summaryrefslogtreecommitdiff
path: root/boost/graph/detail/histogram_sort.hpp
blob: ca6266a5286f27d74b7ef462194a41483dc65bbd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// Copyright 2009 The Trustees of Indiana University.

// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

//  Authors: Jeremiah Willcock
//           Andrew Lumsdaine

#ifndef BOOST_GRAPH_DETAIL_HISTOGRAM_SORT_HPP
#define BOOST_GRAPH_DETAIL_HISTOGRAM_SORT_HPP

#include <boost/assert.hpp>

namespace boost {
  namespace graph {
    namespace detail {

template<typename InputIterator>
size_t
reserve_count_for_single_pass_helper(InputIterator, InputIterator,
                                     std::input_iterator_tag)
{
  // Do nothing: we have no idea how much storage to reserve.
  return 0;
}

template<typename InputIterator>
size_t
reserve_count_for_single_pass_helper(InputIterator first, InputIterator last,
                                     std::random_access_iterator_tag)
{
  using std::distance;
  typename std::iterator_traits<InputIterator>::difference_type n =
    distance(first, last);
  return (size_t)n;
}

template<typename InputIterator>
size_t
reserve_count_for_single_pass(InputIterator first, InputIterator last) {
  typedef typename std::iterator_traits<InputIterator>::iterator_category
    category;
  return reserve_count_for_single_pass_helper(first, last, category());
}

template <typename KeyIterator, typename RowstartIterator,
          typename VerticesSize, typename KeyFilter, typename KeyTransform>
void
count_starts
  (KeyIterator begin, KeyIterator end,
   RowstartIterator starts, // Must support numverts + 1 elements
   VerticesSize numkeys,
   KeyFilter key_filter,
   KeyTransform key_transform) {

  typedef VerticesSize vertices_size_type;
  typedef typename std::iterator_traits<RowstartIterator>::value_type EdgeIndex;

  // Put the degree of each vertex v into m_rowstart[v + 1]
  for (KeyIterator i = begin; i != end; ++i) {
    if (key_filter(*i)) {
      BOOST_ASSERT (key_transform(*i) < numkeys);
      ++starts[key_transform(*i) + 1];
    }
  }

  // Compute the partial sum of the degrees to get the actual values of
  // m_rowstart
  EdgeIndex start_of_this_row = 0;
  starts[0] = start_of_this_row;
  for (vertices_size_type i = 1; i <= numkeys; ++i) {
    start_of_this_row += starts[i];
    starts[i] = start_of_this_row;
  }
}

template <typename KeyIterator, typename RowstartIterator,
          typename NumKeys,
          typename Value1InputIter,
          typename Value1OutputIter, typename KeyFilter, typename KeyTransform>
void
histogram_sort(KeyIterator key_begin, KeyIterator key_end,
               RowstartIterator rowstart, // Must support numkeys + 1 elements and be precomputed
               NumKeys numkeys,
               Value1InputIter values1_begin,
               Value1OutputIter values1_out,
               KeyFilter key_filter,
               KeyTransform key_transform) {

  typedef NumKeys vertices_size_type;
  typedef typename std::iterator_traits<RowstartIterator>::value_type EdgeIndex;

  // Histogram sort the edges by their source vertices, putting the targets
  // into m_column.  The index current_insert_positions[v] contains the next
  // location to insert out edges for vertex v.
  std::vector<EdgeIndex>
    current_insert_positions(rowstart, rowstart + numkeys);
  Value1InputIter v1i = values1_begin;
  for (KeyIterator i = key_begin; i != key_end; ++i, ++v1i) {
    if (key_filter(*i)) {
      vertices_size_type source = key_transform(*i);
      BOOST_ASSERT (source < numkeys);
      EdgeIndex insert_pos = current_insert_positions[source];
      ++current_insert_positions[source];
      values1_out[insert_pos] = *v1i;
    }
  }
}

template <typename KeyIterator, typename RowstartIterator,
          typename NumKeys,
          typename Value1InputIter,
          typename Value1OutputIter,
          typename Value2InputIter,
          typename Value2OutputIter,
          typename KeyFilter, typename KeyTransform>
void
histogram_sort(KeyIterator key_begin, KeyIterator key_end,
               RowstartIterator rowstart, // Must support numkeys + 1 elements and be precomputed
               NumKeys numkeys,
               Value1InputIter values1_begin,
               Value1OutputIter values1_out,
               Value2InputIter values2_begin,
               Value2OutputIter values2_out,
               KeyFilter key_filter,
               KeyTransform key_transform) {

  typedef NumKeys vertices_size_type;
  typedef typename std::iterator_traits<RowstartIterator>::value_type EdgeIndex;

  // Histogram sort the edges by their source vertices, putting the targets
  // into m_column.  The index current_insert_positions[v] contains the next
  // location to insert out edges for vertex v.
  std::vector<EdgeIndex>
    current_insert_positions(rowstart, rowstart + numkeys);
  Value1InputIter v1i = values1_begin;
  Value2InputIter v2i = values2_begin;
  for (KeyIterator i = key_begin; i != key_end; ++i, ++v1i, ++v2i) {
    if (key_filter(*i)) {
      vertices_size_type source = key_transform(*i);
      BOOST_ASSERT (source < numkeys);
      EdgeIndex insert_pos = current_insert_positions[source];
      ++current_insert_positions[source];
      values1_out[insert_pos] = *v1i;
      values2_out[insert_pos] = *v2i;
    }
  }
}

template <typename KeyIterator, typename RowstartIterator,
          typename NumKeys,
          typename Value1Iter,
          typename KeyTransform>
void
histogram_sort_inplace(KeyIterator key_begin,
                       RowstartIterator rowstart, // Must support numkeys + 1 elements and be precomputed
                       NumKeys numkeys,
                       Value1Iter values1,
                       KeyTransform key_transform) {

  typedef NumKeys vertices_size_type;
  typedef typename std::iterator_traits<RowstartIterator>::value_type EdgeIndex;

  // 1. Copy m_rowstart (except last element) to get insert positions
  std::vector<EdgeIndex> insert_positions(rowstart, rowstart + numkeys);
  // 2. Swap the sources and targets into place
  for (size_t i = 0; i < rowstart[numkeys]; ++i) {
    BOOST_ASSERT (key_transform(key_begin[i]) < numkeys);
    // While edge i is not in the right bucket:
    while (!(i >= rowstart[key_transform(key_begin[i])] && i < insert_positions[key_transform(key_begin[i])])) {
      // Add a slot in the right bucket
      size_t target_pos = insert_positions[key_transform(key_begin[i])]++;
      BOOST_ASSERT (target_pos < rowstart[key_transform(key_begin[i]) + 1]);
      if (target_pos == i) continue;
      // Swap this edge into place
      using std::swap;
      swap(key_begin[i], key_begin[target_pos]);
      swap(values1[i], values1[target_pos]);
    }
  }
}

template <typename KeyIterator, typename RowstartIterator,
          typename NumKeys,
          typename Value1Iter,
          typename Value2Iter,
          typename KeyTransform>
void
histogram_sort_inplace(KeyIterator key_begin,
                       RowstartIterator rowstart, // Must support numkeys + 1 elements and be precomputed
                       NumKeys numkeys,
                       Value1Iter values1,
                       Value2Iter values2,
                       KeyTransform key_transform) {

  typedef NumKeys vertices_size_type;
  typedef typename std::iterator_traits<RowstartIterator>::value_type EdgeIndex;

  // 1. Copy m_rowstart (except last element) to get insert positions
  std::vector<EdgeIndex> insert_positions(rowstart, rowstart + numkeys);
  // 2. Swap the sources and targets into place
  for (size_t i = 0; i < rowstart[numkeys]; ++i) {
    BOOST_ASSERT (key_transform(key_begin[i]) < numkeys);
    // While edge i is not in the right bucket:
    while (!(i >= rowstart[key_transform(key_begin[i])] && i < insert_positions[key_transform(key_begin[i])])) {
      // Add a slot in the right bucket
      size_t target_pos = insert_positions[key_transform(key_begin[i])]++;
      BOOST_ASSERT (target_pos < rowstart[key_transform(key_begin[i]) + 1]);
      if (target_pos == i) continue;
      // Swap this edge into place
      using std::swap;
      swap(key_begin[i], key_begin[target_pos]);
      swap(values1[i], values1[target_pos]);
      swap(values2[i], values2[target_pos]);
    }
  }
}

template <typename InputIterator, typename VerticesSize>
void split_into_separate_coords(InputIterator begin, InputIterator end,
                                std::vector<VerticesSize>& firsts,
                                std::vector<VerticesSize>& seconds) {
  firsts.clear();
  seconds.clear();
  size_t reserve_size
    = detail::reserve_count_for_single_pass(begin, end);
  firsts.reserve(reserve_size);
  seconds.reserve(reserve_size);
  for (; begin != end; ++begin) {
    std::pair<VerticesSize, VerticesSize> edge = *begin;
    firsts.push_back(edge.first);
    seconds.push_back(edge.second);
  }
}

template <typename InputIterator, typename VerticesSize, typename SourceFilter>
void split_into_separate_coords_filtered
  (InputIterator begin, InputIterator end,
   std::vector<VerticesSize>& firsts,
   std::vector<VerticesSize>& seconds,
   const SourceFilter& filter) {
  firsts.clear();
  seconds.clear();
  for (; begin != end; ++begin) {
    std::pair<VerticesSize, VerticesSize> edge = *begin;
    if (filter(edge.first)) {
      firsts.push_back(edge.first);
      seconds.push_back(edge.second);
    }
  }
}

template <typename InputIterator, typename PropInputIterator,
          typename VerticesSize, typename PropType, typename SourceFilter>
void split_into_separate_coords_filtered
  (InputIterator begin, InputIterator end,
   PropInputIterator props,
   std::vector<VerticesSize>& firsts,
   std::vector<VerticesSize>& seconds,
   std::vector<PropType>& props_out,
   const SourceFilter& filter) {
  firsts.clear();
  seconds.clear();
  props_out.clear();
  for (; begin != end; ++begin) {
    std::pair<VerticesSize, VerticesSize> edge = *begin;
    if (filter(edge.first)) {
      firsts.push_back(edge.first);
      seconds.push_back(edge.second);
      props_out.push_back(*props);
    }
    ++props;
  }
}

template <typename Pair>
struct project1st {
  typedef typename Pair::first_type result_type;
  const result_type& operator()(const Pair& p) const {return p.first;}
};

template <typename Pair>
struct project2nd {
  typedef typename Pair::second_type result_type;
  const result_type& operator()(const Pair& p) const {return p.second;}
};

    }
  }
}

#endif // BOOST_GRAPH_DETAIL_HISTOGRAM_SORT_HPP