summaryrefslogtreecommitdiff
path: root/boost/multiprecision/detail/functions/pow.hpp
blob: b244a18c8ba7624197980fd4c3595ab11f552151 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

// Copyright Christopher Kormanyos 2002 - 2013.
// Copyright 2011 - 2013 John Maddock. Distributed under the Boost
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)

// This work is based on an earlier work:
// "Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations",
// in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469
//
// This file has no include guards or namespaces - it's expanded inline inside default_ops.hpp
// 

#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:6326)  // comparison of two constants
#endif

namespace detail{

template<typename T, typename U> 
inline void pow_imp(T& result, const T& t, const U& p, const mpl::false_&)
{
   // Compute the pure power of typename T t^p.
   // Use the S-and-X binary method, as described in
   // D. E. Knuth, "The Art of Computer Programming", Vol. 2,
   // Section 4.6.3 . The resulting computational complexity
   // is order log2[abs(p)].

   typedef typename boost::multiprecision::detail::canonical<U, T>::type int_type;

   if(&result == &t)
   {
      T temp;
      pow_imp(temp, t, p, mpl::false_());
      result = temp;
      return;
   }

   // This will store the result.
   if(U(p % U(2)) != U(0))
   {
      result = t;
   }
   else
      result = int_type(1);

   U p2(p);

   // The variable x stores the binary powers of t.
   T x(t);

   while(U(p2 /= 2) != U(0))
   {
      // Square x for each binary power.
      eval_multiply(x, x);

      const bool has_binary_power = (U(p2 % U(2)) != U(0));

      if(has_binary_power)
      {
         // Multiply the result with each binary power contained in the exponent.
         eval_multiply(result, x);
      }
   }
}

template<typename T, typename U> 
inline void pow_imp(T& result, const T& t, const U& p, const mpl::true_&)
{
   // Signed integer power, just take care of the sign then call the unsigned version:
   typedef typename boost::multiprecision::detail::canonical<U, T>::type  int_type;
   typedef typename make_unsigned<U>::type                                ui_type;

   if(p < 0)
   {
      T temp;
      temp = static_cast<int_type>(1);
      T denom;
      pow_imp(denom, t, static_cast<ui_type>(-p), mpl::false_());
      eval_divide(result, temp, denom);
      return;
   }
   pow_imp(result, t, static_cast<ui_type>(p), mpl::false_());
}

} // namespace detail

template<typename T, typename U> 
inline typename enable_if<is_integral<U> >::type eval_pow(T& result, const T& t, const U& p)
{
   detail::pow_imp(result, t, p, boost::is_signed<U>());
}

template <class T>
void hyp0F0(T& H0F0, const T& x)
{
   // Compute the series representation of Hypergeometric0F0 taken from
   // http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric0F0/06/01/
   // There are no checks on input range or parameter boundaries.

   typedef typename mpl::front<typename T::unsigned_types>::type ui_type;

   BOOST_ASSERT(&H0F0 != &x);
   long tol = boost::multiprecision::detail::digits2<number<T, et_on> >::value();
   T t;

   T x_pow_n_div_n_fact(x);

   eval_add(H0F0, x_pow_n_div_n_fact, ui_type(1));

   T lim;
   eval_ldexp(lim, H0F0, 1 - tol);
   if(eval_get_sign(lim) < 0)
      lim.negate();

   ui_type n;

   const unsigned series_limit = 
      boost::multiprecision::detail::digits2<number<T, et_on> >::value() < 100
      ? 100 : boost::multiprecision::detail::digits2<number<T, et_on> >::value();
   // Series expansion of hyperg_0f0(; ; x).
   for(n = 2; n < series_limit; ++n)
   {
      eval_multiply(x_pow_n_div_n_fact, x);
      eval_divide(x_pow_n_div_n_fact, n);
      eval_add(H0F0, x_pow_n_div_n_fact);
      bool neg = eval_get_sign(x_pow_n_div_n_fact) < 0;
      if(neg)
         x_pow_n_div_n_fact.negate();
      if(lim.compare(x_pow_n_div_n_fact) > 0)
         break;
      if(neg)
         x_pow_n_div_n_fact.negate();
   }
   if(n >= series_limit)
      BOOST_THROW_EXCEPTION(std::runtime_error("H0F0 failed to converge"));
}

template <class T>
void hyp1F0(T& H1F0, const T& a, const T& x)
{
   // Compute the series representation of Hypergeometric1F0 taken from
   // http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F0/06/01/01/
   // and also see the corresponding section for the power function (i.e. x^a).
   // There are no checks on input range or parameter boundaries.

   typedef typename boost::multiprecision::detail::canonical<int, T>::type si_type;

   BOOST_ASSERT(&H1F0 != &x);
   BOOST_ASSERT(&H1F0 != &a);

   T x_pow_n_div_n_fact(x);
   T pochham_a         (a);
   T ap                (a);

   eval_multiply(H1F0, pochham_a, x_pow_n_div_n_fact);
   eval_add(H1F0, si_type(1));
   T lim;
   eval_ldexp(lim, H1F0, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());
   if(eval_get_sign(lim) < 0)
      lim.negate();

   si_type n;
   T term, part;

   const si_type series_limit =
      boost::multiprecision::detail::digits2<number<T, et_on> >::value() < 100
      ? 100 : boost::multiprecision::detail::digits2<number<T, et_on> >::value();
   // Series expansion of hyperg_1f0(a; ; x).
   for(n = 2; n < series_limit; n++)
   {
      eval_multiply(x_pow_n_div_n_fact, x);
      eval_divide(x_pow_n_div_n_fact, n);
      eval_increment(ap);
      eval_multiply(pochham_a, ap);
      eval_multiply(term, pochham_a, x_pow_n_div_n_fact);
      eval_add(H1F0, term);
      if(eval_get_sign(term) < 0)
         term.negate();
      if(lim.compare(term) >= 0)
         break;
   }
   if(n >= series_limit)
      BOOST_THROW_EXCEPTION(std::runtime_error("H1F0 failed to converge"));
}

template <class T>
void eval_exp(T& result, const T& x)
{
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The exp function is only valid for floating point types.");
   if(&x == &result)
   {
      T temp;
      eval_exp(temp, x);
      result = temp;
      return;
   }
   typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
   typedef typename boost::multiprecision::detail::canonical<int, T>::type si_type;
   typedef typename T::exponent_type exp_type;
   typedef typename boost::multiprecision::detail::canonical<exp_type, T>::type canonical_exp_type;

   // Handle special arguments.
   int type = eval_fpclassify(x);
   bool isneg = eval_get_sign(x) < 0;
   if(type == (int)FP_NAN)
   {
      result = x;
      return;
   }
   else if(type == (int)FP_INFINITE)
   {
      result = x;
      if(isneg)
         result = ui_type(0u);
      else 
         result = x;
      return;
   }
   else if(type == (int)FP_ZERO)
   {
      result = ui_type(1);
      return;
   }

   // Get local copy of argument and force it to be positive.
   T xx = x;
   T exp_series;
   if(isneg)
      xx.negate();

   // Check the range of the argument.
   if(xx.compare(si_type(1)) <= 0)
   {
      //
      // Use series for exp(x) - 1:
      //
      T lim;
      if(std::numeric_limits<number<T, et_on> >::is_specialized)
         lim = std::numeric_limits<number<T, et_on> >::epsilon().backend();
      else
      {
         result = ui_type(1);
         eval_ldexp(lim, result, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());
      }
      unsigned k = 2;
      exp_series = xx;
      result = si_type(1);
      if(isneg)
         eval_subtract(result, exp_series);
      else
         eval_add(result, exp_series);
      eval_multiply(exp_series, xx);
      eval_divide(exp_series, ui_type(k));
      eval_add(result, exp_series);
      while(exp_series.compare(lim) > 0)
      {
         ++k;
         eval_multiply(exp_series, xx);
         eval_divide(exp_series, ui_type(k));
         if(isneg && (k&1))
            eval_subtract(result, exp_series);
         else
            eval_add(result, exp_series);
      }
      return;
   }

   // Check for pure-integer arguments which can be either signed or unsigned.
   typename boost::multiprecision::detail::canonical<boost::intmax_t, T>::type ll;
   eval_trunc(exp_series, x);
   eval_convert_to(&ll, exp_series);
   if(x.compare(ll) == 0)
   {
      detail::pow_imp(result, get_constant_e<T>(), ll, mpl::true_());
      return;
   }

   // The algorithm for exp has been taken from MPFUN.
   // exp(t) = [ (1 + r + r^2/2! + r^3/3! + r^4/4! ...)^p2 ] * 2^n
   // where p2 is a power of 2 such as 2048, r = t_prime / p2, and
   // t_prime = t - n*ln2, with n chosen to minimize the absolute
   // value of t_prime. In the resulting Taylor series, which is
   // implemented as a hypergeometric function, |r| is bounded by
   // ln2 / p2. For small arguments, no scaling is done.

   // Compute the exponential series of the (possibly) scaled argument.

   eval_divide(result, xx, get_constant_ln2<T>());
   exp_type n;
   eval_convert_to(&n, result);

   // The scaling is 2^11 = 2048.
   const si_type p2 = static_cast<si_type>(si_type(1) << 11);

   eval_multiply(exp_series, get_constant_ln2<T>(), static_cast<canonical_exp_type>(n));
   eval_subtract(exp_series, xx);
   eval_divide(exp_series, p2);
   exp_series.negate();
   hyp0F0(result, exp_series);

   detail::pow_imp(exp_series, result, p2, mpl::true_());
   result = ui_type(1);
   eval_ldexp(result, result, n);
   eval_multiply(exp_series, result);

   if(isneg)
      eval_divide(result, ui_type(1), exp_series);
   else
      result = exp_series;
}

template <class T>
void eval_log(T& result, const T& arg)
{
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The log function is only valid for floating point types.");
   //
   // We use a variation of http://dlmf.nist.gov/4.45#i
   // using frexp to reduce the argument to x * 2^n,
   // then let y = x - 1 and compute:
   // log(x) = log(2) * n + log1p(1 + y)
   //
   typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
   typedef typename T::exponent_type exp_type;
   typedef typename boost::multiprecision::detail::canonical<exp_type, T>::type canonical_exp_type;
   typedef typename mpl::front<typename T::float_types>::type fp_type;

   exp_type e;
   T t;
   eval_frexp(t, arg, &e);
   bool alternate = false;

   if(t.compare(fp_type(2) / fp_type(3)) <= 0)
   {
      alternate = true;
      eval_ldexp(t, t, 1);
      --e;
   }
   
   eval_multiply(result, get_constant_ln2<T>(), canonical_exp_type(e));
   INSTRUMENT_BACKEND(result);
   eval_subtract(t, ui_type(1)); /* -0.3 <= t <= 0.3 */
   if(!alternate)
      t.negate(); /* 0 <= t <= 0.33333 */
   T pow = t;
   T lim;
   T t2;

   if(alternate)
      eval_add(result, t);
   else
      eval_subtract(result, t);

   if(std::numeric_limits<number<T, et_on> >::is_specialized)
      eval_multiply(lim, result, std::numeric_limits<number<T, et_on> >::epsilon().backend());
   else
      eval_ldexp(lim, result, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());
   if(eval_get_sign(lim) < 0)
      lim.negate();
   INSTRUMENT_BACKEND(lim);

   ui_type k = 1;
   do
   {
      ++k;
      eval_multiply(pow, t);
      eval_divide(t2, pow, k);
      INSTRUMENT_BACKEND(t2);
      if(alternate && ((k & 1) != 0))
         eval_add(result, t2);
      else
         eval_subtract(result, t2);
      INSTRUMENT_BACKEND(result);
   }while(lim.compare(t2) < 0);
}

template <class T>
const T& get_constant_log10()
{
   static BOOST_MP_THREAD_LOCAL T result;
   static BOOST_MP_THREAD_LOCAL bool b = false;
   static BOOST_MP_THREAD_LOCAL long digits = boost::multiprecision::detail::digits2<number<T> >::value();
   if(!b || (digits != boost::multiprecision::detail::digits2<number<T> >::value()))
   {
      typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
      T ten;
      ten = ui_type(10u);
      eval_log(result, ten);
      b = true;
      digits = boost::multiprecision::detail::digits2<number<T> >::value();
   }

   constant_initializer<T, &get_constant_log10<T> >::do_nothing();

   return result;
}

template <class T>
void eval_log10(T& result, const T& arg)
{
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The log10 function is only valid for floating point types.");
   eval_log(result, arg);
   eval_divide(result, get_constant_log10<T>());
}

template <class R, class T>
inline void eval_log2(R& result, const T& a)
{
   eval_log(result, a);
   eval_divide(result, get_constant_ln2<R>());
}

template<typename T> 
inline void eval_pow(T& result, const T& x, const T& a)
{
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The pow function is only valid for floating point types.");
   typedef typename boost::multiprecision::detail::canonical<int, T>::type si_type;
   typedef typename mpl::front<typename T::float_types>::type fp_type;

   if((&result == &x) || (&result == &a))
   {
      T t;
      eval_pow(t, x, a);
      result = t;
      return;
   }

   if(a.compare(si_type(1)) == 0)
   {
      result = x;
      return;
   }

   int type = eval_fpclassify(x);

   switch(type)
   {
   case FP_INFINITE:
      result = x;
      return;
   case FP_ZERO:
      switch(eval_fpclassify(a))
      {
      case FP_ZERO:
         result = si_type(1);
         break;
      case FP_NAN:
         result = a;
         break;
      default:
         result = x;
         break;
      }
      return;
   case FP_NAN:
      result = x;
      return;
   default: ;
   }

   int s = eval_get_sign(a);
   if(s == 0)
   {
      result = si_type(1);
      return;
   }

   if(s < 0)
   {
      T t, da;
      t = a;
      t.negate();
      eval_pow(da, x, t);
      eval_divide(result, si_type(1), da);
      return;
   }
   
   typename boost::multiprecision::detail::canonical<boost::intmax_t, T>::type an;
   T fa;
#ifndef BOOST_NO_EXCEPTIONS
   try
   {
#endif
      eval_convert_to(&an, a);
      if(a.compare(an) == 0)
      {
         detail::pow_imp(result, x, an, mpl::true_());
         return;
      }
#ifndef BOOST_NO_EXCEPTIONS
   }
   catch(const std::exception&)
   {
      // conversion failed, just fall through, value is not an integer.
      an = (std::numeric_limits<boost::intmax_t>::max)();
   }
#endif
   if((eval_get_sign(x) < 0))
   {
      typename boost::multiprecision::detail::canonical<boost::uintmax_t, T>::type aun;
#ifndef BOOST_NO_EXCEPTIONS
      try
      {
#endif
         eval_convert_to(&aun, a);
         if(a.compare(aun) == 0)
         {
            fa = x;
            fa.negate();
            eval_pow(result, fa, a);
            if(aun & 1u)
               result.negate();
            return;
         }
#ifndef BOOST_NO_EXCEPTIONS
      }
      catch(const std::exception&)
      {
         // conversion failed, just fall through, value is not an integer.
      }
#endif
      if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
         result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
      else
      {
         BOOST_THROW_EXCEPTION(std::domain_error("Result of pow is undefined or non-real and there is no NaN for this number type."));
      }
      return;
   }

   T t, da;

   eval_subtract(da, a, an);

   if((x.compare(fp_type(0.5)) >= 0) && (x.compare(fp_type(0.9)) < 0))
   {
      if(a.compare(fp_type(1e-5f)) <= 0)
      {
         // Series expansion for small a.
         eval_log(t, x);
         eval_multiply(t, a);
         hyp0F0(result, t);
         return;
      }
      else
      {
         // Series expansion for moderately sized x. Note that for large power of a,
         // the power of the integer part of a is calculated using the pown function.
         if(an)
         {
            da.negate();
            t = si_type(1);
            eval_subtract(t, x);
            hyp1F0(result, da, t);
            detail::pow_imp(t, x, an, mpl::true_());
            eval_multiply(result, t);
         }
         else
         {
            da = a;
            da.negate();
            t = si_type(1);
            eval_subtract(t, x);
            hyp1F0(result, da, t);
         }
      }
   }
   else
   {
      // Series expansion for pow(x, a). Note that for large power of a, the power
      // of the integer part of a is calculated using the pown function.
      if(an)
      {
         eval_log(t, x);
         eval_multiply(t, da);
         eval_exp(result, t);
         detail::pow_imp(t, x, an, mpl::true_());
         eval_multiply(result, t);
      }
      else
      {
         eval_log(t, x);
         eval_multiply(t, a);
         eval_exp(result, t);
      }
   }
}

template<class T, class A> 
inline typename enable_if<is_floating_point<A>, void>::type eval_pow(T& result, const T& x, const A& a)
{
   // Note this one is restricted to float arguments since pow.hpp already has a version for
   // integer powers....
   typedef typename boost::multiprecision::detail::canonical<A, T>::type canonical_type;
   typedef typename mpl::if_<is_same<A, canonical_type>, T, canonical_type>::type cast_type;
   cast_type c;
   c = a;
   eval_pow(result, x, c);
}

template<class T, class A> 
inline typename enable_if<is_arithmetic<A>, void>::type eval_pow(T& result, const A& x, const T& a)
{
   typedef typename boost::multiprecision::detail::canonical<A, T>::type canonical_type;
   typedef typename mpl::if_<is_same<A, canonical_type>, T, canonical_type>::type cast_type;
   cast_type c;
   c = x;
   eval_pow(result, c, a);
}

template <class T>
void eval_exp2(T& result, const T& arg)
{
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The log function is only valid for floating point types.");

   // Check for pure-integer arguments which can be either signed or unsigned.
   typename boost::multiprecision::detail::canonical<typename T::exponent_type, T>::type i;
   T temp;
   eval_trunc(temp, arg);
   eval_convert_to(&i, temp);
   if(arg.compare(i) == 0)
   {
      temp = static_cast<typename mpl::front<typename T::unsigned_types>::type>(1u);
      eval_ldexp(result, temp, i);
      return;
   }

   temp = static_cast<typename mpl::front<typename T::unsigned_types>::type>(2u);
   eval_pow(result, temp, arg);
}

namespace detail{

   template <class T>
   void small_sinh_series(T x, T& result)
   {
      typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
      bool neg = eval_get_sign(x) < 0;
      if(neg)
         x.negate();
      T p(x);
      T mult(x);
      eval_multiply(mult, x);
      result = x;
      ui_type k = 1;

      T lim(x);
      eval_ldexp(lim, lim, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());

      do
      {
         eval_multiply(p, mult);
         eval_divide(p, ++k);
         eval_divide(p, ++k);
         eval_add(result, p);
      }while(p.compare(lim) >= 0);
      if(neg)
         result.negate();
   }

   template <class T>
   void sinhcosh(const T& x, T* p_sinh, T* p_cosh)
   {
      typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
      typedef typename mpl::front<typename T::float_types>::type fp_type;

      switch(eval_fpclassify(x))
      {
      case FP_NAN:
      case FP_INFINITE:
         if(p_sinh)
            *p_sinh = x;
         if(p_cosh)
         {
            *p_cosh = x;
            if(eval_get_sign(x) < 0)
               p_cosh->negate();
         }
         return;
      case FP_ZERO:
         if(p_sinh)
            *p_sinh = x;
         if(p_cosh)
            *p_cosh = ui_type(1);
         return;
      default: ;
      }

      bool small_sinh = eval_get_sign(x) < 0 ? x.compare(fp_type(-0.5)) > 0 : x.compare(fp_type(0.5)) < 0;

      if(p_cosh || !small_sinh)
      {
         T e_px, e_mx;
         eval_exp(e_px, x);
         eval_divide(e_mx, ui_type(1), e_px);

         if(p_sinh) 
         { 
            if(small_sinh)
            {
               small_sinh_series(x, *p_sinh);
            }
            else
            {
               eval_subtract(*p_sinh, e_px, e_mx);
               eval_ldexp(*p_sinh, *p_sinh, -1);
            }
         }
         if(p_cosh) 
         { 
            eval_add(*p_cosh, e_px, e_mx);
            eval_ldexp(*p_cosh, *p_cosh, -1); 
         }
      }
      else
      {
         small_sinh_series(x, *p_sinh);
      }
   }

} // namespace detail

template <class T>
inline void eval_sinh(T& result, const T& x)
{
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The sinh function is only valid for floating point types.");
   detail::sinhcosh(x, &result, static_cast<T*>(0));
}

template <class T>
inline void eval_cosh(T& result, const T& x)
{
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The cosh function is only valid for floating point types.");
   detail::sinhcosh(x, static_cast<T*>(0), &result);
}

template <class T>
inline void eval_tanh(T& result, const T& x)
{
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The tanh function is only valid for floating point types.");
  T c;
  detail::sinhcosh(x, &result, &c);
  eval_divide(result, c);
}

#ifdef BOOST_MSVC
#pragma warning(pop)
#endif