summaryrefslogtreecommitdiff
path: root/boost/geometry/formulas/spherical.hpp
blob: ff24c51a8800558f1ed86b76503ea466c4249439 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// Boost.Geometry

// Copyright (c) 2016, Oracle and/or its affiliates.
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle

// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_FORMULAS_SPHERICAL_HPP
#define BOOST_GEOMETRY_FORMULAS_SPHERICAL_HPP

#include <boost/geometry/core/coordinate_system.hpp>
#include <boost/geometry/core/coordinate_type.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/core/radian_access.hpp>

//#include <boost/geometry/arithmetic/arithmetic.hpp>
#include <boost/geometry/arithmetic/cross_product.hpp>
#include <boost/geometry/arithmetic/dot_product.hpp>

#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/normalize_spheroidal_coordinates.hpp>
#include <boost/geometry/util/select_coordinate_type.hpp>

namespace boost { namespace geometry {
    
namespace formula {

template <typename T>
struct result_spherical
{
    result_spherical()
        : azimuth(0)
        , reverse_azimuth(0)
    {}

    T azimuth;
    T reverse_azimuth;
};

template <typename T>
static inline void sph_to_cart3d(T const& lon, T const& lat, T & x, T & y, T & z)
{
    T const cos_lat = cos(lat);
    x = cos_lat * cos(lon);
    y = cos_lat * sin(lon);
    z = sin(lat);
}

template <typename Point3d, typename PointSph>
static inline Point3d sph_to_cart3d(PointSph const& point_sph)
{
    typedef typename coordinate_type<Point3d>::type calc_t;

    calc_t const lon = get_as_radian<0>(point_sph);
    calc_t const lat = get_as_radian<1>(point_sph);
    calc_t x, y, z;
    sph_to_cart3d(lon, lat, x, y, z);

    Point3d res;
    set<0>(res, x);
    set<1>(res, y);
    set<2>(res, z);

    return res;
}

template <typename T>
static inline void cart3d_to_sph(T const& x, T const& y, T const& z, T & lon, T & lat)
{
    lon = atan2(y, x);
    lat = asin(z);
}

template <typename PointSph, typename Point3d>
static inline PointSph cart3d_to_sph(Point3d const& point_3d)
{
    typedef typename coordinate_type<PointSph>::type coord_t;
    typedef typename coordinate_type<Point3d>::type calc_t;

    calc_t const x = get<0>(point_3d);
    calc_t const y = get<1>(point_3d);
    calc_t const z = get<2>(point_3d);
    calc_t lonr, latr;
    cart3d_to_sph(x, y, z, lonr, latr);

    PointSph res;
    set_from_radian<0>(res, lonr);
    set_from_radian<1>(res, latr);

    coord_t lon = get<0>(res);
    coord_t lat = get<1>(res);

    math::normalize_spheroidal_coordinates
        <
            typename coordinate_system<PointSph>::type::units,
            coord_t
        >(lon, lat);

    set<0>(res, lon);
    set<1>(res, lat);

    return res;
}

// -1 right
// 1 left
// 0 on
template <typename Point3d1, typename Point3d2>
static inline int sph_side_value(Point3d1 const& norm, Point3d2 const& pt)
{
    typedef typename select_coordinate_type<Point3d1, Point3d2>::type calc_t;
    calc_t c0 = 0;
    calc_t d = dot_product(norm, pt);
    return math::equals(d, c0) ? 0
        : d > c0 ? 1
        : -1; // d < 0
}

template <typename CT, bool ReverseAzimuth, typename T1, typename T2>
static inline result_spherical<CT> spherical_azimuth(T1 const& lon1,
                                                     T1 const& lat1,
                                                     T2 const& lon2,
                                                     T2 const& lat2)
{
    typedef result_spherical<CT> result_type;
    result_type result;

    // http://williams.best.vwh.net/avform.htm#Crs
    // https://en.wikipedia.org/wiki/Great-circle_navigation
    CT dlon = lon2 - lon1;

    // An optimization which should kick in often for Boxes
    //if ( math::equals(dlon, ReturnType(0)) )
    //if ( get<0>(p1) == get<0>(p2) )
    //{
    //    return - sin(get_as_radian<1>(p1)) * cos_p2lat);
    //}

    CT const cos_dlon = cos(dlon);
    CT const sin_dlon = sin(dlon);
    CT const cos_lat1 = cos(lat1);
    CT const cos_lat2 = cos(lat2);
    CT const sin_lat1 = sin(lat1);
    CT const sin_lat2 = sin(lat2);

    {
        // "An alternative formula, not requiring the pre-computation of d"
        // In the formula below dlon is used as "d"
        CT const y = sin_dlon * cos_lat2;
        CT const x = cos_lat1 * sin_lat2 - sin_lat1 * cos_lat2 * cos_dlon;
        result.azimuth = atan2(y, x);
    }

    if (ReverseAzimuth)
    {
        CT const y = sin_dlon * cos_lat1;
        CT const x = sin_lat2 * cos_lat1 * cos_dlon - cos_lat2 * sin_lat1;
        result.reverse_azimuth = atan2(y, x);
    }

    return result;
}

template <typename ReturnType, typename T1, typename T2>
inline ReturnType spherical_azimuth(T1 const& lon1, T1 const& lat1,
                                    T2 const& lon2, T2 const& lat2)
{
    return spherical_azimuth<ReturnType, false>(lon1, lat1, lon2, lat2).azimuth;
}

template <typename T>
inline T spherical_azimuth(T const& lon1, T const& lat1, T const& lon2, T const& lat2)
{
    return spherical_azimuth<T, false>(lon1, lat1, lon2, lat2).azimuth;
}

template <typename T>
inline int azimuth_side_value(T const& azi_a1_p, T const& azi_a1_a2)
{
    T const pi = math::pi<T>();
    T const two_pi = math::two_pi<T>();

    // instead of the formula from XTD
    //calc_t a_diff = asin(sin(azi_a1_p - azi_a1_a2));

    T a_diff = azi_a1_p - azi_a1_a2;
    // normalize, angle in [-pi, pi]
    while (a_diff > pi)
        a_diff -= two_pi;
    while (a_diff < -pi)
        a_diff += two_pi;

    // NOTE: in general it shouldn't be required to support the pi/-pi case
    // because in non-cartesian systems it makes sense to check the side
    // only "between" the endpoints.
    // However currently the winding strategy calls the side strategy
    // for vertical segments to check if the point is "between the endpoints.
    // This could be avoided since the side strategy is not required for that
    // because meridian is the shortest path. So a difference of
    // longitudes would be sufficient (of course normalized to [-pi, pi]).

    // NOTE: with the above said, the pi/-pi check is temporary
    // however in case if this was required
    // the geodesics on ellipsoid aren't "symmetrical"
    // therefore instead of comparing a_diff to pi and -pi
    // one should probably use inverse azimuths and compare
    // the difference to 0 as well

    // positive azimuth is on the right side
    return math::equals(a_diff, 0)
        || math::equals(a_diff, pi)
        || math::equals(a_diff, -pi) ? 0
        : a_diff > 0 ? -1 // right
        : 1; // left
}

} // namespace formula

}} // namespace boost::geometry

#endif // BOOST_GEOMETRY_FORMULAS_SPHERICAL_HPP