summaryrefslogtreecommitdiff
path: root/boost/math/special_functions/ellint_rj.hpp
blob: 1ecca753a407b072fe9cc377ce763107db4c0cca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
//  Copyright (c) 2006 Xiaogang Zhang
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
//  History:
//  XZ wrote the original of this file as part of the Google
//  Summer of Code 2006.  JM modified it to fit into the
//  Boost.Math conceptual framework better, and to correctly
//  handle the p < 0 case.
//

#ifndef BOOST_MATH_ELLINT_RJ_HPP
#define BOOST_MATH_ELLINT_RJ_HPP

#ifdef _MSC_VER
#pragma once
#endif

#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/tools/config.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/special_functions/ellint_rc.hpp>
#include <boost/math/special_functions/ellint_rf.hpp>

// Carlson's elliptic integral of the third kind
// R_J(x, y, z, p) = 1.5 * \int_{0}^{\infty} (t+p)^{-1} [(t+x)(t+y)(t+z)]^{-1/2} dt
// Carlson, Numerische Mathematik, vol 33, 1 (1979)

namespace boost { namespace math { namespace detail{

template <typename T, typename Policy>
T ellint_rj_imp(T x, T y, T z, T p, const Policy& pol)
{
    T value, u, lambda, alpha, beta, sigma, factor, tolerance;
    T X, Y, Z, P, EA, EB, EC, E2, E3, S1, S2, S3;
    unsigned long k;

    BOOST_MATH_STD_USING
    using namespace boost::math::tools;

    static const char* function = "boost::math::ellint_rj<%1%>(%1%,%1%,%1%)";

    if (x < 0)
    {
       return policies::raise_domain_error<T>(function,
            "Argument x must be non-negative, but got x = %1%", x, pol);
    }
    if(y < 0)
    {
       return policies::raise_domain_error<T>(function,
            "Argument y must be non-negative, but got y = %1%", y, pol);
    }
    if(z < 0)
    {
       return policies::raise_domain_error<T>(function,
            "Argument z must be non-negative, but got z = %1%", z, pol);
    }
    if(p == 0)
    {
       return policies::raise_domain_error<T>(function,
            "Argument p must not be zero, but got p = %1%", p, pol);
    }
    if (x + y == 0 || y + z == 0 || z + x == 0)
    {
       return policies::raise_domain_error<T>(function,
            "At most one argument can be zero, "
            "only possible result is %1%.", std::numeric_limits<T>::quiet_NaN(), pol);
    }

    // error scales as the 6th power of tolerance
    tolerance = pow(T(1) * tools::epsilon<T>() / 3, T(1) / 6);

    // for p < 0, the integral is singular, return Cauchy principal value
    if (p < 0)
    {
       //
       // We must ensure that (z - y) * (y - x) is positive.
       // Since the integral is symmetrical in x, y and z
       // we can just permute the values:
       //
       if(x > y)
          std::swap(x, y);
       if(y > z)
          std::swap(y, z);
       if(x > y)
          std::swap(x, y);

       T q = -p;
       T pmy = (z - y) * (y - x) / (y + q);  // p - y

       BOOST_ASSERT(pmy >= 0);

       T p = pmy + y;
       value = boost::math::ellint_rj(x, y, z, p, pol);
       value *= pmy;
       value -= 3 * boost::math::ellint_rf(x, y, z, pol);
       value += 3 * sqrt((x * y * z) / (x * z + p * q)) * boost::math::ellint_rc(x * z + p * q, p * q, pol);
       value /= (y + q);
       return value;
    }

    // duplication
    sigma = 0;
    factor = 1;
    k = 1;
    do
    {
        u = (x + y + z + p + p) / 5;
        X = (u - x) / u;
        Y = (u - y) / u;
        Z = (u - z) / u;
        P = (u - p) / u;
        
        if ((tools::max)(abs(X), abs(Y), abs(Z), abs(P)) < tolerance) 
           break;

        T sx = sqrt(x);
        T sy = sqrt(y);
        T sz = sqrt(z);
        
        lambda = sy * (sx + sz) + sz * sx;
        alpha = p * (sx + sy + sz) + sx * sy * sz;
        alpha *= alpha;
        beta = p * (p + lambda) * (p + lambda);
        sigma += factor * boost::math::ellint_rc(alpha, beta, pol);
        factor /= 4;
        x = (x + lambda) / 4;
        y = (y + lambda) / 4;
        z = (z + lambda) / 4;
        p = (p + lambda) / 4;
        ++k;
    }
    while(k < policies::get_max_series_iterations<Policy>());

    // Check to see if we gave up too soon:
    policies::check_series_iterations<T>(function, k, pol);

    // Taylor series expansion to the 5th order
    EA = X * Y + Y * Z + Z * X;
    EB = X * Y * Z;
    EC = P * P;
    E2 = EA - 3 * EC;
    E3 = EB + 2 * P * (EA - EC);
    S1 = 1 + E2 * (E2 * T(9) / 88 - E3 * T(9) / 52 - T(3) / 14);
    S2 = EB * (T(1) / 6 + P * (T(-6) / 22 + P * T(3) / 26));
    S3 = P * ((EA - EC) / 3 - P * EA * T(3) / 22);
    value = 3 * sigma + factor * (S1 + S2 + S3) / (u * sqrt(u));

    return value;
}

} // namespace detail

template <class T1, class T2, class T3, class T4, class Policy>
inline typename tools::promote_args<T1, T2, T3, T4>::type 
   ellint_rj(T1 x, T2 y, T3 z, T4 p, const Policy& pol)
{
   typedef typename tools::promote_args<T1, T2, T3, T4>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   return policies::checked_narrowing_cast<result_type, Policy>(
      detail::ellint_rj_imp(
         static_cast<value_type>(x),
         static_cast<value_type>(y),
         static_cast<value_type>(z),
         static_cast<value_type>(p),
         pol), "boost::math::ellint_rj<%1%>(%1%,%1%,%1%,%1%)");
}

template <class T1, class T2, class T3, class T4>
inline typename tools::promote_args<T1, T2, T3, T4>::type 
   ellint_rj(T1 x, T2 y, T3 z, T4 p)
{
   return ellint_rj(x, y, z, p, policies::policy<>());
}

}} // namespaces

#endif // BOOST_MATH_ELLINT_RJ_HPP