summaryrefslogtreecommitdiff
path: root/boost/fiber/buffered_channel.hpp
blob: 3cf22295dd231d3ea75070f252c61cb1c0453b07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703

//          Copyright Oliver Kowalke 2016.
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)
//

#ifndef BOOST_FIBERS_BUFFERED_CHANNEL_H
#define BOOST_FIBERS_BUFFERED_CHANNEL_H

#include <atomic>
#include <chrono>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <type_traits>

#include <boost/config.hpp>

#include <boost/fiber/channel_op_status.hpp>
#include <boost/fiber/context.hpp>
#include <boost/fiber/detail/config.hpp>
#include <boost/fiber/detail/convert.hpp>
#include <boost/fiber/detail/spinlock.hpp>
#include <boost/fiber/exceptions.hpp>

#ifdef BOOST_HAS_ABI_HEADERS
#  include BOOST_ABI_PREFIX
#endif

namespace boost {
namespace fibers {

template< typename T >
class buffered_channel {
public:
    typedef T   value_type;

private:
    typedef context::wait_queue_t                       wait_queue_type;
	typedef T                                           slot_type;

    mutable detail::spinlock   splk_{};
    wait_queue_type                                     waiting_producers_{};
    wait_queue_type                                     waiting_consumers_{};
	slot_type                                       *   slots_;
	std::size_t                                         pidx_{ 0 };
	std::size_t                                         cidx_{ 0 };
	std::size_t                                         capacity_;
    bool                                                closed_{ false };

	bool is_full_() const noexcept {
		return cidx_ == ((pidx_ + 1) % capacity_);
	}

	bool is_empty_() const noexcept {
		return cidx_ == pidx_;
	}

    bool is_closed_() const noexcept {
        return closed_;
    }

public:
    explicit buffered_channel( std::size_t capacity) :
            capacity_{ capacity } {
        if ( BOOST_UNLIKELY( 2 > capacity_ || 0 != ( capacity_ & (capacity_ - 1) ) ) ) { 
            throw fiber_error{ std::make_error_code( std::errc::invalid_argument),
                               "boost fiber: buffer capacity is invalid" };
        }
        slots_ = new slot_type[capacity_];
    }

    ~buffered_channel() {
        close();
        delete [] slots_;
    }

    buffered_channel( buffered_channel const&) = delete;
    buffered_channel & operator=( buffered_channel const&) = delete;

    bool is_closed() const noexcept {
        detail::spinlock_lock lk{ splk_ };
        return is_closed_();
    }

    void close() noexcept {
        context * active_ctx = context::active();
        detail::spinlock_lock lk{ splk_ };
        closed_ = true;
        // notify all waiting producers
        while ( ! waiting_producers_.empty() ) {
            context * producer_ctx = & waiting_producers_.front();
            waiting_producers_.pop_front();
            std::intptr_t expected = reinterpret_cast< std::intptr_t >( this);
            if ( producer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) {
                // notify before timeout
                intrusive_ptr_release( producer_ctx);
                // notify context
                active_ctx->schedule( producer_ctx);
            } else if ( static_cast< std::intptr_t >( 0) == expected) {
                // no timed-wait op.
                // notify context
                active_ctx->schedule( producer_ctx);
            } else {
                // timed-wait op.
                // expected == -1: notify after timeout, same timed-wait op.
                // expected == <any>: notify after timeout, another timed-wait op. was already started
                intrusive_ptr_release( producer_ctx);
                // re-schedule next
            }
        }
        // notify all waiting consumers
        while ( ! waiting_consumers_.empty() ) {
            context * consumer_ctx = & waiting_consumers_.front();
            waiting_consumers_.pop_front();
            std::intptr_t expected = reinterpret_cast< std::intptr_t >( this);
            if ( consumer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) {
                // notify before timeout
                intrusive_ptr_release( consumer_ctx);
                // notify context
                active_ctx->schedule( consumer_ctx);
            } else if ( static_cast< std::intptr_t >( 0) == expected) {
                // no timed-wait op.
                // notify context
                active_ctx->schedule( consumer_ctx);
            } else {
                // timed-wait op.
                // expected == -1: notify after timeout, same timed-wait op.
                // expected == <any>: notify after timeout, another timed-wait op. was already started
                intrusive_ptr_release( consumer_ctx);
                // re-schedule next
            }
        }
    }

    channel_op_status try_push( value_type const& value) {
        context * active_ctx = context::active();
        detail::spinlock_lock lk{ splk_ };
        if ( BOOST_UNLIKELY( is_closed_() ) ) {
            return channel_op_status::closed;
        } else if ( is_full_() ) {
            return channel_op_status::full;
        } else {
            slots_[pidx_] = value;
            pidx_ = (pidx_ + 1) % capacity_;
            // notify one waiting consumer
            while ( ! waiting_consumers_.empty() ) {
                context * consumer_ctx = & waiting_consumers_.front();
                waiting_consumers_.pop_front();
                std::intptr_t expected = reinterpret_cast< std::intptr_t >( this);
                if ( consumer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) {
                    // notify before timeout
                    intrusive_ptr_release( consumer_ctx);
                    // notify context
                    active_ctx->schedule( consumer_ctx);
                    break;
                } else if ( static_cast< std::intptr_t >( 0) == expected) {
                    // no timed-wait op.
                    // notify context
                    active_ctx->schedule( consumer_ctx);
                    break;
                } else {
                    // timed-wait op.
                    // expected == -1: notify after timeout, same timed-wait op.
                    // expected == <any>: notify after timeout, another timed-wait op. was already started
                    intrusive_ptr_release( consumer_ctx);
                    // re-schedule next
                }
            }
            return channel_op_status::success;
        }
    }

    channel_op_status try_push( value_type && value) {
        context * active_ctx = context::active();
        detail::spinlock_lock lk{ splk_ };
        if ( BOOST_UNLIKELY( is_closed_() ) ) {
            return channel_op_status::closed;
        } else if ( is_full_() ) {
            return channel_op_status::full;
        } else {
            slots_[pidx_] = std::move( value);
            pidx_ = (pidx_ + 1) % capacity_;
            // notify one waiting consumer
            while ( ! waiting_consumers_.empty() ) {
                context * consumer_ctx = & waiting_consumers_.front();
                waiting_consumers_.pop_front();
                lk.unlock();
                std::intptr_t expected = reinterpret_cast< std::intptr_t >( this);
                if ( consumer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) {
                    // notify before timeout
                    intrusive_ptr_release( consumer_ctx);
                    // notify context
                    active_ctx->schedule( consumer_ctx);
                    break;
                } else if ( static_cast< std::intptr_t >( 0) == expected) {
                    // no timed-wait op.
                    // notify context
                    active_ctx->schedule( consumer_ctx);
                    break;
                } else {
                    // timed-wait op.
                    // expected == -1: notify after timeout, same timed-wait op.
                    // expected == <any>: notify after timeout, another timed-wait op. was already started
                    intrusive_ptr_release( consumer_ctx);
                    // re-schedule next
                }
            }
            return channel_op_status::success;
        }
    }

    channel_op_status push( value_type const& value) {
        context * active_ctx = context::active();
        for (;;) {
            detail::spinlock_lock lk{ splk_ };
            if ( BOOST_UNLIKELY( is_closed_() ) ) {
                return channel_op_status::closed;
            } else if ( is_full_() ) {
                active_ctx->wait_link( waiting_producers_);
                active_ctx->twstatus.store( static_cast< std::intptr_t >( 0), std::memory_order_release);
                // suspend this producer
                active_ctx->suspend( lk);
            } else {
                slots_[pidx_] = value;
                pidx_ = (pidx_ + 1) % capacity_;
                // notify one waiting consumer
                while ( ! waiting_consumers_.empty() ) {
                    context * consumer_ctx = & waiting_consumers_.front();
                    waiting_consumers_.pop_front();
                    lk.unlock();
                    std::intptr_t expected = reinterpret_cast< std::intptr_t >( this);
                    if ( consumer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) {
                        // notify before timeout
                        intrusive_ptr_release( consumer_ctx);
                        // notify context
                        active_ctx->schedule( consumer_ctx);
                        break;
                    } else if ( static_cast< std::intptr_t >( 0) == expected) {
                        // no timed-wait op.
                        // notify context
                        active_ctx->schedule( consumer_ctx);
                        break;
                    } else {
                        // timed-wait op.
                        // expected == -1: notify after timeout, same timed-wait op.
                        // expected == <any>: notify after timeout, another timed-wait op. was already started
                        intrusive_ptr_release( consumer_ctx);
                        // re-schedule next
                    }
                }
                return channel_op_status::success;
            }
        }
    }

    channel_op_status push( value_type && value) {
        context * active_ctx = context::active();
        for (;;) {
            detail::spinlock_lock lk{ splk_ };
            if ( BOOST_UNLIKELY( is_closed_() ) ) {
                return channel_op_status::closed;
            } else if ( is_full_() ) {
                active_ctx->wait_link( waiting_producers_);
                active_ctx->twstatus.store( static_cast< std::intptr_t >( 0), std::memory_order_release);
                // suspend this producer
                active_ctx->suspend( lk);
            } else {
                slots_[pidx_] = std::move( value);
                pidx_ = (pidx_ + 1) % capacity_;
                // notify one waiting consumer
                while ( ! waiting_consumers_.empty() ) {
                    context * consumer_ctx = & waiting_consumers_.front();
                    waiting_consumers_.pop_front();
                    lk.unlock();
                    std::intptr_t expected = reinterpret_cast< std::intptr_t >( this);
                    if ( consumer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) {
                        // notify before timeout
                        intrusive_ptr_release( consumer_ctx);
                        // notify context
                        active_ctx->schedule( consumer_ctx);
                        break;
                    } else if ( static_cast< std::intptr_t >( 0) == expected) {
                        // no timed-wait op.
                        // notify context
                        active_ctx->schedule( consumer_ctx);
                        break;
                    } else {
                        // timed-wait op.
                        // expected == -1: notify after timeout, same timed-wait op.
                        // expected == <any>: notify after timeout, another timed-wait op. was already started
                        intrusive_ptr_release( consumer_ctx);
                        // re-schedule next
                    }
                }
                return channel_op_status::success;
            }
        }
    }

    template< typename Rep, typename Period >
    channel_op_status push_wait_for( value_type const& value,
                                     std::chrono::duration< Rep, Period > const& timeout_duration) {
        return push_wait_until( value,
                                std::chrono::steady_clock::now() + timeout_duration);
    }

    template< typename Rep, typename Period >
    channel_op_status push_wait_for( value_type && value,
                                     std::chrono::duration< Rep, Period > const& timeout_duration) {
        return push_wait_until( std::forward< value_type >( value),
                                std::chrono::steady_clock::now() + timeout_duration);
    }

    template< typename Clock, typename Duration >
    channel_op_status push_wait_until( value_type const& value,
                                       std::chrono::time_point< Clock, Duration > const& timeout_time_) {
        context * active_ctx = context::active();
        std::chrono::steady_clock::time_point timeout_time = detail::convert( timeout_time_);
        for (;;) {
            detail::spinlock_lock lk{ splk_ };
            if ( BOOST_UNLIKELY( is_closed_() ) ) {
                return channel_op_status::closed;
            } else if ( is_full_() ) {
                active_ctx->wait_link( waiting_producers_);
                intrusive_ptr_add_ref( active_ctx);
                active_ctx->twstatus.store( reinterpret_cast< std::intptr_t >( this), std::memory_order_release);
                // suspend this producer
                if ( ! active_ctx->wait_until( timeout_time, lk) ) {
                    // relock local lk
                    lk.lock();
                    // remove from waiting-queue
                    waiting_producers_.remove( * active_ctx);
                    return channel_op_status::timeout;
                }
            } else {
                slots_[pidx_] = value;
                pidx_ = (pidx_ + 1) % capacity_;
                // notify one waiting consumer
                while ( ! waiting_consumers_.empty() ) {
                    context * consumer_ctx = & waiting_consumers_.front();
                    waiting_consumers_.pop_front();
                    lk.unlock();
                    std::intptr_t expected = reinterpret_cast< std::intptr_t >( this);
                    if ( consumer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) {
                        // notify before timeout
                        intrusive_ptr_release( consumer_ctx);
                        // notify context
                        active_ctx->schedule( consumer_ctx);
                        break;
                    } else if ( static_cast< std::intptr_t >( 0) == expected) {
                        // no timed-wait op.
                        // notify context
                        active_ctx->schedule( consumer_ctx);
                        break;
                    } else {
                        // timed-wait op.
                        // expected == -1: notify after timeout, same timed-wait op.
                        // expected == <any>: notify after timeout, another timed-wait op. was already started
                        intrusive_ptr_release( consumer_ctx);
                        // re-schedule next
                    }
                }
                return channel_op_status::success;
            }
        }
    }

    template< typename Clock, typename Duration >
    channel_op_status push_wait_until( value_type && value,
                                       std::chrono::time_point< Clock, Duration > const& timeout_time_) {
        context * active_ctx = context::active();
        std::chrono::steady_clock::time_point timeout_time = detail::convert( timeout_time_);
        for (;;) {
            detail::spinlock_lock lk{ splk_ };
            if ( BOOST_UNLIKELY( is_closed_() ) ) {
                return channel_op_status::closed;
            } else if ( is_full_() ) {
                active_ctx->wait_link( waiting_producers_);
                intrusive_ptr_add_ref( active_ctx);
                active_ctx->twstatus.store( reinterpret_cast< std::intptr_t >( this), std::memory_order_release);
                // suspend this producer
                if ( ! active_ctx->wait_until( timeout_time, lk) ) {
                    // relock local lk
                    lk.lock();
                    // remove from waiting-queue
                    waiting_producers_.remove( * active_ctx);
                    return channel_op_status::timeout;
                }
            } else {
                slots_[pidx_] = std::move( value);
                pidx_ = (pidx_ + 1) % capacity_;
                // notify one waiting consumer
                while ( ! waiting_consumers_.empty() ) {
                    context * consumer_ctx = & waiting_consumers_.front();
                    waiting_consumers_.pop_front();
                    lk.unlock();
                    std::intptr_t expected = reinterpret_cast< std::intptr_t >( this);
                    if ( consumer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) {
                        // notify before timeout
                        intrusive_ptr_release( consumer_ctx);
                        // notify context
                        active_ctx->schedule( consumer_ctx);
                        break;
                    } else if ( static_cast< std::intptr_t >( 0) == expected) {
                        // no timed-wait op.
                        // notify context
                        active_ctx->schedule( consumer_ctx);
                        break;
                    } else {
                        // timed-wait op.
                        // expected == -1: notify after timeout, same timed-wait op.
                        // expected == <any>: notify after timeout, another timed-wait op. was already started
                        intrusive_ptr_release( consumer_ctx);
                        // re-schedule next
                    }
                }
                return channel_op_status::success;
            }
        }
    }

    channel_op_status try_pop( value_type & value) {
        context * active_ctx = context::active();
        detail::spinlock_lock lk{ splk_ };
        if ( is_empty_() ) {
            return is_closed_()
                ? channel_op_status::closed
                : channel_op_status::empty;
        } else {
            value = std::move( slots_[cidx_]);
            cidx_ = (cidx_ + 1) % capacity_;
            // notify one waiting producer
            while ( ! waiting_producers_.empty() ) {
                context * producer_ctx = & waiting_producers_.front();
                waiting_producers_.pop_front();
                lk.unlock();
                std::intptr_t expected = reinterpret_cast< std::intptr_t >( this);
                if ( producer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) {
                    // notify before timeout
                    intrusive_ptr_release( producer_ctx);
                    // notify context
                    active_ctx->schedule( producer_ctx);
                    break;
                } else if ( static_cast< std::intptr_t >( 0) == expected) {
                    // no timed-wait op.
                    // notify context
                    active_ctx->schedule( producer_ctx);
                    break;
                } else {
                    // timed-wait op.
                    // expected == -1: notify after timeout, same timed-wait op.
                    // expected == <any>: notify after timeout, another timed-wait op. was already started
                    intrusive_ptr_release( producer_ctx);
                    // re-schedule next
                }
            }
            return channel_op_status::success;
        }
    }

    channel_op_status pop( value_type & value) {
        context * active_ctx = context::active();
        for (;;) {
            detail::spinlock_lock lk{ splk_ };
            if ( is_empty_() ) {
                if ( BOOST_UNLIKELY( is_closed_() ) ) {
                    return channel_op_status::closed;
                } else {
                    active_ctx->wait_link( waiting_consumers_);
                    active_ctx->twstatus.store( static_cast< std::intptr_t >( 0), std::memory_order_release);
                    // suspend this consumer
                    active_ctx->suspend( lk);
                }
            } else {
                value = std::move( slots_[cidx_]);
                cidx_ = (cidx_ + 1) % capacity_;
                // notify one waiting producer
                while ( ! waiting_producers_.empty() ) {
                    context * producer_ctx = & waiting_producers_.front();
                    waiting_producers_.pop_front();
                    lk.unlock();
                    std::intptr_t expected = reinterpret_cast< std::intptr_t >( this);
                    if ( producer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) {
                        // notify before timeout
                        intrusive_ptr_release( producer_ctx);
                        // notify context
                        active_ctx->schedule( producer_ctx);
                        break;
                    } else if ( static_cast< std::intptr_t >( 0) == expected) {
                        // no timed-wait op.
                        // notify context
                        active_ctx->schedule( producer_ctx);
                        break;
                    } else {
                        // timed-wait op.
                        // expected == -1: notify after timeout, same timed-wait op.
                        // expected == <any>: notify after timeout, another timed-wait op. was already started
                        intrusive_ptr_release( producer_ctx);
                        // re-schedule next
                    }
                }
                return channel_op_status::success;
            }
        }
    }

    value_type value_pop() {
        context * active_ctx = context::active();
        for (;;) {
            detail::spinlock_lock lk{ splk_ };
            if ( is_empty_() ) {
                if ( BOOST_UNLIKELY( is_closed_() ) ) {
                    throw fiber_error{
                        std::make_error_code( std::errc::operation_not_permitted),
                        "boost fiber: channel is closed" };
                } else {
                    active_ctx->wait_link( waiting_consumers_);
                    active_ctx->twstatus.store( static_cast< std::intptr_t >( 0), std::memory_order_release);
                    // suspend this consumer
                    active_ctx->suspend( lk);
                }
            } else {
                value_type value = std::move( slots_[cidx_]);
                cidx_ = (cidx_ + 1) % capacity_;
                // notify one waiting producer
                while ( ! waiting_producers_.empty() ) {
                    context * producer_ctx = & waiting_producers_.front();
                    waiting_producers_.pop_front();
                    lk.unlock();
                    std::intptr_t expected = reinterpret_cast< std::intptr_t >( this);
                    if ( producer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) {
                        // notify before timeout
                        intrusive_ptr_release( producer_ctx);
                        // notify context
                        active_ctx->schedule( producer_ctx);
                        break;
                    } else if ( static_cast< std::intptr_t >( 0) == expected) {
                        // no timed-wait op.
                        // notify context
                        active_ctx->schedule( producer_ctx);
                        break;
                    } else {
                        // timed-wait op.
                        // expected == -1: notify after timeout, same timed-wait op.
                        // expected == <any>: notify after timeout, another timed-wait op. was already started
                        intrusive_ptr_release( producer_ctx);
                        // re-schedule next
                    }
                }
                return std::move( value);
            }
        }
    }

    template< typename Rep, typename Period >
    channel_op_status pop_wait_for( value_type & value,
                                    std::chrono::duration< Rep, Period > const& timeout_duration) {
        return pop_wait_until( value,
                               std::chrono::steady_clock::now() + timeout_duration);
    }

    template< typename Clock, typename Duration >
    channel_op_status pop_wait_until( value_type & value,
                                      std::chrono::time_point< Clock, Duration > const& timeout_time_) {
        context * active_ctx = context::active();
        std::chrono::steady_clock::time_point timeout_time = detail::convert( timeout_time_);
        for (;;) {
            detail::spinlock_lock lk{ splk_ };
            if ( is_empty_() ) {
                if ( BOOST_UNLIKELY( is_closed_() ) ) {
                    return channel_op_status::closed;
                } else {
                    active_ctx->wait_link( waiting_consumers_);
                    intrusive_ptr_add_ref( active_ctx);
                    active_ctx->twstatus.store( reinterpret_cast< std::intptr_t >( this), std::memory_order_release);
                    // suspend this consumer
                    if ( ! active_ctx->wait_until( timeout_time, lk) ) {
                        // relock local lk
                        lk.lock();
                        // remove from waiting-queue
                        waiting_consumers_.remove( * active_ctx);
                        return channel_op_status::timeout;
                    }
                }
            } else {
                value = std::move( slots_[cidx_]);
                cidx_ = (cidx_ + 1) % capacity_;
                // notify one waiting producer
                while ( ! waiting_producers_.empty() ) {
                    context * producer_ctx = & waiting_producers_.front();
                    waiting_producers_.pop_front();
                    lk.unlock();
                    std::intptr_t expected = reinterpret_cast< std::intptr_t >( this);
                    if ( producer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) {
                        // notify before timeout
                        intrusive_ptr_release( producer_ctx);
                        // notify context
                        active_ctx->schedule( producer_ctx);
                        break;
                    } else if ( static_cast< std::intptr_t >( 0) == expected) {
                        // no timed-wait op.
                        // notify context
                        active_ctx->schedule( producer_ctx);
                        break;
                    } else {
                        // timed-wait op.
                        // expected == -1: notify after timeout, same timed-wait op.
                        // expected == <any>: notify after timeout, another timed-wait op. was already started
                        intrusive_ptr_release( producer_ctx);
                        // re-schedule next
                    }
                }
                return channel_op_status::success;
            }
        }
    }

    class iterator : public std::iterator< std::input_iterator_tag, typename std::remove_reference< value_type >::type > {
    private:
        typedef typename std::aligned_storage< sizeof( value_type), alignof( value_type) >::type  storage_type;

        buffered_channel *   chan_{ nullptr };
        storage_type        storage_;

        void increment_() {
            BOOST_ASSERT( nullptr != chan_);
            try {
                ::new ( static_cast< void * >( std::addressof( storage_) ) ) value_type{ chan_->value_pop() };
            } catch ( fiber_error const&) {
                chan_ = nullptr;
            }
        }

    public:
        typedef typename iterator::pointer pointer_t;
        typedef typename iterator::reference reference_t;

        iterator() noexcept = default;

        explicit iterator( buffered_channel< T > * chan) noexcept :
            chan_{ chan } {
            increment_();
        }

        iterator( iterator const& other) noexcept :
            chan_{ other.chan_ } {
        }

        iterator & operator=( iterator const& other) noexcept {
            if ( BOOST_LIKELY( this != & other) ) {
                chan_ = other.chan_;
            }
            return * this;
        }

        bool operator==( iterator const& other) const noexcept {
            return other.chan_ == chan_;
        }

        bool operator!=( iterator const& other) const noexcept {
            return other.chan_ != chan_;
        }

        iterator & operator++() {
            increment_();
            return * this;
        }

        iterator operator++( int) = delete;

        reference_t operator*() noexcept {
            return * reinterpret_cast< value_type * >( std::addressof( storage_) );
        }

        pointer_t operator->() noexcept {
            return reinterpret_cast< value_type * >( std::addressof( storage_) );
        }
    };

    friend class iterator;
};

template< typename T >
typename buffered_channel< T >::iterator
begin( buffered_channel< T > & chan) {
    return typename buffered_channel< T >::iterator( & chan);
}

template< typename T >
typename buffered_channel< T >::iterator
end( buffered_channel< T > &) {
    return typename buffered_channel< T >::iterator();
}

}}

#ifdef BOOST_HAS_ABI_HEADERS
#  include BOOST_ABI_SUFFIX
#endif

#endif // BOOST_FIBERS_BUFFERED_CHANNEL_H