summaryrefslogtreecommitdiff
path: root/boost/phoenix/function/lazy_list.hpp
blob: 3510b02e702668f9619a57c21b87a4ee29d69bac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
////////////////////////////////////////////////////////////////////////////
// lazy_list.hpp
//
// Build lazy operations for Phoenix equivalents for FC++
//
// These are equivalents of the Boost FC++ functoids in list.hpp
//
// Implemented so far:
//
// head tail null
//
// strict_list<T> and associated iterator.
//
// list<T> and odd_list<T>
//
// cons cat
//
// Comparisons between list and odd_list types and separately for strict_list.
//
// NOTES: There is a fix at the moment as I have not yet sorted out
//        how to get back the return type of a functor returning a list type.
//        For the moment I have fixed this as odd_list<T> at two locations,
//        one in list<T> and one in Cons. I am going to leave it like this
//        for now as reading the code, odd_list<T> seems to be correct.
//
//        I am also not happy at the details needed to detect types in Cons.
//
// I think the structure of this file is now complete.
// John Fletcher  February 2015.
//
////////////////////////////////////////////////////////////////////////////
/*=============================================================================
    Copyright (c) 2000-2003 Brian McNamara and Yannis Smaragdakis
    Copyright (c) 2001-2007 Joel de Guzman
    Copyright (c) 2015 John Fletcher

    Distributed under the Boost Software License, Version 1.0. (See accompanying
    file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
==============================================================================*/

///////////////////////////////////////////////////////////////////////
// This is from Boost FC++ list.hpp reimplemented without Fun0 or Full0
///////////////////////////////////////////////////////////////////////

/*
concept ListLike: Given a list representation type L

L<T> inherits ListLike and has
   // typedefs just show typical values
   typedef T value_type
   typedef L<T> force_result_type
   typedef L<T> delay_result_type
   typedef L<T> tail_result_type
   template <class UU> struct cons_rebind {
      typedef L<UU> type;        // force type
      typedef L<UU> delay_type;  // delay type
   };

   L()
   L( a_unique_type_for_nil )
   template <class F> L(F)       // F :: ()->L

   constructor: force_result_type( T, L<T> )
   template <class F>
   constructor: force_result_type( T, F )  // F :: ()->L

   template <class It>
   L( It, It )

   // FIX THIS instead of operator bool(), does Boost have something better?
   operator bool() const
   force_result_type force() const
   delay_result_type delay() const
   T head() const
   tail_result_type tail() const

   static const bool is_lazy;   // true if can represent infinite lists

   typedef const_iterator;
   typedef const_iterator iterator;  // ListLikes are immutable
   iterator begin() const
   iterator end() const
*/

//////////////////////////////////////////////////////////////////////
// End of section from Boost FC++ list.hpp
//////////////////////////////////////////////////////////////////////

#ifndef BOOST_PHOENIX_FUNCTION_LAZY_LIST
#define BOOST_PHOENIX_FUNCTION_LAZY_LIST

#include <boost/phoenix/core.hpp>
#include <boost/phoenix/function.hpp>
#include <boost/intrusive_ptr.hpp>
#include <boost/function.hpp>
#include <boost/type_traits/type_with_alignment.hpp>
//#include "lazy_reuse.hpp"

namespace boost {

  namespace phoenix {

//////////////////////////////////////////////////////////////////////
// These are the list types being declared.
//////////////////////////////////////////////////////////////////////

   template <class T> class strict_list;
    namespace impl {
   template <class T> class list;
   template <class T> class odd_list;
    }
   // in ref_count.hpp in BoostFC++ now in lazy_operator.hpp
   //typedef unsigned int RefCountType;

//////////////////////////////////////////////////////////////////////
// a_unique_type_for_nil moved to lazy_operator.hpp.
//////////////////////////////////////////////////////////////////////


//////////////////////////////////////////////////////////////////////
// Distinguish lazy lists (list and odd_list) from strict_list.
//////////////////////////////////////////////////////////////////////

    namespace lazy {
      // Copied from Boost FC++ list.hpp
      template <class L, bool is_lazy> struct ensure_lazy_helper {};
      template <class L> struct ensure_lazy_helper<L,true> {
         static void requires_lazy_list_to_prevent_infinite_recursion() {}
      };
      template <class L>
      void ensure_lazy() {
        ensure_lazy_helper<L,L::is_lazy>::
        requires_lazy_list_to_prevent_infinite_recursion();
      }

    }

//////////////////////////////////////////////////////////////////////
// Provide remove reference for types defined for list types.
//////////////////////////////////////////////////////////////////////

    namespace result_of {

      template < typename L >
      class ListType
      {
      public:
        typedef typename boost::remove_reference<L>::type LType;
        typedef typename LType::value_type value_type;
        typedef typename LType::tail_result_type tail_result_type;
        typedef typename LType::force_result_type force_result_type;
        typedef typename LType::delay_result_type delay_result_type;
      };

      template <>
      class ListType<a_unique_type_for_nil>
      {
      public:
        typedef a_unique_type_for_nil LType;
        //typedef a_unique_type_for_nil value_type;
      };

      template <typename F, typename T>
      struct ResultType {
        typedef typename impl::odd_list<T> type;
      };
  
    }

//////////////////////////////////////////////////////////////////////
// ListLike is a property inherited by any list type to enable it to
// work with the functions being implemented in this file.
// It provides the check for the structure described above.
//////////////////////////////////////////////////////////////////////

   namespace listlike {

       struct ListLike {};   // This lets us use is_base_and_derived() to see
       // (at compile-time) what classes are user-defined lists.

 
       template <class L, bool is_lazy> struct ensure_lazy_helper {};
       template <class L> struct ensure_lazy_helper<L,true> {
           static void requires_lazy_list_to_prevent_infinite_recursion() {}
       };
       template <class L>
       void ensure_lazy() {
         ensure_lazy_helper<L,L::is_lazy>::
         requires_lazy_list_to_prevent_infinite_recursion();
       }

       template <class L, bool b>
       struct EnsureListLikeHelp {
           static void trying_to_call_a_list_function_on_a_non_list() {}
       };
       template <class L> struct EnsureListLikeHelp<L,false> { };
       template <class L>
       void EnsureListLike() {
          typedef typename result_of::ListType<L>::LType LType;
          EnsureListLikeHelp<L,boost::is_base_and_derived<ListLike,LType>::value>::
             trying_to_call_a_list_function_on_a_non_list();
       }

      template <class L>
      bool is_a_unique_type_for_nil(const L& l) {
         return false;
      }
  
      template <>
      bool is_a_unique_type_for_nil<a_unique_type_for_nil>
      (const a_unique_type_for_nil& /* n */) {
         return true;
      }

      template <class L>
      struct detect_nil {
        static const bool is_nil = false;
      };

      template <>
      struct detect_nil<a_unique_type_for_nil> {
       static const bool is_nil = true;
      };

      template <>
      struct detect_nil<a_unique_type_for_nil&> {
       static const bool is_nil = true;
      };

      template <>
      struct detect_nil<const a_unique_type_for_nil&> {
       static const bool is_nil = true;
      };
          
    }

//////////////////////////////////////////////////////////////////////
// Implement lazy functions for list types. cat and cons come later.
//////////////////////////////////////////////////////////////////////

#ifndef BOOST_PHOENIX_FUNCTION_MAX_LAZY_LIST_LENGTH
#define BOOST_PHOENIX_FUNCTION_MAX_LAZY_LIST_LENGTH 1000
#endif

    namespace impl {

      struct Head
      {
        template <typename Sig>
        struct result;

        template <typename This, typename L>
        struct result<This(L)>
        {
          typedef typename result_of::ListType<L>::value_type type;
        };

        template <typename L>
        typename result<Head(L)>::type
        operator()(const L & l) const
        {
          listlike::EnsureListLike<L>();
          return l.head();
        }

      };

      struct Tail
      {
        template <typename Sig>
        struct result;

        template <typename This, typename L>
        struct result<This(L)>
        {
          typedef typename result_of::ListType<L>::tail_result_type type;
        };

        template <typename L>
        typename result<Tail(L)>::type
        operator()(const L & l) const
        {
          listlike::EnsureListLike<L>();
          return l.tail();
        }

      };

      struct Null
      {
        template <typename Sig>
        struct result;

        template <typename This, typename L>
        struct result<This(L)>
        {
            typedef bool type;
        };

        template <typename L>
        typename result<Null(L)>::type
        //bool
        operator()(const L& l) const
        {
          listlike::EnsureListLike<L>();
          return !l;
        }

      };

      struct Delay {
        template <typename Sig>
        struct result;

        template <typename This, typename L>
        struct result<This(L)>
        {
          typedef typename result_of::ListType<L>::delay_result_type type;
        };

        template <typename L>
        typename result<Delay(L)>::type
        operator()(const L & l) const
        {
          listlike::EnsureListLike<L>();
          return l.delay();
        }

      };

      struct Force {
        template <typename Sig>
        struct result;

        template <typename This, typename L>
        struct result<This(L)>
        {
          typedef typename result_of::ListType<L>::force_result_type type;
        };

        template <typename L>
        typename result<Force(L)>::type
        operator()(const L & l) const
        {
          listlike::EnsureListLike<L>();
          return l.force();
        }

      };

    }
    //BOOST_PHOENIX_ADAPT_CALLABLE(head, impl::head, 1)
    //BOOST_PHOENIX_ADAPT_CALLABLE(tail, impl::tail, 1)
    //BOOST_PHOENIX_ADAPT_CALLABLE(null, impl::null, 1)
    typedef boost::phoenix::function<impl::Head> Head;
    typedef boost::phoenix::function<impl::Tail> Tail;
    typedef boost::phoenix::function<impl::Null> Null;
    typedef boost::phoenix::function<impl::Delay> Delay;
    typedef boost::phoenix::function<impl::Force> Force;
    Head head;
    Tail tail;
    Null null;
    Delay delay;
    Force force;

//////////////////////////////////////////////////////////////////////
// These definitions used for strict_list are imported from BoostFC++
// unchanged.
//////////////////////////////////////////////////////////////////////

namespace impl {
template <class T>
struct strict_cons : public boost::noncopyable {
   mutable RefCountType refC;
   T head;
   typedef boost::intrusive_ptr<strict_cons> tail_type;
   tail_type tail;
   strict_cons( const T& h, const tail_type& t ) : refC(0), head(h), tail(t) {}

};
template <class T>
void intrusive_ptr_add_ref( const strict_cons<T>* p ) {
   ++ (p->refC);
}
template <class T>
void intrusive_ptr_release( const strict_cons<T>* p ) {
   if( !--(p->refC) ) delete p;
}

template <class T>
class strict_list_iterator
: public std::iterator<std::input_iterator_tag,T,ptrdiff_t> {
   typedef boost::intrusive_ptr<strict_cons<T> > rep_type;
   rep_type l;
   bool is_nil;
   void advance() {
      l = l->tail;
      if( !l )
         is_nil = true;
   }
   class Proxy {  // needed for operator->
      const T x;
      friend class strict_list_iterator;
      Proxy( const T& xx ) : x(xx) {}
   public:
      const T* operator->() const { return &x; }
   };
public:
   strict_list_iterator() : l(), is_nil(true) {}
   explicit strict_list_iterator( const rep_type& ll ) : l(ll), is_nil(!ll) {}
   
   const T operator*() const { return l->head; }
   const Proxy operator->() const { return Proxy(l->head); }
   strict_list_iterator<T>& operator++() {
      advance();
      return *this;
   }
   const strict_list_iterator<T> operator++(int) {
      strict_list_iterator<T> i( *this );
      advance();
      return i;
   }
   bool operator==( const strict_list_iterator<T>& i ) const {
      return is_nil && i.is_nil;
   }
   bool operator!=( const strict_list_iterator<T>& i ) const {
      return ! this->operator==(i);
   }
};
}

//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////

   template <class T>
   class strict_list : public listlike::ListLike
   {
       typedef boost::intrusive_ptr<impl::strict_cons<T> > rep_type;
       rep_type rep;
       struct Make {};

       template <class Iter>
       static rep_type help( Iter a, const Iter& b ) {
           rep_type r;
           while( a != b ) {
              T x( *a );
              r = rep_type( new impl::strict_cons<T>( x, r ) );
              ++a;
           }
           return r;
       }

   public:
       static const bool is_lazy = false;

       typedef T value_type;
       typedef strict_list force_result_type;
       typedef strict_list delay_result_type;
       typedef strict_list tail_result_type;
       template <class UU> struct cons_rebind {
           typedef strict_list<UU> type;
           typedef strict_list<UU> delay_type;
       };
 

   strict_list( Make, const rep_type& r ) : rep(r) {}

   strict_list() : rep() {}

   strict_list( a_unique_type_for_nil ) : rep() {}

   template <class F>
   strict_list( const F& f ) : rep( f().rep ) {
     // I cannot do this yet.
     //functoid_traits<F>::template ensure_accepts<0>::args();
   }

   strict_list( const T& x, const strict_list& y )
      : rep( new impl::strict_cons<T>(x,y.rep) ) {}

   template <class F>
   strict_list( const T& x, const F& f )
      : rep( new impl::strict_cons<T>(x,f().rep) ) {}
   
     operator bool() const { return (bool)rep; }
   force_result_type force() const { return *this; }
   delay_result_type delay() const { return *this; }
   T head() const {
#ifndef BOOST_PHOENIX_NO_LAZY_EXCEPTIONS
      if( !*this )
         throw lazy_exception("Tried to take head() of empty strict_list");
#endif
      return rep->head;
   }
   tail_result_type tail() const {
#ifndef BOOST_PHOENIX_NO_LAZY_EXCEPTIONS
      if( !*this )
         throw lazy_exception("Tried to take tail() of empty strict_list");
#endif
      return strict_list(Make(),rep->tail);
   }

   template <class Iter>
   strict_list( const Iter& a, const Iter& b ) : rep( rep_type() ) {
      // How ironic.  We need to reverse the iterator range in order to
      // non-recursively build this!
      std::vector<T> tmp(a,b);
      rep = help( tmp.rbegin(), tmp.rend() );
   }

   // Since the strict_cons destructor can't call the strict_list
   // destructor, the "simple" iterative destructor is correct and
   // efficient.  Hurray.
   ~strict_list() { while(rep && (rep->refC == 1)) rep = rep->tail; }

   // The following helps makes strict_list almost an STL "container"
   typedef impl::strict_list_iterator<T> const_iterator;
   typedef const_iterator iterator;         // strict_list is immutable
   iterator begin() const { return impl::strict_list_iterator<T>( rep ); }
   iterator end() const   { return impl::strict_list_iterator<T>(); }

   };

    // All of these null head and tail are now non lazy using e.g. null(a)().
    // They need an extra () e.g. null(a)().
    template <class T>
    bool operator==( const strict_list<T>& a, a_unique_type_for_nil ) {
      return null(a)();
    }
    template <class T>
    bool operator==( a_unique_type_for_nil, const strict_list<T>& a ) {
      return null(a)();
    }
    template <class T>
    bool operator==( const strict_list<T>& a, const strict_list<T>& b ) {
        if( null(a)() && null(b)() )
            return true;
        if( null(a)() || null(b)() )
            return false;
        return (head(a)()==head(b)()) &&
            (tail(a)()==tail(b)());
    }

    template <class T>
    bool operator<( const strict_list<T>& a, const strict_list<T>& b ) {
      if( null(a)() && !null(b)() )  return true;
        if( null(b)() )                      return false;
        if( head(b)() < head(a)() )    return false;
        if( head(a)() < head(b)() )    return true;
        return (tail(a)() < tail(b)());
    }
    template <class T>
    bool operator<( const strict_list<T>&, a_unique_type_for_nil ) {
        return false;
    }
    template <class T>
    bool operator<( a_unique_type_for_nil, const strict_list<T>& b ) {
      return !(null(b)());
    }

//////////////////////////////////////////////////////////////////////
// Class list<T> is the primary interface to the user for lazy lists.
//////////////////////////////////////////////////////////////////////{
    namespace impl {
      using fcpp::INV;
      using fcpp::VAR;
      using fcpp::reuser2;

      struct CacheEmpty {};

      template <class T> class Cache;
      template <class T> class odd_list;
      template <class T> class list_iterator;
      template <class It, class T>
      struct ListItHelp2 /*: public c_fun_type<It,It,odd_list<T> >*/ {
        // This will need a return type.
        typedef odd_list<T> return_type;
        odd_list<T> operator()( It begin, const It& end,
          reuser2<INV,VAR,INV,ListItHelp2<It,T>,It,It> r = NIL ) const;
      };
      template <class U,class F> struct cvt;
      template <class T, class F, class R> struct ListHelp;
      template <class T> Cache<T>* xempty_helper();
      template <class T, class F, class L, bool b> struct ConsHelp2;

      struct ListRaw {};

      template <class T>
      class list : public listlike::ListLike
      {
        // never NIL, unless an empty odd_list
        boost::intrusive_ptr<Cache<T> > rep;

        template <class U> friend class Cache;
        template <class U> friend class odd_list;
        template <class TT, class F, class L, bool b> friend struct ConsHelp2;
        template <class U,class F> friend struct cvt;

        list( const boost::intrusive_ptr<Cache<T> >& p ) : rep(p) { }
        list( ListRaw, Cache<T>* p ) : rep(p) { }

        bool priv_isEmpty() const {
          return rep->cache().second.rep == Cache<T>::XNIL();
        }
        T priv_head() const {
#ifndef BOOST_PHOENIX_NO_LAZY_EXCEPTIONS
          if( priv_isEmpty() )
             throw lazy_exception("Tried to take head() of empty list");
#endif
          return rep->cache().first();
        }
        list<T> priv_tail() const {
#ifndef BOOST_PHOENIX_NO_LAZY_EXCEPTIONS
          if( priv_isEmpty() )
            throw lazy_exception("Tried to take tail() of empty list");
#endif
          return rep->cache().second;
        }


      public:
        static const bool is_lazy = true;

        typedef T value_type;
        typedef list tail_result_type;
        typedef odd_list<T> force_result_type;
        typedef list delay_result_type;
        template <class UU> struct cons_rebind {
           typedef odd_list<UU> type;
           typedef list<UU> delay_type;
        };

        list( a_unique_type_for_nil ) : rep( Cache<T>::XEMPTY() ) { }
        list() : rep( Cache<T>::XEMPTY() ) { }

        template <class F>  // works on both ()->odd_list and ()->list
        // At the moment this is fixed for odd_list<T>.
        // I need to do more work to get the general result.
        list( const F& f )
          : rep( ListHelp<T,F,odd_list<T> >()(f) ) { }
        //: rep( ListHelp<T,F,typename F::result_type>()(f) ) { }

        operator bool() const { return !priv_isEmpty(); }
        const force_result_type& force() const { return rep->cache(); }
        const delay_result_type& delay() const { return *this; }
        // Note: force returns a reference;
        // implicit conversion now returns a copy.
        operator odd_list<T>() const { return force(); }

        T head() const { return priv_head(); }
        tail_result_type tail() const { return priv_tail(); }

        // The following helps makes list almost an STL "container"
        typedef list_iterator<T> const_iterator;
        typedef const_iterator iterator;         // list is immutable
        iterator begin() const { return list_iterator<T>( *this ); }
        iterator end() const   { return list_iterator<T>(); }

        // end of list<T>
      };

//////////////////////////////////////////////////////////////////////
// Class odd_list<T> is not normally accessed by the user.
//////////////////////////////////////////////////////////////////////

      struct OddListDummyY {};

      template <class T>
      class odd_list : public listlike::ListLike
      {
      public:
        typedef
        typename boost::type_with_alignment<boost::alignment_of<T>::value>::type
        xfst_type;
      private:
        union { xfst_type fst; unsigned char dummy[sizeof(T)]; };

        const T& first() const {
           return *static_cast<const T*>(static_cast<const void*>(&fst));
        }
        T& first() {
           return *static_cast<T*>(static_cast<void*>(&fst));
        }
        list<T>  second;   // If XNIL, then this odd_list is NIL

        template <class U> friend class list;
        template <class U> friend class Cache;

        odd_list( OddListDummyY )
          : second( Cache<T>::XBAD() ) { }

        void init( const T& x ) {
           new (static_cast<void*>(&fst)) T(x);
        }

        bool fst_is_valid() const {
           if( second.rep != Cache<T>::XNIL() )
              if( second.rep != Cache<T>::XBAD() )
                 return true;
           return false;
        }

        bool priv_isEmpty() const { return second.rep == Cache<T>::XNIL(); }
        T priv_head() const {
#ifndef BOOST_PHOENIX_NO_LAZY_EXCEPTIONS
           if( priv_isEmpty() )
             throw lazy_exception("Tried to take head() of empty odd_list");
#endif
           return first();
        }

        list<T> priv_tail() const {
#ifndef BOOST_PHOENIX_NO_LAZY_EXCEPTIONS
           if( priv_isEmpty() )
             throw lazy_exception("Tried to take tail() of empty odd_list");
#endif
           return second;
        }

      public:
        static const bool is_lazy = true;

        typedef T value_type;
        typedef list<T> tail_result_type;
        typedef odd_list<T> force_result_type;
        typedef list<T> delay_result_type;
        template <class UU> struct cons_rebind {
          typedef odd_list<UU> type;
          typedef list<UU> delay_type;
        };

        odd_list() : second( Cache<T>::XNIL() ) { }
        odd_list( a_unique_type_for_nil ) : second( Cache<T>::XNIL() ) { }
        odd_list( const T& x, const list<T>& y ) : second(y) { init(x); }
        odd_list( const T& x, a_unique_type_for_nil ) : second(NIL) { init(x); }

        odd_list( const odd_list<T>& x ) : second(x.second) {
           if( fst_is_valid() ) {
              init( x.first() );
           }
        }

        template <class It>
        odd_list( It begin, const It& end )
          : second( begin==end ? Cache<T>::XNIL() :
             ( init(*begin++), list<T>( begin, end ) ) ) {}

        odd_list<T>& operator=( const odd_list<T>& x ) {
           if( this == &x ) return *this;
           if( fst_is_valid() ) {
             if( x.fst_is_valid() )
               first() = x.first();
             else
               first().~T();
           }
           else {
              if( x.fst_is_valid() )
                 init( x.first() );
           }
           second = x.second;
           return *this;
        }
      
       ~odd_list() {
          if( fst_is_valid() ) {
            first().~T();
          }
        }

        operator bool() const { return !priv_isEmpty(); }
        const force_result_type& force() const { return *this; }
        delay_result_type delay() const { return list<T>(*this); }

        T head() const { return priv_head(); }
        tail_result_type tail() const { return priv_tail(); }

        // The following helps makes odd_list almost an STL "container"
        typedef list_iterator<T> const_iterator;
        typedef const_iterator iterator;         // odd_list is immutable
        iterator begin() const { return list_iterator<T>( this->delay() ); }
        iterator end() const   { return list_iterator<T>(); }

        // end of odd_list<T>
      };

//////////////////////////////////////////////////////////////////////
// struct cvt
//////////////////////////////////////////////////////////////////////

      // This converts ()->list<T> to ()->odd_list<T>.
      // In other words, here is the 'extra work' done when using the
      // unoptimized interface.
      template <class U,class F>
      struct cvt /*: public c_fun_type<odd_list<U> >*/ {
        typedef odd_list<U> return_type;
        F f;
        cvt( const F& ff ) : f(ff) {}
        odd_list<U> operator()() const {
           list<U> l = f();
           return l.force();
        }
      };


//////////////////////////////////////////////////////////////////////
// Cache<T> and associated functions.
//////////////////////////////////////////////////////////////////////

// I malloc a RefCountType to hold the refCount and init it to 1 to ensure the
// refCount will never get to 0, so the destructor-of-global-object
// order at the end of the program is a non-issue.  In other words, the
// memory allocated here is only reclaimed by the operating system.
    template <class T>
    Cache<T>* xnil_helper() {
       void *p = std::malloc( sizeof(RefCountType) );
       *((RefCountType*)p) = 1;
       return static_cast<Cache<T>*>( p );
    }

    template <class T>
    Cache<T>* xnil_helper_nil() {
       Cache<T>* p = xnil_helper<T>();
       return p;
    }

    template <class T>
    Cache<T>* xnil_helper_bad() {
       Cache<T>* p = xnil_helper<T>();
       return p;
    }

    template <class T>
    Cache<T>* xempty_helper() {
       Cache<T>* p = new Cache<T>( CacheEmpty() );
       return p;
    }

    // This makes a boost phoenix function type with return type
    // odd_list<T>
    template <class T>
    struct fun0_type_helper{
       typedef boost::function0<odd_list<T> > fun_type;
       typedef boost::phoenix::function<fun_type> phx_type;
    };


      template <class T>
      struct make_fun0_odd_list {

        typedef typename fun0_type_helper<T>::fun_type fun_type;
        typedef typename fun0_type_helper<T>::phx_type phx_type;
        typedef phx_type result_type;

        template <class F>
        result_type operator()(const F& f) const
        {
            fun_type ff(f);
            phx_type g(ff);
            return g;
        }

        // Overload for the case where it is a boost phoenix function already.
        template <class F>
        typename boost::phoenix::function<F> operator()
          (const boost::phoenix::function<F>& f) const
        {
            return f;
        }

    };

    template <class T>
    class Cache : boost::noncopyable {
       mutable RefCountType refC;
       // This is the boost::function type
       typedef typename fun0_type_helper<T>::fun_type fun_odd_list_T;
       // This is the boost::phoenix::function type;
       typedef typename fun0_type_helper<T>::phx_type fun0_odd_list_T;
       mutable fun0_odd_list_T fxn;
       mutable odd_list<T>     val;
       // val.second.rep can be XBAD, XNIL, or a valid ptr
       //  - XBAD: val is invalid (fxn is valid)
       //  - XNIL: this is the empty list
       //  - anything else: val.first() is head, val.second is tail()

       // This functoid should never be called; it represents a
       // self-referent Cache, which should be impossible under the current
       // implementation.  Nonetheless, we need a 'dummy' function object to
       // represent invalid 'fxn's (val.second.rep!=XBAD), and this
       // implementation seems to be among the most reasonable.
       struct blackhole_helper /*: c_fun_type< odd_list<T> >*/ {
          typedef odd_list<T> return_type;
          odd_list<T> operator()() const {
#ifndef BOOST_PHOENIX_NO_LAZY_EXCEPTIONS
            throw lazy_exception("You have entered a black hole.");
#else
            return odd_list<T>();
#endif
          }
       };

       // Don't get rid of these XFOO() functions; they impose no overhead,
       // and provide a useful place to add debugging code for tracking down
       // before-main()-order-of-initialization problems.
       static const boost::intrusive_ptr<Cache<T> >& XEMPTY() {
          static boost::intrusive_ptr<Cache<T> > xempty( xempty_helper<T>() );
          return xempty;
       }
       static const boost::intrusive_ptr<Cache<T> >& XNIL() {
       // this list is nil
          static boost::intrusive_ptr<Cache<T> > xnil( xnil_helper_nil<T>() );
          return xnil;
       }

       static const boost::intrusive_ptr<Cache<T> >& XBAD() {
       // the pair is invalid; use fxn
          static boost::intrusive_ptr<Cache<T> > xbad( xnil_helper_bad<T>() );
          return xbad;
       }

       static fun0_odd_list_T /*<odd_list<T> >*/ the_blackhole;
       static fun0_odd_list_T& blackhole() {
         static fun0_odd_list_T the_blackhole;
         //( make_fun0_odd_list<T>()( blackhole_helper() ) );
         return the_blackhole;
       }

       odd_list<T>& cache() const {
         if( val.second.rep == XBAD() ) {
            val = fxn()();
            fxn = blackhole();
         }
         return val;
       }

       template <class U> friend class list;
       template <class U> friend class odd_list;
       template <class TT, class F, class L, bool b> friend struct ConsHelp2;
       template <class U,class F> friend struct cvt;
       template <class U, class F, class R> friend struct ListHelp;
       template <class U> friend Cache<U>* xempty_helper();

       Cache( CacheEmpty ) : refC(0), fxn(blackhole()), val() {}
       Cache( const odd_list<T>& x ) : refC(0), fxn(blackhole()), val(x) {}
       Cache( const T& x, const list<T>& l ) : refC(0),fxn(blackhole()),val(x,l)
          {}

       Cache( const fun0_odd_list_T& f )
         : refC(0), fxn(f), val( OddListDummyY() ) {}

       // f must be a boost phoenix function object?
       template <class F>
       Cache( const F& f )    // ()->odd_list
         : refC(0), fxn(make_fun0_odd_list<T>()(f)), val( OddListDummyY() ) {}

       // This is for ()->list<T> to ()->odd_list<T>
       struct CvtFxn {};
       template <class F>
       Cache( CvtFxn, const F& f )    // ()->list
         :  refC(0), fxn(make_fun0_odd_list<T>()(cvt<T,F>(f))), val( OddListDummyY() ) {}

       template <class X>
       friend void intrusive_ptr_add_ref( const Cache<X>* p );
       template <class X>
       friend void intrusive_ptr_release( const Cache<X>* p );
    };

    template <class T>
    void intrusive_ptr_add_ref( const Cache<T>* p ) {
        ++ (p->refC);
    }
    template <class T>
    void intrusive_ptr_release( const Cache<T>* p ) {
        if( !--(p->refC) ) delete p;
    }

//////////////////////////////////////////////////////////////////////
// Rest of list's stuff
//////////////////////////////////////////////////////////////////////

template <class T, class F> struct ListHelp<T,F,list<T> > {
   boost::intrusive_ptr<Cache<T> > operator()( const F& f ) const {
      return boost::intrusive_ptr<Cache<T> >
         (new Cache<T>(typename Cache<T>::CvtFxn(),f));
   }
};
template <class T, class F> struct ListHelp<T,F,odd_list<T> > {
   boost::intrusive_ptr<Cache<T> > operator()( const F& f ) const {
      return boost::intrusive_ptr<Cache<T> >(new Cache<T>(f));
   }
};

template <class T>
class list_iterator
: public std::iterator<std::input_iterator_tag,T,ptrdiff_t> {
   list<T> l;
   bool is_nil;
   void advance() {
      l = l.tail();
      if( !l )
         is_nil = true;
   }
   class Proxy {  // needed for operator->
      const T x;
      friend class list_iterator;
      Proxy( const T& xx ) : x(xx) {}
   public:
      const T* operator->() const { return &x; }
   };
public:
   list_iterator() : l(), is_nil(true) {}
   explicit list_iterator( const list<T>& ll ) : l(ll), is_nil(!ll) {}
   
   const T operator*() const { return l.head(); }
   const Proxy operator->() const { return Proxy(l.head()); }
   list_iterator<T>& operator++() {
      advance();
      return *this;
   }
   const list_iterator<T> operator++(int) {
      list_iterator<T> i( *this );
      advance();
      return i;
   }
   bool operator==( const list_iterator<T>& i ) const {
      return is_nil && i.is_nil;
   }
   bool operator!=( const list_iterator<T>& i ) const {
      return ! this->operator==(i);
   }
};


    } // namespace impl

  using impl::list;
  using impl::odd_list;
  using impl::list_iterator;

//////////////////////////////////////////////////////////////////////
// op== and op<, overloaded for all combos of list, odd_list, and NIL
//////////////////////////////////////////////////////////////////////
// All of these null head and tail are now non lazy using e.g. null(a)().
// They need an extra () e.g. null(a)().

// FIX THIS comparison operators can be implemented simpler with enable_if
template <class T>
bool operator==( const odd_list<T>& a, a_unique_type_for_nil ) {
  return null(a)();
}
template <class T>
bool operator==( const list<T>& a, a_unique_type_for_nil ) {
  return null(a)();
}
template <class T>
bool operator==( a_unique_type_for_nil, const odd_list<T>& a ) {
  return null(a)();
}
template <class T>
bool operator==( a_unique_type_for_nil, const list<T>& a ) {
  return null(a)();
}
template <class T>
bool operator==( const list<T>& a, const list<T>& b ) {
  if( null(a)() && null(b)() )
      return true;
  if( null(a)() || null(b)() )
      return false;
  return (head(a)()==head(b)()) && (tail(a)()==tail(b)());
}
template <class T>
bool operator==( const odd_list<T>& a, const odd_list<T>& b ) {
  if( null(a)() && null(b)() )
      return true;
  if( null(a)() || null(b)() )
      return false;
  return (head(a)()==head(b)()) && (tail(a)()==tail(b)());
}
template <class T>
bool operator==( const list<T>& a, const odd_list<T>& b ) {
  if( null(a)() && null(b)() )
      return true;
  if( null(a)() || null(b)() )
      return false;
  return (head(a)()==head(b)()) && (tail(a)()==tail(b)());
}
template <class T>
bool operator==( const odd_list<T>& a, const list<T>& b ) {
  if( null(a)() && null(b)() )
      return true;
  if( null(a)() || null(b)() )
      return false;
  return (head(a)()==head(b)()) && (tail(a)()==tail(b)());
}

template <class T>
bool operator<( const list<T>& a, const list<T>& b ) {
  if( null(a)() && !null(b)() )  return true;
  if( null(b)() )              return false;
  if( head(b)() < head(a)() )    return false;
  if( head(a)() < head(b)() )    return true;
  return (tail(a)() < tail(b)());
}
template <class T>
bool operator<( const odd_list<T>& a, const list<T>& b ) {
  if( null(a)() && !null(b)() )  return true;
  if( null(b)() )              return false;
  if( head(b)() < head(a)() )    return false;
  if( head(a)() < head(b)() )    return true;
  return (tail(a)() < tail(b)());
}
template <class T>
bool operator<( const list<T>& a, const odd_list<T>& b ) {
   if( null(a) && !null(b) )  return true;
   if( null(b) )              return false;
   if( head(b) < head(a) )    return false;
   if( head(a) < head(b) )    return true;
   return (tail(a) < tail(b));
}
template <class T>
bool operator<( const odd_list<T>& a, const odd_list<T>& b ) {
  if( null(a)() && !null(b)() )  return true;
  if( null(b)() )              return false;
  if( head(b)() < head(a)() )    return false;
  if( head(a)() < head(b)() )    return true;
  return (tail(a)() < tail(b)());
}
template <class T>
bool operator<( const odd_list<T>&, a_unique_type_for_nil ) {
   return false;
}
template <class T>
bool operator<( const list<T>&, a_unique_type_for_nil ) {
   return false;
}
template <class T>
bool operator<( a_unique_type_for_nil, const odd_list<T>& b ) {
  return !null(b)();
}
template <class T>
bool operator<( a_unique_type_for_nil, const list<T>& b ) {
  return !null(b)();
}

//////////////////////////////////////////////////////////////////////
// Implement cat and cons after the list types are defined.
//////////////////////////////////////////////////////////////////////
    namespace impl {
      using listlike::ListLike;

      template <class T, class F, class L>
      struct ConsHelp2<T,F,L,true>
      {
         typedef typename boost::remove_reference<T>::type TT;
         typedef typename L::force_result_type type;
         static type go( const TT& x, const F& f ) {
            return type( x, f );
         }
      };
      template <class T, class F>
      struct ConsHelp2<T,F,list<T>,true>
      {
         typedef typename boost::remove_reference<T>::type TT;
         typedef list<TT> L;
         typedef typename L::force_result_type type;
         static type go( const TT& x, const F& f ) {
            return odd_list<TT>(x, list<TT>(
            boost::intrusive_ptr<Cache<TT> >(new Cache<T>(
            typename Cache<TT>::CvtFxn(),f))));
         }
       };
       template <class T, class F>
       struct ConsHelp2<T,F,odd_list<T>,true>
       {
          typedef typename boost::remove_reference<T>::type TT;
          typedef odd_list<TT> L;
          typedef typename L::force_result_type type;
          static type go( const TT& x, const F& f ) {
              return odd_list<TT>(x, list<TT>( ListRaw(), new Cache<T>(f) ));
          }
       };
       template <class T, class F>
       struct ConsHelp2<T,F,a_unique_type_for_nil,false>
       {
          typedef typename boost::remove_reference<T>::type TT;
          typedef odd_list<TT> type;
          static type go( const TT& x, const F& f ) {
             return odd_list<TT>(x, list<TT>( ListRaw(), new Cache<T>(f) ));
          }
       };

       template <class T, class L, bool b> struct ConsHelp1 {
          typedef typename boost::remove_reference<T>::type TT;
          typedef typename L::force_result_type type;
          static type go( const TT& x, const L& l ) {
             return type(x,l);
          }
       };
      template <class T> struct ConsHelp1<T,a_unique_type_for_nil,false> {
        typedef typename boost::remove_reference<T>::type TT;
        typedef odd_list<TT> type;
        static type go( const TT& x, const a_unique_type_for_nil& n ) {
        return type(x,n);
        }
      };
      template <class T, class F> struct ConsHelp1<T,F,false> {
        // It's a function returning a list
        // This is the one I have not fixed yet....
        // typedef typename F::result_type L;
        // typedef typename result_of::template ListType<F>::result_type L;
        typedef odd_list<T> L;
        typedef ConsHelp2<T,F,L,boost::is_base_and_derived<ListLike,L>::value> help;
        typedef typename help::type type;
        static type go( const T& x, const F& f ) {
           return help::go(x,f);
        }
      };

      template <class T, class L, bool b>
      struct ConsHelp0;

      template <class T>
      struct ConsHelp0<T,a_unique_type_for_nil,true> {
        typedef typename boost::remove_reference<T>::type TT;
        typedef odd_list<T> type;
      };

      template <class T>
      struct ConsHelp0<const T &,const a_unique_type_for_nil &,true> {
        typedef typename boost::remove_reference<T>::type TT;
        typedef odd_list<TT> type;
      };

      template <class T>
      struct ConsHelp0<T &,a_unique_type_for_nil &,true> {
        typedef typename boost::remove_reference<T>::type TT;
        typedef odd_list<TT> type;
      };

      template <class T, class L>
      struct ConsHelp0<T,L,false> {
          // This removes any references from L for correct return type
          // identification.
           typedef typename boost::remove_reference<L>::type LType;
           typedef typename ConsHelp1<T,LType,
           boost::is_base_and_derived<ListLike,LType>::value>::type type;
      };

      /////////////////////////////////////////////////////////////////////
      // cons (t,l) - cons a value to the front of a list.
      // Note: The first arg,  t, must be a value.
      //       The second arg, l, can be a list or NIL
      //       or a function that returns a list.
      /////////////////////////////////////////////////////////////////////
      struct Cons
      {
        /* template <class T, class L> struct sig : public fun_type<
        typename ConsHelp1<T,L,
      boost::is_base_and_derived<ListLike,L>::value>::type> {};
        */
        template <typename Sig> struct result;

        template <typename This, typename T, typename L>
        struct result<This(T, L)>
        {
          typedef typename ConsHelp0<T,L,
          listlike::detect_nil<L>::is_nil>::type type;
        };

        template <typename This, typename T>
        struct result<This(T,a_unique_type_for_nil)>
        {
          typedef typename boost::remove_reference<T>::type TT;
          typedef odd_list<TT> type;
        };

        template <typename T, typename L>
        typename result<Cons(T,L)>::type
        operator()( const T& x, const L& l ) const {
           typedef typename result_of::ListType<L>::LType LType;
           typedef ConsHelp1<T,LType,
           boost::is_base_and_derived<ListLike,LType>::value> help;
           return help::go(x,l);
          }
      
        template <typename T>
        typename result<Cons(T,a_unique_type_for_nil)>::type
        operator()( const T& x, const a_unique_type_for_nil &n ) const {
           typedef typename result<Cons(T,a_unique_type_for_nil)>::type LL;
           typedef ConsHelp1<T,LL,
           boost::is_base_and_derived<ListLike,LL>::value> help;
           return help::go(x,n);
          }

      };
    }

    typedef boost::phoenix::function<impl::Cons> Cons;
    Cons cons;

    namespace impl {

      template <class L, class M, bool b>
      struct CatHelp0;

      template <class LL>
      struct CatHelp0<LL,a_unique_type_for_nil,true> {
        typedef typename result_of::template ListType<LL>::LType type;
      };

      template <class LL>
      struct CatHelp0<const LL &,const a_unique_type_for_nil &,true> {
        typedef typename result_of::template ListType<LL>::LType type;
        //typedef L type;
      };

      template <class LL>
      struct CatHelp0<LL &,a_unique_type_for_nil &,true> {
        typedef typename result_of::template ListType<LL>::LType type;
        //typedef L type;
      };

      template <class LL, class MM>
      struct CatHelp0<LL,MM,false> {
          // This removes any references from L for correct return type
          // identification.
        typedef typename result_of::template ListType<LL>::LType type;
        //    typedef typename ConsHelp1<T,LType,
        //   boost::is_base_and_derived<ListLike,LType>::value>::type type;
      };

      /////////////////////////////////////////////////////////////////////
      // cat (l,m) - concatenate lists.
      // Note: The first arg,  l, must be a list or NIL.
      //       The second arg, m, can be a list or NIL
      //       or a function that returns a list.
      /////////////////////////////////////////////////////////////////////
      struct Cat
      {
         template <class L, class M, bool b, class R>
         struct Helper /*: public c_fun_type<L,M,R>*/ {
           template <typename Sig> struct result;
           
           template <typename This>
           struct result<This(L,M)>
          {
             typedef typename result_of::ListType<L>::tail_result_type type;
          };

           typedef R return_type;
           R operator()( const L& l, const M& m,
             reuser2<INV,VAR,INV,Helper,
             typename result_of::template ListType<L>::tail_result_type,M>
             r = NIL ) const {
             if( null(l)() )
                return m().force();
             else
                return cons( head(l)(), r( Helper<L,M,b,R>(), tail(l), m )() );
         }
      };
          template <class L, class M, class R>
          struct Helper<L,M,true,R> /*: public c_fun_type<L,M,R>*/ {
           template <typename Sig> struct result;
           
           template <typename This>
           struct result<This(L,M)>
          {
             typedef typename result_of::ListType<L>::tail_result_type type;
          };
          typedef R return_type;
          R operator()( const L& l, const M& m,
             reuser2<INV,VAR,INV,Helper,
             typename result_of::template ListType<L>::tail_result_type,M>
             r = NIL ) const {
             if( null(l)() )
                return m.force();
             else
                return cons( head(l)(), r(Helper<L,M,true,R>(), tail(l), m )());
         }
      };
      template <class L, class R>
      struct Helper<L,a_unique_type_for_nil,false,R>
      /*: public c_fun_type<L,
        a_unique_type_for_nil,odd_list<typename L::value_type> > */
      {
        typedef odd_list<typename result_of::template ListType<L>::value_type> type;
        odd_list<typename result_of::template ListType<L>::value_type>
        operator()( const L& l, const a_unique_type_for_nil& ) const {
         return l;
        }
      };
   public:
        /*template <class L, class M> struct sig : public fun_type<
        typename RT<cons_type,typename L::value_type,M>::result_type>
      {}; */
   // Need to work out the return type here.
      template <typename Sig> struct result;

      template <typename This, typename L, typename M>
      struct result<This(L,M)>
      {
        typedef typename CatHelp0<L,M,
          listlike::detect_nil<M>::is_nil>::type type;
        // typedef typename result_of::ListType<L>::tail_result_type type;
      };
      
      template <typename This, typename L>
      struct result<This(L,a_unique_type_for_nil)>
      {
         typedef typename result_of::ListType<L>::tail_result_type type;
      };
      template <class L, class M>
      typename result<Cat(L,M)>::type operator()( const L& l, const M& m ) const
      {
         listlike::EnsureListLike<L>();
         return Helper<L,M,
         boost::is_base_and_derived<typename listlike::ListLike,M>::value,
                typename result<Cat(L,M)>::type>()(l,m);
      }

      template <class L>
      typename result<Cat(L,a_unique_type_for_nil)>::type operator()( const L& l, const a_unique_type_for_nil& /* n */ ) const
      {
         listlike::EnsureListLike<L>();
         return l;
      }
       
      };


    }

    typedef boost::phoenix::function<impl::Cat> Cat;
    Cat cat;


//////////////////////////////////////////////////////////////////////
// Handy functions for making list literals
//////////////////////////////////////////////////////////////////////
// Yes, these aren't functoids, they're just template functions.  I'm
// lazy and created these mostly to make it easily to make little lists
// in the sample code snippets that appear in papers.

struct UseList {
   template <class T> struct List { typedef list<T> type; };
};
struct UseOddList {
   template <class T> struct List { typedef odd_list<T> type; };
};
struct UseStrictList {
   template <class T> struct List { typedef strict_list<T> type; };
};

template <class Kind = UseList>
struct list_with {
   template <class T>
   typename Kind::template List<T>::type
   operator()( const T& a ) const {
      typename Kind::template List<T>::type l;
      l = cons( a, l );
      return l;
   }
   
   template <class T>
   typename Kind::template List<T>::type
   operator()( const T& a, const T& b ) const {
      typename Kind::template List<T>::type l;
      l = cons( b, l );
      l = cons( a, l );
      return l;
   }
   
   template <class T>
   typename Kind::template List<T>::type
   operator()( const T& a, const T& b, const T& c ) const {
      typename Kind::template List<T>::type l;
      l = cons( c, l );
      l = cons( b, l );
      l = cons( a, l );
      return l;
   }
   
   template <class T>
   typename Kind::template List<T>::type
   operator()( const T& a, const T& b, const T& c, const T& d ) const {
      typename Kind::template List<T>::type l;
      l = cons( d, l );
      l = cons( c, l );
      l = cons( b, l );
      l = cons( a, l );
      return l;
   }
   
   template <class T>
   typename Kind::template List<T>::type
   operator()( const T& a, const T& b, const T& c, const T& d,
               const T& e ) const {
      typename Kind::template List<T>::type l;
      l = cons( e, l );
      l = cons( d, l );
      l = cons( c, l );
      l = cons( b, l );
      l = cons( a, l );
      return l;
   }
};
//////////////////////////////////////////////////////////////////////

  }

}

#endif