summaryrefslogtreecommitdiff
path: root/boost/graph/tiernan_all_cycles.hpp
diff options
context:
space:
mode:
authorAnas Nashif <anas.nashif@intel.com>2012-10-30 12:57:26 -0700
committerAnas Nashif <anas.nashif@intel.com>2012-10-30 12:57:26 -0700
commit1a78a62555be32868418fe52f8e330c9d0f95d5a (patch)
treed3765a80e7d3b9640ec2e930743630cd6b9fce2b /boost/graph/tiernan_all_cycles.hpp
downloadboost-1a78a62555be32868418fe52f8e330c9d0f95d5a.tar.gz
boost-1a78a62555be32868418fe52f8e330c9d0f95d5a.tar.bz2
boost-1a78a62555be32868418fe52f8e330c9d0f95d5a.zip
Imported Upstream version 1.49.0upstream/1.49.0
Diffstat (limited to 'boost/graph/tiernan_all_cycles.hpp')
-rw-r--r--boost/graph/tiernan_all_cycles.hpp377
1 files changed, 377 insertions, 0 deletions
diff --git a/boost/graph/tiernan_all_cycles.hpp b/boost/graph/tiernan_all_cycles.hpp
new file mode 100644
index 0000000000..2e7ebc97cd
--- /dev/null
+++ b/boost/graph/tiernan_all_cycles.hpp
@@ -0,0 +1,377 @@
+// (C) Copyright 2007-2009 Andrew Sutton
+//
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0 (See accompanying file
+// LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_GRAPH_CYCLE_HPP
+#define BOOST_GRAPH_CYCLE_HPP
+
+#include <vector>
+
+#include <boost/config.hpp>
+#include <boost/graph/graph_concepts.hpp>
+#include <boost/graph/graph_traits.hpp>
+#include <boost/graph/properties.hpp>
+#include <boost/concept/assert.hpp>
+
+#include <boost/concept/detail/concept_def.hpp>
+namespace boost {
+ namespace concepts {
+ BOOST_concept(CycleVisitor,(Visitor)(Path)(Graph))
+ {
+ BOOST_CONCEPT_USAGE(CycleVisitor)
+ {
+ vis.cycle(p, g);
+ }
+ private:
+ Visitor vis;
+ Graph g;
+ Path p;
+ };
+ } /* namespace concepts */
+using concepts::CycleVisitorConcept;
+} /* namespace boost */
+#include <boost/concept/detail/concept_undef.hpp>
+
+
+namespace boost
+{
+
+// The implementation of this algorithm is a reproduction of the Teirnan
+// approach for directed graphs: bibtex follows
+//
+// @article{362819,
+// author = {James C. Tiernan},
+// title = {An efficient search algorithm to find the elementary circuits of a graph},
+// journal = {Commun. ACM},
+// volume = {13},
+// number = {12},
+// year = {1970},
+// issn = {0001-0782},
+// pages = {722--726},
+// doi = {http://doi.acm.org/10.1145/362814.362819},
+// publisher = {ACM Press},
+// address = {New York, NY, USA},
+// }
+//
+// It should be pointed out that the author does not provide a complete analysis for
+// either time or space. This is in part, due to the fact that it's a fairly input
+// sensitive problem related to the density and construction of the graph, not just
+// its size.
+//
+// I've also taken some liberties with the interpretation of the algorithm - I've
+// basically modernized it to use real data structures (no more arrays and matrices).
+// Oh... and there's explicit control structures - not just gotos.
+//
+// The problem is definitely NP-complete, an an unbounded implementation of this
+// will probably run for quite a while on a large graph. The conclusions
+// of this paper also reference a Paton algorithm for undirected graphs as being
+// much more efficient (apparently based on spanning trees). Although not implemented,
+// it can be found here:
+//
+// @article{363232,
+// author = {Keith Paton},
+// title = {An algorithm for finding a fundamental set of cycles of a graph},
+// journal = {Commun. ACM},
+// volume = {12},
+// number = {9},
+// year = {1969},
+// issn = {0001-0782},
+// pages = {514--518},
+// doi = {http://doi.acm.org/10.1145/363219.363232},
+// publisher = {ACM Press},
+// address = {New York, NY, USA},
+// }
+
+/**
+ * The default cycle visitor providse an empty visit function for cycle
+ * visitors.
+ */
+struct cycle_visitor
+{
+ template <typename Path, typename Graph>
+ inline void cycle(const Path& p, const Graph& g)
+ { }
+};
+
+/**
+ * The min_max_cycle_visitor simultaneously records the minimum and maximum
+ * cycles in a graph.
+ */
+struct min_max_cycle_visitor
+{
+ min_max_cycle_visitor(std::size_t& min_, std::size_t& max_)
+ : minimum(min_), maximum(max_)
+ { }
+
+ template <typename Path, typename Graph>
+ inline void cycle(const Path& p, const Graph& g)
+ {
+ BOOST_USING_STD_MIN();
+ BOOST_USING_STD_MAX();
+ std::size_t len = p.size();
+ minimum = min BOOST_PREVENT_MACRO_SUBSTITUTION (minimum, len);
+ maximum = max BOOST_PREVENT_MACRO_SUBSTITUTION (maximum, len);
+ }
+ std::size_t& minimum;
+ std::size_t& maximum;
+};
+
+inline min_max_cycle_visitor
+find_min_max_cycle(std::size_t& min_, std::size_t& max_)
+{ return min_max_cycle_visitor(min_, max_); }
+
+namespace detail
+{
+ template <typename Graph, typename Path>
+ inline bool
+ is_vertex_in_path(const Graph&,
+ typename graph_traits<Graph>::vertex_descriptor v,
+ const Path& p)
+ {
+ return (std::find(p.begin(), p.end(), v) != p.end());
+ }
+
+ template <typename Graph, typename ClosedMatrix>
+ inline bool
+ is_path_closed(const Graph& g,
+ typename graph_traits<Graph>::vertex_descriptor u,
+ typename graph_traits<Graph>::vertex_descriptor v,
+ const ClosedMatrix& closed)
+ {
+ // the path from u to v is closed if v can be found in the list
+ // of closed vertices associated with u.
+ typedef typename ClosedMatrix::const_reference Row;
+ Row r = closed[get(vertex_index, g, u)];
+ if(find(r.begin(), r.end(), v) != r.end()) {
+ return true;
+ }
+ return false;
+ }
+
+ template <typename Graph, typename Path, typename ClosedMatrix>
+ inline bool
+ can_extend_path(const Graph& g,
+ typename graph_traits<Graph>::edge_descriptor e,
+ const Path& p,
+ const ClosedMatrix& m)
+ {
+ BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<Graph> ));
+ BOOST_CONCEPT_ASSERT(( VertexIndexGraphConcept<Graph> ));
+ typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
+
+ // get the vertices in question
+ Vertex
+ u = source(e, g),
+ v = target(e, g);
+
+ // conditions for allowing a traversal along this edge are:
+ // 1. the index of v must be greater than that at which the
+ // the path is rooted (p.front()).
+ // 2. the vertex v cannot already be in the path
+ // 3. the vertex v cannot be closed to the vertex u
+
+ bool indices = get(vertex_index, g, p.front()) < get(vertex_index, g, v);
+ bool path = !is_vertex_in_path(g, v, p);
+ bool closed = !is_path_closed(g, u, v, m);
+ return indices && path && closed;
+ }
+
+ template <typename Graph, typename Path>
+ inline bool
+ can_wrap_path(const Graph& g, const Path& p)
+ {
+ BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<Graph> ));
+ typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
+ typedef typename graph_traits<Graph>::out_edge_iterator OutIterator;
+
+ // iterate over the out-edges of the back, looking for the
+ // front of the path. also, we can't travel along the same
+ // edge that we did on the way here, but we don't quite have the
+ // stringent requirements that we do in can_extend_path().
+ Vertex
+ u = p.back(),
+ v = p.front();
+ OutIterator i, end;
+ for(boost::tie(i, end) = out_edges(u, g); i != end; ++i) {
+ if((target(*i, g) == v)) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ template <typename Graph,
+ typename Path,
+ typename ClosedMatrix>
+ inline typename graph_traits<Graph>::vertex_descriptor
+ extend_path(const Graph& g,
+ Path& p,
+ ClosedMatrix& closed)
+ {
+ BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<Graph> ));
+ typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
+ typedef typename graph_traits<Graph>::edge_descriptor Edge;
+ typedef typename graph_traits<Graph>::out_edge_iterator OutIterator;
+
+ // get the current vertex
+ Vertex u = p.back();
+ Vertex ret = graph_traits<Graph>::null_vertex();
+
+ // AdjacencyIterator i, end;
+ OutIterator i, end;
+ for(boost::tie(i, end) = out_edges(u, g); i != end; ++i) {
+ Vertex v = target(*i, g);
+
+ // if we can actually extend along this edge,
+ // then that's what we want to do
+ if(can_extend_path(g, *i, p, closed)) {
+ p.push_back(v); // add the vertex to the path
+ ret = v;
+ break;
+ }
+ }
+ return ret;
+ }
+
+ template <typename Graph, typename Path, typename ClosedMatrix>
+ inline bool
+ exhaust_paths(const Graph& g, Path& p, ClosedMatrix& closed)
+ {
+ BOOST_CONCEPT_ASSERT(( GraphConcept<Graph> ));
+ typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
+
+ // if there's more than one vertex in the path, this closes
+ // of some possible routes and returns true. otherwise, if there's
+ // only one vertex left, the vertex has been used up
+ if(p.size() > 1) {
+ // get the last and second to last vertices, popping the last
+ // vertex off the path
+ Vertex last, prev;
+ last = p.back();
+ p.pop_back();
+ prev = p.back();
+
+ // reset the closure for the last vertex of the path and
+ // indicate that the last vertex in p is now closed to
+ // the next-to-last vertex in p
+ closed[get(vertex_index, g, last)].clear();
+ closed[get(vertex_index, g, prev)].push_back(last);
+ return true;
+ }
+ else {
+ return false;
+ }
+ }
+
+ template <typename Graph, typename Visitor>
+ inline void
+ all_cycles_from_vertex(const Graph& g,
+ typename graph_traits<Graph>::vertex_descriptor v,
+ Visitor vis,
+ std::size_t minlen,
+ std::size_t maxlen)
+ {
+ BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph> ));
+ typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
+ typedef std::vector<Vertex> Path;
+ BOOST_CONCEPT_ASSERT(( CycleVisitorConcept<Visitor,Path,Graph> ));
+ typedef std::vector<Vertex> VertexList;
+ typedef std::vector<VertexList> ClosedMatrix;
+
+ Path p;
+ ClosedMatrix closed(num_vertices(g), VertexList());
+ Vertex null = graph_traits<Graph>::null_vertex();
+
+ // each path investigation starts at the ith vertex
+ p.push_back(v);
+
+ while(1) {
+ // extend the path until we've reached the end or the
+ // maxlen-sized cycle
+ Vertex j = null;
+ while(((j = detail::extend_path(g, p, closed)) != null)
+ && (p.size() < maxlen))
+ ; // empty loop
+
+ // if we're done extending the path and there's an edge
+ // connecting the back to the front, then we should have
+ // a cycle.
+ if(detail::can_wrap_path(g, p) && p.size() >= minlen) {
+ vis.cycle(p, g);
+ }
+
+ if(!detail::exhaust_paths(g, p, closed)) {
+ break;
+ }
+ }
+ }
+
+ // Select the minimum allowable length of a cycle based on the directedness
+ // of the graph - 2 for directed, 3 for undirected.
+ template <typename D> struct min_cycles { enum { value = 2 }; };
+ template <> struct min_cycles<undirected_tag> { enum { value = 3 }; };
+} /* namespace detail */
+
+template <typename Graph, typename Visitor>
+inline void
+tiernan_all_cycles(const Graph& g,
+ Visitor vis,
+ std::size_t minlen,
+ std::size_t maxlen)
+{
+ BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph> ));
+ typedef typename graph_traits<Graph>::vertex_iterator VertexIterator;
+
+ VertexIterator i, end;
+ for(boost::tie(i, end) = vertices(g); i != end; ++i) {
+ detail::all_cycles_from_vertex(g, *i, vis, minlen, maxlen);
+ }
+}
+
+template <typename Graph, typename Visitor>
+inline void
+tiernan_all_cycles(const Graph& g, Visitor vis, std::size_t maxlen)
+{
+ typedef typename graph_traits<Graph>::directed_category Dir;
+ tiernan_all_cycles(g, vis, detail::min_cycles<Dir>::value, maxlen);
+}
+
+template <typename Graph, typename Visitor>
+inline void
+tiernan_all_cycles(const Graph& g, Visitor vis)
+{
+ typedef typename graph_traits<Graph>::directed_category Dir;
+ tiernan_all_cycles(g, vis, detail::min_cycles<Dir>::value,
+ (std::numeric_limits<std::size_t>::max)());
+}
+
+template <typename Graph>
+inline std::pair<std::size_t, std::size_t>
+tiernan_girth_and_circumference(const Graph& g)
+{
+ std::size_t
+ min_ = (std::numeric_limits<std::size_t>::max)(),
+ max_ = 0;
+ tiernan_all_cycles(g, find_min_max_cycle(min_, max_));
+
+ // if this is the case, the graph is acyclic...
+ if(max_ == 0) max_ = min_;
+
+ return std::make_pair(min_, max_);
+}
+
+template <typename Graph>
+inline std::size_t
+tiernan_girth(const Graph& g)
+{ return tiernan_girth_and_circumference(g).first; }
+
+template <typename Graph>
+inline std::size_t
+tiernan_circumference(const Graph& g)
+{ return tiernan_girth_and_circumference(g).second; }
+
+} /* namespace boost */
+
+#endif