summaryrefslogtreecommitdiff log msg author committer range
blob: 846c752a1461b666987569fd7ec2dc33e6152ec5 (plain)
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114  // Copyright (c) 2006 Xiaogang Zhang, 2015 John Maddock // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // History: // XZ wrote the original of this file as part of the Google // Summer of Code 2006. JM modified it to fit into the // Boost.Math conceptual framework better, and to correctly // handle the y < 0 case. // Updated 2015 to use Carlson's latest methods. // #ifndef BOOST_MATH_ELLINT_RC_HPP #define BOOST_MATH_ELLINT_RC_HPP #ifdef _MSC_VER #pragma once #endif #include #include #include #include #include #include // Carlson's degenerate elliptic integral // R_C(x, y) = R_F(x, y, y) = 0.5 * \int_{0}^{\infty} (t+x)^{-1/2} (t+y)^{-1} dt // Carlson, Numerische Mathematik, vol 33, 1 (1979) namespace boost { namespace math { namespace detail{ template T ellint_rc_imp(T x, T y, const Policy& pol) { BOOST_MATH_STD_USING static const char* function = "boost::math::ellint_rc<%1%>(%1%,%1%)"; if(x < 0) { return policies::raise_domain_error(function, "Argument x must be non-negative but got %1%", x, pol); } if(y == 0) { return policies::raise_domain_error(function, "Argument y must not be zero but got %1%", y, pol); } // for y < 0, the integral is singular, return Cauchy principal value T prefix, result; if(y < 0) { prefix = sqrt(x / (x - y)); x = x - y; y = -y; } else prefix = 1; if(x == 0) { result = constants::half_pi() / sqrt(y); } else if(x == y) { result = 1 / sqrt(x); } else if(y > x) { result = atan(sqrt((y - x) / x)) / sqrt(y - x); } else { if(y / x > 0.5) { T arg = sqrt((x - y) / x); result = (boost::math::log1p(arg) - boost::math::log1p(-arg)) / (2 * sqrt(x - y)); } else { result = log((sqrt(x) + sqrt(x - y)) / sqrt(y)) / sqrt(x - y); } } return prefix * result; } } // namespace detail template inline typename tools::promote_args::type ellint_rc(T1 x, T2 y, const Policy& pol) { typedef typename tools::promote_args::type result_type; typedef typename policies::evaluation::type value_type; return policies::checked_narrowing_cast( detail::ellint_rc_imp( static_cast(x), static_cast(y), pol), "boost::math::ellint_rc<%1%>(%1%,%1%)"); } template inline typename tools::promote_args::type ellint_rc(T1 x, T2 y) { return ellint_rc(x, y, policies::policy<>()); } }} // namespaces #endif // BOOST_MATH_ELLINT_RC_HPP