summaryrefslogtreecommitdiff
path: root/gdb/arm-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/arm-tdep.c')
-rw-r--r--gdb/arm-tdep.c1626
1 files changed, 1626 insertions, 0 deletions
diff --git a/gdb/arm-tdep.c b/gdb/arm-tdep.c
new file mode 100644
index 00000000000..607dc8fb5af
--- /dev/null
+++ b/gdb/arm-tdep.c
@@ -0,0 +1,1626 @@
+/* Target-dependent code for the Acorn Risc Machine, for GDB, the GNU Debugger.
+ Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999
+ Free Software Foundation, Inc.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "frame.h"
+#include "inferior.h"
+#include "gdbcmd.h"
+#include "gdbcore.h"
+#include "symfile.h"
+#include "gdb_string.h"
+#include "coff/internal.h" /* Internal format of COFF symbols in BFD */
+
+/*
+ The following macros are actually wrong. Neither arm nor thumb can
+ or should set the lsb on addr.
+ The thumb addresses are mod 2, so (addr & 2) would be a good heuristic
+ to use when checking for thumb (see arm_pc_is_thumb() below).
+ Unfortunately, something else depends on these (incorrect) macros, so
+ fixing them actually breaks gdb. I didn't have time to investigate. Z.R.
+*/
+/* Thumb function addresses are odd (bit 0 is set). Here are some
+ macros to test, set, or clear bit 0 of addresses. */
+#define IS_THUMB_ADDR(addr) ((addr) & 1)
+#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
+#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
+
+/* Macros to round N up or down to the next A boundary; A must be
+ a power of two. */
+#define ROUND_DOWN(n,a) ((n) & ~((a) - 1))
+#define ROUND_UP(n,a) (((n) + (a) - 1) & ~((a) - 1))
+
+/* Should call_function allocate stack space for a struct return? */
+/* The system C compiler uses a similar structure return convention to gcc */
+int
+arm_use_struct_convention (gcc_p, type)
+ int gcc_p;
+ struct type *type;
+{
+ return (TYPE_LENGTH (type) > 4);
+}
+
+int
+arm_frame_chain_valid (chain, thisframe)
+ CORE_ADDR chain;
+ struct frame_info *thisframe;
+{
+#define LOWEST_PC 0x20 /* the first 0x20 bytes are the trap vectors. */
+ return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC));
+}
+
+/* Set to true if the 32-bit mode is in use. */
+
+int arm_apcs_32 = 1;
+
+/* Flag set by arm_fix_call_dummy that tells whether the target function
+ is a Thumb function. This flag is checked by arm_push_arguments.
+ FIXME: Change the PUSH_ARGUMENTS macro (and its use in valops.c) to
+ pass the function address as an additional parameter. */
+
+static int target_is_thumb;
+
+/* Flag set by arm_fix_call_dummy that tells whether the calling function
+ is a Thumb function. This flag is checked by arm_pc_is_thumb
+ and arm_call_dummy_breakpoint_offset. */
+
+static int caller_is_thumb;
+
+/* Tell if the program counter value in MEMADDR is in a Thumb function. */
+
+int
+arm_pc_is_thumb (memaddr)
+ bfd_vma memaddr;
+{
+ struct minimal_symbol * sym;
+ CORE_ADDR sp;
+
+ /* If bit 0 of the address is set, assume this is a Thumb address. */
+ if (IS_THUMB_ADDR (memaddr))
+ return 1;
+
+ /* Thumb function have a "special" bit set in minimal symbols */
+ sym = lookup_minimal_symbol_by_pc (memaddr);
+ if (sym)
+ {
+ return (MSYMBOL_IS_SPECIAL(sym));
+ }
+ else
+ return 0;
+}
+
+/* Tell if the program counter value in MEMADDR is in a call dummy that
+ is being called from a Thumb function. */
+
+int
+arm_pc_is_thumb_dummy (memaddr)
+ bfd_vma memaddr;
+{
+ CORE_ADDR sp = read_sp();
+
+ if (PC_IN_CALL_DUMMY (memaddr, sp, sp+64))
+ return caller_is_thumb;
+ else
+ return 0;
+}
+
+CORE_ADDR
+arm_addr_bits_remove (val)
+ CORE_ADDR val;
+{
+ if (arm_pc_is_thumb (val))
+ return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe));
+ else
+ return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc));
+}
+
+CORE_ADDR
+arm_saved_pc_after_call (frame)
+ struct frame_info *frame;
+{
+ return ADDR_BITS_REMOVE (read_register (LR_REGNUM));
+}
+
+/* A typical Thumb prologue looks like this:
+ push {r7, lr}
+ add sp, sp, #-28
+ add r7, sp, #12
+ Sometimes the latter instruction may be replaced by:
+ mov r7, sp
+*/
+
+static CORE_ADDR
+thumb_skip_prologue (pc)
+ CORE_ADDR pc;
+{
+ CORE_ADDR current_pc;
+
+ for (current_pc = pc; current_pc < pc + 20; current_pc += 2)
+ {
+ unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
+
+ if ( (insn & 0xfe00) != 0xb400 /* push {..., r7, lr} */
+ && (insn & 0xff00) != 0xb000 /* add sp, #simm */
+ && (insn & 0xff00) != 0xaf00 /* add r7, sp, #imm */
+ && insn != 0x466f /* mov r7, sp */
+ && (insn & 0xffc0) != 0x4640) /* mov r0-r7, r8-r15 */
+ break;
+ }
+
+ return current_pc;
+}
+
+/* APCS (ARM procedure call standard) defines the following prologue:
+
+ mov ip, sp
+ [stmfd sp!, {a1,a2,a3,a4}]
+ stmfd sp!, {...,fp,ip,lr,pc}
+ [stfe f7, [sp, #-12]!]
+ [stfe f6, [sp, #-12]!]
+ [stfe f5, [sp, #-12]!]
+ [stfe f4, [sp, #-12]!]
+ sub fp, ip, #nn // nn == 20 or 4 depending on second ins
+*/
+
+CORE_ADDR
+arm_skip_prologue (pc)
+ CORE_ADDR pc;
+{
+ unsigned long inst;
+ CORE_ADDR skip_pc;
+ CORE_ADDR func_addr, func_end;
+ struct symtab_and_line sal;
+
+ /* See what the symbol table says. */
+ if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
+ {
+ sal = find_pc_line (func_addr, 0);
+ if (sal.line != 0 && sal.end < func_end)
+ return sal.end;
+ }
+
+ /* Check if this is Thumb code. */
+ if (arm_pc_is_thumb (pc))
+ return thumb_skip_prologue (pc);
+
+ /* Can't find the prologue end in the symbol table, try it the hard way
+ by disassembling the instructions. */
+ skip_pc = pc;
+ inst = read_memory_integer (skip_pc, 4);
+ if (inst != 0xe1a0c00d) /* mov ip, sp */
+ return pc;
+
+ skip_pc += 4;
+ inst = read_memory_integer (skip_pc, 4);
+ if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
+ {
+ skip_pc += 4;
+ inst = read_memory_integer (skip_pc, 4);
+ }
+
+ if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */
+ return pc;
+
+ skip_pc += 4;
+ inst = read_memory_integer (skip_pc, 4);
+
+ /* Any insns after this point may float into the code, if it makes
+ for better instruction scheduling, so we skip them only if
+ we find them, but still consdier the function to be frame-ful */
+
+ /* We may have either one sfmfd instruction here, or several stfe insns,
+ depending on the version of floating point code we support. */
+ if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
+ {
+ skip_pc += 4;
+ inst = read_memory_integer (skip_pc, 4);
+ }
+ else
+ {
+ while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
+ {
+ skip_pc += 4;
+ inst = read_memory_integer (skip_pc, 4);
+ }
+ }
+
+ if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
+ skip_pc += 4;
+
+ return skip_pc;
+}
+
+
+
+/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
+ This function decodes a Thumb function prologue to determine:
+ 1) the size of the stack frame
+ 2) which registers are saved on it
+ 3) the offsets of saved regs
+ 4) the offset from the stack pointer to the frame pointer
+ This information is stored in the "extra" fields of the frame_info.
+
+ A typical Thumb function prologue might look like this:
+ push {r7, lr}
+ sub sp, #28,
+ add r7, sp, #12
+ Which would create this stack frame (offsets relative to FP)
+ old SP -> 24 stack parameters
+ 20 LR
+ 16 R7
+ R7 -> 0 local variables (16 bytes)
+ SP -> -12 additional stack space (12 bytes)
+ The frame size would thus be 36 bytes, and the frame offset would be
+ 12 bytes. The frame register is R7. */
+
+static void
+thumb_scan_prologue (fi)
+ struct frame_info * fi;
+{
+ CORE_ADDR prologue_start;
+ CORE_ADDR prologue_end;
+ CORE_ADDR current_pc;
+ int saved_reg[16]; /* which register has been copied to register n? */
+ int i;
+
+ if (find_pc_partial_function (fi->pc, NULL, & prologue_start, & prologue_end))
+ {
+ struct symtab_and_line sal = find_pc_line (prologue_start, 0);
+
+ if (sal.line == 0) /* no line info, use current PC */
+ prologue_end = fi->pc;
+ else if (sal.end < prologue_end) /* next line begins after fn end */
+ prologue_end = sal.end; /* (probably means no prologue) */
+ }
+ else
+ prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */
+ /* 16 pushes, an add, and "mv fp,sp" */
+
+ prologue_end = min (prologue_end, fi->pc);
+
+ /* Initialize the saved register map. When register H is copied to
+ register L, we will put H in saved_reg[L]. */
+ for (i = 0; i < 16; i++)
+ saved_reg[i] = i;
+
+ /* Search the prologue looking for instructions that set up the
+ frame pointer, adjust the stack pointer, and save registers. */
+
+ fi->framesize = 0;
+ for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2)
+ {
+ unsigned short insn;
+ int regno;
+ int offset;
+
+ insn = read_memory_unsigned_integer (current_pc, 2);
+
+ if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
+ {
+ /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
+ whether to save LR (R14). */
+ int mask = (insn & 0xff) | ((insn & 0x100) << 6);
+
+ /* Calculate offsets of saved R0-R7 and LR. */
+ for (regno = LR_REGNUM; regno >= 0; regno--)
+ if (mask & (1 << regno))
+ {
+ fi->framesize += 4;
+ fi->fsr.regs[saved_reg[regno]] = -(fi->framesize);
+ saved_reg[regno] = regno; /* reset saved register map */
+ }
+ }
+ else if ((insn & 0xff00) == 0xb000) /* add sp, #simm */
+ {
+ offset = (insn & 0x7f) << 2; /* get scaled offset */
+ if (insn & 0x80) /* is it signed? */
+ offset = -offset;
+ fi->framesize -= offset;
+ }
+ else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
+ {
+ fi->framereg = THUMB_FP_REGNUM;
+ fi->frameoffset = (insn & 0xff) << 2; /* get scaled offset */
+ }
+ else if (insn == 0x466f) /* mov r7, sp */
+ {
+ fi->framereg = THUMB_FP_REGNUM;
+ fi->frameoffset = 0;
+ saved_reg[THUMB_FP_REGNUM] = SP_REGNUM;
+ }
+ else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
+ {
+ int lo_reg = insn & 7; /* dest. register (r0-r7) */
+ int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
+ saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
+ }
+ else
+ break; /* anything else isn't prologue */
+ }
+}
+
+/* Function: check_prologue_cache
+ Check if prologue for this frame's PC has already been scanned.
+ If it has, copy the relevant information about that prologue and
+ return non-zero. Otherwise do not copy anything and return zero.
+
+ The information saved in the cache includes:
+ * the frame register number;
+ * the size of the stack frame;
+ * the offsets of saved regs (relative to the old SP); and
+ * the offset from the stack pointer to the frame pointer
+
+ The cache contains only one entry, since this is adequate
+ for the typical sequence of prologue scan requests we get.
+ When performing a backtrace, GDB will usually ask to scan
+ the same function twice in a row (once to get the frame chain,
+ and once to fill in the extra frame information).
+*/
+
+static struct frame_info prologue_cache;
+
+static int
+check_prologue_cache (fi)
+ struct frame_info * fi;
+{
+ int i;
+
+ if (fi->pc == prologue_cache.pc)
+ {
+ fi->framereg = prologue_cache.framereg;
+ fi->framesize = prologue_cache.framesize;
+ fi->frameoffset = prologue_cache.frameoffset;
+ for (i = 0; i <= NUM_REGS; i++)
+ fi->fsr.regs[i] = prologue_cache.fsr.regs[i];
+ return 1;
+ }
+ else
+ return 0;
+}
+
+
+/* Function: save_prologue_cache
+ Copy the prologue information from fi to the prologue cache.
+*/
+
+static void
+save_prologue_cache (fi)
+ struct frame_info * fi;
+{
+ int i;
+
+ prologue_cache.pc = fi->pc;
+ prologue_cache.framereg = fi->framereg;
+ prologue_cache.framesize = fi->framesize;
+ prologue_cache.frameoffset = fi->frameoffset;
+
+ for (i = 0; i <= NUM_REGS; i++)
+ prologue_cache.fsr.regs[i] = fi->fsr.regs[i];
+}
+
+
+/* Function: arm_scan_prologue
+ This function decodes an ARM function prologue to determine:
+ 1) the size of the stack frame
+ 2) which registers are saved on it
+ 3) the offsets of saved regs
+ 4) the offset from the stack pointer to the frame pointer
+ This information is stored in the "extra" fields of the frame_info.
+
+ A typical Arm function prologue might look like this:
+ mov ip, sp
+ stmfd sp!, {fp, ip, lr, pc}
+ sub fp, ip, #4
+ sub sp, sp, #16
+ Which would create this stack frame (offsets relative to FP):
+ IP -> 4 (caller's stack)
+ FP -> 0 PC (points to address of stmfd instruction + 12 in callee)
+ -4 LR (return address in caller)
+ -8 IP (copy of caller's SP)
+ -12 FP (caller's FP)
+ SP -> -28 Local variables
+ The frame size would thus be 32 bytes, and the frame offset would be
+ 28 bytes. */
+
+static void
+arm_scan_prologue (fi)
+ struct frame_info * fi;
+{
+ int regno, sp_offset, fp_offset;
+ CORE_ADDR prologue_start, prologue_end, current_pc;
+
+ /* Check if this function is already in the cache of frame information. */
+ if (check_prologue_cache (fi))
+ return;
+
+ /* Assume there is no frame until proven otherwise. */
+ fi->framereg = SP_REGNUM;
+ fi->framesize = 0;
+ fi->frameoffset = 0;
+
+ /* Check for Thumb prologue. */
+ if (arm_pc_is_thumb (fi->pc))
+ {
+ thumb_scan_prologue (fi);
+ save_prologue_cache (fi);
+ return;
+ }
+
+ /* Find the function prologue. If we can't find the function in
+ the symbol table, peek in the stack frame to find the PC. */
+ if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
+ {
+ /* Assume the prologue is everything between the first instruction
+ in the function and the first source line. */
+ struct symtab_and_line sal = find_pc_line (prologue_start, 0);
+
+ if (sal.line == 0) /* no line info, use current PC */
+ prologue_end = fi->pc;
+ else if (sal.end < prologue_end) /* next line begins after fn end */
+ prologue_end = sal.end; /* (probably means no prologue) */
+ }
+ else
+ {
+ /* Get address of the stmfd in the prologue of the callee; the saved
+ PC is the address of the stmfd + 12. */
+ prologue_start = (read_memory_integer (fi->frame, 4) & 0x03fffffc) - 12;
+ prologue_end = prologue_start + 40; /* FIXME: should be big enough */
+ }
+
+ /* Now search the prologue looking for instructions that set up the
+ frame pointer, adjust the stack pointer, and save registers. */
+
+ sp_offset = fp_offset = 0;
+ for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 4)
+ {
+ unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
+
+ if ((insn & 0xffff0000) == 0xe92d0000) /* stmfd sp!, {..., r7, lr} */
+ {
+ int mask = insn & 0xffff;
+
+ /* Calculate offsets of saved registers. */
+ for (regno = PC_REGNUM; regno >= 0; regno--)
+ if (mask & (1 << regno))
+ {
+ sp_offset -= 4;
+ fi->fsr.regs[regno] = sp_offset;
+ }
+ }
+ else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
+ {
+ unsigned imm = insn & 0xff; /* immediate value */
+ unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
+ imm = (imm >> rot) | (imm << (32-rot));
+ fp_offset = -imm;
+ fi->framereg = FP_REGNUM;
+ }
+ else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
+ {
+ unsigned imm = insn & 0xff; /* immediate value */
+ unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
+ imm = (imm >> rot) | (imm << (32-rot));
+ sp_offset -= imm;
+ }
+ else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
+ {
+ sp_offset -= 12;
+ regno = F0_REGNUM + ((insn >> 12) & 0x07);
+ fi->fsr.regs[regno] = sp_offset;
+ }
+ else if (insn == 0xe1a0c00d) /* mov ip, sp */
+ continue;
+ else
+ break; /* not a recognized prologue instruction */
+ }
+
+ /* The frame size is just the negative of the offset (from the original SP)
+ of the last thing thing we pushed on the stack. The frame offset is
+ [new FP] - [new SP]. */
+ fi->framesize = -sp_offset;
+ fi->frameoffset = fp_offset - sp_offset;
+
+ save_prologue_cache (fi);
+}
+
+
+/* Function: find_callers_reg
+ Find REGNUM on the stack. Otherwise, it's in an active register. One thing
+ we might want to do here is to check REGNUM against the clobber mask, and
+ somehow flag it as invalid if it isn't saved on the stack somewhere. This
+ would provide a graceful failure mode when trying to get the value of
+ caller-saves registers for an inner frame. */
+
+static CORE_ADDR
+arm_find_callers_reg (fi, regnum)
+ struct frame_info * fi;
+ int regnum;
+{
+ for (; fi; fi = fi->next)
+
+#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
+ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+ return generic_read_register_dummy (fi->pc, fi->frame, regnum);
+ else
+#endif
+ if (fi->fsr.regs[regnum] != 0)
+ return read_memory_integer (fi->fsr.regs[regnum],
+ REGISTER_RAW_SIZE(regnum));
+ return read_register (regnum);
+}
+
+
+/* Function: frame_chain
+ Given a GDB frame, determine the address of the calling function's frame.
+ This will be used to create a new GDB frame struct, and then
+ INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
+ For ARM, we save the frame size when we initialize the frame_info.
+
+ The original definition of this function was a macro in tm-arm.h:
+ { In the case of the ARM, the frame's nominal address is the FP value,
+ and 12 bytes before comes the saved previous FP value as a 4-byte word. }
+
+ #define FRAME_CHAIN(thisframe) \
+ ((thisframe)->pc >= LOWEST_PC ? \
+ read_memory_integer ((thisframe)->frame - 12, 4) :\
+ 0)
+*/
+
+CORE_ADDR
+arm_frame_chain (fi)
+ struct frame_info * fi;
+{
+#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
+ CORE_ADDR fn_start, callers_pc, fp;
+
+ /* is this a dummy frame? */
+ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+ return fi->frame; /* dummy frame same as caller's frame */
+
+ /* is caller-of-this a dummy frame? */
+ callers_pc = FRAME_SAVED_PC(fi); /* find out who called us: */
+ fp = arm_find_callers_reg (fi, FP_REGNUM);
+ if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
+ return fp; /* dummy frame's frame may bear no relation to ours */
+
+ if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
+ if (fn_start == entry_point_address ())
+ return 0; /* in _start fn, don't chain further */
+#endif
+ CORE_ADDR caller_pc, fn_start;
+ struct frame_info caller_fi;
+ int framereg = fi->framereg;
+
+ if (fi->pc < LOWEST_PC)
+ return 0;
+
+ /* If the caller is the startup code, we're at the end of the chain. */
+ caller_pc = FRAME_SAVED_PC (fi);
+ if (find_pc_partial_function (caller_pc, 0, &fn_start, 0))
+ if (fn_start == entry_point_address ())
+ return 0;
+
+ /* If the caller is Thumb and the caller is ARM, or vice versa,
+ the frame register of the caller is different from ours.
+ So we must scan the prologue of the caller to determine its
+ frame register number. */
+ if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
+ {
+ memset (& caller_fi, 0, sizeof (caller_fi));
+ caller_fi.pc = caller_pc;
+ arm_scan_prologue (& caller_fi);
+ framereg = caller_fi.framereg;
+ }
+
+ /* If the caller used a frame register, return its value.
+ Otherwise, return the caller's stack pointer. */
+ if (framereg == FP_REGNUM || framereg == THUMB_FP_REGNUM)
+ return arm_find_callers_reg (fi, framereg);
+ else
+ return fi->frame + fi->framesize;
+}
+
+/* Function: init_extra_frame_info
+ This function actually figures out the frame address for a given pc and
+ sp. This is tricky because we sometimes don't use an explicit
+ frame pointer, and the previous stack pointer isn't necessarily recorded
+ on the stack. The only reliable way to get this info is to
+ examine the prologue. */
+
+void
+arm_init_extra_frame_info (fi)
+ struct frame_info * fi;
+{
+ int reg;
+
+ if (fi->next)
+ fi->pc = FRAME_SAVED_PC (fi->next);
+
+ memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
+
+#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
+ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+ {
+ /* We need to setup fi->frame here because run_stack_dummy gets it wrong
+ by assuming it's always FP. */
+ fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
+ fi->framesize = 0;
+ fi->frameoffset = 0;
+ return;
+ }
+ else
+#endif
+ {
+ arm_scan_prologue (fi);
+
+ if (!fi->next) /* this is the innermost frame? */
+ fi->frame = read_register (fi->framereg);
+ else /* not the innermost frame */
+ /* If we have an FP, the callee saved it. */
+ if (fi->framereg == FP_REGNUM || fi->framereg == THUMB_FP_REGNUM)
+ if (fi->next->fsr.regs[fi->framereg] != 0)
+ fi->frame = read_memory_integer (fi->next->fsr.regs[fi->framereg],
+ 4);
+
+ /* Calculate actual addresses of saved registers using offsets determined
+ by arm_scan_prologue. */
+ for (reg = 0; reg < NUM_REGS; reg++)
+ if (fi->fsr.regs[reg] != 0)
+ fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset;
+ }
+}
+
+
+/* Function: frame_saved_pc
+ Find the caller of this frame. We do this by seeing if LR_REGNUM is saved
+ in the stack anywhere, otherwise we get it from the registers.
+
+ The old definition of this function was a macro:
+ #define FRAME_SAVED_PC(FRAME) \
+ ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4))
+*/
+
+CORE_ADDR
+arm_frame_saved_pc (fi)
+ struct frame_info * fi;
+{
+#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
+ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+ return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
+ else
+#endif
+ {
+ CORE_ADDR pc = arm_find_callers_reg (fi, LR_REGNUM);
+ return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
+ }
+}
+
+
+/* Return the frame address. On ARM, it is R11; on Thumb it is R7.
+ Examine the Program Status Register to decide which state we're in. */
+
+CORE_ADDR
+arm_target_read_fp ()
+{
+ if (read_register (PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
+ return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
+ else
+ return read_register (FP_REGNUM); /* R11 if ARM */
+}
+
+
+/* Calculate the frame offsets of the saved registers (ARM version). */
+void
+arm_frame_find_saved_regs (fi, regaddr)
+ struct frame_info *fi;
+ struct frame_saved_regs *regaddr;
+{
+ memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
+}
+
+
+void
+arm_push_dummy_frame ()
+{
+ CORE_ADDR old_sp = read_register (SP_REGNUM);
+ CORE_ADDR sp = old_sp;
+ CORE_ADDR fp, prologue_start;
+ int regnum;
+
+ /* Push the two dummy prologue instructions in reverse order,
+ so that they'll be in the correct low-to-high order in memory. */
+ /* sub fp, ip, #4 */
+ sp = push_word (sp, 0xe24cb004);
+ /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
+ prologue_start = sp = push_word (sp, 0xe92ddfff);
+
+ /* push a pointer to the dummy prologue + 12, because when
+ stm instruction stores the PC, it stores the address of the stm
+ instruction itself plus 12. */
+ fp = sp = push_word (sp, prologue_start + 12);
+ sp = push_word (sp, read_register (PC_REGNUM)); /* FIXME: was PS_REGNUM */
+ sp = push_word (sp, old_sp);
+ sp = push_word (sp, read_register (FP_REGNUM));
+
+ for (regnum = 10; regnum >= 0; regnum --)
+ sp = push_word (sp, read_register (regnum));
+
+ write_register (FP_REGNUM, fp);
+ write_register (THUMB_FP_REGNUM, fp);
+ write_register (SP_REGNUM, sp);
+}
+
+/* Fix up the call dummy, based on whether the processor is currently
+ in Thumb or ARM mode, and whether the target function is Thumb
+ or ARM. There are three different situations requiring three
+ different dummies:
+
+ * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
+ been copied into the dummy parameter to this function.
+ * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
+ "mov pc,r4" instruction patched to be a "bx r4" instead.
+ * Thumb calling anything: uses the Thumb dummy defined below, which
+ works for calling both ARM and Thumb functions.
+
+ All three call dummies expect to receive the target function address
+ in R4, with the low bit set if it's a Thumb function.
+*/
+
+void
+arm_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
+ char * dummy;
+ CORE_ADDR pc;
+ CORE_ADDR fun;
+ int nargs;
+ value_ptr * args;
+ struct type * type;
+ int gcc_p;
+{
+ static short thumb_dummy[4] =
+ {
+ 0xf000, 0xf801, /* bl label */
+ 0xdf18, /* swi 24 */
+ 0x4720, /* label: bx r4 */
+ };
+ static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
+
+ /* Set flag indicating whether the current PC is in a Thumb function. */
+ caller_is_thumb = arm_pc_is_thumb (read_pc());
+
+ /* If the target function is Thumb, set the low bit of the function address.
+ And if the CPU is currently in ARM mode, patch the second instruction
+ of call dummy to use a BX instruction to switch to Thumb mode. */
+ target_is_thumb = arm_pc_is_thumb (fun);
+ if (target_is_thumb)
+ {
+ fun |= 1;
+ if (!caller_is_thumb)
+ store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
+ }
+
+ /* If the CPU is currently in Thumb mode, use the Thumb call dummy
+ instead of the ARM one that's already been copied. This will
+ work for both Thumb and ARM target functions. */
+ if (caller_is_thumb)
+ {
+ int i;
+ char *p = dummy;
+ int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
+
+ for (i = 0; i < len; i++)
+ {
+ store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
+ p += sizeof (thumb_dummy[0]);
+ }
+ }
+
+ /* Put the target address in r4; the call dummy will copy this to the PC. */
+ write_register (4, fun);
+}
+
+
+/* Return the offset in the call dummy of the instruction that needs
+ to have a breakpoint placed on it. This is the offset of the 'swi 24'
+ instruction, which is no longer actually used, but simply acts
+ as a place-holder now.
+
+ This implements the CALL_DUMMY_BREAK_OFFSET macro.
+*/
+
+int
+arm_call_dummy_breakpoint_offset ()
+{
+ if (caller_is_thumb)
+ return 4;
+ else
+ return 8;
+}
+
+
+CORE_ADDR
+arm_push_arguments(nargs, args, sp, struct_return, struct_addr)
+ int nargs;
+ value_ptr * args;
+ CORE_ADDR sp;
+ int struct_return;
+ CORE_ADDR struct_addr;
+{
+ int argreg;
+ int float_argreg;
+ int argnum;
+ int stack_offset;
+ struct stack_arg {
+ char *val;
+ int len;
+ int offset;
+ };
+ struct stack_arg *stack_args =
+ (struct stack_arg*)alloca (nargs * sizeof (struct stack_arg));
+ int nstack_args = 0;
+
+
+ /* Initialize the integer and float register pointers. */
+ argreg = A1_REGNUM;
+ float_argreg = F0_REGNUM;
+
+ /* the struct_return pointer occupies the first parameter-passing reg */
+ if (struct_return)
+ write_register (argreg++, struct_addr);
+
+ /* The offset onto the stack at which we will start copying parameters
+ (after the registers are used up) begins at 16 in the old ABI.
+ This leaves room for the "home" area for register parameters. */
+ stack_offset = REGISTER_SIZE * 4;
+
+ /* Process args from left to right. Store as many as allowed in
+ registers, save the rest to be pushed on the stack */
+ for(argnum = 0; argnum < nargs; argnum++)
+ {
+ char * val;
+ value_ptr arg = args[argnum];
+ struct type * arg_type = check_typedef (VALUE_TYPE (arg));
+ struct type * target_type = TYPE_TARGET_TYPE (arg_type);
+ int len = TYPE_LENGTH (arg_type);
+ enum type_code typecode = TYPE_CODE (arg_type);
+ CORE_ADDR regval;
+ int newarg;
+
+ val = (char *) VALUE_CONTENTS (arg);
+
+ /* If the argument is a pointer to a function, and it's a Thumb
+ function, set the low bit of the pointer. */
+ if (typecode == TYPE_CODE_PTR
+ && target_type != NULL
+ && TYPE_CODE (target_type) == TYPE_CODE_FUNC)
+ {
+ regval = extract_address (val, len);
+ if (arm_pc_is_thumb (regval))
+ store_address (val, len, MAKE_THUMB_ADDR (regval));
+ }
+
+#define MAPCS_FLOAT 0 /* --mapcs-float not implemented by the compiler yet */
+#if MAPCS_FLOAT
+ /* Up to four floating point arguments can be passed in floating
+ point registers on ARM (not on Thumb). */
+ if (typecode == TYPE_CODE_FLT
+ && float_argreg <= ARM_LAST_FP_ARG_REGNUM
+ && !target_is_thumb)
+ {
+ /* This is a floating point value that fits entirely
+ in a single register. */
+ regval = extract_address (val, len);
+ write_register (float_argreg++, regval);
+ }
+ else
+#endif
+ {
+ /* Copy the argument to general registers or the stack in
+ register-sized pieces. Large arguments are split between
+ registers and stack. */
+ while (len > 0)
+ {
+ if (argreg <= ARM_LAST_ARG_REGNUM)
+ {
+ int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
+ regval = extract_address (val, partial_len);
+
+ /* It's a simple argument being passed in a general
+ register. */
+ write_register (argreg, regval);
+ argreg++;
+ len -= partial_len;
+ val += partial_len;
+ }
+ else
+ {
+ /* keep for later pushing */
+ stack_args[nstack_args].val = val;
+ stack_args[nstack_args++].len = len;
+ break;
+ }
+ }
+ }
+ }
+ /* now do the real stack pushing, process args right to left */
+ while(nstack_args--)
+ {
+ sp -= stack_args[nstack_args].len;
+ write_memory(sp, stack_args[nstack_args].val,
+ stack_args[nstack_args].len);
+ }
+
+ /* Return adjusted stack pointer. */
+ return sp;
+}
+
+void
+arm_pop_frame ()
+{
+ struct frame_info *frame = get_current_frame();
+ int regnum;
+
+ for (regnum = 0; regnum < NUM_REGS; regnum++)
+ if (frame->fsr.regs[regnum] != 0)
+ write_register (regnum,
+ read_memory_integer (frame->fsr.regs[regnum], 4));
+
+ write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
+ write_register (SP_REGNUM, read_register (frame->framereg));
+
+ flush_cached_frames ();
+}
+
+static void
+print_fpu_flags (flags)
+ int flags;
+{
+ if (flags & (1 << 0)) fputs ("IVO ", stdout);
+ if (flags & (1 << 1)) fputs ("DVZ ", stdout);
+ if (flags & (1 << 2)) fputs ("OFL ", stdout);
+ if (flags & (1 << 3)) fputs ("UFL ", stdout);
+ if (flags & (1 << 4)) fputs ("INX ", stdout);
+ putchar ('\n');
+}
+
+void
+arm_float_info ()
+{
+ register unsigned long status = read_register (FPS_REGNUM);
+ int type;
+
+ type = (status >> 24) & 127;
+ printf ("%s FPU type %d\n",
+ (status & (1<<31)) ? "Hardware" : "Software",
+ type);
+ fputs ("mask: ", stdout);
+ print_fpu_flags (status >> 16);
+ fputs ("flags: ", stdout);
+ print_fpu_flags (status);
+}
+
+static char *original_register_names[] =
+{ "a1", "a2", "a3", "a4", /* 0 1 2 3 */
+ "v1", "v2", "v3", "v4", /* 4 5 6 7 */
+ "v5", "v6", "sl", "fp", /* 8 9 10 11 */
+ "ip", "sp", "lr", "pc", /* 12 13 14 15 */
+ "f0", "f1", "f2", "f3", /* 16 17 18 19 */
+ "f4", "f5", "f6", "f7", /* 20 21 22 23 */
+ "fps","ps" } /* 24 25 */;
+
+/* These names are the ones which gcc emits, and
+ I find them less confusing. Toggle between them
+ using the `othernames' command. */
+static char *additional_register_names[] =
+{ "r0", "r1", "r2", "r3", /* 0 1 2 3 */
+ "r4", "r5", "r6", "r7", /* 4 5 6 7 */
+ "r8", "r9", "sl", "fp", /* 8 9 10 11 */
+ "ip", "sp", "lr", "pc", /* 12 13 14 15 */
+ "f0", "f1", "f2", "f3", /* 16 17 18 19 */
+ "f4", "f5", "f6", "f7", /* 20 21 22 23 */
+ "fps","ps" } /* 24 25 */;
+
+char **arm_register_names = original_register_names;
+
+
+static void
+arm_othernames ()
+{
+ static int toggle;
+ arm_register_names = (toggle
+ ? additional_register_names
+ : original_register_names);
+ toggle = !toggle;
+}
+
+/* FIXME: Fill in with the 'right thing', see asm
+ template in arm-convert.s */
+
+void
+convert_from_extended (ptr, dbl)
+ void * ptr;
+ double * dbl;
+{
+ *dbl = *(double*)ptr;
+}
+
+void
+convert_to_extended (dbl, ptr)
+ void * ptr;
+ double * dbl;
+{
+ *(double*)ptr = *dbl;
+}
+
+static int
+condition_true (cond, status_reg)
+ unsigned long cond;
+ unsigned long status_reg;
+{
+ if (cond == INST_AL || cond == INST_NV)
+ return 1;
+
+ switch (cond)
+ {
+ case INST_EQ:
+ return ((status_reg & FLAG_Z) != 0);
+ case INST_NE:
+ return ((status_reg & FLAG_Z) == 0);
+ case INST_CS:
+ return ((status_reg & FLAG_C) != 0);
+ case INST_CC:
+ return ((status_reg & FLAG_C) == 0);
+ case INST_MI:
+ return ((status_reg & FLAG_N) != 0);
+ case INST_PL:
+ return ((status_reg & FLAG_N) == 0);
+ case INST_VS:
+ return ((status_reg & FLAG_V) != 0);
+ case INST_VC:
+ return ((status_reg & FLAG_V) == 0);
+ case INST_HI:
+ return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
+ case INST_LS:
+ return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
+ case INST_GE:
+ return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
+ case INST_LT:
+ return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
+ case INST_GT:
+ return (((status_reg & FLAG_Z) == 0) &&
+ (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
+ case INST_LE:
+ return (((status_reg & FLAG_Z) != 0) ||
+ (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
+ }
+ return 1;
+}
+
+#define submask(x) ((1L << ((x) + 1)) - 1)
+#define bit(obj,st) (((obj) >> (st)) & 1)
+#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
+#define sbits(obj,st,fn) \
+ ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
+#define BranchDest(addr,instr) \
+ ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
+#define ARM_PC_32 1
+
+static unsigned long
+shifted_reg_val (inst, carry, pc_val, status_reg)
+ unsigned long inst;
+ int carry;
+ unsigned long pc_val;
+ unsigned long status_reg;
+{
+ unsigned long res, shift;
+ int rm = bits (inst, 0, 3);
+ unsigned long shifttype = bits (inst, 5, 6);
+
+ if (bit(inst, 4))
+ {
+ int rs = bits (inst, 8, 11);
+ shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
+ }
+ else
+ shift = bits (inst, 7, 11);
+
+ res = (rm == 15
+ ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
+ + (bit (inst, 4) ? 12 : 8))
+ : read_register (rm));
+
+ switch (shifttype)
+ {
+ case 0: /* LSL */
+ res = shift >= 32 ? 0 : res << shift;
+ break;
+
+ case 1: /* LSR */
+ res = shift >= 32 ? 0 : res >> shift;
+ break;
+
+ case 2: /* ASR */
+ if (shift >= 32) shift = 31;
+ res = ((res & 0x80000000L)
+ ? ~((~res) >> shift) : res >> shift);
+ break;
+
+ case 3: /* ROR/RRX */
+ shift &= 31;
+ if (shift == 0)
+ res = (res >> 1) | (carry ? 0x80000000L : 0);
+ else
+ res = (res >> shift) | (res << (32-shift));
+ break;
+ }
+
+ return res & 0xffffffff;
+}
+
+
+/* Return number of 1-bits in VAL. */
+
+static int
+bitcount (val)
+ unsigned long val;
+{
+ int nbits;
+ for (nbits = 0; val != 0; nbits++)
+ val &= val - 1; /* delete rightmost 1-bit in val */
+ return nbits;
+}
+
+
+static CORE_ADDR
+thumb_get_next_pc (pc)
+ CORE_ADDR pc;
+{
+ unsigned long pc_val = ((unsigned long)pc) + 4; /* PC after prefetch */
+ unsigned short inst1 = read_memory_integer (pc, 2);
+ CORE_ADDR nextpc = pc + 2; /* default is next instruction */
+ unsigned long offset;
+
+ if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
+ {
+ CORE_ADDR sp;
+
+ /* Fetch the saved PC from the stack. It's stored above
+ all of the other registers. */
+ offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
+ sp = read_register (SP_REGNUM);
+ nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
+ nextpc = ADDR_BITS_REMOVE (nextpc);
+ if (nextpc == pc)
+ error ("Infinite loop detected");
+ }
+ else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
+ {
+ unsigned long status = read_register (PS_REGNUM);
+ unsigned long cond = bits (inst1, 8, 11);
+ if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
+ nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
+ }
+ else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
+ {
+ nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
+ }
+ else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
+ {
+ unsigned short inst2 = read_memory_integer (pc + 2, 2);
+ offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
+ nextpc = pc_val + offset;
+ }
+
+ return nextpc;
+}
+
+
+CORE_ADDR
+arm_get_next_pc (pc)
+ CORE_ADDR pc;
+{
+ unsigned long pc_val;
+ unsigned long this_instr;
+ unsigned long status;
+ CORE_ADDR nextpc;
+
+ if (arm_pc_is_thumb (pc))
+ return thumb_get_next_pc (pc);
+
+ pc_val = (unsigned long) pc;
+ this_instr = read_memory_integer (pc, 4);
+ status = read_register (PS_REGNUM);
+ nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
+
+ if (condition_true (bits (this_instr, 28, 31), status))
+ {
+ switch (bits (this_instr, 24, 27))
+ {
+ case 0x0: case 0x1: /* data processing */
+ case 0x2: case 0x3:
+ {
+ unsigned long operand1, operand2, result = 0;
+ unsigned long rn;
+ int c;
+
+ if (bits (this_instr, 12, 15) != 15)
+ break;
+
+ if (bits (this_instr, 22, 25) == 0
+ && bits (this_instr, 4, 7) == 9) /* multiply */
+ error ("Illegal update to pc in instruction");
+
+ /* Multiply into PC */
+ c = (status & FLAG_C) ? 1 : 0;
+ rn = bits (this_instr, 16, 19);
+ operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
+
+ if (bit (this_instr, 25))
+ {
+ unsigned long immval = bits (this_instr, 0, 7);
+ unsigned long rotate = 2 * bits (this_instr, 8, 11);
+ operand2 = ((immval >> rotate) | (immval << (32-rotate)))
+ & 0xffffffff;
+ }
+ else /* operand 2 is a shifted register */
+ operand2 = shifted_reg_val (this_instr, c, pc_val, status);
+
+ switch (bits (this_instr, 21, 24))
+ {
+ case 0x0: /*and*/
+ result = operand1 & operand2;
+ break;
+
+ case 0x1: /*eor*/
+ result = operand1 ^ operand2;
+ break;
+
+ case 0x2: /*sub*/
+ result = operand1 - operand2;
+ break;
+
+ case 0x3: /*rsb*/
+ result = operand2 - operand1;
+ break;
+
+ case 0x4: /*add*/
+ result = operand1 + operand2;
+ break;
+
+ case 0x5: /*adc*/
+ result = operand1 + operand2 + c;
+ break;
+
+ case 0x6: /*sbc*/
+ result = operand1 - operand2 + c;
+ break;
+
+ case 0x7: /*rsc*/
+ result = operand2 - operand1 + c;
+ break;
+
+ case 0x8: case 0x9: case 0xa: case 0xb: /* tst, teq, cmp, cmn */
+ result = (unsigned long) nextpc;
+ break;
+
+ case 0xc: /*orr*/
+ result = operand1 | operand2;
+ break;
+
+ case 0xd: /*mov*/
+ /* Always step into a function. */
+ result = operand2;
+ break;
+
+ case 0xe: /*bic*/
+ result = operand1 & ~operand2;
+ break;
+
+ case 0xf: /*mvn*/
+ result = ~operand2;
+ break;
+ }
+ nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
+
+ if (nextpc == pc)
+ error ("Infinite loop detected");
+ break;
+ }
+
+ case 0x4: case 0x5: /* data transfer */
+ case 0x6: case 0x7:
+ if (bit (this_instr, 20))
+ {
+ /* load */
+ if (bits (this_instr, 12, 15) == 15)
+ {
+ /* rd == pc */
+ unsigned long rn;
+ unsigned long base;
+
+ if (bit (this_instr, 22))
+ error ("Illegal update to pc in instruction");
+
+ /* byte write to PC */
+ rn = bits (this_instr, 16, 19);
+ base = (rn == 15) ? pc_val + 8 : read_register (rn);
+ if (bit (this_instr, 24))
+ {
+ /* pre-indexed */
+ int c = (status & FLAG_C) ? 1 : 0;
+ unsigned long offset =
+ (bit (this_instr, 25)
+ ? shifted_reg_val (this_instr, c, pc_val)
+ : bits (this_instr, 0, 11));
+
+ if (bit (this_instr, 23))
+ base += offset;
+ else
+ base -= offset;
+ }
+ nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
+ 4);
+
+ nextpc = ADDR_BITS_REMOVE (nextpc);
+
+ if (nextpc == pc)
+ error ("Infinite loop detected");
+ }
+ }
+ break;
+
+ case 0x8: case 0x9: /* block transfer */
+ if (bit (this_instr, 20))
+ {
+ /* LDM */
+ if (bit (this_instr, 15))
+ {
+ /* loading pc */
+ int offset = 0;
+
+ if (bit (this_instr, 23))
+ {
+ /* up */
+ unsigned long reglist = bits (this_instr, 0, 14);
+ offset = bitcount (reglist) * 4;
+ if (bit (this_instr, 24)) /* pre */
+ offset += 4;
+ }
+ else if (bit (this_instr, 24))
+ offset = -4;
+
+ {
+ unsigned long rn_val =
+ read_register (bits (this_instr, 16, 19));
+ nextpc =
+ (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
+ + offset),
+ 4);
+ }
+ nextpc = ADDR_BITS_REMOVE (nextpc);
+ if (nextpc == pc)
+ error ("Infinite loop detected");
+ }
+ }
+ break;
+
+ case 0xb: /* branch & link */
+ case 0xa: /* branch */
+ {
+ nextpc = BranchDest (pc, this_instr);
+
+ nextpc = ADDR_BITS_REMOVE (nextpc);
+ if (nextpc == pc)
+ error ("Infinite loop detected");
+ break;
+ }
+
+ case 0xc: case 0xd:
+ case 0xe: /* coproc ops */
+ case 0xf: /* SWI */
+ break;
+
+ default:
+ fprintf (stderr, "Bad bit-field extraction\n");
+ return (pc);
+ }
+ }
+
+ return nextpc;
+}
+
+#include "bfd-in2.h"
+#include "libcoff.h"
+
+static int
+gdb_print_insn_arm (memaddr, info)
+ bfd_vma memaddr;
+ disassemble_info * info;
+{
+ if (arm_pc_is_thumb (memaddr))
+ {
+ static asymbol * asym;
+ static combined_entry_type ce;
+ static struct coff_symbol_struct csym;
+ static struct _bfd fake_bfd;
+ static bfd_target fake_target;
+
+ if (csym.native == NULL)
+ {
+ /* Create a fake symbol vector containing a Thumb symbol. This is
+ solely so that the code in print_insn_little_arm() and
+ print_insn_big_arm() in opcodes/arm-dis.c will detect the presence
+ of a Thumb symbol and switch to decoding Thumb instructions. */
+
+ fake_target.flavour = bfd_target_coff_flavour;
+ fake_bfd.xvec = & fake_target;
+ ce.u.syment.n_sclass = C_THUMBEXTFUNC;
+ csym.native = & ce;
+ csym.symbol.the_bfd = & fake_bfd;
+ csym.symbol.name = "fake";
+ asym = (asymbol *) & csym;
+ }
+
+ memaddr = UNMAKE_THUMB_ADDR (memaddr);
+ info->symbols = & asym;
+ }
+ else
+ info->symbols = NULL;
+
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ return print_insn_big_arm (memaddr, info);
+ else
+ return print_insn_little_arm (memaddr, info);
+}
+
+/* Sequence of bytes for breakpoint instruction. */
+#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7} /* Recognized illegal opcodes */
+#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
+#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
+#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
+
+/* The following has been superseded by BREAKPOINT_FOR_PC, but
+ is defined merely to keep mem-break.c happy. */
+#define LITTLE_BREAKPOINT ARM_LE_BREAKPOINT
+#define BIG_BREAKPOINT ARM_BE_BREAKPOINT
+
+/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
+ counter value to determine whether a 16- or 32-bit breakpoint should be
+ used. It returns a pointer to a string of bytes that encode a breakpoint
+ instruction, stores the length of the string to *lenptr, and adjusts pc
+ (if necessary) to point to the actual memory location where the
+ breakpoint should be inserted. */
+
+unsigned char *
+arm_breakpoint_from_pc (pcptr, lenptr)
+ CORE_ADDR * pcptr;
+ int * lenptr;
+{
+ if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
+ {
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ {
+ static char thumb_breakpoint[] = THUMB_BE_BREAKPOINT;
+ *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
+ *lenptr = sizeof (thumb_breakpoint);
+ return thumb_breakpoint;
+ }
+ else
+ {
+ static char thumb_breakpoint[] = THUMB_LE_BREAKPOINT;
+ *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
+ *lenptr = sizeof (thumb_breakpoint);
+ return thumb_breakpoint;
+ }
+ }
+ else
+ {
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ {
+ static char arm_breakpoint[] = ARM_BE_BREAKPOINT;
+ *lenptr = sizeof (arm_breakpoint);
+ return arm_breakpoint;
+ }
+ else
+ {
+ static char arm_breakpoint[] = ARM_LE_BREAKPOINT;
+ *lenptr = sizeof (arm_breakpoint);
+ return arm_breakpoint;
+ }
+ }
+}
+/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
+ This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
+
+int
+arm_in_call_stub (pc, name)
+ CORE_ADDR pc;
+ char * name;
+{
+ CORE_ADDR start_addr;
+
+ /* Find the starting address of the function containing the PC. If the
+ caller didn't give us a name, look it up at the same time. */
+ if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
+ return 0;
+
+ return strncmp (name, "_call_via_r", 11) == 0;
+}
+
+
+/* If PC is in a Thumb call or return stub, return the address of the target
+ PC, which is in a register. The thunk functions are called _called_via_xx,
+ where x is the register name. The possible names are r0-r9, sl, fp, ip,
+ sp, and lr. */
+
+CORE_ADDR
+arm_skip_stub (pc)
+ CORE_ADDR pc;
+{
+ char * name;
+ CORE_ADDR start_addr;
+
+ /* Find the starting address and name of the function containing the PC. */
+ if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
+ return 0;
+
+ /* Call thunks always start with "_call_via_". */
+ if (strncmp (name, "_call_via_", 10) == 0)
+ {
+ /* Use the name suffix to determine which register contains
+ the target PC. */
+ static char *table[15] =
+ { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "sl", "fp", "ip", "sp", "lr"
+ };
+ int regno;
+
+ for (regno = 0; regno <= 14; regno++)
+ if (strcmp (&name[10], table[regno]) == 0)
+ return read_register (regno);
+ }
+ return 0; /* not a stub */
+}
+
+
+void
+_initialize_arm_tdep ()
+{
+ tm_print_insn = gdb_print_insn_arm;
+
+ add_com ("othernames", class_obscure, arm_othernames,
+ "Switch to the other set of register names.");
+
+ /* ??? Maybe this should be a boolean. */
+ add_show_from_set (add_set_cmd ("apcs32", no_class,
+ var_zinteger, (char *)&arm_apcs_32,
+ "Set usage of ARM 32-bit mode.\n", &setlist),
+ & showlist);
+
+}
+
+/* Test whether the coff symbol specific value corresponds to a Thumb function */
+int
+coff_sym_is_thumb(int val)
+{
+ return (val == C_THUMBEXT ||
+ val == C_THUMBSTAT ||
+ val == C_THUMBEXTFUNC ||
+ val == C_THUMBSTATFUNC ||
+ val == C_THUMBLABEL);
+}