2.pt, half_edge(elm1.pt, elm1.other_pt));
            if(pt3_oab == 1)
              retval = true; //elm1's point is above elm1
          }
        } else {
          if(elm1y < elm2y) {
            retval = true;
          } else if(elm1y == elm2y) {
            if(elm1.pt == elm2.pt && elm1.other_pt == elm2.other_pt)
              return false;
            retval = less_slope(elm1.other_pt.get(HORIZONTAL) - elm1.pt.get(HORIZONTAL),
                                     elm1.other_pt.get(VERTICAL) - elm1.pt.get(VERTICAL),
                                     elm2.other_pt.get(HORIZONTAL) - elm2.pt.get(HORIZONTAL),
                                     elm2.other_pt.get(VERTICAL) - elm2.pt.get(VERTICAL));
            retval = ((*justBefore_) != 0) ^ retval;
          }
        }
        return retval;
      }
    };

  };

  template <typename Unit>
  class polygon_arbitrary_formation : public scanline_base<Unit> {
  public:
    typedef typename scanline_base<Unit>::Point Point;
    typedef typename scanline_base<Unit>::half_edge half_edge;
    typedef typename scanline_base<Unit>::vertex_half_edge vertex_half_edge;
    typedef typename scanline_base<Unit>::less_vertex_half_edge less_vertex_half_edge;

    class poly_line_arbitrary {
    public:
      typedef typename std::list<Point>::const_iterator iterator;

      // default constructor of point does not initialize x and y
      inline poly_line_arbitrary() : points() {} //do nothing default constructor

      // initialize a polygon from x,y values, it is assumed that the first is an x
      // and that the input is a well behaved polygon
      template<class iT>
      inline poly_line_arbitrary& set(iT inputBegin, iT inputEnd) {
        points.clear();  //just in case there was some old data there
        while(inputBegin != inputEnd) {
          points.insert(points.end(), *inputBegin);
          ++inputBegin;
        }
        return *this;
      }

      // copy constructor (since we have dynamic memory)
      inline poly_line_arbitrary(const poly_line_arbitrary& that) : points(that.points) {}

      // assignment operator (since we have dynamic memory do a deep copy)
      inline poly_line_arbitrary& operator=(const poly_line_arbitrary& that) {
        points = that.points;
        return *this;
      }

      // get begin iterator, returns a pointer to a const Unit
      inline iterator begin() const { return points.begin(); }

      // get end iterator, returns a pointer to a const Unit
      inline iterator end() const { return points.end(); }

      inline std::size_t size() const { return points.size(); }

      //public data member
      std::list<Point> points;
    };

    class active_tail_arbitrary {
    protected:
      //data
      poly_line_arbitrary* tailp_;
      active_tail_arbitrary *otherTailp_;
      std::list<active_tail_arbitrary*> holesList_;
      bool head_;
    public:

      /**
       * @brief iterator over coordinates of the figure
       */
      typedef typename poly_line_arbitrary::iterator iterator;

      /**
       * @brief iterator over holes contained within the figure
       */
      typedef typename std::list<active_tail_arbitrary*>::const_iterator iteratorHoles;

      //default constructor
      inline active_tail_arbitrary() : tailp_(), otherTailp_(), holesList_(), head_() {}

      //constructor
      inline active_tail_arbitrary(const vertex_half_edge& vertex, active_tail_arbitrary* otherTailp = 0) : tailp_(), otherTailp_(), holesList_(), head_() {
        tailp_ = new poly_line_arbitrary;
        tailp_->points.push_back(vertex.pt);
        //bool headArray[4] = {false, true, true, true};
        bool inverted = vertex.count == -1;
        head_ = (!vertex.is_vertical) ^ inverted;
        otherTailp_ = otherTailp;
      }

      inline active_tail_arbitrary(Point point, active_tail_arbitrary* otherTailp, bool head = true) :
        tailp_(), otherTailp_(), holesList_(), head_() {
        tailp_ = new poly_line_arbitrary;
        tailp_->points.push_back(point);
        head_ = head;
        otherTailp_ = otherTailp;

      }
      inline active_tail_arbitrary(active_tail_arbitrary* otherTailp) :
        tailp_(), otherTailp_(), holesList_(), head_() {
        tailp_ = otherTailp->tailp_;
        otherTailp_ = otherTailp;
      }

      //copy constructor
      inline active_tail_arbitrary(const active_tail_arbitrary& that) :
        tailp_(), otherTailp_(), holesList_(), head_() { (*this) = that; }

      //destructor
      inline ~active_tail_arbitrary() {
        destroyContents();
      }

      //assignment operator
      inline active_tail_arbitrary& operator=(const active_tail_arbitrary& that) {
        tailp_ = new poly_line_arbitrary(*(that.tailp_));
        head_ = that.head_;
        otherTailp_ = that.otherTailp_;
        holesList_ = that.holesList_;
        return *this;
      }

      //equivalence operator
      inline bool operator==(const active_tail_arbitrary& b) const {
        return tailp_ == b.tailp_ && head_ == b.head_;
      }

      /**
       * @brief get the pointer to the polyline that this is an active tail of
       */
      inline poly_line_arbitrary* getTail() const { return tailp_; }

      /**
       * @brief get the pointer to the polyline at the other end of the chain
       */
      inline poly_line_arbitrary* getOtherTail() const { return otherTailp_->tailp_; }

      /**
       * @brief get the pointer to the activetail at the other end of the chain
       */
      inline active_tail_arbitrary* getOtherActiveTail() const { return otherTailp_; }

      /**
       * @brief test if another active tail is the other end of the chain
       */
      inline bool isOtherTail(const active_tail_arbitrary& b) const { return &b == otherTailp_; }

      /**
       * @brief update this end of chain pointer to new polyline
       */
      inline active_tail_arbitrary& updateTail(poly_line_arbitrary* newTail) { tailp_ = newTail; return *this; }

      inline bool join(active_tail_arbitrary* tail) {
        if(tail == otherTailp_) {
          //std::cout << "joining to other tail!\n";
          return false;
        }
        if(tail->head_ == head_) {
          //std::cout << "joining head to head!\n";
          return false;
        }
        if(!tailp_) {
          //std::cout << "joining empty tail!\n";
          return false;
        }
        if(!(otherTailp_->head_)) {
          otherTailp_->copyHoles(*tail);
          otherTailp_->copyHoles(*this);
        } else {
          tail->otherTailp_->copyHoles(*this);
          tail->otherTailp_->copyHoles(*tail);
        }
        poly_line_arbitrary* tail1 = tailp_;
        poly_line_arbitrary* tail2 = tail->tailp_;
        if(head_) std::swap(tail1, tail2);
        typename std::list<point_data<Unit> >::reverse_iterator riter = tail1->points.rbegin();
        typename std::list<point_data<Unit> >::iterator iter = tail2->points.begin();
        if(*riter == *iter) {
          tail1->points.pop_back(); //remove duplicate point
        }
        tail1->points.splice(tail1->points.end(), tail2->points);
        delete tail2;
        otherTailp_->tailp_ = tail1;
        tail->otherTailp_->tailp_ = tail1;
        otherTailp_->otherTailp_ = tail->otherTailp_;
        tail->otherTailp_->otherTailp_ = otherTailp_;
        tailp_ = 0;
        tail->tailp_ = 0;
        tail->otherTailp_ = 0;
        otherTailp_ = 0;
        return true;
      }

      /**
       * @brief associate a hole to this active tail by the specified policy
       */
      inline active_tail_arbitrary* addHole(active_tail_arbitrary* hole) {
        holesList_.push_back(hole);
        copyHoles(*hole);
        copyHoles(*(hole->otherTailp_));
        return this;
      }

      /**
       * @brief get the list of holes
       */
      inline const std::list<active_tail_arbitrary*>& getHoles() const { return holesList_; }

      /**
       * @brief copy holes from that to this
       */
      inline void copyHoles(active_tail_arbitrary& that) { holesList_.splice(holesList_.end(), that.holesList_); }

      /**
       * @brief find out if solid to right
       */
      inline bool solidToRight() const { return !head_; }
      inline bool solidToLeft() const { return head_; }

      /**
       * @brief get vertex
       */
      inline Point getPoint() const {
        if(head_) return tailp_->points.front();
        return tailp_->points.back();
      }

      /**
       * @brief add a coordinate to the polygon at this active tail end, properly handle degenerate edges by removing redundant coordinate
       */
      inline void pushPoint(Point point) {
        if(head_) {
          //if(tailp_->points.size() < 2) {
          //   tailp_->points.push_front(point);
          //   return;
          //}
          typename std::list<Point>::iterator iter = tailp_->points.begin();
          if(iter == tailp_->points.end()) {
            tailp_->points.push_front(point);
            return;
          }
          ++iter;
          if(iter == tailp_->points.end()) {
            tailp_->points.push_front(point);
            return;
          }
          --iter;
          if(*iter != point) {
            tailp_->points.push_front(point);
          }
          return;
        }
        //if(tailp_->points.size() < 2) {
        //   tailp_->points.push_back(point);
        //   return;
        //}
        typename std::list<Point>::reverse_iterator iter = tailp_->points.rbegin();
        if(iter == tailp_->points.rend()) {
          tailp_->points.push_back(point);
          return;
        }
        ++iter;
        if(iter == tailp_->points.rend()) {
          tailp_->points.push_back(point);
          return;
        }
        --iter;
        if(*iter != point) {
          tailp_->points.push_back(point);
        }
      }

      /**
       * @brief joins the two chains that the two active tail tails are ends of
       * checks for closure of figure and writes out polygons appropriately
       * returns a handle to a hole if one is closed
       */
      template <class cT>
      static inline active_tail_arbitrary* joinChains(Point point, active_tail_arbitrary* at1, active_tail_arbitrary* at2, bool solid,
                                                      cT& output) {
        if(at1->otherTailp_ == at2) {
          //if(at2->otherTailp_ != at1) std::cout << "half closed error\n";
          //we are closing a figure
          at1->pushPoint(point);
          at2->pushPoint(point);
          if(solid) {
            //we are closing a solid figure, write to output
            //std::cout << "test1\n";
            at1->copyHoles(*(at1->otherTailp_));
            typename PolyLineArbitraryByConcept<Unit, typename geometry_concept<typename cT::value_type>::type>::type polyData(at1);
            //poly_line_arbitrary_polygon_data polyData(at1);
            //std::cout << "test2\n";
            //std::cout << poly << "\n";
            //std::cout << "test3\n";
            typedef typename cT::value_type result_type;
            output.push_back(result_type());
            assign(output.back(), polyData);
            //std::cout << "test4\n";
            //std::cout << "delete " << at1->otherTailp_ << "\n";
            //at1->print();
            //at1->otherTailp_->print();
            delete at1->otherTailp_;
            //at1->print();
            //at1->otherTailp_->print();
            //std::cout << "test5\n";
            //std::cout << "delete " << at1 << "\n";
            delete at1;
            //std::cout << "test6\n";
            return 0;
          } else {
            //we are closing a hole, return the tail end active tail of the figure
            return at1;
          }
        }
        //we are not closing a figure
        at1->pushPoint(point);
        at1->join(at2);
        delete at1;
        delete at2;
        return 0;
      }

      inline void destroyContents() {
        if(otherTailp_) {
          //std::cout << "delete p " << tailp_ << "\n";
          if(tailp_) delete tailp_;
          tailp_ = 0;
          otherTailp_->otherTailp_ = 0;
          otherTailp_->tailp_ = 0;
          otherTailp_ = 0;
        }
        for(typename std::list<active_tail_arbitrary*>::iterator itr = holesList_.begin(); itr != holesList_.end(); ++itr) {
          //std::cout << "delete p " << (*itr) << "\n";
          if(*itr) {
            if((*itr)->otherTailp_) {
              delete (*itr)->otherTailp_;
              (*itr)->otherTailp_ = 0;
            }
            delete (*itr);
          }
          (*itr) = 0;
        }
        holesList_.clear();
      }

      inline void print() {
        //std::cout << this << " " << tailp_ << " " << otherTailp_ << " " << holesList_.size() << " " << head_ << "\n";
      }

      static inline std::pair<active_tail_arbitrary*, active_tail_arbitrary*> createActiveTailsAsPair(Point point, bool solid,
                                                                                                      active_tail_arbitrary* phole, bool fractureHoles) {
        active_tail_arbitrary* at1 = 0;
        active_tail_arbitrary* at2 = 0;
        if(phole && fractureHoles) {
          //std::cout << "adding hole\n";
          at1 = phole;
          //assert solid == false, we should be creating a corner with solid below and to the left if there was a hole
          at2 = at1->getOtherActiveTail();
          at2->pushPoint(point);
          at1->pushPoint(point);
        } else {
          at1 = new active_tail_arbitrary(point, at2, solid);
          at2 = new active_tail_arbitrary(at1);
          at1->otherTailp_ = at2;
          at2->head_ = !solid;
          if(phole)
            at2->addHole(phole); //assert fractureHoles == false
        }
        return std::pair<active_tail_arbitrary*, active_tail_arbitrary*>(at1, at2);
      }

    };


    typedef std::vector<std::pair<Point, int> > vertex_arbitrary_count;

    class less_half_edge_count : public std::binary_function<vertex_half_edge, vertex_half_edge, bool> {
    private:
      Point pt_;
    public:
      inline less_half_edge_count() : pt_() {}
      inline less_half_edge_count(Point point) : pt_(point) {}
      inline bool operator () (const std::pair<Point, int>& elm1, const std::pair<Point, int>& elm2) const {
        return scanline_base<Unit>::less_slope(pt_.get(HORIZONTAL), pt_.get(VERTICAL), elm1.first, elm2.first);
      }
    };

    static inline void sort_vertex_arbitrary_count(vertex_arbitrary_count& count, const Point& pt) {
      less_half_edge_count lfec(pt);
      polygon_sort(count.begin(), count.end(), lfec);
    }

    typedef std::vector<std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*> > incoming_count;

    class less_incoming_count : public std::binary_function<std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*>,
                                                            std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*>, bool> {
    private:
      Point pt_;
    public:
      inline less_incoming_count() : pt_() {}
      inline less_incoming_count(Point point) : pt_(point) {}
      inline bool operator () (const std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*>& elm1,
                               const std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*>& elm2) const {
        Unit dx1 = elm1.first.first.first.get(HORIZONTAL) - elm1.first.first.second.get(HORIZONTAL);
        Unit dx2 = elm2.first.first.first.get(HORIZONTAL) - elm2.first.first.second.get(HORIZONTAL);
        Unit dy1 = elm1.first.first.first.get(VERTICAL) - elm1.first.first.second.get(VERTICAL);
        Unit dy2 = elm2.first.first.first.get(VERTICAL) - elm2.first.first.second.get(VERTICAL);
        return scanline_base<Unit>::less_slope(dx1, dy1, dx2, dy2);
      }
    };

    static inline void sort_incoming_count(incoming_count& count, const Point& pt) {
      less_incoming_count lfec(pt);
      polygon_sort(count.begin(), count.end(), lfec);
    }

    static inline void compact_vertex_arbitrary_count(const Point& pt, vertex_arbitrary_count &count) {
      if(count.empty()) return;
      vertex_arbitrary_count tmp;
      tmp.reserve(count.size());
      tmp.push_back(count[0]);
      //merge duplicates
      for(std::size_t i = 1; i < count.size(); ++i) {
        if(!equal_slope(pt.get(HORIZONTAL), pt.get(VERTICAL), tmp[i-1].first, count[i].first)) {
          tmp.push_back(count[i]);
        } else {
          tmp.back().second += count[i].second;
        }
      }
      count.clear();
      count.swap(tmp);
    }

    // inline std::ostream& operator<< (std::ostream& o, const vertex_arbitrary_count& c) {
//       for(unsinged int i = 0; i < c.size(); ++i) {
//         o << c[i].first << " " << c[i].second << " ";
//       }
//       return o;
//     }

    class vertex_arbitrary_compact {
    public:
      Point pt;
      vertex_arbitrary_count count;
      inline vertex_arbitrary_compact() : pt(), count() {}
      inline vertex_arbitrary_compact(const Point& point, const Point& other_point, int countIn) : pt(point), count() {
        count.push_back(std::pair<Point, int>(other_point, countIn));
      }
      inline vertex_arbitrary_compact(const vertex_half_edge& vertex) : pt(vertex.pt), count() {
        count.push_back(std::pair<Point, int>(vertex.other_pt, vertex.count));
      }
      inline vertex_arbitrary_compact(const vertex_arbitrary_compact& vertex) : pt(vertex.pt), count(vertex.count) {}
      inline vertex_arbitrary_compact& operator=(const vertex_arbitrary_compact& vertex){
        pt = vertex.pt; count = vertex.count; return *this; }
      inline bool operator==(const vertex_arbitrary_compact& vertex) const {
        return pt == vertex.pt && count == vertex.count; }
      inline bool operator!=(const vertex_arbitrary_compact& vertex) const { return !((*this) == vertex); }
      inline bool operator<(const vertex_arbitrary_compact& vertex) const {
        if(pt.get(HORIZONTAL) < vertex.pt.get(HORIZONTAL)) return true;
        if(pt.get(HORIZONTAL) == vertex.pt.get(HORIZONTAL)) {
          return pt.get(VERTICAL) < vertex.pt.get(VERTICAL);
        }
        return false;
      }
      inline bool operator>(const vertex_arbitrary_compact& vertex) const { return vertex < (*this); }
      inline bool operator<=(const vertex_arbitrary_compact& vertex) const { return !((*this) > vertex); }
      inline bool operator>=(const vertex_arbitrary_compact& vertex) const { return !((*this) < vertex); }
      inline bool have_vertex_half_edge(int index) const { return count[index]; }
      inline vertex_half_edge operator[](int index) const { return vertex_half_edge(pt, count[index]); }
      };

//     inline std::ostream& operator<< (std::ostream& o, const vertex_arbitrary_compact& c) {
//       o << c.pt << ", " << c.count;
//       return o;
//     }

  protected:
    //definitions
    typedef std::map<vertex_half_edge, active_tail_arbitrary*, less_vertex_half_edge> scanline_data;
    typedef typename scanline_data::iterator iterator;
    typedef typename scanline_data::const_iterator const_iterator;

    //data
    scanline_data scanData_;
    Unit x_;
    int justBefore_;
    int fractureHoles_;
  public:
    inline polygon_arbitrary_formation() :
      scanData_(), x_((std::numeric_limits<Unit>::min)()), justBefore_(false), fractureHoles_(0) {
      less_vertex_half_edge lessElm(&x_, &justBefore_);
      scanData_ = scanline_data(lessElm);
    }
    inline polygon_arbitrary_formation(bool fractureHoles) :
      scanData_(), x_((std::numeric_limits<Unit>::min)()), justBefore_(false), fractureHoles_(fractureHoles) {
      less_vertex_half_edge lessElm(&x_, &justBefore_);
      scanData_ = scanline_data(lessElm);
    }
    inline polygon_arbitrary_formation(const polygon_arbitrary_formation& that) :
      scanData_(), x_((std::numeric_limits<Unit>::min)()), justBefore_(false), fractureHoles_(0) { (*this) = that; }
    inline polygon_arbitrary_formation& operator=(const polygon_arbitrary_formation& that) {
      x_ = that.x_;
      justBefore_ = that.justBefore_;
      fractureHoles_ = that.fractureHoles_;
      less_vertex_half_edge lessElm(&x_, &justBefore_);
      scanData_ = scanline_data(lessElm);
      for(const_iterator itr = that.scanData_.begin(); itr != that.scanData_.end(); ++itr){
        scanData_.insert(scanData_.end(), *itr);
      }
      return *this;
    }

    //cT is an output container of Polygon45 or Polygon45WithHoles
    //iT is an iterator over vertex_half_edge elements
    //inputBegin - inputEnd is a range of sorted iT that represents
    //one or more scanline stops worth of data
    template <class cT, class iT>
    void scan(cT& output, iT inputBegin, iT inputEnd) {
      //std::cout << "1\n";
      while(inputBegin != inputEnd) {
        //std::cout << "2\n";
        x_ = (*inputBegin).pt.get(HORIZONTAL);
        //std::cout << "SCAN FORMATION " << x_ << "\n";
        //std::cout << "x_ = " << x_ << "\n";
        //std::cout << "scan line size: " << scanData_.size() << "\n";
        inputBegin = processEvent_(output, inputBegin, inputEnd);
      }
      //std::cout << "scan line size: " << scanData_.size() << "\n";
    }

  protected:
    //functions
    template <class cT, class cT2>
    inline std::pair<std::pair<Point, int>, active_tail_arbitrary*> processPoint_(cT& output, cT2& elements, Point point,
                                                                                  incoming_count& counts_from_scanline, vertex_arbitrary_count& incoming_count) {
      //std::cout << "\nAT POINT: " <<  point << "\n";
      //join any closing solid corners
      std::vector<int> counts;
      std::vector<int> incoming;
      std::vector<active_tail_arbitrary*> tails;
      counts.reserve(counts_from_scanline.size());
      tails.reserve(counts_from_scanline.size());
      incoming.reserve(incoming_count.size());
      for(std::size_t i = 0; i < counts_from_scanline.size(); ++i) {
        counts.push_back(counts_from_scanline[i].first.second);
        tails.push_back(counts_from_scanline[i].second);
      }
      for(std::size_t i = 0; i < incoming_count.size(); ++i) {
        incoming.push_back(incoming_count[i].second);
        if(incoming_count[i].first < point) {
          incoming.back() = 0;
        }
      }

      active_tail_arbitrary* returnValue = 0;
      std::pair<Point, int> returnCount(Point(0, 0), 0);
      int i_size_less_1 = (int)(incoming.size()) -1;
      int c_size_less_1 = (int)(counts.size()) -1;
      int i_size = incoming.size();
      int c_size = counts.size();

      bool have_vertical_tail_from_below = false;
      if(c_size &&
         scanline_base<Unit>::is_vertical(counts_from_scanline.back().first.first)) {
        have_vertical_tail_from_below = true;
      }
      //assert size = size_less_1 + 1
      //std::cout << tails.size() << " " << incoming.size() << " " << counts_from_scanline.size() << " " << incoming_count.size() << "\n";
      //         for(std::size_t i = 0; i < counts.size(); ++i) {
      //           std::cout << counts_from_scanline[i].first.first.first.get(HORIZONTAL) << ",";
      //           std::cout << counts_from_scanline[i].first.first.first.get(VERTICAL) << " ";
      //           std::cout << counts_from_scanline[i].first.first.second.get(HORIZONTAL) << ",";
      //           std::cout << counts_from_scanline[i].first.first.second.get(VERTICAL) << ":";
      //           std::cout << counts_from_scanline[i].first.second << " ";
      //         } std::cout << "\n";
      //         print(incoming_count);
      {
        for(int i = 0; i < c_size_less_1; ++i) {
          //std::cout << i << "\n";
          if(counts[i] == -1) {
            //std::cout << "fixed i\n";
            for(int j = i + 1; j < c_size; ++j) {
              //std::cout << j << "\n";
              if(counts[j]) {
                if(counts[j] == 1) {
                  //std::cout << "case1: " << i << " " << j << "\n";
                  //if a figure is closed it will be written out by this function to output
                  active_tail_arbitrary::joinChains(point, tails[i], tails[j], true, output);
                  counts[i] = 0;
                  counts[j] = 0;
                  tails[i] = 0;
                  tails[j] = 0;
                }
                break;
              }
            }
          }
        }
      }
      //find any pairs of incoming edges that need to create pair for leading solid
      //std::cout << "checking case2\n";
      {
        for(int i = 0; i < i_size_less_1; ++i) {
          //std::cout << i << "\n";
          if(incoming[i] == 1) {
            //std::cout << "fixed i\n";
            for(int j = i + 1; j < i_size; ++j) {
              //std::cout << j << "\n";
              if(incoming[j]) {
                //std::cout << incoming[j] << "\n";
                if(incoming[j] == -1) {
                  //std::cout << "case2: " << i << " " << j << "\n";
                  //std::cout << "creating active tail pair\n";
                  std::pair<active_tail_arbitrary*, active_tail_arbitrary*> tailPair =
                    active_tail_arbitrary::createActiveTailsAsPair(point, true, 0, fractureHoles_ != 0);
                  //tailPair.first->print();
                  //tailPair.second->print();
                  if(j == i_size_less_1 && incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
                    //vertical active tail becomes return value
                    returnValue = tailPair.first;
                    returnCount.first = point;
                    returnCount.second = 1;
                  } else {
                    //std::cout << "new element " << j-1 << " " << -1 << "\n";
                    //std::cout << point << " " <<  incoming_count[j].first << "\n";
                    elements.push_back(std::pair<vertex_half_edge,
                                       active_tail_arbitrary*>(vertex_half_edge(point,
                                                                                incoming_count[j].first, -1), tailPair.first));
                  }
                  //std::cout << "new element " << i-1 << " " << 1 << "\n";
                  //std::cout << point << " " <<  incoming_count[i].first << "\n";
                  elements.push_back(std::pair<vertex_half_edge,
                                     active_tail_arbitrary*>(vertex_half_edge(point,
                                                                              incoming_count[i].first, 1), tailPair.second));
                  incoming[i] = 0;
                  incoming[j] = 0;
                }
                break;
              }
            }
          }
        }
      }
      //find any active tail that needs to pass through to an incoming edge
      //we expect to find no more than two pass through

      //find pass through with solid on top
      {
        //std::cout << "checking case 3\n";
        for(int i = 0; i < c_size; ++i) {
          //std::cout << i << "\n";
          if(counts[i] != 0) {
            if(counts[i] == 1) {
              //std::cout << "fixed i\n";
              for(int j = i_size_less_1; j >= 0; --j) {
                if(incoming[j] != 0) {
                  if(incoming[j] == 1) {
                    //std::cout << "case3: " << i << " " << j << "\n";
                    //tails[i]->print();
                    //pass through solid on top
                    tails[i]->pushPoint(point);
                    //std::cout << "after push\n";
                    if(j == i_size_less_1 && incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
                      returnValue = tails[i];
                      returnCount.first = point;
                      returnCount.second = -1;
                    } else {
                      elements.push_back(std::pair<vertex_half_edge,
                                         active_tail_arbitrary*>(vertex_half_edge(point,
                                                                                  incoming_count[j].first, incoming[j]), tails[i]));
                    }
                    tails[i] = 0;
                    counts[i] = 0;
                    incoming[j] = 0;
                  }
                  break;
                }
              }
            }
            break;
          }
        }
      }
      //std::cout << "checking case 4\n";
      //find pass through with solid on bottom
      {
        for(int i = c_size_less_1; i >= 0; --i) {
          //std::cout << "i = " << i << " with count " << counts[i] << "\n";
          if(counts[i] != 0) {
            if(counts[i] == -1) {
              for(int j = 0; j < i_size; ++j) {
                if(incoming[j] != 0) {
                  if(incoming[j] == -1) {
                    //std::cout << "case4: " << i << " " << j << "\n";
                    //pass through solid on bottom
                    tails[i]->pushPoint(point);
                    if(j == i_size_less_1 && incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
                      returnValue = tails[i];
                      returnCount.first = point;
                      returnCount.second = 1;
                    } else {
                      //std::cout << "new element " << j-1 << " " << incoming[j] << "\n";
                      //std::cout << point << " " <<  incoming_count[j].first << "\n";
                      elements.push_back(std::pair<vertex_half_edge,
                                         active_tail_arbitrary*>(vertex_half_edge(point,
                                                                                  incoming_count[j].first, incoming[j]), tails[i]));
                    }
                    tails[i] = 0;
                    counts[i] = 0;
                    incoming[j] = 0;
                  }
                  break;
                }
              }
            }
            break;
          }
        }
      }
      //find the end of a hole or the beginning of a hole

      //find end of a hole
      {
        for(int i = 0; i < c_size_less_1; ++i) {
          if(counts[i] != 0) {
            for(int j = i+1; j < c_size; ++j) {
              if(counts[j] != 0) {
                //std::cout << "case5: " << i << " " << j << "\n";
                //we are ending a hole and may potentially close a figure and have to handle the hole
                returnValue = active_tail_arbitrary::joinChains(point, tails[i], tails[j], false, output);
                if(returnValue) returnCount.first = point;
                //std::cout << returnValue << "\n";
                tails[i] = 0;
                tails[j] = 0;
                counts[i] = 0;
                counts[j] = 0;
                break;
              }
            }
            break;
          }
        }
      }
      //find beginning of a hole
      {
        for(int i = 0; i < i_size_less_1; ++i) {
          if(incoming[i] != 0) {
            for(int j = i+1; j < i_size; ++j) {
              if(incoming[j] != 0) {
                //std::cout << "case6: " << i << " " << j << "\n";
                //we are beginning a empty space
                active_tail_arbitrary* holep = 0;
                //if(c_size && counts[c_size_less_1] == 0 &&
                //   counts_from_scanline[c_size_less_1].first.first.first.get(HORIZONTAL) == point.get(HORIZONTAL))
                if(have_vertical_tail_from_below) {
                  holep = tails[c_size_less_1];
                  tails[c_size_less_1] = 0;
                  have_vertical_tail_from_below = false;
                }
                std::pair<active_tail_arbitrary*, active_tail_arbitrary*> tailPair =
                  active_tail_arbitrary::createActiveTailsAsPair(point, false, holep, fractureHoles_ != 0);
                if(j == i_size_less_1 && incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
                  //std::cout << "vertical element " << point << "\n";
                  returnValue = tailPair.first;
                  returnCount.first = point;
                  //returnCount = incoming_count[j];
                  returnCount.second = -1;
                } else {
                  //std::cout << "new element " << j-1 << " " << incoming[j] << "\n";
                  //std::cout << point << " " <<  incoming_count[j].first << "\n";
                  elements.push_back(std::pair<vertex_half_edge,
                                     active_tail_arbitrary*>(vertex_half_edge(point,
                                                                              incoming_count[j].first, incoming[j]), tailPair.first));
                }
                //std::cout << "new element " << i-1 << " " << incoming[i] << "\n";
                //std::cout << point << " " <<  incoming_count[i].first << "\n";
                elements.push_back(std::pair<vertex_half_edge,
                                   active_tail_arbitrary*>(vertex_half_edge(point,
                                                                            incoming_count[i].first, incoming[i]), tailPair.second));
                incoming[i] = 0;
                incoming[j] = 0;
                break;
              }
            }
            break;
          }
        }
      }
      if(have_vertical_tail_from_below) {
        if(tails.back()) {
          tails.back()->pushPoint(point);
          returnValue = tails.back();
          returnCount.first = point;
          returnCount.second = counts.back();
        }
      }
      //assert that tails, counts and incoming are all null
      return std::pair<std::pair<Point, int>, active_tail_arbitrary*>(returnCount, returnValue);
    }

    static inline void print(const vertex_arbitrary_count& count) {
      for(unsigned i = 0; i < count.size(); ++i) {
        //std::cout << count[i].first.get(HORIZONTAL) << ",";
        //std::cout << count[i].first.get(VERTICAL) << ":";
        //std::cout << count[i].second << " ";
      } //std::cout << "\n";
    }

    static inline void print(const scanline_data& data) {
      for(typename scanline_data::const_iterator itr = data.begin(); itr != data.end(); ++itr){
        //std::cout << itr->first.pt << ", " << itr->first.other_pt << "; ";
      } //std::cout << "\n";
    }

    template <class cT, class iT>
    inline iT processEvent_(cT& output, iT inputBegin, iT inputEnd) {
      typedef typename high_precision_type<Unit>::type high_precision;
      //std::cout << "processEvent_\n";
      justBefore_ = true;
      //collect up all elements from the tree that are at the y
      //values of events in the input queue
      //create vector of new elements to add into tree
      active_tail_arbitrary* verticalTail = 0;
      std::pair<Point, int> verticalCount(Point(0, 0), 0);
      iT currentIter = inputBegin;
      std::vector<iterator> elementIters;
      std::vector<std::pair<vertex_half_edge, active_tail_arbitrary*> > elements;
      while(currentIter != inputEnd && currentIter->pt.get(HORIZONTAL) == x_) {
        //std::cout << "loop\n";
        Unit currentY = (*currentIter).pt.get(VERTICAL);
        //std::cout << "current Y " << currentY << "\n";
        //std::cout << "scanline size " << scanData_.size() << "\n";
        //print(scanData_);
        iterator iter = lookUp_(currentY);
        //std::cout << "found element in scanline " << (iter != scanData_.end()) << "\n";
        //int counts[4] = {0, 0, 0, 0};
        incoming_count counts_from_scanline;
        //std::cout << "finding elements in tree\n";
        //if(iter != scanData_.end())
        //  std::cout << "first iter y is " << iter->first.evalAtX(x_) << "\n";
        while(iter != scanData_.end() &&
              ((iter->first.pt.x() == x_ && iter->first.pt.y() == currentY) ||
               (iter->first.other_pt.x() == x_ && iter->first.other_pt.y() == currentY))) {
                //iter->first.evalAtX(x_) == (high_precision)currentY) {
          //std::cout << "loop2\n";
          elementIters.push_back(iter);
          counts_from_scanline.push_back(std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*>
                                         (std::pair<std::pair<Point, Point>, int>(std::pair<Point, Point>(iter->first.pt,
                                                                                                          iter->first.other_pt),
                                                                                  iter->first.count),
                                          iter->second));
          ++iter;
        }
        Point currentPoint(x_, currentY);
        //std::cout << "counts_from_scanline size " << counts_from_scanline.size() << "\n";
        sort_incoming_count(counts_from_scanline, currentPoint);

        vertex_arbitrary_count incoming;
        //std::cout << "aggregating\n";
        do {
          //std::cout << "loop3\n";
          const vertex_half_edge& elem = *currentIter;
          incoming.push_back(std::pair<Point, int>(elem.other_pt, elem.count));
          ++currentIter;
        } while(currentIter != inputEnd && currentIter->pt.get(VERTICAL) == currentY &&
                currentIter->pt.get(HORIZONTAL) == x_);
        //print(incoming);
        sort_vertex_arbitrary_count(incoming, currentPoint);
        //std::cout << currentPoint.get(HORIZONTAL) << "," << currentPoint.get(VERTICAL) << "\n";
        //print(incoming);
        //std::cout << "incoming counts from input size " << incoming.size() << "\n";
        //compact_vertex_arbitrary_count(currentPoint, incoming);
        vertex_arbitrary_count tmp;
        tmp.reserve(incoming.size());
        for(std::size_t i = 0; i < incoming.size(); ++i) {
          if(currentPoint < incoming[i].first) {
            tmp.push_back(incoming[i]);
          }
        }
        incoming.swap(tmp);
        //std::cout << "incoming counts from input size " << incoming.size() << "\n";
        //now counts_from_scanline has the data from the left and
        //incoming has the data from the right at this point
        //cancel out any end points
        if(verticalTail) {
          //std::cout << "adding vertical tail to counts from scanline\n";
          //std::cout << -verticalCount.second << "\n";
          counts_from_scanline.push_back(std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*>
                                         (std::pair<std::pair<Point, Point>, int>(std::pair<Point, Point>(verticalCount.first,
                                                                                                          currentPoint),
                                                                                  -verticalCount.second),
                                          verticalTail));
        }
        if(!incoming.empty() && incoming.back().first.get(HORIZONTAL) == x_) {
          //std::cout << "inverted vertical event\n";
          incoming.back().second *= -1;
        }
        //std::cout << "calling processPoint_\n";
        std::pair<std::pair<Point, int>, active_tail_arbitrary*> result = processPoint_(output, elements, Point(x_, currentY), counts_from_scanline, incoming);
        verticalCount = result.first;
        verticalTail = result.second;
        //if(verticalTail) {
        //  std::cout << "have vertical tail\n";
        //  std::cout << verticalCount.second << "\n";
        //}
        if(verticalTail && !(verticalCount.second)) {
          //we got a hole out of the point we just processed
          //iter is still at the next y element above the current y value in the tree
          //std::cout << "checking whether ot handle hole\n";
          if(currentIter == inputEnd ||
             currentIter->pt.get(HORIZONTAL) != x_ ||
             scanline_base<Unit>::on_above_or_below(currentIter->pt, half_edge(iter->first.pt, iter->first.other_pt)) != -1) {
            //(high_precision)(currentIter->pt.get(VERTICAL)) >= iter->first.evalAtX(x_)) {

            //std::cout << "handle hole here\n";
            if(fractureHoles_) {
              //std::cout << "fracture hole here\n";
              //we need to handle the hole now and not at the next input vertex
              active_tail_arbitrary* at = iter->second;
              high_precision precise_y = iter->first.evalAtX(x_);
              Unit fracture_y = convert_high_precision_type<Unit>(precise_y);
              if(precise_y < fracture_y) --fracture_y;
              Point point(x_, fracture_y);
              verticalTail->getOtherActiveTail()->pushPoint(point);
              iter->second = verticalTail->getOtherActiveTail();
              at->pushPoint(point);
              verticalTail->join(at);
              delete at;
              delete verticalTail;
              verticalTail = 0;
            } else {
              //std::cout << "push hole onto list\n";
              iter->second->addHole(verticalTail);
              verticalTail = 0;
            }
          }
        }
      }
      //std::cout << "erasing\n";
      //erase all elements from the tree
      for(typename std::vector<iterator>::iterator iter = elementIters.begin();
          iter != elementIters.end(); ++iter) {
        //std::cout << "erasing loop\n";
        scanData_.erase(*iter);
      }
      //switch comparison tie breaking policy
      justBefore_ = false;
      //add new elements into tree
      //std::cout << "inserting\n";
      for(typename std::vector<std::pair<vertex_half_edge, active_tail_arbitrary*> >::iterator iter = elements.begin();
          iter != elements.end(); ++iter) {
        //std::cout << "inserting loop\n";
        scanData_.insert(scanData_.end(), *iter);
      }
      //std::cout << "end processEvent\n";
      return currentIter;
    }

    inline iterator lookUp_(Unit y){
      //if just before then we need to look from 1 not -1
      //std::cout << "just before " << justBefore_ << "\n";
      return scanData_.lower_bound(vertex_half_edge(Point(x_, y), Point(x_, y+1), 0));
    }

  public: //test functions

    template <typename stream_type>
    static inline bool testPolygonArbitraryFormationRect(stream_type& stdcout) {
      stdcout << "testing polygon formation\n";
      polygon_arbitrary_formation pf(true);
      std::vector<polygon_data<Unit> > polys;
      std::vector<vertex_half_edge> data;
      data.push_back(vertex_half_edge(Point(0, 0), Point(10, 0), 1));
      data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));
      data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(0, 10), Point(10, 10), -1));
      data.push_back(vertex_half_edge(Point(10, 0), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(10, 0), Point(10, 10), -1));
      data.push_back(vertex_half_edge(Point(10, 10), Point(10, 0), 1));
      data.push_back(vertex_half_edge(Point(10, 10), Point(0, 10), 1));
      polygon_sort(data.begin(), data.end());
      pf.scan(polys, data.begin(), data.end());
      stdcout << "result size: " << polys.size() << "\n";
      for(std::size_t i = 0; i < polys.size(); ++i) {
        stdcout << polys[i] << "\n";
      }
      stdcout << "done testing polygon formation\n";
      return true;
    }

    template <typename stream_type>
    static inline bool testPolygonArbitraryFormationP1(stream_type& stdcout) {
      stdcout << "testing polygon formation P1\n";
      polygon_arbitrary_formation pf(true);
      std::vector<polygon_data<Unit> > polys;
      std::vector<vertex_half_edge> data;
      data.push_back(vertex_half_edge(Point(0, 0), Point(10, 10), 1));
      data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));
      data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(0, 10), Point(10, 20), -1));
      data.push_back(vertex_half_edge(Point(10, 10), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(10, 10), Point(10, 20), -1));
      data.push_back(vertex_half_edge(Point(10, 20), Point(10, 10), 1));
      data.push_back(vertex_half_edge(Point(10, 20), Point(0, 10), 1));
      polygon_sort(data.begin(), data.end());
      pf.scan(polys, data.begin(), data.end());
      stdcout << "result size: " << polys.size() << "\n";
      for(std::size_t i = 0; i < polys.size(); ++i) {
        stdcout << polys[i] << "\n";
      }
      stdcout << "done testing polygon formation\n";
      return true;
    }

    template <typename stream_type>
    static inline bool testPolygonArbitraryFormationP2(stream_type& stdcout) {
      stdcout << "testing polygon formation P2\n";
      polygon_arbitrary_formation pf(true);
      std::vector<polygon_data<Unit> > polys;
      std::vector<vertex_half_edge> data;
      data.push_back(vertex_half_edge(Point(-3, 1), Point(2, -4), 1));
      data.push_back(vertex_half_edge(Point(-3, 1), Point(-2, 2), -1));
      data.push_back(vertex_half_edge(Point(-2, 2), Point(2, 4), -1));
      data.push_back(vertex_half_edge(Point(-2, 2), Point(-3, 1), 1));
      data.push_back(vertex_half_edge(Point(2, -4), Point(-3, 1), -1));
      data.push_back(vertex_half_edge(Point(2, -4), Point(2, 4), -1));
      data.push_back(vertex_half_edge(Point(2, 4), Point(-2, 2), 1));
      data.push_back(vertex_half_edge(Point(2, 4), Point(2, -4), 1));
      polygon_sort(data.begin(), data.end());
      pf.scan(polys, data.begin(), data.end());
      stdcout << "result size: " << polys.size() << "\n";
      for(std::size_t i = 0; i < polys.size(); ++i) {
        stdcout << polys[i] << "\n";
      }
      stdcout << "done testing polygon formation\n";
      return true;
    }


    template <typename stream_type>
    static inline bool testPolygonArbitraryFormationPolys(stream_type& stdcout) {
      stdcout << "testing polygon formation polys\n";
      polygon_arbitrary_formation pf(false);
      std::vector<polygon_with_holes_data<Unit> > polys;
      polygon_arbitrary_formation pf2(true);
      std::vector<polygon_with_holes_data<Unit> > polys2;
      std::vector<vertex_half_edge> data;
      data.push_back(vertex_half_edge(Point(0, 0), Point(100, 1), 1));
      data.push_back(vertex_half_edge(Point(0, 0), Point(1, 100), -1));
      data.push_back(vertex_half_edge(Point(1, 100), Point(0, 0), 1));
      data.push_back(vertex_half_edge(Point(1, 100), Point(101, 101), -1));
      data.push_back(vertex_half_edge(Point(100, 1), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(100, 1), Point(101, 101), 1));
      data.push_back(vertex_half_edge(Point(101, 101), Point(100, 1), -1));
      data.push_back(vertex_half_edge(Point(101, 101), Point(1, 100), 1));

      data.push_back(vertex_half_edge(Point(2, 2), Point(10, 2), -1));
      data.push_back(vertex_half_edge(Point(2, 2), Point(2, 10), -1));
      data.push_back(vertex_half_edge(Point(2, 10), Point(2, 2), 1));
      data.push_back(vertex_half_edge(Point(2, 10), Point(10, 10), 1));
      data.push_back(vertex_half_edge(Point(10, 2), Point(2, 2), 1));
      data.push_back(vertex_half_edge(Point(10, 2), Point(10, 10), 1));
      data.push_back(vertex_half_edge(Point(10, 10), Point(10, 2), -1));
      data.push_back(vertex_half_edge(Point(10, 10), Point(2, 10), -1));

      data.push_back(vertex_half_edge(Point(2, 12), Point(10, 12), -1));
      data.push_back(vertex_half_edge(Point(2, 12), Point(2, 22), -1));
      data.push_back(vertex_half_edge(Point(2, 22), Point(2, 12), 1));
      data.push_back(vertex_half_edge(Point(2, 22), Point(10, 22), 1));
      data.push_back(vertex_half_edge(Point(10, 12), Point(2, 12), 1));
      data.push_back(vertex_half_edge(Point(10, 12), Point(10, 22), 1));
      data.push_back(vertex_half_edge(Point(10, 22), Point(10, 12), -1));
      data.push_back(vertex_half_edge(Point(10, 22), Point(2, 22), -1));

      polygon_sort(data.begin(), data.end());
      pf.scan(polys, data.begin(), data.end());
      stdcout << "result size: " << polys.size() << "\n";
      for(std::size_t i = 0; i < polys.size(); ++i) {
        stdcout << polys[i] << "\n";
      }
      pf2.scan(polys2, data.begin(), data.end());
      stdcout << "result size: " << polys2.size() << "\n";
      for(std::size_t i = 0; i < polys2.size(); ++i) {
        stdcout << polys2[i] << "\n";
      }
      stdcout << "done testing polygon formation\n";
      return true;
    }

    template <typename stream_type>
    static inline bool testPolygonArbitraryFormationSelfTouch1(stream_type& stdcout) {
      stdcout << "testing polygon formation self touch 1\n";
      polygon_arbitrary_formation pf(true);
      std::vector<polygon_data<Unit> > polys;
      std::vector<vertex_half_edge> data;
      data.push_back(vertex_half_edge(Point(0, 0), Point(10, 0), 1));
      data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));

      data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(0, 10), Point(5, 10), -1));

      data.push_back(vertex_half_edge(Point(10, 0), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(10, 0), Point(10, 5), -1));

      data.push_back(vertex_half_edge(Point(10, 5), Point(10, 0), 1));
      data.push_back(vertex_half_edge(Point(10, 5), Point(5, 5), 1));

      data.push_back(vertex_half_edge(Point(5, 10), Point(5, 5), 1));
      data.push_back(vertex_half_edge(Point(5, 10), Point(0, 10), 1));

      data.push_back(vertex_half_edge(Point(5, 2), Point(5, 5), -1));
      data.push_back(vertex_half_edge(Point(5, 2), Point(7, 2), -1));

      data.push_back(vertex_half_edge(Point(5, 5), Point(5, 10), -1));
      data.push_back(vertex_half_edge(Point(5, 5), Point(5, 2), 1));
      data.push_back(vertex_half_edge(Point(5, 5), Point(10, 5), -1));
      data.push_back(vertex_half_edge(Point(5, 5), Point(7, 2), 1));

      data.push_back(vertex_half_edge(Point(7, 2), Point(5, 5), -1));
      data.push_back(vertex_half_edge(Point(7, 2), Point(5, 2), 1));

      polygon_sort(data.begin(), data.end());
      pf.scan(polys, data.begin(), data.end());
      stdcout << "result size: " << polys.size() << "\n";
      for(std::size_t i = 0; i < polys.size(); ++i) {
        stdcout << polys[i] << "\n";
      }
      stdcout << "done testing polygon formation\n";
      return true;
    }

    template <typename stream_type>
    static inline bool testPolygonArbitraryFormationSelfTouch2(stream_type& stdcout) {
      stdcout << "testing polygon formation self touch 2\n";
      polygon_arbitrary_formation pf(true);
      std::vector<polygon_data<Unit> > polys;
      std::vector<vertex_half_edge> data;
      data.push_back(vertex_half_edge(Point(0, 0), Point(10, 0), 1));
      data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));

      data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(0, 10), Point(5, 10), -1));

      data.push_back(vertex_half_edge(Point(10, 0), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(10, 0), Point(10, 5), -1));

      data.push_back(vertex_half_edge(Point(10, 5), Point(10, 0), 1));
      data.push_back(vertex_half_edge(Point(10, 5), Point(5, 5), 1));

      data.push_back(vertex_half_edge(Point(5, 10), Point(4, 1), -1));
      data.push_back(vertex_half_edge(Point(5, 10), Point(0, 10), 1));

      data.push_back(vertex_half_edge(Point(4, 1), Point(5, 10), 1));
      data.push_back(vertex_half_edge(Point(4, 1), Point(7, 2), -1));

      data.push_back(vertex_half_edge(Point(5, 5), Point(10, 5), -1));
      data.push_back(vertex_half_edge(Point(5, 5), Point(7, 2), 1));

      data.push_back(vertex_half_edge(Point(7, 2), Point(5, 5), -1));
      data.push_back(vertex_half_edge(Point(7, 2), Point(4, 1), 1));

      polygon_sort(data.begin(), data.end());
      pf.scan(polys, data.begin(), data.end());
      stdcout << "result size: " << polys.size() << "\n";
      for(std::size_t i = 0; i < polys.size(); ++i) {
        stdcout << polys[i] << "\n";
      }
      stdcout << "done testing polygon formation\n";
      return true;
    }

    template <typename stream_type>
    static inline bool testPolygonArbitraryFormationSelfTouch3(stream_type& stdcout) {
      stdcout << "testing polygon formation self touch 3\n";
      polygon_arbitrary_formation pf(true);
      std::vector<polygon_data<Unit> > polys;
      std::vector<vertex_half_edge> data;
      data.push_back(vertex_half_edge(Point(0, 0), Point(10, 0), 1));
      data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));

      data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(0, 10), Point(6, 10), -1));

      data.push_back(vertex_half_edge(Point(10, 0), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(10, 0), Point(10, 5), -1));

      data.push_back(vertex_half_edge(Point(10, 5), Point(10, 0), 1));
      data.push_back(vertex_half_edge(Point(10, 5), Point(5, 5), 1));

      data.push_back(vertex_half_edge(Point(6, 10), Point(4, 1), -1));
      data.push_back(vertex_half_edge(Point(6, 10), Point(0, 10), 1));

      data.push_back(vertex_half_edge(Point(4, 1), Point(6, 10), 1));
      data.push_back(vertex_half_edge(Point(4, 1), Point(7, 2), -1));

      data.push_back(vertex_half_edge(Point(5, 5), Point(10, 5), -1));
      data.push_back(vertex_half_edge(Point(5, 5), Point(7, 2), 1));

      data.push_back(vertex_half_edge(Point(7, 2), Point(5, 5), -1));
      data.push_back(vertex_half_edge(Point(7, 2), Point(4, 1), 1));

      polygon_sort(data.begin(), data.end());
      pf.scan(polys, data.begin(), data.end());
      stdcout << "result size: " << polys.size() << "\n";
      for(std::size_t i = 0; i < polys.size(); ++i) {
        stdcout << polys[i] << "\n";
      }
      stdcout << "done testing polygon formation\n";
      return true;
    }

    template <typename stream_type>
    static inline bool testPolygonArbitraryFormationColinear(stream_type& stdcout) {
      stdcout << "testing polygon formation colinear 3\n";
      stdcout << "Polygon Set Data { <-3 2, -2 2>:1 <-3 2, -1 4>:-1 <-2 2, 0 2>:1 <-1 4, 0 2>:-1 } \n";
      polygon_arbitrary_formation pf(true);
      std::vector<polygon_data<Unit> > polys;
      std::vector<vertex_half_edge> data;
      data.push_back(vertex_half_edge(Point(-3, 2), Point(-2, 2), 1));
      data.push_back(vertex_half_edge(Point(-2, 2), Point(-3, 2), -1));

      data.push_back(vertex_half_edge(Point(-3, 2), Point(-1, 4), -1));
      data.push_back(vertex_half_edge(Point(-1, 4), Point(-3, 2), 1));

      data.push_back(vertex_half_edge(Point(-2, 2), Point(0, 2), 1));
      data.push_back(vertex_half_edge(Point(0, 2), Point(-2, 2), -1));

      data.push_back(vertex_half_edge(Point(-1, 4), Point(0, 2), -1));
      data.push_back(vertex_half_edge(Point(0, 2), Point(-1, 4), 1));
      polygon_sort(data.begin(), data.end());
      pf.scan(polys, data.begin(), data.end());
      stdcout << "result size: " << polys.size() << "\n";
      for(std::size_t i = 0; i < polys.size(); ++i) {
        stdcout << polys[i] << "\n";
      }
      stdcout << "done testing polygon formation\n";
      return true;
    }

    template <typename stream_type>
    static inline bool testSegmentIntersection(stream_type& stdcout) {
      stdcout << "testing segment intersection\n";
      half_edge he1, he2;
      he1.first = Point(0, 0);
      he1.second = Point(10, 10);
      he2.first = Point(0, 0);
      he2.second = Point(10, 20);
      Point result;
      bool b = scanline_base<Unit>::compute_intersection(result, he1, he2);
      if(!b || result != Point(0, 0)) return false;
      he1.first = Point(0, 10);
      b = scanline_base<Unit>::compute_intersection(result, he1, he2);
      if(!b || result != Point(5, 10)) return false;
      he1.first = Point(0, 11);
      b = scanline_base<Unit>::compute_intersection(result, he1, he2);
      if(!b || result != Point(5, 10)) return false;
      he1.first = Point(0, 0);
      he1.second = Point(1, 9);
      he2.first = Point(0, 9);
      he2.second = Point(1, 0);
      b = scanline_base<Unit>::compute_intersection(result, he1, he2);
      if(!b || result != Point(0, 4)) return false;

      he1.first = Point(0, -10);
      he1.second = Point(1, -1);
      he2.first = Point(0, -1);
      he2.second = Point(1, -10);
      b = scanline_base<Unit>::compute_intersection(result, he1, he2);
      if(!b || result != Point(0, -5)) return false;
      he1.first = Point((std::numeric_limits<int>::max)(), (std::numeric_limits<int>::max)()-1);
      he1.second = Point((std::numeric_limits<int>::min)(), (std::numeric_limits<int>::max)());
      //he1.second = Point(0, (std::numeric_limits<int>::max)());
      he2.first = Point((std::numeric_limits<int>::max)()-1, (std::numeric_limits<int>::max)());
      he2.second = Point((std::numeric_limits<int>::max)(), (std::numeric_limits<int>::min)());
      //he2.second = Point((std::numeric_limits<int>::max)(), 0);
      b = scanline_base<Unit>::compute_intersection(result, he1, he2);
      //b is false because of overflow error
      he1.first = Point(1000, 2000);
      he1.second = Point(1010, 2010);
      he2.first = Point(1000, 2000);
      he2.second = Point(1010, 2020);
      b = scanline_base<Unit>::compute_intersection(result, he1, he2);
      if(!b || result != Point(1000, 2000)) return false;

      return b;
    }

  };

  template <typename Unit>
  class poly_line_arbitrary_hole_data {
  private:
    typedef typename polygon_arbitrary_formation<Unit>::active_tail_arbitrary active_tail_arbitrary;
    active_tail_arbitrary* p_;
  public:
    typedef point_data<Unit> Point;
    typedef Point point_type;
    typedef Unit coordinate_type;
    typedef typename active_tail_arbitrary::iterator iterator_type;
    //typedef iterator_points_to_compact<iterator_type, Point> compact_iterator_type;

    typedef iterator_type iterator;
    inline poly_line_arbitrary_hole_data() : p_(0) {}
    inline poly_line_arbitrary_hole_data(active_tail_arbitrary* p) : p_(p) {}
    //use default copy and assign
    inline iterator begin() const { return p_->getTail()->begin(); }
    inline iterator end() const { return p_->getTail()->end(); }
    inline std::size_t size() const { return 0; }
  };

  template <typename Unit>
  class poly_line_arbitrary_polygon_data {
  private:
    typedef typename polygon_arbitrary_formation<Unit>::active_tail_arbitrary active_tail_arbitrary;
    active_tail_arbitrary* p_;
  public:
    typedef point_data<Unit> Point;
    typedef Point point_type;
    typedef Unit coordinate_type;
    typedef typename active_tail_arbitrary::iterator iterator_type;
    //typedef iterator_points_to_compact<iterator_type, Point> compact_iterator_type;
    typedef typename coordinate_traits<Unit>::coordinate_distance area_type;

    class iterator_holes_type {
    private:
      typedef poly_line_arbitrary_hole_data<Unit> holeType;
      mutable holeType hole_;
      typename active_tail_arbitrary::iteratorHoles itr_;

    public:
      typedef std::forward_iterator_tag iterator_category;
      typedef holeType value_type;
      typedef std::ptrdiff_t difference_type;
      typedef const holeType* pointer; //immutable
      typedef const holeType& reference; //immutable
      inline iterator_holes_type() : hole_(), itr_() {}
      inline iterator_holes_type(typename active_tail_arbitrary::iteratorHoles itr) : hole_(), itr_(itr) {}
      inline iterator_holes_type(const iterator_holes_type& that) : hole_(that.hole_), itr_(that.itr_) {}
      inline iterator_holes_type& operator=(const iterator_holes_type& that) {
        itr_ = that.itr_;
        return *this;
      }
      inline bool operator==(const iterator_holes_type& that) { return itr_ == that.itr_; }
      inline bool operator!=(const iterator_holes_type& that) { return itr_ != that.itr_; }
      inline iterator_holes_type& operator++() {
        ++itr_;
        return *this;
      }
      inline const iterator_holes_type operator++(int) {
        iterator_holes_type tmp = *this;
        ++(*this);
        return tmp;
      }
      inline reference operator*() {
        hole_ = holeType(*itr_);
        return hole_;
      }
    };

    typedef poly_line_arbitrary_hole_data<Unit> hole_type;

    inline poly_line_arbitrary_polygon_data() : p_(0) {}
    inline poly_line_arbitrary_polygon_data(active_tail_arbitrary* p) : p_(p) {}
    //use default copy and assign
    inline iterator_type begin() const { return p_->getTail()->begin(); }
    inline iterator_type end() const { return p_->getTail()->end(); }
    //inline compact_iterator_type begin_compact() const { return p_->getTail()->begin(); }
    //inline compact_iterator_type end_compact() const { return p_->getTail()->end(); }
    inline iterator_holes_type begin_holes() const { return iterator_holes_type(p_->getHoles().begin()); }
    inline iterator_holes_type end_holes() const { return iterator_holes_type(p_->getHoles().end()); }
    inline active_tail_arbitrary* yield() { return p_; }
    //stub out these four required functions that will not be used but are needed for the interface
    inline std::size_t size_holes() const { return 0; }
    inline std::size_t size() const { return 0; }
  };

  template <typename Unit>
  class trapezoid_arbitrary_formation : public polygon_arbitrary_formation<Unit> {
  private:
    typedef typename scanline_base<Unit>::Point Point;
    typedef typename scanline_base<Unit>::half_edge half_edge;
    typedef typename scanline_base<Unit>::vertex_half_edge vertex_half_edge;
    typedef typename scanline_base<Unit>::less_vertex_half_edge less_vertex_half_edge;

    typedef typename polygon_arbitrary_formation<Unit>::poly_line_arbitrary poly_line_arbitrary;

    typedef typename polygon_arbitrary_formation<Unit>::active_tail_arbitrary active_tail_arbitrary;

    typedef std::vector<std::pair<Point, int> > vertex_arbitrary_count;

    typedef typename polygon_arbitrary_formation<Unit>::less_half_edge_count less_half_edge_count;

    typedef std::vector<std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*> > incoming_count;

    typedef typename polygon_arbitrary_formation<Unit>::less_incoming_count less_incoming_count;

    typedef typename polygon_arbitrary_formation<Unit>::vertex_arbitrary_compact vertex_arbitrary_compact;

  private:
    //definitions
    typedef std::map<vertex_half_edge, active_tail_arbitrary*, less_vertex_half_edge> scanline_data;
    typedef typename scanline_data::iterator iterator;
    typedef typename scanline_data::const_iterator const_iterator;

    //data
  public:
    inline trapezoid_arbitrary_formation() : polygon_arbitrary_formation<Unit>() {}
    inline trapezoid_arbitrary_formation(const trapezoid_arbitrary_formation& that) : polygon_arbitrary_formation<Unit>(that) {}
    inline trapezoid_arbitrary_formation& operator=(const trapezoid_arbitrary_formation& that) {
      * static_cast<polygon_arbitrary_formation<Unit>*>(this) = * static_cast<polygon_arbitrary_formation<Unit>*>(&that);
      return *this;
    }

    //cT is an output container of Polygon45 or Polygon45WithHoles
    //iT is an iterator over vertex_half_edge elements
    //inputBegin - inputEnd is a range of sorted iT that represents
    //one or more scanline stops worth of data
    template <class cT, class iT>
    void scan(cT& output, iT inputBegin, iT inputEnd) {
      //std::cout << "1\n";
      while(inputBegin != inputEnd) {
        //std::cout << "2\n";
        polygon_arbitrary_formation<Unit>::x_ = (*inputBegin).pt.get(HORIZONTAL);
        //std::cout << "SCAN FORMATION " << x_ << "\n";
        //std::cout << "x_ = " << x_ << "\n";
        //std::cout << "scan line size: " << scanData_.size() << "\n";
        inputBegin = processEvent_(output, inputBegin, inputEnd);
      }
      //std::cout << "scan line size: " << scanData_.size() << "\n";
    }

  private:
    //functions
    inline void getVerticalPair_(std::pair<active_tail_arbitrary*,
                                 active_tail_arbitrary*>& verticalPair,
                                 iterator previter) {
      active_tail_arbitrary* iterTail = (*previter).second;
      Point prevPoint(polygon_arbitrary_formation<Unit>::x_,
                      convert_high_precision_type<Unit>(previter->first.evalAtX(polygon_arbitrary_formation<Unit>::x_)));
      iterTail->pushPoint(prevPoint);
      std::pair<active_tail_arbitrary*, active_tail_arbitrary*> tailPair =
        active_tail_arbitrary::createActiveTailsAsPair(prevPoint, true, 0, false);
      verticalPair.first = iterTail;
      verticalPair.second = tailPair.first;
      (*previter).second = tailPair.second;
    }

    template <class cT, class cT2>
    inline std::pair<std::pair<Point, int>, active_tail_arbitrary*>
    processPoint_(cT& output, cT2& elements,
                  std::pair<active_tail_arbitrary*, active_tail_arbitrary*>& verticalPair,
                  iterator previter, Point point, incoming_count& counts_from_scanline,
                  vertex_arbitrary_count& incoming_count) {
      //std::cout << "\nAT POINT: " <<  point << "\n";
      //join any closing solid corners
      std::vector<int> counts;
      std::vector<int> incoming;
      std::vector<active_tail_arbitrary*> tails;
      counts.reserve(counts_from_scanline.size());
      tails.reserve(counts_from_scanline.size());
      incoming.reserve(incoming_count.size());
      for(std::size_t i = 0; i < counts_from_scanline.size(); ++i) {
        counts.push_back(counts_from_scanline[i].first.second);
        tails.push_back(counts_from_scanline[i].second);
      }
      for(std::size_t i = 0; i < incoming_count.size(); ++i) {
        incoming.push_back(incoming_count[i].second);
        if(incoming_count[i].first < point) {
          incoming.back() = 0;
        }
      }

      active_tail_arbitrary* returnValue = 0;
      std::pair<active_tail_arbitrary*, active_tail_arbitrary*> verticalPairOut;
      verticalPairOut.first = 0;
      verticalPairOut.second = 0;
      std::pair<Point, int> returnCount(Point(0, 0), 0);
      int i_size_less_1 = (int)(incoming.size()) -1;
      int c_size_less_1 = (int)(counts.size()) -1;
      int i_size = incoming.size();
      int c_size = counts.size();

      bool have_vertical_tail_from_below = false;
      if(c_size &&
         scanline_base<Unit>::is_vertical(counts_from_scanline.back().first.first)) {
        have_vertical_tail_from_below = true;
      }
      //assert size = size_less_1 + 1
      //std::cout << tails.size() << " " << incoming.size() << " " << counts_from_scanline.size() << " " << incoming_count.size() << "\n";
      //         for(std::size_t i = 0; i < counts.size(); ++i) {
      //           std::cout << counts_from_scanline[i].first.first.first.get(HORIZONTAL) << ",";
      //           std::cout << counts_from_scanline[i].first.first.first.get(VERTICAL) << " ";
      //           std::cout << counts_from_scanline[i].first.first.second.get(HORIZONTAL) << ",";
      //           std::cout << counts_from_scanline[i].first.first.second.get(VERTICAL) << ":";
      //           std::cout << counts_from_scanline[i].first.second << " ";
      //         } std::cout << "\n";
      //         print(incoming_count);
      {
        for(int i = 0; i < c_size_less_1; ++i) {
          //std::cout << i << "\n";
          if(counts[i] == -1) {
            //std::cout << "fixed i\n";
            for(int j = i + 1; j < c_size; ++j) {
              //std::cout << j << "\n";
              if(counts[j]) {
                if(counts[j] == 1) {
                  //std::cout << "case1: " << i << " " << j << "\n";
                  //if a figure is closed it will be written out by this function to output
                  active_tail_arbitrary::joinChains(point, tails[i], tails[j], true, output);
                  counts[i] = 0;
                  counts[j] = 0;
                  tails[i] = 0;
                  tails[j] = 0;
                }
                break;
              }
            }
          }
        }
      }
      //find any pairs of incoming edges that need to create pair for leading solid
      //std::cout << "checking case2\n";
      {
        for(int i = 0; i < i_size_less_1; ++i) {
          //std::cout << i << "\n";
          if(incoming[i] == 1) {
            //std::cout << "fixed i\n";
            for(int j = i + 1; j < i_size; ++j) {
              //std::cout << j << "\n";
              if(incoming[j]) {
                //std::cout << incoming[j] << "\n";
                if(incoming[j] == -1) {
                  //std::cout << "case2: " << i << " " << j << "\n";
                  //std::cout << "creating active tail pair\n";
                  std::pair<active_tail_arbitrary*, active_tail_arbitrary*> tailPair =
                    active_tail_arbitrary::createActiveTailsAsPair(point, true, 0, polygon_arbitrary_formation<Unit>::fractureHoles_ != 0);
                  //tailPair.first->print();
                  //tailPair.second->print();
                  if(j == i_size_less_1 && incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
                    //vertical active tail becomes return value
                    returnValue = tailPair.first;
                    returnCount.first = point;
                    returnCount.second = 1;
                  } else {
                    //std::cout << "new element " << j-1 << " " << -1 << "\n";
                    //std::cout << point << " " <<  incoming_count[j].first << "\n";
                    elements.push_back(std::pair<vertex_half_edge,
                                       active_tail_arbitrary*>(vertex_half_edge(point,
                                                                                incoming_count[j].first, -1), tailPair.first));
                  }
                  //std::cout << "new element " << i-1 << " " << 1 << "\n";
                  //std::cout << point << " " <<  incoming_count[i].first << "\n";
                  elements.push_back(std::pair<vertex_half_edge,
                                     active_tail_arbitrary*>(vertex_half_edge(point,
                                                                              incoming_count[i].first, 1), tailPair.second));
                  incoming[i] = 0;
                  incoming[j] = 0;
                }
                break;
              }
            }
          }
        }
      }
      //find any active tail that needs to pass through to an incoming edge
      //we expect to find no more than two pass through

      //find pass through with solid on top
      {
        //std::cout << "checking case 3\n";
        for(int i = 0; i < c_size; ++i) {
          //std::cout << i << "\n";
          if(counts[i] != 0) {
            if(counts[i] == 1) {
              //std::cout << "fixed i\n";
              for(int j = i_size_less_1; j >= 0; --j) {
                if(incoming[j] != 0) {
                  if(incoming[j] == 1) {
                    //std::cout << "case3: " << i << " " << j << "\n";
                    //tails[i]->print();
                    //pass through solid on top
                    tails[i]->pushPoint(point);
                    //std::cout << "after push\n";
                    if(j == i_size_less_1 && incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
                      returnValue = tails[i];
                      returnCount.first = point;
                      returnCount.second = -1;
                    } else {
                      std::pair<active_tail_arbitrary*, active_tail_arbitrary*> tailPair =
                        active_tail_arbitrary::createActiveTailsAsPair(point, true, 0, false);
                      verticalPairOut.first = tails[i];
                      verticalPairOut.second = tailPair.first;
                      elements.push_back(std::pair<vertex_half_edge,
                                         active_tail_arbitrary*>(vertex_half_edge(point,
                                                                                  incoming_count[j].first, incoming[j]), tailPair.second));
                    }
                    tails[i] = 0;
                    counts[i] = 0;
                    incoming[j] = 0;
                  }
                  break;
                }
              }
            }
            break;
          }
        }
      }
      //std::cout << "checking case 4\n";
      //find pass through with solid on bottom
      {
        for(int i = c_size_less_1; i >= 0; --i) {
          //std::cout << "i = " << i << " with count " << counts[i] << "\n";
          if(counts[i] != 0) {
            if(counts[i] == -1) {
              for(int j = 0; j < i_size; ++j) {
                if(incoming[j] != 0) {
                  if(incoming[j] == -1) {
                    //std::cout << "case4: " << i << " " << j << "\n";
                    //pass through solid on bottom

                    //if count from scanline is vertical
                    if(i == c_size_less_1 &&
                       counts_from_scanline[i].first.first.first.get(HORIZONTAL) ==
                       point.get(HORIZONTAL)) {
                       //if incoming count is vertical
                       if(j == i_size_less_1 &&
                          incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
                         returnValue = tails[i];
                         returnCount.first = point;
                         returnCount.second = 1;
                       } else {
                         tails[i]->pushPoint(point);
                         elements.push_back(std::pair<vertex_half_edge,
                                         active_tail_arbitrary*>(vertex_half_edge(point,
                                                                                  incoming_count[j].first, incoming[j]), tails[i]));
                       }
                    } else if(j == i_size_less_1 &&
                              incoming_count[j].first.get(HORIZONTAL) ==
                              point.get(HORIZONTAL)) {
                      if(verticalPair.first == 0) {
                        getVerticalPair_(verticalPair, previter);
                      }
                      active_tail_arbitrary::joinChains(point, tails[i], verticalPair.first, true, output);
                      returnValue = verticalPair.second;
                      returnCount.first = point;
                      returnCount.second = 1;
                    } else {
                      //neither is vertical
                      if(verticalPair.first == 0) {
                        getVerticalPair_(verticalPair, previter);
                      }
                      active_tail_arbitrary::joinChains(point, tails[i], verticalPair.first, true, output);
                      verticalPair.second->pushPoint(point);
                      elements.push_back(std::pair<vertex_half_edge,
                                         active_tail_arbitrary*>(vertex_half_edge(point,
                                                                                  incoming_count[j].first, incoming[j]), verticalPair.second));
                    }
                    tails[i] = 0;
                    counts[i] = 0;
                    incoming[j] = 0;
                  }
                  break;
                }
              }
            }
            break;
          }
        }
      }
      //find the end of a hole or the beginning of a hole

      //find end of a hole
      {
        for(int i = 0; i < c_size_less_1; ++i) {
          if(counts[i] != 0) {
            for(int j = i+1; j < c_size; ++j) {
              if(counts[j] != 0) {
                //std::cout << "case5: " << i << " " << j << "\n";
                //we are ending a hole and may potentially close a figure and have to handle the hole
                tails[i]->pushPoint(point);
                verticalPairOut.first = tails[i];
                if(j == c_size_less_1 &&
                   counts_from_scanline[j].first.first.first.get(HORIZONTAL) ==
                   point.get(HORIZONTAL)) {
                  verticalPairOut.second = tails[j];
                } else {
                  //need to close a trapezoid below
                  if(verticalPair.first == 0) {
                    getVerticalPair_(verticalPair, previter);
                  }
                  active_tail_arbitrary::joinChains(point, tails[j], verticalPair.first, true, output);
                  verticalPairOut.second = verticalPair.second;
                }
                tails[i] = 0;
                tails[j] = 0;
                counts[i] = 0;
                counts[j] = 0;
                break;
              }
            }
            break;
          }
        }
      }
      //find beginning of a hole
      {
        for(int i = 0; i < i_size_less_1; ++i) {
          if(incoming[i] != 0) {
            for(int j = i+1; j < i_size; ++j) {
              if(incoming[j] != 0) {
                //std::cout << "case6: " << i << " " << j << "\n";
                //we are beginning a empty space
                if(verticalPair.first == 0) {
                  getVerticalPair_(verticalPair, previter);
                }
                verticalPair.second->pushPoint(point);
                if(j == i_size_less_1 &&
                   incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
                  returnValue = verticalPair.first;
                  returnCount.first = point;
                  returnCount.second = -1;
                } else {
                  std::pair<active_tail_arbitrary*, active_tail_arbitrary*> tailPair =
                  active_tail_arbitrary::createActiveTailsAsPair(point, false, 0, false);
                  elements.push_back(std::pair<vertex_half_edge,
                                     active_tail_arbitrary*>(vertex_half_edge(point,
                                                                              incoming_count[j].first, incoming[j]), tailPair.second));
                  verticalPairOut.second = tailPair.first;
                  verticalPairOut.first = verticalPair.first;
                }
                elements.push_back(std::pair<vertex_half_edge,
                                   active_tail_arbitrary*>(vertex_half_edge(point,
                                                                            incoming_count[i].first, incoming[i]), verticalPair.second));
                incoming[i] = 0;
                incoming[j] = 0;
                break;
              }
            }
            break;
          }
        }
      }
      if(have_vertical_tail_from_below) {
        if(tails.back()) {
          tails.back()->pushPoint(point);
          returnValue = tails.back();
          returnCount.first = point;
          returnCount.second = counts.back();
        }
      }
      verticalPair = verticalPairOut;
      //assert that tails, counts and incoming are all null
      return std::pair<std::pair<Point, int>, active_tail_arbitrary*>(returnCount, returnValue);
    }

    static inline void print(const vertex_arbitrary_count& count) {
      for(unsigned i = 0; i < count.size(); ++i) {
        //std::cout << count[i].first.get(HORIZONTAL) << ",";
        //std::cout << count[i].first.get(VERTICAL) << ":";
        //std::cout << count[i].second << " ";
      } //std::cout << "\n";
    }

    static inline void print(const scanline_data& data) {
      for(typename scanline_data::const_iterator itr = data.begin(); itr != data.end(); ++itr){
        //std::cout << itr->first.pt << ", " << itr->first.other_pt << "; ";
      } //std::cout << "\n";
    }

    template <class cT, class iT>
    inline iT processEvent_(cT& output, iT inputBegin, iT inputEnd) {
      //typedef typename high_precision_type<Unit>::type high_precision;
      //std::cout << "processEvent_\n";
      polygon_arbitrary_formation<Unit>::justBefore_ = true;
      //collect up all elements from the tree that are at the y
      //values of events in the input queue
      //create vector of new elements to add into tree
      active_tail_arbitrary* verticalTail = 0;
      std::pair<active_tail_arbitrary*, active_tail_arbitrary*> verticalPair;
      std::pair<Point, int> verticalCount(Point(0, 0), 0);
      iT currentIter = inputBegin;
      std::vector<iterator> elementIters;
      std::vector<std::pair<vertex_half_edge, active_tail_arbitrary*> > elements;
      while(currentIter != inputEnd && currentIter->pt.get(HORIZONTAL) == polygon_arbitrary_formation<Unit>::x_) {
        //std::cout << "loop\n";
        Unit currentY = (*currentIter).pt.get(VERTICAL);
        //std::cout << "current Y " << currentY << "\n";
        //std::cout << "scanline size " << scanData_.size() << "\n";
        //print(scanData_);
        iterator iter = this->lookUp_(currentY);
        //std::cout << "found element in scanline " << (iter != scanData_.end()) << "\n";
        //int counts[4] = {0, 0, 0, 0};
        incoming_count counts_from_scanline;
        //std::cout << "finding elements in tree\n";
        //if(iter != scanData_.end())
        //  std::cout << "first iter y is " << iter->first.evalAtX(x_) << "\n";
        iterator previter = iter;
        if(previter != polygon_arbitrary_formation<Unit>::scanData_.end() &&
             previter->first.evalAtX(polygon_arbitrary_formation<Unit>::x_) >= currentY &&
             previter != polygon_arbitrary_formation<Unit>::scanData_.begin())
           --previter;
        while(iter != polygon_arbitrary_formation<Unit>::scanData_.end() &&
              ((iter->first.pt.x() == polygon_arbitrary_formation<Unit>::x_ && iter->first.pt.y() == currentY) ||
               (iter->first.other_pt.x() == polygon_arbitrary_formation<Unit>::x_ && iter->first.other_pt.y() == currentY))) {
               //iter->first.evalAtX(polygon_arbitrary_formation<Unit>::x_) == (high_precision)currentY) {
          //std::cout << "loop2\n";
          elementIters.push_back(iter);
          counts_from_scanline.push_back(std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*>
                                         (std::pair<std::pair<Point, Point>, int>(std::pair<Point, Point>(iter->first.pt,
                                                                                                          iter->first.other_pt),
                                                                                  iter->first.count),
                                          iter->second));
          ++iter;
        }
        Point currentPoint(polygon_arbitrary_formation<Unit>::x_, currentY);
        //std::cout << "counts_from_scanline size " << counts_from_scanline.size() << "\n";
        this->sort_incoming_count(counts_from_scanline, currentPoint);

        vertex_arbitrary_count incoming;
        //std::cout << "aggregating\n";
        do {
          //std::cout << "loop3\n";
          const vertex_half_edge& elem = *currentIter;
          incoming.push_back(std::pair<Point, int>(elem.other_pt, elem.count));
          ++currentIter;
        } while(currentIter != inputEnd && currentIter->pt.get(VERTICAL) == currentY &&
                currentIter->pt.get(HORIZONTAL) == polygon_arbitrary_formation<Unit>::x_);
        //print(incoming);
        this->sort_vertex_arbitrary_count(incoming, currentPoint);
        //std::cout << currentPoint.get(HORIZONTAL) << "," << currentPoint.get(VERTICAL) << "\n";
        //print(incoming);
        //std::cout << "incoming counts from input size " << incoming.size() << "\n";
        //compact_vertex_arbitrary_count(currentPoint, incoming);
        vertex_arbitrary_count tmp;
        tmp.reserve(incoming.size());
        for(std::size_t i = 0; i < incoming.size(); ++i) {
          if(currentPoint < incoming[i].first) {
            tmp.push_back(incoming[i]);
          }
        }
        incoming.swap(tmp);
        //std::cout << "incoming counts from input size " << incoming.size() << "\n";
        //now counts_from_scanline has the data from the left and
        //incoming has the data from the right at this point
        //cancel out any end points
        if(verticalTail) {
          //std::cout << "adding vertical tail to counts from scanline\n";
          //std::cout << -verticalCount.second << "\n";
          counts_from_scanline.push_back(std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*>
                                         (std::pair<std::pair<Point, Point>, int>(std::pair<Point, Point>(verticalCount.first,
                                                                                                          currentPoint),
                                                                                  -verticalCount.second),
                                          verticalTail));
        }
        if(!incoming.empty() && incoming.back().first.get(HORIZONTAL) == polygon_arbitrary_formation<Unit>::x_) {
          //std::cout << "inverted vertical event\n";
          incoming.back().second *= -1;
        }
        //std::cout << "calling processPoint_\n";
           std::pair<std::pair<Point, int>, active_tail_arbitrary*> result = processPoint_(output, elements, verticalPair, previter, Point(polygon_arbitrary_formation<Unit>::x_, currentY), counts_from_scanline, incoming);
        verticalCount = result.first;
        verticalTail = result.second;
        if(verticalPair.first != 0 && iter != polygon_arbitrary_formation<Unit>::scanData_.end() &&
           (currentIter == inputEnd || currentIter->pt.x() != polygon_arbitrary_formation<Unit>::x_ ||
            currentIter->pt.y() > (*iter).first.evalAtX(polygon_arbitrary_formation<Unit>::x_))) {
          //splice vertical pair into edge above
          active_tail_arbitrary* tailabove = (*iter).second;
          Point point(polygon_arbitrary_formation<Unit>::x_,
                      convert_high_precision_type<Unit>((*iter).first.evalAtX(polygon_arbitrary_formation<Unit>::x_)));
          verticalPair.second->pushPoint(point);
          active_tail_arbitrary::joinChains(point, tailabove, verticalPair.first, true, output);
          (*iter).second = verticalPair.second;
          verticalPair.first = 0;
          verticalPair.second = 0;
        }
      }
      //std::cout << "erasing\n";
      //erase all elements from the tree
      for(typename std::vector<iterator>::iterator iter = elementIters.begin();
          iter != elementIters.end(); ++iter) {
        //std::cout << "erasing loop\n";
        polygon_arbitrary_formation<Unit>::scanData_.erase(*iter);
      }
      //switch comparison tie breaking policy
      polygon_arbitrary_formation<Unit>::justBefore_ = false;
      //add new elements into tree
      //std::cout << "inserting\n";
      for(typename std::vector<std::pair<vertex_half_edge, active_tail_arbitrary*> >::iterator iter = elements.begin();
          iter != elements.end(); ++iter) {
        //std::cout << "inserting loop\n";
        polygon_arbitrary_formation<Unit>::scanData_.insert(polygon_arbitrary_formation<Unit>::scanData_.end(), *iter);
      }
      //std::cout << "end processEvent\n";
      return currentIter;
    }
  public:
    template <typename stream_type>
    static inline bool testTrapezoidArbitraryFormationRect(stream_type& stdcout) {
      stdcout << "testing trapezoid formation\n";
      trapezoid_arbitrary_formation pf;
      std::vector<polygon_data<Unit> > polys;
      std::vector<vertex_half_edge> data;
      data.push_back(vertex_half_edge(Point(0, 0), Point(10, 0), 1));
      data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));
      data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(0, 10), Point(10, 10), -1));
      data.push_back(vertex_half_edge(Point(10, 0), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(10, 0), Point(10, 10), -1));
      data.push_back(vertex_half_edge(Point(10, 10), Point(10, 0), 1));
      data.push_back(vertex_half_edge(Point(10, 10), Point(0, 10), 1));
      polygon_sort(data.begin(), data.end());
      pf.scan(polys, data.begin(), data.end());
      stdcout << "result size: " << polys.size() << "\n";
      for(std::size_t i = 0; i < polys.size(); ++i) {
        stdcout << polys[i] << "\n";
      }
      stdcout << "done testing trapezoid formation\n";
      return true;
    }
    template <typename stream_type>
    static inline bool testTrapezoidArbitraryFormationP1(stream_type& stdcout) {
      stdcout << "testing trapezoid formation P1\n";
      trapezoid_arbitrary_formation pf;
      std::vector<polygon_data<Unit> > polys;
      std::vector<vertex_half_edge> data;
      data.push_back(vertex_half_edge(Point(0, 0), Point(10, 10), 1));
      data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));
      data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(0, 10), Point(10, 20), -1));
      data.push_back(vertex_half_edge(Point(10, 10), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(10, 10), Point(10, 20), -1));
      data.push_back(vertex_half_edge(Point(10, 20), Point(10, 10), 1));
      data.push_back(vertex_half_edge(Point(10, 20), Point(0, 10), 1));
      polygon_sort(data.begin(), data.end());
      pf.scan(polys, data.begin(), data.end());
      stdcout << "result size: " << polys.size() << "\n";
      for(std::size_t i = 0; i < polys.size(); ++i) {
        stdcout << polys[i] << "\n";
      }
      stdcout << "done testing trapezoid formation\n";
      return true;
    }
    template <typename stream_type>
    static inline bool testTrapezoidArbitraryFormationP2(stream_type& stdcout) {
      stdcout << "testing trapezoid formation P2\n";
      trapezoid_arbitrary_formation pf;
      std::vector<polygon_data<Unit> > polys;
      std::vector<vertex_half_edge> data;
      data.push_back(vertex_half_edge(Point(-3, 1), Point(2, -4), 1));
      data.push_back(vertex_half_edge(Point(-3, 1), Point(-2, 2), -1));
      data.push_back(vertex_half_edge(Point(-2, 2), Point(2, 4), -1));
      data.push_back(vertex_half_edge(Point(-2, 2), Point(-3, 1), 1));
      data.push_back(vertex_half_edge(Point(2, -4), Point(-3, 1), -1));
      data.push_back(vertex_half_edge(Point(2, -4), Point(2, 4), -1));
      data.push_back(vertex_half_edge(Point(2, 4), Point(-2, 2), 1));
      data.push_back(vertex_half_edge(Point(2, 4), Point(2, -4), 1));
      polygon_sort(data.begin(), data.end());
      pf.scan(polys, data.begin(), data.end());
      stdcout << "result size: " << polys.size() << "\n";
      for(std::size_t i = 0; i < polys.size(); ++i) {
        stdcout << polys[i] << "\n";
      }
      stdcout << "done testing trapezoid formation\n";
      return true;
    }

    template <typename stream_type>
    static inline bool testTrapezoidArbitraryFormationPolys(stream_type& stdcout) {
      stdcout << "testing trapezoid formation polys\n";
      trapezoid_arbitrary_formation pf;
      std::vector<polygon_with_holes_data<Unit> > polys;
      //trapezoid_arbitrary_formation pf2(true);
      //std::vector<polygon_with_holes_data<Unit> > polys2;
      std::vector<vertex_half_edge> data;
      data.push_back(vertex_half_edge(Point(0, 0), Point(100, 1), 1));
      data.push_back(vertex_half_edge(Point(0, 0), Point(1, 100), -1));
      data.push_back(vertex_half_edge(Point(1, 100), Point(0, 0), 1));
      data.push_back(vertex_half_edge(Point(1, 100), Point(101, 101), -1));
      data.push_back(vertex_half_edge(Point(100, 1), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(100, 1), Point(101, 101), 1));
      data.push_back(vertex_half_edge(Point(101, 101), Point(100, 1), -1));
      data.push_back(vertex_half_edge(Point(101, 101), Point(1, 100), 1));

      data.push_back(vertex_half_edge(Point(2, 2), Point(10, 2), -1));
      data.push_back(vertex_half_edge(Point(2, 2), Point(2, 10), -1));
      data.push_back(vertex_half_edge(Point(2, 10), Point(2, 2), 1));
      data.push_back(vertex_half_edge(Point(2, 10), Point(10, 10), 1));
      data.push_back(vertex_half_edge(Point(10, 2), Point(2, 2), 1));
      data.push_back(vertex_half_edge(Point(10, 2), Point(10, 10), 1));
      data.push_back(vertex_half_edge(Point(10, 10), Point(10, 2), -1));
      data.push_back(vertex_half_edge(Point(10, 10), Point(2, 10), -1));

      data.push_back(vertex_half_edge(Point(2, 12), Point(10, 12), -1));
      data.push_back(vertex_half_edge(Point(2, 12), Point(2, 22), -1));
      data.push_back(vertex_half_edge(Point(2, 22), Point(2, 12), 1));
      data.push_back(vertex_half_edge(Point(2, 22), Point(10, 22), 1));
      data.push_back(vertex_half_edge(Point(10, 12), Point(2, 12), 1));
      data.push_back(vertex_half_edge(Point(10, 12), Point(10, 22), 1));
      data.push_back(vertex_half_edge(Point(10, 22), Point(10, 12), -1));
      data.push_back(vertex_half_edge(Point(10, 22), Point(2, 22), -1));

      polygon_sort(data.begin(), data.end());
      pf.scan(polys, data.begin(), data.end());
      stdcout << "result size: " << polys.size() << "\n";
      for(std::size_t i = 0; i < polys.size(); ++i) {
        stdcout << polys[i] << "\n";
      }
      //pf2.scan(polys2, data.begin(), data.end());
      //stdcout << "result size: " << polys2.size() << "\n";
      //for(std::size_t i = 0; i < polys2.size(); ++i) {
      //  stdcout << polys2[i] << "\n";
      //}
      stdcout << "done testing trapezoid formation\n";
      return true;
    }

    template <typename stream_type>
    static inline bool testTrapezoidArbitraryFormationSelfTouch1(stream_type& stdcout) {
      stdcout << "testing trapezoid formation self touch 1\n";
      trapezoid_arbitrary_formation pf;
      std::vector<polygon_data<Unit> > polys;
      std::vector<vertex_half_edge> data;
      data.push_back(vertex_half_edge(Point(0, 0), Point(10, 0), 1));
      data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));

      data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(0, 10), Point(5, 10), -1));

      data.push_back(vertex_half_edge(Point(10, 0), Point(0, 0), -1));
      data.push_back(vertex_half_edge(Point(10, 0), Point(10, 5), -1));

      data.push_back(vertex_half_edge(Point(10, 5), Point(10, 0), 1));
      data.push_back(vertex_half_edge(Point(10, 5), Point(5, 5), 1));

      data.push_back(vertex_half_edge(Point(5, 10), Point(5, 5), 1));
      data.push_back(vertex_half_edge(Point(5, 10), Point(0, 10), 1));

      data.push_back(vertex_half_edge(Point(5, 2), Point(5, 5), -1));
      data.push_back(vertex_half_edge(Point(5, 2), Point(7, 2), -1));

      data.push_back(vertex_half_edge(Point(5, 5), Point(5, 10), -1));
      data.push_back(vertex_half_edge(Point(5, 5), Point(5, 2), 1));
      data.push_back(vertex_half_edge(Point(5, 5), Point(10, 5), -1));
      data.push_back(vertex_half_edge(Point(5, 5), Point(7, 2), 1));

      data.push_back(vertex_half_edge(Point(7, 2), Point(5, 5), -1));
      data.push_back(vertex_half_edge(Point(7, 2), Point(5, 2), 1));

      polygon_sort(data.begin(), data.end());
      pf.scan(polys, data.begin(), data.end());
      stdcout << "result size: " << polys.size() << "\n";
      for(std::size_t i = 0; i < polys.size(); ++i) {
        stdcout << polys[i] << "\n";
      }
      stdcout << "done testing trapezoid formation\n";
      return true;
    }
  };

  template <typename T>
  struct PolyLineArbitraryByConcept<T, polygon_with_holes_concept> { typedef poly_line_arbitrary_polygon_data<T> type; };
  template <typename T>
  struct PolyLineArbitraryByConcept<T, polygon_concept> { typedef poly_line_arbitrary_hole_data<T> type; };

  template <typename T>
  struct geometry_concept<poly_line_arbitrary_polygon_data<T> > { typedef polygon_45_with_holes_concept type; };
  template <typename T>
  struct geometry_concept<poly_line_arbitrary_hole_data<T> > { typedef polygon_45_concept type; };
}
}
#endif