summaryrefslogtreecommitdiff
path: root/boost/functional.hpp
blob: b618485c102e1bd49dc400e2ff293a8fbd424411 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
// ------------------------------------------------------------------------------
// Copyright (c) 2000 Cadenza New Zealand Ltd
// Distributed under the Boost Software License, Version 1.0. (See accompany-
// ing file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// ------------------------------------------------------------------------------
// Boost functional.hpp header file
// See http://www.boost.org/libs/functional for documentation.
// ------------------------------------------------------------------------------
// $Id$
// ------------------------------------------------------------------------------

#ifndef BOOST_FUNCTIONAL_HPP
#define BOOST_FUNCTIONAL_HPP

#include <boost/config.hpp>
#include <boost/call_traits.hpp>
#include <functional>

namespace boost
{
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
    // --------------------------------------------------------------------------
    // The following traits classes allow us to avoid the need for ptr_fun
    // because the types of arguments and the result of a function can be 
    // deduced.
    //
    // In addition to the standard types defined in unary_function and 
    // binary_function, we add
    //
    // - function_type, the type of the function or function object itself.
    //
    // - param_type, the type that should be used for passing the function or
    //   function object as an argument.
    // --------------------------------------------------------------------------
    namespace detail
    {
        template <class Operation>
        struct unary_traits_imp;
        
        template <class Operation>
        struct unary_traits_imp<Operation*>
        {
            typedef Operation                         function_type;
            typedef const function_type &             param_type;
            typedef typename Operation::result_type   result_type;
            typedef typename Operation::argument_type argument_type;
        };

        template <class R, class A>
        struct unary_traits_imp<R(*)(A)>
        {
            typedef R (*function_type)(A);
            typedef R (*param_type)(A);
            typedef R result_type;
            typedef A argument_type;
        };

        template <class Operation>
        struct binary_traits_imp;

        template <class Operation>
        struct binary_traits_imp<Operation*>
        {
            typedef Operation                                function_type;
            typedef const function_type &                    param_type;
            typedef typename Operation::result_type          result_type;
            typedef typename Operation::first_argument_type  first_argument_type;
            typedef typename Operation::second_argument_type second_argument_type;
        };
        
        template <class R, class A1, class A2>
        struct binary_traits_imp<R(*)(A1,A2)>
        {
            typedef R (*function_type)(A1,A2);
            typedef R (*param_type)(A1,A2);
            typedef R result_type;
            typedef A1 first_argument_type;
            typedef A2 second_argument_type;
        };
    } // namespace detail
    
    template <class Operation>
    struct unary_traits
    {
        typedef typename detail::unary_traits_imp<Operation*>::function_type function_type;
        typedef typename detail::unary_traits_imp<Operation*>::param_type    param_type;
        typedef typename detail::unary_traits_imp<Operation*>::result_type   result_type;
        typedef typename detail::unary_traits_imp<Operation*>::argument_type argument_type;
    }; 

    template <class R, class A>
    struct unary_traits<R(*)(A)>
    {
        typedef R (*function_type)(A);
        typedef R (*param_type)(A);
        typedef R result_type;
        typedef A argument_type;
    };

    template <class Operation>
    struct binary_traits
    {
        typedef typename detail::binary_traits_imp<Operation*>::function_type        function_type;
        typedef typename detail::binary_traits_imp<Operation*>::param_type           param_type;
        typedef typename detail::binary_traits_imp<Operation*>::result_type          result_type;
        typedef typename detail::binary_traits_imp<Operation*>::first_argument_type  first_argument_type;
        typedef typename detail::binary_traits_imp<Operation*>::second_argument_type second_argument_type;
    };
    
    template <class R, class A1, class A2>
    struct binary_traits<R(*)(A1,A2)>
    {
        typedef R (*function_type)(A1,A2);
        typedef R (*param_type)(A1,A2);
        typedef R result_type;
        typedef A1 first_argument_type;
        typedef A2 second_argument_type;
    };
#else // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
    // --------------------------------------------------------------------------
    // If we have no partial specialisation available, decay to a situation
    // that is no worse than in the Standard, i.e., ptr_fun will be required.
    // --------------------------------------------------------------------------

    template <class Operation>
    struct unary_traits
    {
        typedef Operation                         function_type;
        typedef const Operation&                  param_type;
        typedef typename Operation::result_type   result_type;
        typedef typename Operation::argument_type argument_type;
    }; 
    
    template <class Operation>
    struct binary_traits
    {
        typedef Operation                                function_type;
        typedef const Operation &                        param_type;
        typedef typename Operation::result_type          result_type;
        typedef typename Operation::first_argument_type  first_argument_type;
        typedef typename Operation::second_argument_type second_argument_type;
    };    
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
    
    // --------------------------------------------------------------------------
    // unary_negate, not1
    // --------------------------------------------------------------------------
    template <class Predicate>
    class unary_negate
        : public std::unary_function<typename unary_traits<Predicate>::argument_type,bool>
    {
      public:
        explicit unary_negate(typename unary_traits<Predicate>::param_type x)
            :
            pred(x)
        {}
        bool operator()(typename call_traits<typename unary_traits<Predicate>::argument_type>::param_type x) const
        {
            return !pred(x);
        }
      private:
        typename unary_traits<Predicate>::function_type pred;
    };

    template <class Predicate>
    unary_negate<Predicate> not1(const Predicate &pred)
    {
        // The cast is to placate Borland C++Builder in certain circumstances.
        // I don't think it should be necessary.
        return unary_negate<Predicate>((typename unary_traits<Predicate>::param_type)pred);
    }

    template <class Predicate>
    unary_negate<Predicate> not1(Predicate &pred)
    {
        return unary_negate<Predicate>(pred);
    }

    // --------------------------------------------------------------------------
    // binary_negate, not2
    // --------------------------------------------------------------------------
    template <class Predicate>
    class binary_negate
        : public std::binary_function<typename binary_traits<Predicate>::first_argument_type,
                                      typename binary_traits<Predicate>::second_argument_type,
                                      bool>
    {
      public:
        explicit binary_negate(typename binary_traits<Predicate>::param_type x)
            :
            pred(x)
        {}
        bool operator()(typename call_traits<typename binary_traits<Predicate>::first_argument_type>::param_type x,
                        typename call_traits<typename binary_traits<Predicate>::second_argument_type>::param_type y) const
        {
            return !pred(x,y);
        }
      private:
        typename binary_traits<Predicate>::function_type pred;
    };

    template <class Predicate>
    binary_negate<Predicate> not2(const Predicate &pred)
    {
        // The cast is to placate Borland C++Builder in certain circumstances.
        // I don't think it should be necessary.
        return binary_negate<Predicate>((typename binary_traits<Predicate>::param_type)pred);
    }

    template <class Predicate>
    binary_negate<Predicate> not2(Predicate &pred)
    {
        return binary_negate<Predicate>(pred);
    }
        
    // --------------------------------------------------------------------------
    // binder1st, bind1st
    // --------------------------------------------------------------------------
    template <class Operation>
    class binder1st
        : public std::unary_function<typename binary_traits<Operation>::second_argument_type,
                                     typename binary_traits<Operation>::result_type>
    {       
      public:
        binder1st(typename binary_traits<Operation>::param_type x,
                  typename call_traits<typename binary_traits<Operation>::first_argument_type>::param_type y)
            :
            op(x), value(y)
        {}
        
        typename binary_traits<Operation>::result_type
        operator()(typename call_traits<typename binary_traits<Operation>::second_argument_type>::param_type x) const
        {
            return op(value, x);
        }
        
      protected:
        typename binary_traits<Operation>::function_type op;
        typename binary_traits<Operation>::first_argument_type value;
    };

    template <class Operation>
    inline binder1st<Operation> bind1st(const Operation &op,
                                        typename call_traits<
                                                    typename binary_traits<Operation>::first_argument_type
                                        >::param_type x)
    {
        // The cast is to placate Borland C++Builder in certain circumstances.
        // I don't think it should be necessary.
        return binder1st<Operation>((typename binary_traits<Operation>::param_type)op, x);
    }

    template <class Operation>
    inline binder1st<Operation> bind1st(Operation &op,
                                        typename call_traits<
                                                    typename binary_traits<Operation>::first_argument_type
                                        >::param_type x)
    {
        return binder1st<Operation>(op, x);
    }

    // --------------------------------------------------------------------------
    // binder2nd, bind2nd
    // --------------------------------------------------------------------------
    template <class Operation>
    class binder2nd
        : public std::unary_function<typename binary_traits<Operation>::first_argument_type,
                                     typename binary_traits<Operation>::result_type>
    {
      public:
        binder2nd(typename binary_traits<Operation>::param_type x,
                  typename call_traits<typename binary_traits<Operation>::second_argument_type>::param_type y)
            :
            op(x), value(y)
        {}
        
        typename binary_traits<Operation>::result_type
        operator()(typename call_traits<typename binary_traits<Operation>::first_argument_type>::param_type x) const
        {
            return op(x, value);
        }               
        
      protected:
        typename binary_traits<Operation>::function_type op;
        typename binary_traits<Operation>::second_argument_type value;
    };

    template <class Operation>
    inline binder2nd<Operation> bind2nd(const Operation &op,
                                        typename call_traits<
                                                    typename binary_traits<Operation>::second_argument_type
                                        >::param_type x)
    {
        // The cast is to placate Borland C++Builder in certain circumstances.
        // I don't think it should be necessary.
        return binder2nd<Operation>((typename binary_traits<Operation>::param_type)op, x);
    }

    template <class Operation>
    inline binder2nd<Operation> bind2nd(Operation &op,
                                        typename call_traits<
                                                    typename binary_traits<Operation>::second_argument_type
                                        >::param_type x)
    {
        return binder2nd<Operation>(op, x);
    }

    // --------------------------------------------------------------------------
    // mem_fun, etc
    // --------------------------------------------------------------------------
    template <class S, class T>
    class mem_fun_t : public std::unary_function<T*, S>
    {
      public:
        explicit mem_fun_t(S (T::*p)())
            :
            ptr(p)
        {}
        S operator()(T* p) const
        {
            return (p->*ptr)();
        }
      private:
        S (T::*ptr)();
    };

    template <class S, class T, class A>
    class mem_fun1_t : public std::binary_function<T*, A, S>
    {
      public:   
        explicit mem_fun1_t(S (T::*p)(A))
            :
            ptr(p)
        {}
        S operator()(T* p, typename call_traits<A>::param_type x) const
        {
            return (p->*ptr)(x);
        }
      private:
        S (T::*ptr)(A);
    };

    template <class S, class T>
    class const_mem_fun_t : public std::unary_function<const T*, S>
    {
      public:
        explicit const_mem_fun_t(S (T::*p)() const)
            :
            ptr(p)
        {}
        S operator()(const T* p) const
        {
            return (p->*ptr)();
        }
      private:
        S (T::*ptr)() const;        
    };

    template <class S, class T, class A>
    class const_mem_fun1_t : public std::binary_function<const T*, A, S>
    {
      public:
        explicit const_mem_fun1_t(S (T::*p)(A) const)
            :
            ptr(p)
        {}
        S operator()(const T* p, typename call_traits<A>::param_type x) const
        {
            return (p->*ptr)(x);
        }
      private:
        S (T::*ptr)(A) const;
    };
    
    template<class S, class T>
    inline mem_fun_t<S,T> mem_fun(S (T::*f)())
    {
        return mem_fun_t<S,T>(f);
    }
    
    template<class S, class T, class A>
    inline mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A))
    {
        return mem_fun1_t<S,T,A>(f);
    }

#ifndef BOOST_NO_POINTER_TO_MEMBER_CONST
    template<class S, class T>
    inline const_mem_fun_t<S,T> mem_fun(S (T::*f)() const)
    {
        return const_mem_fun_t<S,T>(f);
    }
    
    template<class S, class T, class A>
    inline const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const)
    {
        return const_mem_fun1_t<S,T,A>(f);
    }
#endif // BOOST_NO_POINTER_TO_MEMBER_CONST

    // --------------------------------------------------------------------------
    // mem_fun_ref, etc
    // --------------------------------------------------------------------------
    template <class S, class T>
    class mem_fun_ref_t : public std::unary_function<T&, S>
    {
      public:
        explicit mem_fun_ref_t(S (T::*p)())
            :
            ptr(p)
        {}
        S operator()(T& p) const
        {
            return (p.*ptr)();
        }
      private:
        S (T::*ptr)();
    };

    template <class S, class T, class A>
    class mem_fun1_ref_t : public std::binary_function<T&, A, S>
    {
      public:
        explicit mem_fun1_ref_t(S (T::*p)(A))
            :
            ptr(p)
        {}
        S operator()(T& p, typename call_traits<A>::param_type x) const
        {
            return (p.*ptr)(x);
        }
      private:
        S (T::*ptr)(A);
    };
    
    template <class S, class T>
    class const_mem_fun_ref_t : public std::unary_function<const T&, S>
    {
      public:
        explicit const_mem_fun_ref_t(S (T::*p)() const)
            :
            ptr(p)
        {}
        
        S operator()(const T &p) const
        {
            return (p.*ptr)();
        }
      private:
        S (T::*ptr)() const;
    };

    template <class S, class T, class A>
    class const_mem_fun1_ref_t : public std::binary_function<const T&, A, S>
    {
      public:
        explicit const_mem_fun1_ref_t(S (T::*p)(A) const)
            :
            ptr(p)
        {}

        S operator()(const T& p, typename call_traits<A>::param_type x) const
        {
            return (p.*ptr)(x);
        }
      private:
        S (T::*ptr)(A) const;
    };
    
    template<class S, class T>
    inline mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)())
    {
        return mem_fun_ref_t<S,T>(f);
    }

    template<class S, class T, class A>
    inline mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A))
    {
        return mem_fun1_ref_t<S,T,A>(f);
    }

#ifndef BOOST_NO_POINTER_TO_MEMBER_CONST
    template<class S, class T>
    inline const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const)
    {
        return const_mem_fun_ref_t<S,T>(f);
    }

    template<class S, class T, class A>
    inline const_mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A) const)
    {
        return const_mem_fun1_ref_t<S,T,A>(f);
    }   
#endif // BOOST_NO_POINTER_TO_MEMBER_CONST

    // --------------------------------------------------------------------------
    // ptr_fun
    // --------------------------------------------------------------------------
    template <class Arg, class Result>
    class pointer_to_unary_function : public std::unary_function<Arg,Result>
    {
      public:
        explicit pointer_to_unary_function(Result (*f)(Arg))
            :
            func(f)
        {}

        Result operator()(typename call_traits<Arg>::param_type x) const
        {
            return func(x);
        }
        
      private:
        Result (*func)(Arg);
    };

    template <class Arg, class Result>
    inline pointer_to_unary_function<Arg,Result> ptr_fun(Result (*f)(Arg))
    {
        return pointer_to_unary_function<Arg,Result>(f);
    }

    template <class Arg1, class Arg2, class Result>
    class pointer_to_binary_function : public std::binary_function<Arg1,Arg2,Result>
    {
      public:
        explicit pointer_to_binary_function(Result (*f)(Arg1, Arg2))
            :
            func(f)
        {}
        
        Result operator()(typename call_traits<Arg1>::param_type x, typename call_traits<Arg2>::param_type y) const
        {
            return func(x,y);
        }
        
      private:
        Result (*func)(Arg1, Arg2);
    };

    template <class Arg1, class Arg2, class Result>
    inline pointer_to_binary_function<Arg1,Arg2,Result> ptr_fun(Result (*f)(Arg1, Arg2))
    {
        return pointer_to_binary_function<Arg1,Arg2,Result>(f);
    }
} // namespace boost

#endif