summaryrefslogtreecommitdiff
path: root/boost/graph/ssca_graph_generator.hpp
blob: 18d4a23f1089f2e4756a3ba84062ffc3e144aeba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// Copyright 2004, 2005 The Trustees of Indiana University.

// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

//  Authors: Nick Edmonds
//           Andrew Lumsdaine
#ifndef BOOST_GRAPH_SSCA_GENERATOR_HPP
#define BOOST_GRAPH_SSCA_GENERATOR_HPP

#include <iterator>
#include <utility>
#include <vector>
#include <queue>
#include <boost/config.hpp>
#include <boost/random/uniform_int.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/type_traits/is_base_and_derived.hpp>
#include <boost/type_traits/is_same.hpp>

enum Direction {FORWARD = 1, BACKWARD = 2, BOTH = FORWARD | BACKWARD};

namespace boost {

  // This generator generates graphs according to the method specified
  // in SSCA 1.1.  Current versions of SSCA use R-MAT graphs

  template<typename RandomGenerator, typename Graph>
  class ssca_iterator
  {
    typedef typename graph_traits<Graph>::directed_category directed_category;
    typedef typename graph_traits<Graph>::vertices_size_type 
      vertices_size_type;

  public:
    typedef std::input_iterator_tag iterator_category;
    typedef std::pair<vertices_size_type, vertices_size_type> value_type;
    typedef const value_type& reference;
    typedef const value_type* pointer;
    typedef void difference_type;

    // No argument constructor, set to terminating condition
    ssca_iterator()
      : gen(), verticesRemaining(0) { }

    // Initialize for edge generation
    ssca_iterator(RandomGenerator& gen, vertices_size_type totVertices, 
                  vertices_size_type maxCliqueSize, double probUnidirectional, 
                  int maxParallelEdges, double probIntercliqueEdges) 
      : gen(&gen), totVertices(totVertices), maxCliqueSize(maxCliqueSize), 
        probUnidirectional(probUnidirectional), maxParallelEdges(maxParallelEdges),
        probIntercliqueEdges(probIntercliqueEdges), currentClique(0), 
        verticesRemaining(totVertices)
    { 
      cliqueNum = std::vector<int>(totVertices, -1);
      current = std::make_pair(0,0);
    }

    reference operator*() const { return current; }
    pointer operator->() const { return &current; }
    
    ssca_iterator& operator++()
    {
      BOOST_USING_STD_MIN();
      while (values.empty() && verticesRemaining > 0) { // If there are no values left, generate a new clique
        uniform_int<vertices_size_type> clique_size(1, maxCliqueSize);
        uniform_int<vertices_size_type> rand_vertex(0, totVertices-1);
        uniform_int<int> num_parallel_edges(1, maxParallelEdges);
        uniform_int<short> direction(0,1);
        uniform_01<RandomGenerator> prob(*gen);
        std::vector<vertices_size_type> cliqueVertices;

        cliqueVertices.clear();
        vertices_size_type size = min BOOST_PREVENT_MACRO_SUBSTITUTION (clique_size(*gen), verticesRemaining);
        while (cliqueVertices.size() < size) {
          vertices_size_type v = rand_vertex(*gen);
          if (cliqueNum[v] == -1) {
            cliqueNum[v] = currentClique;
            cliqueVertices.push_back(v);
            verticesRemaining--;
          }
        }  // Nick: This is inefficient when only a few vertices remain...
           //       I should probably just select the remaining vertices 
           //       in order when only a certain fraction remain.

        typename std::vector<vertices_size_type>::iterator first, second;
        for (first = cliqueVertices.begin(); first != cliqueVertices.end(); ++first)
          for (second = first+1; second != cliqueVertices.end(); ++second) {
            Direction d;
            int edges;

            d = prob() < probUnidirectional ? (direction(*gen) == 0 ? FORWARD : BACKWARD) : BOTH;

            if (d & FORWARD) {
              edges = num_parallel_edges(*gen);
              for (int i = 0; i < edges; ++i)
                values.push(std::make_pair(*first, *second));
            }
              
            if (d & BACKWARD) {
              edges = num_parallel_edges(*gen);
              for (int i = 0; i < edges; ++i)
                values.push(std::make_pair(*second, *first));
            }
          }

        if (verticesRemaining == 0) {
          // Generate interclique edges
          for (vertices_size_type i = 0; i < totVertices; ++i) {
            double p = probIntercliqueEdges;
            for (vertices_size_type d = 2; d < totVertices/2; d *= 2, p/= 2) {
              vertices_size_type j = (i+d) % totVertices;
              if (cliqueNum[j] != cliqueNum[i] && prob() < p) {
                int edges = num_parallel_edges(*gen);
                for (int i = 0; i < edges; ++i)
                  values.push(std::make_pair(i, j));
              }
            }
          }
        }

        currentClique++;
      } 

      if (!values.empty()) { // If we're not done return a value
        current = values.front();
        values.pop();
      }

      return *this;
    }

    ssca_iterator operator++(int)
    {
      ssca_iterator temp(*this);
      ++(*this);
      return temp;
    }

    bool operator==(const ssca_iterator& other) const
    {
      return verticesRemaining == other.verticesRemaining && values.empty() && other.values.empty();
    }

    bool operator!=(const ssca_iterator& other) const
    { return !(*this == other); }

  private:

    // Parameters
    RandomGenerator* gen;
    vertices_size_type totVertices;
    vertices_size_type maxCliqueSize;
    double probUnidirectional;
    int maxParallelEdges;
    double probIntercliqueEdges;

    // Internal data structures
    std::vector<int> cliqueNum;
    std::queue<value_type> values;
    int currentClique;
    vertices_size_type verticesRemaining;
    value_type current;
  };

} // end namespace boost

#endif // BOOST_GRAPH_SSCA_GENERATOR_HPP