summaryrefslogtreecommitdiff
path: root/boost/hana/fwd/concept/group.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'boost/hana/fwd/concept/group.hpp')
-rw-r--r--boost/hana/fwd/concept/group.hpp111
1 files changed, 111 insertions, 0 deletions
diff --git a/boost/hana/fwd/concept/group.hpp b/boost/hana/fwd/concept/group.hpp
new file mode 100644
index 0000000000..a7ec238d54
--- /dev/null
+++ b/boost/hana/fwd/concept/group.hpp
@@ -0,0 +1,111 @@
+/*!
+@file
+Forward declares `boost::hana::Group`.
+
+@copyright Louis Dionne 2013-2016
+Distributed under the Boost Software License, Version 1.0.
+(See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt)
+ */
+
+#ifndef BOOST_HANA_FWD_CONCEPT_GROUP_HPP
+#define BOOST_HANA_FWD_CONCEPT_GROUP_HPP
+
+#include <boost/hana/config.hpp>
+
+
+BOOST_HANA_NAMESPACE_BEGIN
+ //! @ingroup group-concepts
+ //! @defgroup group-Group Group
+ //! The `Group` concept represents `Monoid`s where all objects have
+ //! an inverse w.r.t. the `Monoid`'s binary operation.
+ //!
+ //! A [Group][1] is an algebraic structure built on top of a `Monoid`
+ //! which adds the ability to invert the action of the `Monoid`'s binary
+ //! operation on any element of the set. Specifically, a `Group` is a
+ //! `Monoid` `(S, +)` such that every element `s` in `S` has an inverse
+ //! (say `s'`) which is such that
+ //! @code
+ //! s + s' == s' + s == identity of the Monoid
+ //! @endcode
+ //!
+ //! There are many examples of `Group`s, one of which would be the
+ //! additive `Monoid` on integers, where the inverse of any integer
+ //! `n` is the integer `-n`. The method names used here refer to
+ //! exactly this model.
+ //!
+ //!
+ //! Minimal complete definitions
+ //! ----------------------------
+ //! 1. `minus`\n
+ //! When `minus` is specified, the `negate` method is defaulted by setting
+ //! @code
+ //! negate(x) = minus(zero<G>(), x)
+ //! @endcode
+ //!
+ //! 2. `negate`\n
+ //! When `negate` is specified, the `minus` method is defaulted by setting
+ //! @code
+ //! minus(x, y) = plus(x, negate(y))
+ //! @endcode
+ //!
+ //!
+ //! Laws
+ //! ----
+ //! For all objects `x` of a `Group` `G`, the following laws must be
+ //! satisfied:
+ //! @code
+ //! plus(x, negate(x)) == zero<G>() // right inverse
+ //! plus(negate(x), x) == zero<G>() // left inverse
+ //! @endcode
+ //!
+ //!
+ //! Refined concept
+ //! ---------------
+ //! `Monoid`
+ //!
+ //!
+ //! Concrete models
+ //! ---------------
+ //! `hana::integral_constant`
+ //!
+ //!
+ //! Free model for non-boolean arithmetic data types
+ //! ------------------------------------------------
+ //! A data type `T` is arithmetic if `std::is_arithmetic<T>::%value` is
+ //! true. For a non-boolean arithmetic data type `T`, a model of `Group`
+ //! is automatically defined by setting
+ //! @code
+ //! minus(x, y) = (x - y)
+ //! negate(x) = -x
+ //! @endcode
+ //!
+ //! @note
+ //! The rationale for not providing a Group model for `bool` is the same
+ //! as for not providing a `Monoid` model.
+ //!
+ //!
+ //! Structure-preserving functions
+ //! ------------------------------
+ //! Let `A` and `B` be two `Group`s. A function `f : A -> B` is said to
+ //! be a [Group morphism][2] if it preserves the group structure between
+ //! `A` and `B`. Rigorously, for all objects `x, y` of data type `A`,
+ //! @code
+ //! f(plus(x, y)) == plus(f(x), f(y))
+ //! @endcode
+ //! Because of the `Group` structure, it is easy to prove that the
+ //! following will then also be satisfied:
+ //! @code
+ //! f(negate(x)) == negate(f(x))
+ //! f(zero<A>()) == zero<B>()
+ //! @endcode
+ //! Functions with these properties interact nicely with `Group`s, which
+ //! is why they are given such a special treatment.
+ //!
+ //!
+ //! [1]: http://en.wikipedia.org/wiki/Group_(mathematics)
+ //! [2]: http://en.wikipedia.org/wiki/Group_homomorphism
+ template <typename G>
+ struct Group;
+BOOST_HANA_NAMESPACE_END
+
+#endif // !BOOST_HANA_FWD_CONCEPT_GROUP_HPP