summaryrefslogtreecommitdiff
path: root/boost/graph/planar_detail/boyer_myrvold_impl.hpp
blob: 71607fcbc2c8c1c0f109adb47bf58a3a1f0a16cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
//=======================================================================
// Copyright (c) Aaron Windsor 2007
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef __BOYER_MYRVOLD_IMPL_HPP__
#define __BOYER_MYRVOLD_IMPL_HPP__

#include <vector>
#include <list>
#include <boost/utility.hpp>   //for boost::next
#include <boost/config.hpp>    //for std::min macros
#include <boost/shared_ptr.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/graph/planar_detail/face_handles.hpp>
#include <boost/graph/planar_detail/face_iterators.hpp>
#include <boost/graph/planar_detail/bucket_sort.hpp>



namespace boost
{
  namespace detail {
    enum bm_case_t{BM_NO_CASE_CHOSEN, BM_CASE_A, BM_CASE_B, BM_CASE_C, BM_CASE_D, BM_CASE_E};
  }

  template<typename LowPointMap, typename DFSParentMap,
           typename DFSNumberMap, typename LeastAncestorMap,
           typename DFSParentEdgeMap, typename SizeType>
  struct planar_dfs_visitor : public dfs_visitor<>
  {
    planar_dfs_visitor(LowPointMap lpm, DFSParentMap dfs_p, 
                       DFSNumberMap dfs_n, LeastAncestorMap lam,
                       DFSParentEdgeMap dfs_edge) 
      : low(lpm),
        parent(dfs_p),
        df_number(dfs_n),
        least_ancestor(lam),
        df_edge(dfs_edge),
        count(0) 
    {}
    
    
    template <typename Vertex, typename Graph>
    void start_vertex(const Vertex& u, Graph&)
    {
      put(parent, u, u);
      put(least_ancestor, u, count);
    }
    
    
    template <typename Vertex, typename Graph>
    void discover_vertex(const Vertex& u, Graph&)
    {
      put(low, u, count);
      put(df_number, u, count);
      ++count;
    }
    
    template <typename Edge, typename Graph>
    void tree_edge(const Edge& e, Graph& g)
    {
      typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
      vertex_t s(source(e,g));
      vertex_t t(target(e,g));

      put(parent, t, s);
      put(df_edge, t, e);
      put(least_ancestor, t, get(df_number, s));
    }
    
    template <typename Edge, typename Graph>
    void back_edge(const Edge& e, Graph& g)
    {
      typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
      typedef typename graph_traits<Graph>::vertices_size_type v_size_t;
      
      vertex_t s(source(e,g));
      vertex_t t(target(e,g));
      BOOST_USING_STD_MIN();

      if ( t != get(parent, s) ) {
        v_size_t s_low_df_number = get(low, s);
        v_size_t t_df_number = get(df_number, t);
        v_size_t s_least_ancestor_df_number = get(least_ancestor, s);

        put(low, s, 
            min BOOST_PREVENT_MACRO_SUBSTITUTION(s_low_df_number,
                                                 t_df_number)
            );
        
        put(least_ancestor, s, 
            min BOOST_PREVENT_MACRO_SUBSTITUTION(s_least_ancestor_df_number, 
                                                 t_df_number
                                                 )
            );

      }
    }
    
    template <typename Vertex, typename Graph>
    void finish_vertex(const Vertex& u, Graph&)
    {
      typedef typename graph_traits<Graph>::vertices_size_type v_size_t;

      Vertex u_parent = get(parent, u);
      v_size_t u_parent_lowpoint = get(low, u_parent);
      v_size_t u_lowpoint = get(low, u);
      BOOST_USING_STD_MIN();

      if (u_parent != u)
        {
          put(low, u_parent, 
              min BOOST_PREVENT_MACRO_SUBSTITUTION(u_lowpoint, 
                                                   u_parent_lowpoint
                                                   )
              );
        }
    }
    
    LowPointMap low;
    DFSParentMap parent;
    DFSNumberMap df_number;
    LeastAncestorMap least_ancestor;
    DFSParentEdgeMap df_edge;
    SizeType count;
    
  };






  template <typename Graph,
            typename VertexIndexMap,
            typename StoreOldHandlesPolicy = graph::detail::store_old_handles,
            typename StoreEmbeddingPolicy = graph::detail::recursive_lazy_list
            >
  class boyer_myrvold_impl
  {

    typedef typename graph_traits<Graph>::vertices_size_type v_size_t;
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
    typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t;
    typedef typename graph_traits<Graph>::edge_iterator edge_iterator_t;
    typedef typename graph_traits<Graph>::out_edge_iterator 
        out_edge_iterator_t;
    typedef graph::detail::face_handle
        <Graph, StoreOldHandlesPolicy, StoreEmbeddingPolicy> face_handle_t;
    typedef std::vector<vertex_t> vertex_vector_t;
    typedef std::vector<edge_t> edge_vector_t;
    typedef std::list<vertex_t> vertex_list_t;
    typedef std::list< face_handle_t > face_handle_list_t;
    typedef boost::shared_ptr< face_handle_list_t > face_handle_list_ptr_t;
    typedef boost::shared_ptr< vertex_list_t > vertex_list_ptr_t;
    typedef boost::tuple<vertex_t, bool, bool> merge_stack_frame_t;
    typedef std::vector<merge_stack_frame_t> merge_stack_t;

    template <typename T>
    struct map_vertex_to_
    {
      typedef iterator_property_map
          <typename std::vector<T>::iterator, VertexIndexMap> type;
    };

    typedef typename map_vertex_to_<v_size_t>::type vertex_to_v_size_map_t;
    typedef typename map_vertex_to_<vertex_t>::type vertex_to_vertex_map_t;
    typedef typename map_vertex_to_<edge_t>::type vertex_to_edge_map_t;
    typedef typename map_vertex_to_<vertex_list_ptr_t>::type 
        vertex_to_vertex_list_ptr_map_t;
    typedef typename map_vertex_to_< edge_vector_t >::type 
        vertex_to_edge_vector_map_t;
    typedef typename map_vertex_to_<bool>::type vertex_to_bool_map_t;
    typedef typename map_vertex_to_<face_handle_t>::type 
        vertex_to_face_handle_map_t;
    typedef typename map_vertex_to_<face_handle_list_ptr_t>::type 
        vertex_to_face_handle_list_ptr_map_t;
    typedef typename map_vertex_to_<typename vertex_list_t::iterator>::type 
        vertex_to_separated_node_map_t;

    template <typename BicompSideToTraverse = single_side,
              typename VisitorType = lead_visitor,
              typename Time = current_iteration>
    struct face_vertex_iterator
    {
      typedef face_iterator<Graph, 
                            vertex_to_face_handle_map_t, 
                            vertex_t, 
                            BicompSideToTraverse, 
                            VisitorType,
                            Time>
      type;
    };

    template <typename BicompSideToTraverse = single_side,
              typename Time = current_iteration>
    struct face_edge_iterator
    {
      typedef face_iterator<Graph,
                            vertex_to_face_handle_map_t,
                            edge_t,
                            BicompSideToTraverse,
                            lead_visitor,
                            Time>
      type;
    };



  public:

 

    boyer_myrvold_impl(const Graph& arg_g, VertexIndexMap arg_vm):
      g(arg_g),
      vm(arg_vm),

      low_point_vector(num_vertices(g)),
      dfs_parent_vector(num_vertices(g)),
      dfs_number_vector(num_vertices(g)),
      least_ancestor_vector(num_vertices(g)),
      pertinent_roots_vector(num_vertices(g)),
      backedge_flag_vector(num_vertices(g), num_vertices(g) + 1),
      visited_vector(num_vertices(g), num_vertices(g) + 1),
      face_handles_vector(num_vertices(g)),
      dfs_child_handles_vector(num_vertices(g)),
      separated_dfs_child_list_vector(num_vertices(g)),
      separated_node_in_parent_list_vector(num_vertices(g)),
      canonical_dfs_child_vector(num_vertices(g)),
      flipped_vector(num_vertices(g), false),
      backedges_vector(num_vertices(g)),
      dfs_parent_edge_vector(num_vertices(g)),
                        
      vertices_by_dfs_num(num_vertices(g)),

      low_point(low_point_vector.begin(), vm),
      dfs_parent(dfs_parent_vector.begin(), vm),
      dfs_number(dfs_number_vector.begin(), vm),
      least_ancestor(least_ancestor_vector.begin(), vm),
      pertinent_roots(pertinent_roots_vector.begin(), vm),
      backedge_flag(backedge_flag_vector.begin(), vm),
      visited(visited_vector.begin(), vm),
      face_handles(face_handles_vector.begin(), vm),
      dfs_child_handles(dfs_child_handles_vector.begin(), vm),
      separated_dfs_child_list(separated_dfs_child_list_vector.begin(), vm),
      separated_node_in_parent_list
          (separated_node_in_parent_list_vector.begin(), vm),
      canonical_dfs_child(canonical_dfs_child_vector.begin(), vm),
      flipped(flipped_vector.begin(), vm),
      backedges(backedges_vector.begin(), vm),
      dfs_parent_edge(dfs_parent_edge_vector.begin(), vm)

    {

      planar_dfs_visitor
        <vertex_to_v_size_map_t, vertex_to_vertex_map_t,
        vertex_to_v_size_map_t, vertex_to_v_size_map_t,
        vertex_to_edge_map_t, v_size_t> vis
        (low_point, dfs_parent, dfs_number, least_ancestor, dfs_parent_edge);

      // Perform a depth-first search to find each vertex's low point, least
      // ancestor, and dfs tree information
      depth_first_search(g, visitor(vis).vertex_index_map(vm));

      // Sort vertices by their lowpoint - need this later in the constructor
      vertex_vector_t vertices_by_lowpoint(num_vertices(g));
      std::copy( vertices(g).first, vertices(g).second, 
                 vertices_by_lowpoint.begin()
                 );
      bucket_sort(vertices_by_lowpoint.begin(), 
                  vertices_by_lowpoint.end(), 
                  low_point,
                  num_vertices(g)
                  );

      // Sort vertices by their dfs number - need this to iterate by reverse 
      // DFS number in the main loop.
      std::copy( vertices(g).first, vertices(g).second, 
                 vertices_by_dfs_num.begin()
                 );
      bucket_sort(vertices_by_dfs_num.begin(), 
                  vertices_by_dfs_num.end(), 
                  dfs_number,
                  num_vertices(g)
                  );

      // Initialize face handles. A face handle is an abstraction that serves 
      // two uses in our implementation - it allows us to efficiently move 
      // along the outer face of embedded bicomps in a partially embedded 
      // graph, and it provides storage for the planar embedding. Face 
      // handles are implemented by a sequence of edges and are associated 
      // with a particular vertex - the sequence of edges represents the 
      // current embedding of edges around that vertex, and the first and 
      // last edges in the sequence represent the pair of edges on the outer 
      // face that are adjacent to the associated vertex. This lets us embed 
      // edges in the graph by just pushing them on the front or back of the 
      // sequence of edges held by the face handles.
      // 
      // Our algorithm starts with a DFS tree of edges (where every vertex is
      // an articulation point and every edge is a singleton bicomp) and 
      // repeatedly merges bicomps by embedding additional edges. Note that 
      // any bicomp at any point in the algorithm can be associated with a 
      // unique edge connecting the vertex of that bicomp with the lowest DFS
      // number (which we refer to as the "root" of the bicomp) with its DFS 
      // child in the bicomp: the existence of two such edges would contradict
      // the properties of a DFS tree. We refer to the DFS child of the root 
      // of a bicomp as the "canonical DFS child" of the bicomp. Note that a 
      // vertex can be the root of more than one bicomp.
      //
      // We move around the external faces of a bicomp using a few property 
      // maps, which we'll initialize presently:
      //
      // - face_handles: maps a vertex to a face handle that can be used to 
      //   move "up" a bicomp. For a vertex that isn't an articulation point, 
      //   this holds the face handles that can be used to move around that 
      //   vertex's unique bicomp. For a vertex that is an articulation point,
      //   this holds the face handles associated with the unique bicomp that 
      //   the vertex is NOT the root of. These handles can therefore be used 
      //   to move from any point on the outer face of the tree of bicomps 
      //   around the current outer face towards the root of the DFS tree.
      //
      // - dfs_child_handles: these are used to hold face handles for 
      //   vertices that are articulation points - dfs_child_handles[v] holds
      //   the face handles corresponding to vertex u in the bicomp with root
      //   u and canonical DFS child v.
      //
      // - canonical_dfs_child: this property map allows one to determine the
      //   canonical DFS child of a bicomp while traversing the outer face.
      //   This property map is only valid when applied to one of the two 
      //   vertices adjacent to the root of the bicomp on the outer face. To
      //   be more precise, if v is the canonical DFS child of a bicomp,
      //   canonical_dfs_child[dfs_child_handles[v].first_vertex()] == v and 
      //   canonical_dfs_child[dfs_child_handles[v].second_vertex()] == v.
      //
      // - pertinent_roots: given a vertex v, pertinent_roots[v] contains a
      //   list of face handles pointing to the top of bicomps that need to
      //   be visited by the current walkdown traversal (since they lead to
      //   backedges that need to be embedded). These lists are populated by
      //   the walkup and consumed by the walkdown.

      vertex_iterator_t vi, vi_end;
      for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
        {
          vertex_t v(*vi);
          vertex_t parent = dfs_parent[v];

          if (parent != v)
            {
              edge_t parent_edge = dfs_parent_edge[v];
              add_to_embedded_edges(parent_edge, StoreOldHandlesPolicy());
              face_handles[v] = face_handle_t(v, parent_edge, g);
              dfs_child_handles[v] = face_handle_t(parent, parent_edge, g);
            }
          else
            {
              face_handles[v] = face_handle_t(v);
              dfs_child_handles[v] = face_handle_t(parent);
            }

          canonical_dfs_child[v] = v;
          pertinent_roots[v] = face_handle_list_ptr_t(new face_handle_list_t); 
          separated_dfs_child_list[v] = vertex_list_ptr_t(new vertex_list_t);

        }

      // We need to create a list of not-yet-merged depth-first children for
      // each vertex that will be updated as bicomps get merged. We sort each 
      // list by ascending lowpoint, which allows the externally_active 
      // function to run in constant time, and we keep a pointer to each 
      // vertex's representation in its parent's list, which allows merging 
      //in constant time.

      for(typename vertex_vector_t::iterator itr = 
            vertices_by_lowpoint.begin();
          itr != vertices_by_lowpoint.end(); ++itr)
        {
          vertex_t v(*itr);
          vertex_t parent(dfs_parent[v]);
          if (v != parent)
            {
              separated_node_in_parent_list[v] =
                separated_dfs_child_list[parent]->insert
                (separated_dfs_child_list[parent]->end(), v);
            }
        }    

      // The merge stack holds path information during a walkdown iteration
      merge_stack.reserve(num_vertices(g));

    }






    bool is_planar()
    {

      // This is the main algorithm: starting with a DFS tree of embedded 
      // edges (which, since it's a tree, is planar), iterate through all 
      // vertices by reverse DFS number, attempting to embed all backedges
      // connecting the current vertex to vertices with higher DFS numbers.
      // 
      // The walkup is a procedure that examines all such backedges and sets
      // up the required data structures so that they can be searched by the
      // walkdown in linear time. The walkdown does the actual work of
      // embedding edges and flipping bicomps, and can identify when it has
      // come across a kuratowski subgraph.
      //
      // store_old_face_handles caches face handles from the previous
      // iteration - this is used only for the kuratowski subgraph isolation,
      // and is therefore dispatched based on the StoreOldHandlesPolicy.
      //
      // clean_up_embedding does some clean-up and fills in values that have
      // to be computed lazily during the actual execution of the algorithm
      // (for instance, whether or not a bicomp is flipped in the final
      // embedding). It's dispatched on the the StoreEmbeddingPolicy, since
      // it's not needed if an embedding isn't desired.

      typename vertex_vector_t::reverse_iterator vi, vi_end;

      vi_end = vertices_by_dfs_num.rend();
      for(vi = vertices_by_dfs_num.rbegin(); vi != vi_end; ++vi)
        {

          store_old_face_handles(StoreOldHandlesPolicy());

          vertex_t v(*vi);
          
          walkup(v);

          if (!walkdown(v))
            return false;

        }

      clean_up_embedding(StoreEmbeddingPolicy());

      return true;
      
    }






  private:





    void walkup(vertex_t v)
    {

      // The point of the walkup is to follow all backedges from v to 
      // vertices with higher DFS numbers, and update pertinent_roots
      // for the bicomp roots on the path from backedge endpoints up
      // to v. This will set the stage for the walkdown to efficiently
      // traverse the graph of bicomps down from v.

      typedef typename face_vertex_iterator<both_sides>::type walkup_iterator_t;
      
      out_edge_iterator_t oi, oi_end;
      for(boost::tie(oi,oi_end) = out_edges(v,g); oi != oi_end; ++oi)
        {
          edge_t e(*oi);
          vertex_t e_source(source(e,g));
          vertex_t e_target(target(e,g));

          if (e_source == e_target)
            {
              self_loops.push_back(e);
              continue;
            }

          vertex_t w(e_source == v ? e_target : e_source);

          //continue if not a back edge or already embedded
          if (dfs_number[w] < dfs_number[v] || e == dfs_parent_edge[w])
            continue;

          backedges[w].push_back(e);

          v_size_t timestamp = dfs_number[v];         
          backedge_flag[w] = timestamp;

          walkup_iterator_t walkup_itr(w, face_handles);
          walkup_iterator_t walkup_end;
          vertex_t lead_vertex = w;

          while (true)
            {
              
              // Move to the root of the current bicomp or the first visited
              // vertex on the bicomp by going up each side in parallel
              
              while(walkup_itr != walkup_end && 
                    visited[*walkup_itr] != timestamp
                    )
                {
                  lead_vertex = *walkup_itr;
                  visited[lead_vertex] = timestamp;
                  ++walkup_itr;
                }

              // If we've found the root of a bicomp through a path we haven't
              // seen before, update pertinent_roots with a handle to the
              // current bicomp. Otherwise, we've just seen a path we've been 
              // up before, so break out of the main while loop.
              
              if (walkup_itr == walkup_end)
                {
                  vertex_t dfs_child = canonical_dfs_child[lead_vertex];
                  vertex_t parent = dfs_parent[dfs_child];

                  visited[dfs_child_handles[dfs_child].first_vertex()] 
                    = timestamp;
                  visited[dfs_child_handles[dfs_child].second_vertex()] 
                    = timestamp;

                  if (low_point[dfs_child] < dfs_number[v] || 
                      least_ancestor[dfs_child] < dfs_number[v]
                      )
                    {
                      pertinent_roots[parent]->push_back
                        (dfs_child_handles[dfs_child]);
                    }
                  else
                    {
                      pertinent_roots[parent]->push_front
                        (dfs_child_handles[dfs_child]);
                    }

                  if (parent != v && visited[parent] != timestamp)
                    {
                      walkup_itr = walkup_iterator_t(parent, face_handles);
                      lead_vertex = parent;
                    }
                  else
                    break;
                }
              else
                break;
            }

        }      
      
    }
    






    bool walkdown(vertex_t v)
    {
      // This procedure is where all of the action is - pertinent_roots
      // has already been set up by the walkup, so we just need to move
      // down bicomps from v until we find vertices that have been
      // labeled as backedge endpoints. Once we find such a vertex, we
      // embed the corresponding edge and glue together the bicomps on
      // the path connecting the two vertices in the edge. This may
      // involve flipping bicomps along the way.

      vertex_t w; //the other endpoint of the edge we're embedding

      while (!pertinent_roots[v]->empty())
        {
          
          face_handle_t root_face_handle = pertinent_roots[v]->front();
          face_handle_t curr_face_handle = root_face_handle;
          pertinent_roots[v]->pop_front();      

          merge_stack.clear();

          while(true)
            {

              typename face_vertex_iterator<>::type 
                first_face_itr, second_face_itr, face_end;
              vertex_t first_side_vertex 
                = graph_traits<Graph>::null_vertex();
              vertex_t second_side_vertex;
              vertex_t first_tail, second_tail;

              first_tail = second_tail = curr_face_handle.get_anchor();
              first_face_itr = typename face_vertex_iterator<>::type
                (curr_face_handle, face_handles, first_side());
              second_face_itr = typename face_vertex_iterator<>::type
                (curr_face_handle, face_handles, second_side());

              for(; first_face_itr != face_end; ++first_face_itr)
                {
                  vertex_t face_vertex(*first_face_itr);
                  if (pertinent(face_vertex, v) || 
                      externally_active(face_vertex, v)
                      )
                    {
                      first_side_vertex = face_vertex;
                      second_side_vertex = face_vertex;
                      break;
                    }
                  first_tail = face_vertex;
                }

              if (first_side_vertex == graph_traits<Graph>::null_vertex() || 
                  first_side_vertex == curr_face_handle.get_anchor()
                  )
                break;

              for(;second_face_itr != face_end; ++second_face_itr)
                {
                  vertex_t face_vertex(*second_face_itr);
                  if (pertinent(face_vertex, v) || 
                      externally_active(face_vertex, v)
                      )
                    {
                      second_side_vertex = face_vertex;
                      break;
                    }
                  second_tail = face_vertex;
                }

              vertex_t chosen;
              bool chose_first_upper_path;
              if (internally_active(first_side_vertex, v))
                {
                  chosen = first_side_vertex;
                  chose_first_upper_path = true;
                }
              else if (internally_active(second_side_vertex, v))
                {
                  chosen = second_side_vertex;
                  chose_first_upper_path = false;
                }
              else if (pertinent(first_side_vertex, v))
                {
                  chosen = first_side_vertex;
                  chose_first_upper_path = true;
                }
              else if (pertinent(second_side_vertex, v))
                {
                  chosen = second_side_vertex;
                  chose_first_upper_path = false;
                }
              else 
                {

                  // If there's a pertinent vertex on the lower face 
                  // between the first_face_itr and the second_face_itr, 
                  // this graph isn't planar.
                  for(; 
                      *first_face_itr != second_side_vertex; 
                      ++first_face_itr
                      )
                    {
                      vertex_t p(*first_face_itr);
                      if (pertinent(p,v))
                        {
                          //Found a Kuratowski subgraph
                          kuratowski_v = v;
                          kuratowski_x = first_side_vertex;
                          kuratowski_y = second_side_vertex;
                          return false;
                        }
                    }
                  
                  // Otherwise, the fact that we didn't find a pertinent 
                  // vertex on this face is fine - we should set the 
                  // short-circuit edges and break out of this loop to 
                  // start looking at a different pertinent root.
                                    
                  if (first_side_vertex == second_side_vertex)
                    {
                      if (first_tail != v)
                        {
                          vertex_t first 
                            = face_handles[first_tail].first_vertex();
                          vertex_t second 
                            = face_handles[first_tail].second_vertex();
                          boost::tie(first_side_vertex, first_tail) 
                            = make_tuple(first_tail, 
                                         first == first_side_vertex ? 
                                         second : first
                                         );
                        }
                      else if (second_tail != v)
                        {
                          vertex_t first 
                            = face_handles[second_tail].first_vertex();
                          vertex_t second 
                            = face_handles[second_tail].second_vertex();
                          boost::tie(second_side_vertex, second_tail) 
                            = make_tuple(second_tail,
                                         first == second_side_vertex ? 
                                         second : first);
                        }
                      else
                        break;
                    }
                  
                  canonical_dfs_child[first_side_vertex] 
                    = canonical_dfs_child[root_face_handle.first_vertex()];
                  canonical_dfs_child[second_side_vertex] 
                    = canonical_dfs_child[root_face_handle.second_vertex()];
                  root_face_handle.set_first_vertex(first_side_vertex);
                  root_face_handle.set_second_vertex(second_side_vertex);

                  if (face_handles[first_side_vertex].first_vertex() == 
                      first_tail
                      )
                    face_handles[first_side_vertex].set_first_vertex(v);
                  else
                    face_handles[first_side_vertex].set_second_vertex(v);

                  if (face_handles[second_side_vertex].first_vertex() == 
                      second_tail
                      )
                    face_handles[second_side_vertex].set_first_vertex(v);
                  else
                    face_handles[second_side_vertex].set_second_vertex(v);
                    
                  break;
                  
                }


              // When we unwind the stack, we need to know which direction 
              // we came down from on the top face handle
              
              bool chose_first_lower_path = 
                (chose_first_upper_path && 
                 face_handles[chosen].first_vertex() == first_tail) 
                ||
                (!chose_first_upper_path && 
                 face_handles[chosen].first_vertex() == second_tail);

              //If there's a backedge at the chosen vertex, embed it now
              if (backedge_flag[chosen] == dfs_number[v])
                {
                  w = chosen;
                  
                  backedge_flag[chosen] = num_vertices(g) + 1;
                  add_to_merge_points(chosen, StoreOldHandlesPolicy());
                  
                  typename edge_vector_t::iterator ei, ei_end;
                  ei_end = backedges[chosen].end();
                  for(ei = backedges[chosen].begin(); ei != ei_end; ++ei)
                    {
                      edge_t e(*ei);
                      add_to_embedded_edges(e, StoreOldHandlesPolicy());

                      if (chose_first_lower_path)
                        face_handles[chosen].push_first(e, g);
                      else
                        face_handles[chosen].push_second(e, g);
                    }

                }
              else
                {
                  merge_stack.push_back(make_tuple
                     (chosen, chose_first_upper_path, chose_first_lower_path)
                                        );
                  curr_face_handle = *pertinent_roots[chosen]->begin();
                  continue;
                }

              //Unwind the merge stack to the root, merging all bicomps
      
              bool bottom_path_follows_first;
              bool top_path_follows_first;
              bool next_bottom_follows_first = chose_first_upper_path;
              face_handle_t top_handle, bottom_handle;

              vertex_t merge_point = chosen;

              while(!merge_stack.empty())
                {

                  bottom_path_follows_first = next_bottom_follows_first;
                  boost::tie(merge_point, 
                             next_bottom_follows_first, 
                             top_path_follows_first
                             ) = merge_stack.back();
                  merge_stack.pop_back();

                  face_handle_t top_handle(face_handles[merge_point]);
                  face_handle_t bottom_handle
                    (*pertinent_roots[merge_point]->begin());
                  
                  vertex_t bottom_dfs_child = canonical_dfs_child
                    [pertinent_roots[merge_point]->begin()->first_vertex()];

                  remove_vertex_from_separated_dfs_child_list(
                       canonical_dfs_child
                       [pertinent_roots[merge_point]->begin()->first_vertex()]
                       );

                  pertinent_roots[merge_point]->pop_front();

                  add_to_merge_points(top_handle.get_anchor(), 
                                      StoreOldHandlesPolicy()
                                      );
                  
                  if (top_path_follows_first && bottom_path_follows_first)
                    {
                      bottom_handle.flip();
                      top_handle.glue_first_to_second(bottom_handle);
                    }          
                  else if (!top_path_follows_first && 
                           bottom_path_follows_first
                           )
                    {
                      flipped[bottom_dfs_child] = true;
                      top_handle.glue_second_to_first(bottom_handle);
                    }
                  else if (top_path_follows_first && 
                           !bottom_path_follows_first
                           )
                    {
                      flipped[bottom_dfs_child] = true;
                      top_handle.glue_first_to_second(bottom_handle);
                    }
                  else //!top_path_follows_first && !bottom_path_follows_first
                    {
                      bottom_handle.flip();
                      top_handle.glue_second_to_first(bottom_handle);
                    }

                }

              //Finally, embed all edges (v,w) at their upper end points
              canonical_dfs_child[w] 
                = canonical_dfs_child[root_face_handle.first_vertex()];
              
              add_to_merge_points(root_face_handle.get_anchor(), 
                                  StoreOldHandlesPolicy()
                                  );
              
              typename edge_vector_t::iterator ei, ei_end;
              ei_end = backedges[chosen].end();
              for(ei = backedges[chosen].begin(); ei != ei_end; ++ei)
                {              
                  if (next_bottom_follows_first)
                    root_face_handle.push_first(*ei, g);
                  else
                    root_face_handle.push_second(*ei, g);
                }

              backedges[chosen].clear();
              curr_face_handle = root_face_handle;

            }//while(true)
          
        }//while(!pertinent_roots[v]->empty())

      return true;

    }






    void store_old_face_handles(graph::detail::no_old_handles) {}

    void store_old_face_handles(graph::detail::store_old_handles)
    {
      for(typename std::vector<vertex_t>::iterator mp_itr 
            = current_merge_points.begin();
          mp_itr != current_merge_points.end(); ++mp_itr)
        {
          face_handles[*mp_itr].store_old_face_handles();
        }
      current_merge_points.clear();
    }          


    void add_to_merge_points(vertex_t, graph::detail::no_old_handles) {}

    void add_to_merge_points(vertex_t v, graph::detail::store_old_handles)
    {
      current_merge_points.push_back(v);
    }

    
    void add_to_embedded_edges(edge_t, graph::detail::no_old_handles) {}

    void add_to_embedded_edges(edge_t e, graph::detail::store_old_handles)
    {
      embedded_edges.push_back(e);
    }




    void clean_up_embedding(graph::detail::no_embedding) {}

    void clean_up_embedding(graph::detail::store_embedding)
    {

      // If the graph isn't biconnected, we'll still have entries
      // in the separated_dfs_child_list for some vertices. Since
      // these represent articulation points, we can obtain a
      // planar embedding no matter what order we embed them in.

      vertex_iterator_t xi, xi_end;
      for(boost::tie(xi,xi_end) = vertices(g); xi != xi_end; ++xi)
        {
          if (!separated_dfs_child_list[*xi]->empty())
            {
              typename vertex_list_t::iterator yi, yi_end;
              yi_end = separated_dfs_child_list[*xi]->end();
              for(yi = separated_dfs_child_list[*xi]->begin(); 
                  yi != yi_end; ++yi
                  )
                {
                  dfs_child_handles[*yi].flip();
                  face_handles[*xi].glue_first_to_second
                    (dfs_child_handles[*yi]);
                }
            }
        }      

      // Up until this point, we've flipped bicomps lazily by setting
      // flipped[v] to true if the bicomp rooted at v was flipped (the
      // lazy aspect of this flip is that all descendents of that vertex
      // need to have their orientations reversed as well). Now, we
      // traverse the DFS tree by DFS number and perform the actual
      // flipping as needed

      typedef typename vertex_vector_t::iterator vertex_vector_itr_t;
      vertex_vector_itr_t vi_end = vertices_by_dfs_num.end();
      for(vertex_vector_itr_t vi = vertices_by_dfs_num.begin(); 
          vi != vi_end; ++vi
          )
        {
          vertex_t v(*vi);
          bool v_flipped = flipped[v];
          bool p_flipped = flipped[dfs_parent[v]];
          if (v_flipped && !p_flipped)
            {
              face_handles[v].flip();
            }
          else if (p_flipped && !v_flipped)
            {
              face_handles[v].flip();
              flipped[v] = true;
            }
          else
            {
              flipped[v] = false;
            }
        }

      // If there are any self-loops in the graph, they were flagged
      // during the walkup, and we should add them to the embedding now.
      // Adding a self loop anywhere in the embedding could never 
      // invalidate the embedding, but they would complicate the traversal
      // if they were added during the walkup/walkdown.

      typename edge_vector_t::iterator ei, ei_end;
      ei_end = self_loops.end();
      for(ei = self_loops.begin(); ei != ei_end; ++ei)
        {
          edge_t e(*ei);
          face_handles[source(e,g)].push_second(e,g);
        }
      
    }




    
    bool pertinent(vertex_t w, vertex_t v)
    {
      // w is pertinent with respect to v if there is a backedge (v,w) or if
      // w is the root of a bicomp that contains a pertinent vertex.

      return backedge_flag[w] == dfs_number[v] || !pertinent_roots[w]->empty();
    }
    


    bool externally_active(vertex_t w, vertex_t v)
    {
      // Let a be any proper depth-first search ancestor of v. w is externally
      // active with respect to v if there exists a backedge (a,w) or a 
      // backedge (a,w_0) for some w_0 in a descendent bicomp of w.

      v_size_t dfs_number_of_v = dfs_number[v];
      return (least_ancestor[w] < dfs_number_of_v) ||
        (!separated_dfs_child_list[w]->empty() &&
         low_point[separated_dfs_child_list[w]->front()] < dfs_number_of_v); 
   }
    

      
    bool internally_active(vertex_t w, vertex_t v)
    {
      return pertinent(w,v) && !externally_active(w,v);
    }    
      



    void remove_vertex_from_separated_dfs_child_list(vertex_t v)
    {
      typename vertex_list_t::iterator to_delete 
        = separated_node_in_parent_list[v];
      garbage.splice(garbage.end(), 
                     *separated_dfs_child_list[dfs_parent[v]], 
                     to_delete, 
                     boost::next(to_delete)
                     );
    }




    
    // End of the implementation of the basic Boyer-Myrvold Algorithm. The rest
    // of the code below implements the isolation of a Kuratowski subgraph in 
    // the case that the input graph is not planar. This is by far the most
    // complicated part of the implementation.




  public:




    template <typename EdgeToBoolPropertyMap, typename EdgeContainer>
    vertex_t kuratowski_walkup(vertex_t v, 
                               EdgeToBoolPropertyMap forbidden_edge,
                               EdgeToBoolPropertyMap goal_edge,
                               EdgeToBoolPropertyMap is_embedded,
                               EdgeContainer& path_edges
                               )
    {
      vertex_t current_endpoint;
      bool seen_goal_edge = false;
      out_edge_iterator_t oi, oi_end;
      
      for(boost::tie(oi,oi_end) = out_edges(v,g); oi != oi_end; ++oi)
        forbidden_edge[*oi] = true;
      
      for(boost::tie(oi,oi_end) = out_edges(v,g); oi != oi_end; ++oi)
        {
          path_edges.clear();
          
          edge_t e(*oi);
          current_endpoint = target(*oi,g) == v ? 
            source(*oi,g) : target(*oi,g);
          
          if (dfs_number[current_endpoint] < dfs_number[v] || 
              is_embedded[e] ||
              v == current_endpoint //self-loop
              )
            {
              //Not a backedge
              continue;
            }
          
          path_edges.push_back(e);
          if (goal_edge[e])
            {
              return current_endpoint;
            }

          typedef typename face_edge_iterator<>::type walkup_itr_t;
          
          walkup_itr_t 
            walkup_itr(current_endpoint, face_handles, first_side());
          walkup_itr_t walkup_end;
          
          seen_goal_edge = false;
          
          while (true)
            {      
              
              if (walkup_itr != walkup_end && forbidden_edge[*walkup_itr])
                break;
              
              while(walkup_itr != walkup_end && 
                    !goal_edge[*walkup_itr] && 
                    !forbidden_edge[*walkup_itr]
                    )
                {
                  edge_t f(*walkup_itr);
                  forbidden_edge[f] = true;
                  path_edges.push_back(f);
                  current_endpoint = 
                    source(f, g) == current_endpoint ? 
                    target(f, g) : 
                    source(f,g);
                  ++walkup_itr;
                }

              if (walkup_itr != walkup_end && goal_edge[*walkup_itr])
                {
                  path_edges.push_back(*walkup_itr);
                  seen_goal_edge = true;
                  break;
                }

              walkup_itr 
                = walkup_itr_t(current_endpoint, face_handles, first_side());
              
            }
          
          if (seen_goal_edge)
            break;
          
        }

      if (seen_goal_edge)
        return current_endpoint;
      else
        return graph_traits<Graph>::null_vertex();

    }








    template <typename OutputIterator, typename EdgeIndexMap>
    void extract_kuratowski_subgraph(OutputIterator o_itr, EdgeIndexMap em)
    {

      // If the main algorithm has failed to embed one of the back-edges from
      // a vertex v, we can use the current state of the algorithm to isolate
      // a Kuratowksi subgraph. The isolation process breaks down into five
      // cases, A - E. The general configuration of all five cases is shown in
      //                  figure 1. There is a vertex v from which the planar
      //         v        embedding process could not proceed. This means that
      //         |        there exists some bicomp containing three vertices
      //       -----      x,y, and z as shown such that x and y are externally
      //      |     |     active with respect to v (which means that there are
      //      x     y     two vertices x_0 and y_0 such that (1) both x_0 and  
      //      |     |     y_0 are proper depth-first search ancestors of v and 
      //       --z--      (2) there are two disjoint paths, one connecting x 
      //                  and x_0 and one connecting y and y_0, both consisting
      //       fig. 1     entirely of unembedded edges). Furthermore, there
      //                  exists a vertex z_0 such that z is a depth-first
      // search ancestor of z_0 and (v,z_0) is an unembedded back-edge from v.
      // x,y and z all exist on the same bicomp, which consists entirely of
      // embedded edges. The five subcases break down as follows, and are
      // handled by the algorithm logically in the order A-E: First, if v is
      // not on the same bicomp as x,y, and z, a K_3_3 can be isolated - this
      // is case A. So, we'll assume that v is on the same bicomp as x,y, and
      // z. If z_0 is on a different bicomp than x,y, and z, a K_3_3 can also
      // be isolated - this is a case B - so we'll assume from now on that v
      // is on the same bicomp as x, y, and z=z_0. In this case, one can use
      // properties of the Boyer-Myrvold algorithm to show the existence of an
      // "x-y path" connecting some vertex on the "left side" of the x,y,z
      // bicomp with some vertex on the "right side" of the bicomp (where the
      // left and right are split by a line drawn through v and z.If either of 
      // the endpoints of the x-y path is above x or y on the bicomp, a K_3_3 
      // can be isolated - this is a case C. Otherwise, both endpoints are at 
      // or below x and y on the bicomp. If there is a vertex alpha on the x-y 
      // path such that alpha is not x or y and there's a path from alpha to v
      // that's disjoint from any of the edges on the bicomp and the x-y path,
      // a K_3_3 can be isolated - this is a case D. Otherwise, properties of
      // the Boyer-Myrvold algorithm can be used to show that another vertex
      // w exists on the lower half of the bicomp such that w is externally
      // active with respect to v. w can then be used to isolate a K_5 - this
      // is the configuration of case E.

      vertex_iterator_t vi, vi_end;
      edge_iterator_t ei, ei_end;
      out_edge_iterator_t oei, oei_end;
      typename std::vector<edge_t>::iterator xi, xi_end;

      // Clear the short-circuit edges - these are needed for the planar 
      // testing/embedding algorithm to run in linear time, but they'll 
      // complicate the kuratowski subgraph isolation
      for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
        {
          face_handles[*vi].reset_vertex_cache();
          dfs_child_handles[*vi].reset_vertex_cache();
        }

      vertex_t v = kuratowski_v;
      vertex_t x = kuratowski_x;
      vertex_t y = kuratowski_y;

      typedef iterator_property_map
        <typename std::vector<bool>::iterator, EdgeIndexMap>
        edge_to_bool_map_t;

      std::vector<bool> is_in_subgraph_vector(num_edges(g), false);
      edge_to_bool_map_t is_in_subgraph(is_in_subgraph_vector.begin(), em);

      std::vector<bool> is_embedded_vector(num_edges(g), false);
      edge_to_bool_map_t is_embedded(is_embedded_vector.begin(), em);

      typename std::vector<edge_t>::iterator embedded_itr, embedded_end;
      embedded_end = embedded_edges.end();
      for(embedded_itr = embedded_edges.begin(); 
          embedded_itr != embedded_end; ++embedded_itr
          )
        is_embedded[*embedded_itr] = true;

      // upper_face_vertex is true for x,y, and all vertices above x and y in 
      // the bicomp
      std::vector<bool> upper_face_vertex_vector(num_vertices(g), false);
      vertex_to_bool_map_t upper_face_vertex
        (upper_face_vertex_vector.begin(), vm);

      std::vector<bool> lower_face_vertex_vector(num_vertices(g), false);
      vertex_to_bool_map_t lower_face_vertex
        (lower_face_vertex_vector.begin(), vm);

      // These next few variable declarations are all things that we need
      // to find.
      vertex_t z; 
      vertex_t bicomp_root;
      vertex_t w = graph_traits<Graph>::null_vertex();
      face_handle_t w_handle;
      face_handle_t v_dfchild_handle;
      vertex_t first_x_y_path_endpoint = graph_traits<Graph>::null_vertex();
      vertex_t second_x_y_path_endpoint = graph_traits<Graph>::null_vertex();
      vertex_t w_ancestor = v;

      detail::bm_case_t chosen_case = detail::BM_NO_CASE_CHOSEN;

      std::vector<edge_t> x_external_path;
      std::vector<edge_t> y_external_path;
      std::vector<edge_t> case_d_edges;

      std::vector<edge_t> z_v_path;
      std::vector<edge_t> w_path;

      //first, use a walkup to find a path from V that starts with a
      //backedge from V, then goes up until it hits either X or Y
      //(but doesn't find X or Y as the root of a bicomp)

      typename face_vertex_iterator<>::type 
        x_upper_itr(x, face_handles, first_side());
      typename face_vertex_iterator<>::type 
        x_lower_itr(x, face_handles, second_side());
      typename face_vertex_iterator<>::type face_itr, face_end;

      // Don't know which path from x is the upper or lower path - 
      // we'll find out here
      for(face_itr = x_upper_itr; face_itr != face_end; ++face_itr)
        {
          if (*face_itr == y)
            {
              std::swap(x_upper_itr, x_lower_itr);
              break;
            }
        }

      upper_face_vertex[x] = true;

      vertex_t current_vertex = x;
      vertex_t previous_vertex;
      for(face_itr = x_upper_itr; face_itr != face_end; ++face_itr)
        {
          previous_vertex = current_vertex;
          current_vertex = *face_itr;
          upper_face_vertex[current_vertex] = true;
        }

      v_dfchild_handle 
        = dfs_child_handles[canonical_dfs_child[previous_vertex]];
      
      for(face_itr = x_lower_itr; *face_itr != y; ++face_itr)
        {
          vertex_t current_vertex(*face_itr);
          lower_face_vertex[current_vertex] = true;

          typename face_handle_list_t::iterator roots_itr, roots_end;

          if (w == graph_traits<Graph>::null_vertex()) //haven't found a w yet
            {
              roots_end = pertinent_roots[current_vertex]->end();
              for(roots_itr = pertinent_roots[current_vertex]->begin(); 
                  roots_itr != roots_end; ++roots_itr
                  )
                {
                  if (low_point[canonical_dfs_child[roots_itr->first_vertex()]]
                      < dfs_number[v]
                      )
                    {
                      w = current_vertex;
                      w_handle = *roots_itr;
                      break;
                    }
                }
            }

        }

      for(; face_itr != face_end; ++face_itr)
        {
          vertex_t current_vertex(*face_itr);
          upper_face_vertex[current_vertex] = true;
          bicomp_root = current_vertex;
        }

      typedef typename face_edge_iterator<>::type walkup_itr_t;

      std::vector<bool> outer_face_edge_vector(num_edges(g), false);
      edge_to_bool_map_t outer_face_edge(outer_face_edge_vector.begin(), em);

      walkup_itr_t walkup_end;
      for(walkup_itr_t walkup_itr(x, face_handles, first_side()); 
          walkup_itr != walkup_end; ++walkup_itr
          )
        {
          outer_face_edge[*walkup_itr] = true;
          is_in_subgraph[*walkup_itr] = true;
        }

      for(walkup_itr_t walkup_itr(x, face_handles, second_side()); 
          walkup_itr != walkup_end; ++walkup_itr
          )
        {
          outer_face_edge[*walkup_itr] = true;
          is_in_subgraph[*walkup_itr] = true;
        }

      std::vector<bool> forbidden_edge_vector(num_edges(g), false);
      edge_to_bool_map_t forbidden_edge(forbidden_edge_vector.begin(), em);

      std::vector<bool> goal_edge_vector(num_edges(g), false);
      edge_to_bool_map_t goal_edge(goal_edge_vector.begin(), em);


      //Find external path to x and to y

      for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
        {
          edge_t e(*ei);
          goal_edge[e] 
            = !outer_face_edge[e] && (source(e,g) == x || target(e,g) == x);
          forbidden_edge[*ei] = outer_face_edge[*ei];
        }

      vertex_t x_ancestor = v;
      vertex_t x_endpoint = graph_traits<Graph>::null_vertex();
      
      while(x_endpoint == graph_traits<Graph>::null_vertex())
        { 
          x_ancestor = dfs_parent[x_ancestor];
          x_endpoint = kuratowski_walkup(x_ancestor, 
                                         forbidden_edge, 
                                         goal_edge,
                                         is_embedded,
                                         x_external_path
                                         );
          
        }            


      for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
        {
          edge_t e(*ei);
          goal_edge[e] 
            = !outer_face_edge[e] && (source(e,g) == y || target(e,g) == y);
          forbidden_edge[*ei] = outer_face_edge[*ei];
        }

      vertex_t y_ancestor = v;
      vertex_t y_endpoint = graph_traits<Graph>::null_vertex();
      
      while(y_endpoint == graph_traits<Graph>::null_vertex())
        { 
          y_ancestor = dfs_parent[y_ancestor];
          y_endpoint = kuratowski_walkup(y_ancestor, 
                                         forbidden_edge, 
                                         goal_edge,
                                         is_embedded,
                                         y_external_path
                                         );
          
        }            
      

      vertex_t parent, child;
      
      //If v isn't on the same bicomp as x and y, it's a case A
      if (bicomp_root != v)
        {
          chosen_case = detail::BM_CASE_A;

          for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
            if (lower_face_vertex[*vi])
              for(boost::tie(oei,oei_end) = out_edges(*vi,g); oei != oei_end; ++oei)
                if(!outer_face_edge[*oei])
                  goal_edge[*oei] = true;
          
          for(boost::tie(ei,ei_end) = edges(g); ei != ei_end; ++ei)
            forbidden_edge[*ei] = outer_face_edge[*ei];
          
          z = kuratowski_walkup
            (v, forbidden_edge, goal_edge, is_embedded, z_v_path);
          
        }
      else if (w != graph_traits<Graph>::null_vertex())
        {
          chosen_case = detail::BM_CASE_B;

          for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
            {
              edge_t e(*ei);
              goal_edge[e] = false;
              forbidden_edge[e] = outer_face_edge[e];
            }
          
          goal_edge[w_handle.first_edge()] = true;
          goal_edge[w_handle.second_edge()] = true;

          z = kuratowski_walkup(v,
                                forbidden_edge, 
                                goal_edge,
                                is_embedded,
                                z_v_path
                                );
              

          for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
            {
              forbidden_edge[*ei] = outer_face_edge[*ei];
            }

          typename std::vector<edge_t>::iterator pi, pi_end;
          pi_end = z_v_path.end();
          for(pi = z_v_path.begin(); pi != pi_end; ++pi)
            {
              goal_edge[*pi] = true;
            }
          
          w_ancestor = v;
          vertex_t w_endpoint = graph_traits<Graph>::null_vertex();
          
          while(w_endpoint == graph_traits<Graph>::null_vertex())
            { 
              w_ancestor = dfs_parent[w_ancestor];
              w_endpoint = kuratowski_walkup(w_ancestor, 
                                             forbidden_edge, 
                                             goal_edge,
                                             is_embedded,
                                             w_path
                                             );
              
            }            
          
          // We really want both the w walkup and the z walkup to finish on 
          // exactly the same edge, but for convenience (since we don't have 
          // control over which side of a bicomp a walkup moves up) we've 
          // defined the walkup to either end at w_handle.first_edge() or 
          // w_handle.second_edge(). If both walkups ended at different edges, 
          // we'll do a little surgery on the w walkup path to make it follow 
          // the other side of the final bicomp.

          if ((w_path.back() == w_handle.first_edge() && 
               z_v_path.back() == w_handle.second_edge()) 
              ||
              (w_path.back() == w_handle.second_edge() && 
               z_v_path.back() == w_handle.first_edge())
              )
            {
              walkup_itr_t wi, wi_end;
              edge_t final_edge = w_path.back();
              vertex_t anchor 
                = source(final_edge, g) == w_handle.get_anchor() ? 
                target(final_edge, g) : source(final_edge, g);
              if (face_handles[anchor].first_edge() == final_edge)
                wi = walkup_itr_t(anchor, face_handles, second_side());
              else
                wi = walkup_itr_t(anchor, face_handles, first_side());

              w_path.pop_back();

              for(; wi != wi_end; ++wi)
                {
                  edge_t e(*wi);
                  if (w_path.back() == e)
                    w_path.pop_back();
                  else
                    w_path.push_back(e);
                }
            }

          
        }
      else 
        {

          //We need to find a valid z, since the x-y path re-defines the lower
          //face, and the z we found earlier may now be on the upper face.

          chosen_case = detail::BM_CASE_E;


          // The z we've used so far is just an externally active vertex on the
          // lower face path, but may not be the z we need for a case C, D, or
          // E subgraph. the z we need now is any externally active vertex on 
          // the lower face path with both old_face_handles edges on the outer
          // face. Since we know an x-y path exists, such a z must also exist.

          //TODO: find this z in the first place.

          //find the new z

          for(face_itr = x_lower_itr; *face_itr != y; ++face_itr)
            {
              vertex_t possible_z(*face_itr);
              if (pertinent(possible_z,v) && 
                  outer_face_edge[face_handles[possible_z].old_first_edge()] &&
                  outer_face_edge[face_handles[possible_z].old_second_edge()]
                  )
                {
                  z = possible_z;
                  break;
                }
            }

          //find x-y path, and a w if one exists.

          if (externally_active(z,v))
            w = z;
          

          typedef typename face_edge_iterator
            <single_side, previous_iteration>::type old_face_iterator_t; 

          old_face_iterator_t 
            first_old_face_itr(z, face_handles, first_side());
          old_face_iterator_t 
            second_old_face_itr(z, face_handles, second_side());
          old_face_iterator_t old_face_itr, old_face_end;

          std::vector<old_face_iterator_t> old_face_iterators;
          old_face_iterators.push_back(first_old_face_itr);
          old_face_iterators.push_back(second_old_face_itr);

          std::vector<bool> x_y_path_vertex_vector(num_vertices(g), false);
          vertex_to_bool_map_t x_y_path_vertex
            (x_y_path_vertex_vector.begin(), vm);

          typename std::vector<old_face_iterator_t>::iterator 
            of_itr, of_itr_end;
          of_itr_end = old_face_iterators.end(); 
          for(of_itr = old_face_iterators.begin(); 
              of_itr != of_itr_end; ++of_itr
              )
            {

              old_face_itr = *of_itr;

              vertex_t previous_vertex;
              bool seen_x_or_y = false;
              vertex_t current_vertex = z;
              for(; old_face_itr != old_face_end; ++old_face_itr)
                {
                  edge_t e(*old_face_itr);
                  previous_vertex = current_vertex;
                  current_vertex = source(e,g) == current_vertex ? 
                    target(e,g) : source(e,g);
                  
                  if (current_vertex == x || current_vertex == y)
                    seen_x_or_y = true;

                  if (w == graph_traits<Graph>::null_vertex() && 
                      externally_active(current_vertex,v) &&
                      outer_face_edge[e] &&
                      outer_face_edge[*boost::next(old_face_itr)] &&
                      !seen_x_or_y
                      )
                    {
                      w = current_vertex;
                    }
                  
                  if (!outer_face_edge[e])
                    {
                      if (!upper_face_vertex[current_vertex] && 
                          !lower_face_vertex[current_vertex]
                          )
                        {
                          x_y_path_vertex[current_vertex] = true;
                        }

                      is_in_subgraph[e] = true;
                      if (upper_face_vertex[source(e,g)] || 
                          lower_face_vertex[source(e,g)]
                          )
                        {
                          if (first_x_y_path_endpoint == 
                              graph_traits<Graph>::null_vertex()
                              )
                            first_x_y_path_endpoint = source(e,g);
                          else
                            second_x_y_path_endpoint = source(e,g);
                        }
                      if (upper_face_vertex[target(e,g)] || 
                          lower_face_vertex[target(e,g)]
                          )
                        {
                          if (first_x_y_path_endpoint == 
                              graph_traits<Graph>::null_vertex()
                              )
                            first_x_y_path_endpoint = target(e,g);
                          else
                            second_x_y_path_endpoint = target(e,g);
                        }


                    }
                  else if (previous_vertex == x || previous_vertex == y)
                    {
                      chosen_case = detail::BM_CASE_C;
                    }
              
                }

            }

          // Look for a case D - one of v's embedded edges will connect to the 
          // x-y path along an inner face path.

          //First, get a list of all of v's embedded child edges

          out_edge_iterator_t v_edge_itr, v_edge_end;
          for(boost::tie(v_edge_itr,v_edge_end) = out_edges(v,g); 
              v_edge_itr != v_edge_end; ++v_edge_itr
              )
            {
              edge_t embedded_edge(*v_edge_itr);
             
              if (!is_embedded[embedded_edge] || 
                  embedded_edge == dfs_parent_edge[v]
                  )
                continue;

              case_d_edges.push_back(embedded_edge);

              vertex_t current_vertex 
                = source(embedded_edge,g) == v ? 
                target(embedded_edge,g) : source(embedded_edge,g);

              typename face_edge_iterator<>::type 
                internal_face_itr, internal_face_end;
              if (face_handles[current_vertex].first_vertex() == v)
                {
                  internal_face_itr = typename face_edge_iterator<>::type
                    (current_vertex, face_handles, second_side());
                }
              else
                {
                  internal_face_itr = typename face_edge_iterator<>::type
                    (current_vertex, face_handles, first_side());
                }

              while(internal_face_itr != internal_face_end &&
                    !outer_face_edge[*internal_face_itr] && 
                    !x_y_path_vertex[current_vertex]
                    )
                {
                  edge_t e(*internal_face_itr);
                  case_d_edges.push_back(e);
                  current_vertex = 
                    source(e,g) == current_vertex ? target(e,g) : source(e,g);
                  ++internal_face_itr;
                }

              if (x_y_path_vertex[current_vertex])
                {
                  chosen_case = detail::BM_CASE_D;
                  break;
                }
              else
                {
                  case_d_edges.clear();
                }

            }
          

        }




      if (chosen_case != detail::BM_CASE_B && chosen_case != detail::BM_CASE_A)
        {

          //Finding z and w.

          for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
            {
              edge_t e(*ei);
              goal_edge[e] = !outer_face_edge[e] && 
                (source(e,g) == z || target(e,g) == z);
              forbidden_edge[e] = outer_face_edge[e];
            }

          kuratowski_walkup(v,
                            forbidden_edge, 
                            goal_edge,
                            is_embedded,
                            z_v_path
                            );
              
          if (chosen_case == detail::BM_CASE_E)
            {

              for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
                {
                  forbidden_edge[*ei] = outer_face_edge[*ei];
                  goal_edge[*ei] = !outer_face_edge[*ei] && 
                    (source(*ei,g) == w || target(*ei,g) == w);
                }

              for(boost::tie(oei, oei_end) = out_edges(w,g); oei != oei_end; ++oei)
                {
                  if (!outer_face_edge[*oei])
                    goal_edge[*oei] = true;
                }

              typename std::vector<edge_t>::iterator pi, pi_end;
              pi_end = z_v_path.end();
              for(pi = z_v_path.begin(); pi != pi_end; ++pi)
                {
                  goal_edge[*pi] = true;
                }
          
              w_ancestor = v;
              vertex_t w_endpoint = graph_traits<Graph>::null_vertex();
          
              while(w_endpoint == graph_traits<Graph>::null_vertex())
                { 
                  w_ancestor = dfs_parent[w_ancestor];
                  w_endpoint = kuratowski_walkup(w_ancestor, 
                                                 forbidden_edge, 
                                                 goal_edge,
                                                 is_embedded,
                                                 w_path
                                                 );
                  
                }            
 
            }


        }


      //We're done isolating the Kuratowski subgraph at this point -
      //but there's still some cleaning up to do.

      //Update is_in_subgraph with the paths we just found

      xi_end = x_external_path.end();
      for(xi = x_external_path.begin(); xi != xi_end; ++xi)
        is_in_subgraph[*xi] = true;

      xi_end = y_external_path.end();
      for(xi = y_external_path.begin(); xi != xi_end; ++xi)
        is_in_subgraph[*xi] = true;

      xi_end = z_v_path.end();
      for(xi = z_v_path.begin(); xi != xi_end; ++xi)
        is_in_subgraph[*xi] = true;

      xi_end = case_d_edges.end();
      for(xi = case_d_edges.begin(); xi != xi_end; ++xi)
        is_in_subgraph[*xi] = true;

      xi_end = w_path.end();
      for(xi = w_path.begin(); xi != xi_end; ++xi)
        is_in_subgraph[*xi] = true;
      
      child = bicomp_root;
      parent = dfs_parent[child];
      while(child != parent)
        {
          is_in_subgraph[dfs_parent_edge[child]] = true;
          boost::tie(parent, child) = std::make_pair( dfs_parent[parent], parent );
        }




      // At this point, we've already isolated the Kuratowski subgraph and 
      // collected all of the edges that compose it in the is_in_subgraph 
      // property map. But we want the verification of such a subgraph to be 
      // a deterministic process, and we can simplify the function 
      // is_kuratowski_subgraph by cleaning up some edges here.

      if (chosen_case == detail::BM_CASE_B)
        {
          is_in_subgraph[dfs_parent_edge[v]] = false;
        }
      else if (chosen_case == detail::BM_CASE_C)
        {
          // In a case C subgraph, at least one of the x-y path endpoints
          // (call it alpha) is above either x or y on the outer face. The
          // other endpoint may be attached at x or y OR above OR below. In
          // any of these three cases, we can form a K_3_3 by removing the 
          // edge attached to v on the outer face that is NOT on the path to 
          // alpha.

          typename face_vertex_iterator<single_side, follow_visitor>::type 
            face_itr, face_end;
          if (face_handles[v_dfchild_handle.first_vertex()].first_edge() == 
              v_dfchild_handle.first_edge()
              )
            {
              face_itr = typename face_vertex_iterator
                <single_side, follow_visitor>::type
                (v_dfchild_handle.first_vertex(), face_handles, second_side());
            }
          else
            {
              face_itr = typename face_vertex_iterator
                <single_side, follow_visitor>::type
                (v_dfchild_handle.first_vertex(), face_handles, first_side());
            }

          for(; true; ++face_itr)
            {
              vertex_t current_vertex(*face_itr);
              if (current_vertex == x || current_vertex == y)
                {
                  is_in_subgraph[v_dfchild_handle.first_edge()] = false;
                  break;
                }
              else if (current_vertex == first_x_y_path_endpoint ||
                       current_vertex == second_x_y_path_endpoint)
                {
                  is_in_subgraph[v_dfchild_handle.second_edge()] = false;
                  break;
                }
            }
          
        }
      else if (chosen_case == detail::BM_CASE_D)
        {
          // Need to remove both of the edges adjacent to v on the outer face.
          // remove the connecting edges from v to bicomp, then
          // is_kuratowski_subgraph will shrink vertices of degree 1 
          // automatically...

          is_in_subgraph[v_dfchild_handle.first_edge()] = false;
          is_in_subgraph[v_dfchild_handle.second_edge()] = false;

        }
      else if (chosen_case == detail::BM_CASE_E)
        {
          // Similarly to case C, if the endpoints of the x-y path are both 
          // below x and y, we should remove an edge to allow the subgraph to 
          // contract to a K_3_3.


          if ((first_x_y_path_endpoint != x && first_x_y_path_endpoint != y) ||
              (second_x_y_path_endpoint != x && second_x_y_path_endpoint != y)
              )
            {
              is_in_subgraph[dfs_parent_edge[v]] = false;              

              vertex_t deletion_endpoint, other_endpoint;
              if (lower_face_vertex[first_x_y_path_endpoint])
                {
                  deletion_endpoint = second_x_y_path_endpoint;
                  other_endpoint = first_x_y_path_endpoint;
                }
              else
                {                
                  deletion_endpoint = first_x_y_path_endpoint;
                  other_endpoint = second_x_y_path_endpoint;
                }

              typename face_edge_iterator<>::type face_itr, face_end;
              
              bool found_other_endpoint = false;
              for(face_itr = typename face_edge_iterator<>::type
                    (deletion_endpoint, face_handles, first_side());
                  face_itr != face_end; ++face_itr
                  )
                {
                  edge_t e(*face_itr);
                  if (source(e,g) == other_endpoint || 
                      target(e,g) == other_endpoint
                      )
                    {
                      found_other_endpoint = true;
                      break;
                    }
                }

              if (found_other_endpoint)
                {
                  is_in_subgraph[face_handles[deletion_endpoint].first_edge()] 
                    = false;
                }
              else
                {
                  is_in_subgraph[face_handles[deletion_endpoint].second_edge()]
                    = false;
                }
            }
          
        }


      for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
        if (is_in_subgraph[*ei])
          *o_itr = *ei;
      
    }



    template<typename EdgePermutation>
    void make_edge_permutation(EdgePermutation perm)
    {
      vertex_iterator_t vi, vi_end;
      for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
        {
          vertex_t v(*vi);
          perm[v].clear();
          face_handles[v].get_list(std::back_inserter(perm[v]));
        }
    }


  private:

    const Graph& g;
    VertexIndexMap vm;

    vertex_t kuratowski_v;
    vertex_t kuratowski_x;
    vertex_t kuratowski_y;
    
    vertex_list_t garbage; // we delete items from linked lists by 
                           // splicing them into garbage

    //only need these two for kuratowski subgraph isolation
    std::vector<vertex_t> current_merge_points;
    std::vector<edge_t> embedded_edges;
    
    //property map storage
    std::vector<v_size_t> low_point_vector;
    std::vector<vertex_t> dfs_parent_vector;
    std::vector<v_size_t> dfs_number_vector;
    std::vector<v_size_t> least_ancestor_vector;
    std::vector<face_handle_list_ptr_t> pertinent_roots_vector;
    std::vector<v_size_t> backedge_flag_vector;
    std::vector<v_size_t> visited_vector;
    std::vector< face_handle_t > face_handles_vector;
    std::vector< face_handle_t > dfs_child_handles_vector;
    std::vector< vertex_list_ptr_t > separated_dfs_child_list_vector;
    std::vector< typename vertex_list_t::iterator > 
        separated_node_in_parent_list_vector;
    std::vector<vertex_t> canonical_dfs_child_vector;
    std::vector<bool> flipped_vector;
    std::vector<edge_vector_t> backedges_vector;
    edge_vector_t self_loops;
    std::vector<edge_t> dfs_parent_edge_vector;
    vertex_vector_t vertices_by_dfs_num;

    //property maps
    vertex_to_v_size_map_t low_point;
    vertex_to_vertex_map_t dfs_parent;
    vertex_to_v_size_map_t dfs_number;
    vertex_to_v_size_map_t least_ancestor;
    vertex_to_face_handle_list_ptr_map_t pertinent_roots;
    vertex_to_v_size_map_t backedge_flag;
    vertex_to_v_size_map_t visited;
    vertex_to_face_handle_map_t face_handles;         
    vertex_to_face_handle_map_t dfs_child_handles;
    vertex_to_vertex_list_ptr_map_t separated_dfs_child_list;
    vertex_to_separated_node_map_t separated_node_in_parent_list;
    vertex_to_vertex_map_t canonical_dfs_child;      
    vertex_to_bool_map_t flipped;
    vertex_to_edge_vector_map_t backedges;
    vertex_to_edge_map_t dfs_parent_edge; //only need for kuratowski

    merge_stack_t merge_stack;
    
  };
  
      
} //namespace boost

#endif //__BOYER_MYRVOLD_IMPL_HPP__