summaryrefslogtreecommitdiff
path: root/boost/geometry/strategies/geographic/intersection.hpp
blob: 1708c274c0728c5dfa089d978003596dc98481fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
// Boost.Geometry

// Copyright (c) 2016-2017, Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle

// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP
#define BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP

#include <algorithm>

#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/core/radian_access.hpp>
#include <boost/geometry/core/srs.hpp>
#include <boost/geometry/core/tags.hpp>

#include <boost/geometry/algorithms/detail/assign_values.hpp>
#include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
#include <boost/geometry/algorithms/detail/equals/point_point.hpp>
#include <boost/geometry/algorithms/detail/recalculate.hpp>

#include <boost/geometry/formulas/andoyer_inverse.hpp>
#include <boost/geometry/formulas/sjoberg_intersection.hpp>
#include <boost/geometry/formulas/spherical.hpp>

#include <boost/geometry/geometries/concepts/point_concept.hpp>
#include <boost/geometry/geometries/concepts/segment_concept.hpp>

#include <boost/geometry/policies/robustness/segment_ratio.hpp>

#include <boost/geometry/strategies/geographic/area.hpp>
#include <boost/geometry/strategies/geographic/distance.hpp>
#include <boost/geometry/strategies/geographic/parameters.hpp>
#include <boost/geometry/strategies/geographic/side.hpp>
#include <boost/geometry/strategies/intersection.hpp>
#include <boost/geometry/strategies/intersection_result.hpp>
#include <boost/geometry/strategies/side_info.hpp>

#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>


namespace boost { namespace geometry
{

namespace strategy { namespace intersection
{

// CONSIDER: Improvement of the robustness/accuracy/repeatability by
// moving all segments to 0 longitude
// picking latitudes closer to 0
// etc.

template
<
    typename FormulaPolicy = strategy::andoyer,
    unsigned int Order = strategy::default_order<FormulaPolicy>::value,
    typename Spheroid = srs::spheroid<double>,
    typename CalculationType = void
>
struct geographic_segments
{
    typedef side::geographic
        <
            FormulaPolicy, Spheroid, CalculationType
        > side_strategy_type;

    inline side_strategy_type get_side_strategy() const
    {
        return side_strategy_type(m_spheroid);
    }

    template <typename Geometry1, typename Geometry2>
    struct point_in_geometry_strategy
    {
        typedef strategy::within::winding
            <
                typename point_type<Geometry1>::type,
                typename point_type<Geometry2>::type,
                side_strategy_type,
                CalculationType
            > type;
    };

    template <typename Geometry1, typename Geometry2>
    inline typename point_in_geometry_strategy<Geometry1, Geometry2>::type
        get_point_in_geometry_strategy() const
    {
        typedef typename point_in_geometry_strategy
            <
                Geometry1, Geometry2
            >::type strategy_type;
        return strategy_type(get_side_strategy());
    }

    template <typename Geometry>
    struct area_strategy
    {
        typedef area::geographic
            <
                typename point_type<Geometry>::type,
                FormulaPolicy,
                Order,
                Spheroid,
                CalculationType
            > type;
    };

    template <typename Geometry>
    inline typename area_strategy<Geometry>::type get_area_strategy() const
    {
        typedef typename area_strategy<Geometry>::type strategy_type;
        return strategy_type(m_spheroid);
    }

    template <typename Geometry>
    struct distance_strategy
    {
        typedef distance::geographic
            <
                FormulaPolicy,
                Spheroid,
                CalculationType
            > type;
    };

    template <typename Geometry>
    inline typename distance_strategy<Geometry>::type get_distance_strategy() const
    {
        typedef typename distance_strategy<Geometry>::type strategy_type;
        return strategy_type(m_spheroid);
    }

    enum intersection_point_flag { ipi_inters = 0, ipi_at_a1, ipi_at_a2, ipi_at_b1, ipi_at_b2 };

    template <typename CoordinateType, typename SegmentRatio>
    struct segment_intersection_info
    {
        typedef typename select_most_precise
            <
                CoordinateType, double
            >::type promoted_type;

        promoted_type comparable_length_a() const
        {
            return robust_ra.denominator();
        }

        promoted_type comparable_length_b() const
        {
            return robust_rb.denominator();
        }

        template <typename Point, typename Segment1, typename Segment2>
        void assign_a(Point& point, Segment1 const& a, Segment2 const& b) const
        {
            assign(point, a, b);
        }
        template <typename Point, typename Segment1, typename Segment2>
        void assign_b(Point& point, Segment1 const& a, Segment2 const& b) const
        {
            assign(point, a, b);
        }

        template <typename Point, typename Segment1, typename Segment2>
        void assign(Point& point, Segment1 const& a, Segment2 const& b) const
        {
            if (ip_flag == ipi_inters)
            {
                // TODO: assign the rest of coordinates
                set_from_radian<0>(point, lon);
                set_from_radian<1>(point, lat);
            }
            else if (ip_flag == ipi_at_a1)
            {
                detail::assign_point_from_index<0>(a, point);
            }
            else if (ip_flag == ipi_at_a2)
            {
                detail::assign_point_from_index<1>(a, point);
            }
            else if (ip_flag == ipi_at_b1)
            {
                detail::assign_point_from_index<0>(b, point);
            }
            else // ip_flag == ipi_at_b2
            {
                detail::assign_point_from_index<1>(b, point);
            }
        }

        CoordinateType lon;
        CoordinateType lat;
        SegmentRatio robust_ra;
        SegmentRatio robust_rb;
        intersection_point_flag ip_flag;
    };

    explicit geographic_segments(Spheroid const& spheroid = Spheroid())
        : m_spheroid(spheroid)
    {}

    // Relate segments a and b
    template
    <
        typename Segment1,
        typename Segment2,
        typename Policy,
        typename RobustPolicy
    >
    inline typename Policy::return_type apply(Segment1 const& a, Segment2 const& b,
                                              Policy const& policy,
                                              RobustPolicy const& robust_policy) const
    {
        typedef typename point_type<Segment1>::type point1_t;
        typedef typename point_type<Segment2>::type point2_t;
        point1_t a1, a2;
        point2_t b1, b2;

        detail::assign_point_from_index<0>(a, a1);
        detail::assign_point_from_index<1>(a, a2);
        detail::assign_point_from_index<0>(b, b1);
        detail::assign_point_from_index<1>(b, b2);

        return apply(a, b, policy, robust_policy, a1, a2, b1, b2);
    }

    // Relate segments a and b
    template
    <
        typename Segment1,
        typename Segment2,
        typename Policy,
        typename RobustPolicy,
        typename Point1,
        typename Point2
    >
    inline typename Policy::return_type apply(Segment1 const& a, Segment2 const& b,
                                              Policy const&, RobustPolicy const&,
                                              Point1 a1, Point1 a2, Point2 b1, Point2 b2) const
    {
        bool is_a_reversed = get<1>(a1) > get<1>(a2);
        bool is_b_reversed = get<1>(b1) > get<1>(b2);
                           
        if (is_a_reversed)
        {
            std::swap(a1, a2);
        }

        if (is_b_reversed)
        {
            std::swap(b1, b2);
        }

        return apply<Policy>(a, b, a1, a2, b1, b2, is_a_reversed, is_b_reversed);
    }

private:
    // Relate segments a and b
    template
    <
        typename Policy,
        typename Segment1,
        typename Segment2,
        typename Point1,
        typename Point2
    >
    inline typename Policy::return_type apply(Segment1 const& a, Segment2 const& b,
                                              Point1 const& a1, Point1 const& a2,
                                              Point2 const& b1, Point2 const& b2,
                                              bool is_a_reversed, bool is_b_reversed) const
    {
        BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment1>) );
        BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment2>) );

        typedef typename select_calculation_type
            <Segment1, Segment2, CalculationType>::type calc_t;

        // normalized spheroid
        srs::spheroid<calc_t> spheroid = normalized_spheroid<calc_t>(m_spheroid);

        // TODO: check only 2 first coordinates here?
        using geometry::detail::equals::equals_point_point;
        bool a_is_point = equals_point_point(a1, a2);
        bool b_is_point = equals_point_point(b1, b2);

        if(a_is_point && b_is_point)
        {
            return equals_point_point(a1, b2)
                ? Policy::degenerate(a, true)
                : Policy::disjoint()
                ;
        }
        
        calc_t const a1_lon = get_as_radian<0>(a1);
        calc_t const a1_lat = get_as_radian<1>(a1);
        calc_t const a2_lon = get_as_radian<0>(a2);
        calc_t const a2_lat = get_as_radian<1>(a2);
        calc_t const b1_lon = get_as_radian<0>(b1);
        calc_t const b1_lat = get_as_radian<1>(b1);
        calc_t const b2_lon = get_as_radian<0>(b2);
        calc_t const b2_lat = get_as_radian<1>(b2);

        side_info sides;

        // NOTE: potential optimization, don't calculate distance at this point
        // this would require to reimplement inverse strategy to allow
        // calculation of distance if needed, probably also storing intermediate
        // results somehow inside an object.
        typedef typename FormulaPolicy::template inverse<calc_t, true, true, false, false, false> inverse_dist_azi;
        typedef typename inverse_dist_azi::result_type inverse_result;

        // TODO: no need to call inverse formula if we know that the points are equal
        // distance can be set to 0 in this case and azimuth may be not calculated
        bool const is_equal_a1_b1 = equals_point_point(a1, b1);
        bool const is_equal_a2_b1 = equals_point_point(a2, b1);

        inverse_result res_b1_b2 = inverse_dist_azi::apply(b1_lon, b1_lat, b2_lon, b2_lat, spheroid);
        inverse_result res_b1_a1 = inverse_dist_azi::apply(b1_lon, b1_lat, a1_lon, a1_lat, spheroid);
        inverse_result res_b1_a2 = inverse_dist_azi::apply(b1_lon, b1_lat, a2_lon, a2_lat, spheroid);
        sides.set<0>(is_equal_a1_b1 ? 0 : formula::azimuth_side_value(res_b1_a1.azimuth, res_b1_b2.azimuth),
                     is_equal_a2_b1 ? 0 : formula::azimuth_side_value(res_b1_a2.azimuth, res_b1_b2.azimuth));
        if (sides.same<0>())
        {
            // Both points are at the same side of other segment, we can leave
            return Policy::disjoint();
        }

        bool const is_equal_a1_b2 = equals_point_point(a1, b2);

        inverse_result res_a1_a2 = inverse_dist_azi::apply(a1_lon, a1_lat, a2_lon, a2_lat, spheroid);
        inverse_result res_a1_b1 = inverse_dist_azi::apply(a1_lon, a1_lat, b1_lon, b1_lat, spheroid);
        inverse_result res_a1_b2 = inverse_dist_azi::apply(a1_lon, a1_lat, b2_lon, b2_lat, spheroid);
        sides.set<1>(is_equal_a1_b1 ? 0 : formula::azimuth_side_value(res_a1_b1.azimuth, res_a1_a2.azimuth),
                     is_equal_a1_b2 ? 0 : formula::azimuth_side_value(res_a1_b2.azimuth, res_a1_a2.azimuth));
        if (sides.same<1>())
        {
            // Both points are at the same side of other segment, we can leave
            return Policy::disjoint();
        }

        // NOTE: at this point the segments may still be disjoint
        // NOTE: at this point one of the segments may be degenerated

        bool collinear = sides.collinear();       

        if (! collinear)
        {
            // WARNING: the side strategy doesn't have the info about the other
            // segment so it may return results inconsistent with this intersection
            // strategy, as it checks both segments for consistency

            if (sides.get<0, 0>() == 0 && sides.get<0, 1>() == 0)
            {
                collinear = true;
                sides.set<1>(0, 0);
            }
            else if (sides.get<1, 0>() == 0 && sides.get<1, 1>() == 0)
            {
                collinear = true;
                sides.set<0>(0, 0);
            }
        }

        if (collinear)
        {
            if (a_is_point)
            {
                return collinear_one_degenerated<Policy, calc_t>(a, true, b1, b2, a1, a2, res_b1_b2, res_b1_a1, is_b_reversed);
            }
            else if (b_is_point)
            {
                return collinear_one_degenerated<Policy, calc_t>(b, false, a1, a2, b1, b2, res_a1_a2, res_a1_b1, is_a_reversed);
            }
            else
            {
                calc_t dist_a1_a2, dist_a1_b1, dist_a1_b2;
                calc_t dist_b1_b2, dist_b1_a1, dist_b1_a2;
                // use shorter segment
                if (res_a1_a2.distance <= res_b1_b2.distance)
                {
                    calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_b1, dist_a1_a2, dist_a1_b1);
                    calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_b2, dist_a1_a2, dist_a1_b2);
                    dist_b1_b2 = dist_a1_b2 - dist_a1_b1;
                    dist_b1_a1 = -dist_a1_b1;
                    dist_b1_a2 = dist_a1_a2 - dist_a1_b1;
                }
                else
                {
                    calculate_collinear_data(b1, b2, a1, a2, res_b1_b2, res_b1_a1, dist_b1_b2, dist_b1_a1);
                    calculate_collinear_data(b1, b2, a1, a2, res_b1_b2, res_b1_a2, dist_b1_b2, dist_b1_a2);
                    dist_a1_a2 = dist_b1_a2 - dist_b1_a1;
                    dist_a1_b1 = -dist_b1_a1;
                    dist_a1_b2 = dist_b1_b2 - dist_b1_a1;
                }

                // NOTE: this is probably not needed
                calc_t const c0 = 0;
                int a1_on_b = position_value(c0, dist_a1_b1, dist_a1_b2);
                int a2_on_b = position_value(dist_a1_a2, dist_a1_b1, dist_a1_b2);
                int b1_on_a = position_value(c0, dist_b1_a1, dist_b1_a2);
                int b2_on_a = position_value(dist_b1_b2, dist_b1_a1, dist_b1_a2);

                if ((a1_on_b < 1 && a2_on_b < 1) || (a1_on_b > 3 && a2_on_b > 3))
                {
                    return Policy::disjoint();
                }

                if (a1_on_b == 1)
                {
                    dist_b1_a1 = 0;
                    dist_a1_b1 = 0;
                }
                else if (a1_on_b == 3)
                {
                    dist_b1_a1 = dist_b1_b2;
                    dist_a1_b2 = 0;
                }

                if (a2_on_b == 1)
                {
                    dist_b1_a2 = 0;
                    dist_a1_b1 = dist_a1_a2;
                }
                else if (a2_on_b == 3)
                {
                    dist_b1_a2 = dist_b1_b2;
                    dist_a1_b2 = dist_a1_a2;
                }

                bool opposite = ! same_direction(res_a1_a2.azimuth, res_b1_b2.azimuth);

                // NOTE: If segment was reversed opposite, positions and segment ratios has to be altered
                if (is_a_reversed)
                {
                    // opposite
                    opposite = ! opposite;
                    // positions
                    std::swap(a1_on_b, a2_on_b);
                    b1_on_a = 4 - b1_on_a;
                    b2_on_a = 4 - b2_on_a;
                    // distances for ratios
                    std::swap(dist_b1_a1, dist_b1_a2);
                    dist_a1_b1 = dist_a1_a2 - dist_a1_b1;
                    dist_a1_b2 = dist_a1_a2 - dist_a1_b2;
                }
                if (is_b_reversed)
                {
                    // opposite
                    opposite = ! opposite;
                    // positions
                    a1_on_b = 4 - a1_on_b;
                    a2_on_b = 4 - a2_on_b;
                    std::swap(b1_on_a, b2_on_a);
                    // distances for ratios
                    dist_b1_a1 = dist_b1_b2 - dist_b1_a1;
                    dist_b1_a2 = dist_b1_b2 - dist_b1_a2;
                    std::swap(dist_a1_b1, dist_a1_b2);
                }

                segment_ratio<calc_t> ra_from(dist_b1_a1, dist_b1_b2);
                segment_ratio<calc_t> ra_to(dist_b1_a2, dist_b1_b2);
                segment_ratio<calc_t> rb_from(dist_a1_b1, dist_a1_a2);
                segment_ratio<calc_t> rb_to(dist_a1_b2, dist_a1_a2);

                return Policy::segments_collinear(a, b, opposite,
                    a1_on_b, a2_on_b, b1_on_a, b2_on_a,
                    ra_from, ra_to, rb_from, rb_to);
            }
        }
        else // crossing or touching
        {
            if (a_is_point || b_is_point)
            {
                return Policy::disjoint();
            }

            calc_t lon = 0, lat = 0;
            intersection_point_flag ip_flag;
            calc_t dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1;
            if (calculate_ip_data(a1, a2, b1, b2,
                                  a1_lon, a1_lat, a2_lon, a2_lat,
                                  b1_lon, b1_lat, b2_lon, b2_lat,
                                  res_a1_a2, res_a1_b1, res_a1_b2,
                                  res_b1_b2, res_b1_a1, res_b1_a2,
                                  sides, spheroid,
                                  lon, lat,
                                  dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1,
                                  ip_flag))
            {
                // NOTE: If segment was reversed sides and segment ratios has to be altered
                if (is_a_reversed)
                {
                    // sides
                    sides_reverse_segment<0>(sides);
                    // distance for ratio
                    dist_a1_i1 = dist_a1_a2 - dist_a1_i1;
                    // ip flag
                    ip_flag_reverse_segment(ip_flag, ipi_at_a1, ipi_at_a2);
                }
                if (is_b_reversed)
                {
                    // sides
                    sides_reverse_segment<1>(sides);
                    // distance for ratio
                    dist_b1_i1 = dist_b1_b2 - dist_b1_i1;
                    // ip flag
                    ip_flag_reverse_segment(ip_flag, ipi_at_b1, ipi_at_b2);
                }

                // intersects
                segment_intersection_info
                    <
                        calc_t,
                        segment_ratio<calc_t>
                    > sinfo;

                sinfo.lon = lon;
                sinfo.lat = lat;
                sinfo.robust_ra.assign(dist_a1_i1, dist_a1_a2);
                sinfo.robust_rb.assign(dist_b1_i1, dist_b1_b2);
                sinfo.ip_flag = ip_flag;

                return Policy::segments_crosses(sides, sinfo, a, b);
            }
            else
            {
                return Policy::disjoint();
            }
        }
    }

    template <typename Policy, typename CalcT, typename Segment, typename Point1, typename Point2, typename ResultInverse>
    static inline typename Policy::return_type
        collinear_one_degenerated(Segment const& segment, bool degenerated_a,
                                  Point1 const& a1, Point1 const& a2,
                                  Point2 const& b1, Point2 const& b2,
                                  ResultInverse const& res_a1_a2,
                                  ResultInverse const& res_a1_bi,
                                  bool is_other_reversed)
    {
        CalcT dist_1_2, dist_1_o;
        if (! calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_bi, dist_1_2, dist_1_o))
        {
            return Policy::disjoint();
        }

        // NOTE: If segment was reversed segment ratio has to be altered
        if (is_other_reversed)
        {
            // distance for ratio
            dist_1_o = dist_1_2 - dist_1_o;
        }
        
        return Policy::one_degenerate(segment, segment_ratio<CalcT>(dist_1_o, dist_1_2), degenerated_a);
    }

    // TODO: instead of checks below test bi against a1 and a2 here?
    //       in order to make this independent from is_near()
    template <typename Point1, typename Point2, typename ResultInverse, typename CalcT>
    static inline bool calculate_collinear_data(Point1 const& a1, Point1 const& a2, // in
                                                Point2 const& b1, Point2 const& b2, // in
                                                ResultInverse const& res_a1_a2,     // in
                                                ResultInverse const& res_a1_bi,     // in
                                                CalcT& dist_a1_a2, CalcT& dist_a1_bi) // out
    {
        dist_a1_a2 = res_a1_a2.distance;

        dist_a1_bi = res_a1_bi.distance;
        if (! same_direction(res_a1_bi.azimuth, res_a1_a2.azimuth))
        {
            dist_a1_bi = -dist_a1_bi;
        }

        // if i1 is close to a1 and b1 or b2 is equal to a1
        if (is_endpoint_equal(dist_a1_bi, a1, b1, b2))
        {
            dist_a1_bi = 0;
            return true;
        }
        // or i1 is close to a2 and b1 or b2 is equal to a2
        else if (is_endpoint_equal(dist_a1_a2 - dist_a1_bi, a2, b1, b2))
        {
            dist_a1_bi = dist_a1_a2;
            return true;
        }

        // or i1 is on b
        return segment_ratio<CalcT>(dist_a1_bi, dist_a1_a2).on_segment();
    }

    template <typename Point1, typename Point2, typename CalcT, typename ResultInverse, typename Spheroid_>
    static inline bool calculate_ip_data(Point1 const& a1, Point1 const& a2,       // in
                                         Point2 const& b1, Point2 const& b2,       // in
                                         CalcT const& a1_lon, CalcT const& a1_lat, // in
                                         CalcT const& a2_lon, CalcT const& a2_lat, // in
                                         CalcT const& b1_lon, CalcT const& b1_lat, // in
                                         CalcT const& b2_lon, CalcT const& b2_lat, // in
                                         ResultInverse const& res_a1_a2,           // in
                                         ResultInverse const& res_a1_b1,           // in
                                         ResultInverse const& res_a1_b2,           // in
                                         ResultInverse const& res_b1_b2,           // in
                                         ResultInverse const& res_b1_a1,           // in
                                         ResultInverse const& res_b1_a2,           // in
                                         side_info const& sides,                   // in
                                         Spheroid_ const& spheroid,                // in
                                         CalcT & lon, CalcT & lat,             // out
                                         CalcT& dist_a1_a2, CalcT& dist_a1_ip, // out
                                         CalcT& dist_b1_b2, CalcT& dist_b1_ip, // out
                                         intersection_point_flag& ip_flag)     // out
    {
        dist_a1_a2 = res_a1_a2.distance;
        dist_b1_b2 = res_b1_b2.distance;

        // assign the IP if some endpoints overlap
        using geometry::detail::equals::equals_point_point;
        if (equals_point_point(a1, b1))
        {
            lon = a1_lon;
            lat = a1_lat;
            dist_a1_ip = 0;
            dist_b1_ip = 0;
            ip_flag = ipi_at_a1;
            return true;
        }
        else if (equals_point_point(a1, b2))
        {
            lon = a1_lon;
            lat = a1_lat;
            dist_a1_ip = 0;
            dist_b1_ip = dist_b1_b2;
            ip_flag = ipi_at_a1;
            return true;
        }
        else if (equals_point_point(a2, b1))
        {
            lon = a2_lon;
            lat = a2_lat;
            dist_a1_ip = dist_a1_a2;
            dist_b1_ip = 0;
            ip_flag = ipi_at_a2;
            return true;
        }
        else if (equals_point_point(a2, b2))
        {
            lon = a2_lon;
            lat = a2_lat;
            dist_a1_ip = dist_a1_a2;
            dist_b1_ip = dist_b1_b2;
            ip_flag = ipi_at_a2;
            return true;
        }

        // at this point we know that the endpoints doesn't overlap
        // check cases when an endpoint lies on the other geodesic
        if (sides.template get<0, 0>() == 0) // a1 wrt b
        {
            if (res_b1_a1.distance <= res_b1_b2.distance
                && same_direction(res_b1_a1.azimuth, res_b1_b2.azimuth))
            {
                lon = a1_lon;
                lat = a1_lat;
                dist_a1_ip = 0;
                dist_b1_ip = res_b1_a1.distance;
                ip_flag = ipi_at_a1;
                return true;
            }
            else
            {
                return false;
            }
        }
        else if (sides.template get<0, 1>() == 0) // a2 wrt b
        {
            if (res_b1_a2.distance <= res_b1_b2.distance
                && same_direction(res_b1_a2.azimuth, res_b1_b2.azimuth))
            {
                lon = a2_lon;
                lat = a2_lat;
                dist_a1_ip = res_a1_a2.distance;
                dist_b1_ip = res_b1_a2.distance;
                ip_flag = ipi_at_a2;
                return true;
            }
            else
            {
                return false;
            }
        }
        else if (sides.template get<1, 0>() == 0) // b1 wrt a
        {
            if (res_a1_b1.distance <= res_a1_a2.distance
                && same_direction(res_a1_b1.azimuth, res_a1_a2.azimuth))
            {
                lon = b1_lon;
                lat = b1_lat;
                dist_a1_ip = res_a1_b1.distance;
                dist_b1_ip = 0;
                ip_flag = ipi_at_b1;
                return true;
            }
            else
            {
                return false;
            }
        }
        else if (sides.template get<1, 1>() == 0) // b2 wrt a
        {
            if (res_a1_b2.distance <= res_a1_a2.distance
                && same_direction(res_a1_b2.azimuth, res_a1_a2.azimuth))
            {
                lon = b2_lon;
                lat = b2_lat;
                dist_a1_ip = res_a1_b2.distance;
                dist_b1_ip = res_b1_b2.distance;
                ip_flag = ipi_at_b2;
                return true;
            }
            else
            {
                return false;
            }
        }

        // At this point neither the endpoints overlaps
        // nor any andpoint lies on the other geodesic
        // So the endpoints should lie on the opposite sides of both geodesics

        bool const ok = formula::sjoberg_intersection<CalcT, FormulaPolicy::template inverse, Order>
                        ::apply(a1_lon, a1_lat, a2_lon, a2_lat, res_a1_a2.azimuth,
                                b1_lon, b1_lat, b2_lon, b2_lat, res_b1_b2.azimuth,
                                lon, lat, spheroid);

        if (! ok)
        {
            return false;
        }

        typedef typename FormulaPolicy::template inverse<CalcT, true, true, false, false, false> inverse_dist_azi;
        typedef typename inverse_dist_azi::result_type inverse_result;

        inverse_result const res_a1_ip = inverse_dist_azi::apply(a1_lon, a1_lat, lon, lat, spheroid);
        dist_a1_ip = res_a1_ip.distance;
        if (! same_direction(res_a1_ip.azimuth, res_a1_a2.azimuth))
        {
            dist_a1_ip = -dist_a1_ip;
        }

        bool is_on_a = segment_ratio<CalcT>(dist_a1_ip, dist_a1_a2).on_segment();
        // NOTE: not fully consistent with equals_point_point() since radians are always used.
        bool is_on_a1 = math::equals(lon, a1_lon) && math::equals(lat, a1_lat);
        bool is_on_a2 = math::equals(lon, a2_lon) && math::equals(lat, a2_lat);

        if (! (is_on_a || is_on_a1 || is_on_a2))
        {
            return false;
        }

        inverse_result const res_b1_ip = inverse_dist_azi::apply(b1_lon, b1_lat, lon, lat, spheroid);
        dist_b1_ip = res_b1_ip.distance;
        if (! same_direction(res_b1_ip.azimuth, res_b1_b2.azimuth))
        {
            dist_b1_ip = -dist_b1_ip;
        }

        bool is_on_b = segment_ratio<CalcT>(dist_b1_ip, dist_b1_b2).on_segment();
        // NOTE: not fully consistent with equals_point_point() since radians are always used.
        bool is_on_b1 = math::equals(lon, b1_lon) && math::equals(lat, b1_lat);
        bool is_on_b2 = math::equals(lon, b2_lon) && math::equals(lat, b2_lat);

        if (! (is_on_b || is_on_b1 || is_on_b2))
        {
            return false;
        }
        
        ip_flag = ipi_inters;

        if (is_on_b1)
        {
            lon = b1_lon;
            lat = b1_lat;
            dist_b1_ip = 0;
            ip_flag = ipi_at_b1;
        }
        else if (is_on_b2)
        {
            lon = b2_lon;
            lat = b2_lat;
            dist_b1_ip = res_b1_b2.distance;
            ip_flag = ipi_at_b2;
        }

        if (is_on_a1)
        {
            lon = a1_lon;
            lat = a1_lat;
            dist_a1_ip = 0;
            ip_flag = ipi_at_a1;
        }
        else if (is_on_a2)
        {
            lon = a2_lon;
            lat = a2_lat;
            dist_a1_ip = res_a1_a2.distance;
            ip_flag = ipi_at_a2;
        }        

        return true;
    }

    template <typename CalcT, typename P1, typename P2>
    static inline bool is_endpoint_equal(CalcT const& dist,
                                         P1 const& ai, P2 const& b1, P2 const& b2)
    {
        using geometry::detail::equals::equals_point_point;
        return is_near(dist) && (equals_point_point(ai, b1) || equals_point_point(ai, b2));
    }

    template <typename CalcT>
    static inline bool is_near(CalcT const& dist)
    {
        // NOTE: This strongly depends on the Inverse method
        CalcT const small_number = CalcT(boost::is_same<CalcT, float>::value ? 0.0001 : 0.00000001);
        return math::abs(dist) <= small_number;
    }

    template <typename ProjCoord1, typename ProjCoord2>
    static inline int position_value(ProjCoord1 const& ca1,
                                     ProjCoord2 const& cb1,
                                     ProjCoord2 const& cb2)
    {
        // S1x  0   1    2     3   4
        // S2       |---------->
        return math::equals(ca1, cb1) ? 1
             : math::equals(ca1, cb2) ? 3
             : cb1 < cb2 ?
                ( ca1 < cb1 ? 0
                : ca1 > cb2 ? 4
                : 2 )
              : ( ca1 > cb1 ? 0
                : ca1 < cb2 ? 4
                : 2 );
    }

    template <typename CalcT>
    static inline bool same_direction(CalcT const& azimuth1, CalcT const& azimuth2)
    {
        // distance between two angles normalized to (-180, 180]
        CalcT const angle_diff = math::longitude_distance_signed<radian>(azimuth1, azimuth2);
        return math::abs(angle_diff) <= math::half_pi<CalcT>();
    }

    template <int Which>
    static inline void sides_reverse_segment(side_info & sides)
    {
        // names assuming segment A is reversed (Which == 0)
        int a1_wrt_b = sides.template get<Which, 0>();
        int a2_wrt_b = sides.template get<Which, 1>();
        std::swap(a1_wrt_b, a2_wrt_b);
        sides.template set<Which>(a1_wrt_b, a2_wrt_b);
        int b1_wrt_a = sides.template get<1 - Which, 0>();
        int b2_wrt_a = sides.template get<1 - Which, 1>();
        sides.template set<1 - Which>(-b1_wrt_a, -b2_wrt_a);
    }

    static inline void ip_flag_reverse_segment(intersection_point_flag & ip_flag,
                                               intersection_point_flag const& ipi_at_p1,
                                               intersection_point_flag const& ipi_at_p2)
    {
        ip_flag = ip_flag == ipi_at_p1 ? ipi_at_p2 :
                  ip_flag == ipi_at_p2 ? ipi_at_p1 :
                  ip_flag;
    }

    template <typename CalcT, typename SpheroidT>
    static inline srs::spheroid<CalcT> normalized_spheroid(SpheroidT const& spheroid)
    {
        return srs::spheroid<CalcT>(CalcT(1),
                                    CalcT(get_radius<2>(spheroid)) // b/a
                                    / CalcT(get_radius<0>(spheroid)));
    }

private:
    Spheroid m_spheroid;
};


}} // namespace strategy::intersection

}} // namespace boost::geometry


#endif // BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP