summaryrefslogtreecommitdiff
path: root/gas/hash.c
diff options
context:
space:
mode:
Diffstat (limited to 'gas/hash.c')
-rw-r--r--gas/hash.c1028
1 files changed, 0 insertions, 1028 deletions
diff --git a/gas/hash.c b/gas/hash.c
deleted file mode 100644
index dccd660754c..00000000000
--- a/gas/hash.c
+++ /dev/null
@@ -1,1028 +0,0 @@
-/* hash.c - hash table lookup strings -
- Copyright (C) 1987, 90, 91, 92, 93, 94, 95, 96, 1998
- Free Software Foundation, Inc.
-
- This file is part of GAS, the GNU Assembler.
-
- GAS is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GAS is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GAS; see the file COPYING. If not, write to
- the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
-
-/*
- * BUGS, GRIPES, APOLOGIA etc.
- *
- * A typical user doesn't need ALL this: I intend to make a library out
- * of it one day - Dean Elsner.
- * Also, I want to change the definition of a symbol to (address,length)
- * so I can put arbitrary binary in the names stored. [see hsh.c for that]
- *
- * This slime is common coupled inside the module. Com-coupling (and other
- * vandalism) was done to speed running time. The interfaces at the
- * module's edges are adequately clean.
- *
- * There is no way to (a) run a test script through this heap and (b)
- * compare results with previous scripts, to see if we have broken any
- * code. Use GNU (f)utilities to do this. A few commands assist test.
- * The testing is awkward: it tries to be both batch & interactive.
- * For now, interactive rules!
- */
-
-/*
- * The idea is to implement a symbol table. A test jig is here.
- * Symbols are arbitrary strings; they can't contain '\0'.
- * [See hsh.c for a more general symbol flavour.]
- * Each symbol is associated with a char*, which can point to anything
- * you want, allowing an arbitrary property list for each symbol.
- *
- * The basic operations are:
- *
- * new creates symbol table, returns handle
- * find (symbol) returns char*
- * insert (symbol,char*) error if symbol already in table
- * delete (symbol) returns char* if symbol was in table
- * apply so you can delete all symbols before die()
- * die destroy symbol table (free up memory)
- *
- * Supplementary functions include:
- *
- * say how big? what % full?
- * replace (symbol,newval) report previous value
- * jam (symbol,value) assert symbol:=value
- *
- * You, the caller, have control over errors: this just reports them.
- *
- * This package requires malloc(), free().
- * Malloc(size) returns NULL or address of char[size].
- * Free(address) frees same.
- */
-
-/*
- * The code and its structures are re-enterent.
- *
- * Before you do anything else, you must call hash_new() which will
- * return the address of a hash-table-control-block. You then use
- * this address as a handle of the symbol table by passing it to all
- * the other hash_...() functions. The only approved way to recover
- * the memory used by the symbol table is to call hash_die() with the
- * handle of the symbol table.
- *
- * Before you call hash_die() you normally delete anything pointed to
- * by individual symbols. After hash_die() you can't use that symbol
- * table again.
- *
- * The char* you associate with a symbol may not be NULL (0) because
- * NULL is returned whenever a symbol is not in the table. Any other
- * value is OK, except DELETED, #defined below.
- *
- * When you supply a symbol string for insertion, YOU MUST PRESERVE THE
- * STRING until that symbol is deleted from the table. The reason is that
- * only the address you supply, NOT the symbol string itself, is stored
- * in the symbol table.
- *
- * You may delete and add symbols arbitrarily.
- * Any or all symbols may have the same 'value' (char *). In fact, these
- * routines don't do anything with your symbol values.
- *
- * You have no right to know where the symbol:char* mapping is stored,
- * because it moves around in memory; also because we may change how it
- * works and we don't want to break your code do we? However the handle
- * (address of struct hash_control) is never changed in
- * the life of the symbol table.
- *
- * What you CAN find out about a symbol table is:
- * how many slots are in the hash table?
- * how many slots are filled with symbols?
- * (total hashes,collisions) for (reads,writes) (*)
- * All of the above values vary in time.
- * (*) some of these numbers will not be meaningful if we change the
- * internals. */
-
-/*
- * I N T E R N A L
- *
- * Hash table is an array of hash_entries; each entry is a pointer to a
- * a string and a user-supplied value 1 char* wide.
- *
- * The array always has 2 ** n elements, n>0, n integer.
- * There is also a 'wall' entry after the array, which is always empty
- * and acts as a sentinel to stop running off the end of the array.
- * When the array gets too full, we create a new array twice as large
- * and re-hash the symbols into the new array, then forget the old array.
- * (Of course, we copy the values into the new array before we junk the
- * old array!)
- *
- */
-
-#include <stdio.h>
-
-#ifndef FALSE
-#define FALSE (0)
-#define TRUE (!FALSE)
-#endif /* no FALSE yet */
-
-#include <ctype.h>
-#define min(a, b) ((a) < (b) ? (a) : (b))
-
-#include "as.h"
-
-#define error as_fatal
-
-static char _deleted_[1];
-#define DELETED ((PTR)_deleted_) /* guarenteed unique address */
-#define START_POWER (10) /* power of two: size of new hash table */
-
-/* TRUE if a symbol is in entry @ ptr. */
-#define islive(ptr) (ptr->hash_string && ptr->hash_string!=DELETED)
-
-enum stat_enum {
- /* Number of slots in hash table. The wall does not count here.
- We expect this is always a power of 2. */
- STAT_SIZE = 0,
- /* Number of hash_ask calls. */
- STAT_ACCESS,
- STAT_ACCESS_w,
- /* Number of collisions (total). This may exceed STAT_ACCESS if we
- have lots of collisions/access. */
- STAT_COLLIDE,
- STAT_COLLIDE_w,
- /* Slots used right now. */
- STAT_USED,
- /* How many string compares? */
- STAT_STRCMP,
- STAT_STRCMP_w,
- /* Size of statistics block... this must be last. */
- STATLENGTH
-};
-#define STAT__READ (0) /* reading */
-#define STAT__WRITE (1) /* writing */
-
-/* When we grow a hash table, by what power of two do we increase it? */
-#define GROW_FACTOR 1
-/* When should we grow it? */
-#define FULL_VALUE(N) ((N) / 2)
-
-/* #define SUSPECT to do runtime checks */
-/* #define TEST to be a test jig for hash...() */
-
-#ifdef TEST
-/* TEST: use smaller hash table */
-#undef START_POWER
-#define START_POWER (3)
-#undef START_SIZE
-#define START_SIZE (8)
-#undef START_FULL
-#define START_FULL (4)
-#endif
-
-struct hash_entry
-{
- const char *hash_string; /* points to where the symbol string is */
- /* NULL means slot is not used */
- /* DELETED means slot was deleted */
- PTR hash_value; /* user's datum, associated with symbol */
- unsigned long h;
-};
-
-struct hash_control {
- struct hash_entry *hash_where;/* address of hash table */
- int hash_sizelog; /* Log of ( hash_mask + 1 ) */
- int hash_mask; /* masks a hash into index into table */
- int hash_full; /* when hash_stat[STAT_USED] exceeds this, */
- /* grow table */
- struct hash_entry *hash_wall; /* point just after last (usable) entry */
- /* here we have some statistics */
- int hash_stat[STATLENGTH]; /* lies & statistics */
-};
-
-/*------------------ plan ---------------------------------- i = internal
-
- struct hash_control * c;
- struct hash_entry * e; i
- int b[z]; buffer for statistics
- z size of b
- char * s; symbol string (address) [ key ]
- char * v; value string (address) [datum]
- boolean f; TRUE if we found s in hash table i
- char * t; error string; 0 means OK
- int a; access type [0...n) i
-
- c=hash_new () create new hash_control
-
- hash_die (c) destroy hash_control (and hash table)
- table should be empty.
- doesn't check if table is empty.
- c has no meaning after this.
-
- hash_say (c,b,z) report statistics of hash_control.
- also report number of available statistics.
-
- v=hash_delete (c,s) delete symbol, return old value if any.
- ask() NULL means no old value.
- f
-
- v=hash_replace (c,s,v) replace old value of s with v.
- ask() NULL means no old value: no table change.
- f
-
- t=hash_insert (c,s,v) insert (s,v) in c.
- ask() return error string.
- f it is an error to insert if s is already
- in table.
- if any error, c is unchanged.
-
- t=hash_jam (c,s,v) assert that new value of s will be v. i
- ask() it may decide to GROW the table. i
- f i
- grow() i
- t=hash_grow (c) grow the hash table. i
- jam() will invoke JAM. i
-
- ?=hash_apply (c,y) apply y() to every symbol in c.
- y evtries visited in 'unspecified' order.
-
- v=hash_find (c,s) return value of s, or NULL if s not in c.
- ask()
- f
-
- f,e=hash_ask() (c,s,a) return slot where s SHOULD live. i
- code() maintain collision stats in c. i
-
- .=hash_code (c,s) compute hash-code for s, i
- from parameters of c. i
-
- */
-
-/* Returned by hash_ask() to stop extra testing. hash_ask() wants to
- return both a slot and a status. This is the status. TRUE: found
- symbol FALSE: absent: empty or deleted slot Also returned by
- hash_jam(). TRUE: we replaced a value FALSE: we inserted a value. */
-static char hash_found;
-
-static struct hash_entry *hash_ask PARAMS ((struct hash_control *,
- const char *, int));
-static int hash_code PARAMS ((struct hash_control *, const char *));
-static const char *hash_grow PARAMS ((struct hash_control *));
-
-/* Create a new hash table. Return NULL if failed; otherwise return handle
- (address of struct hash). */
-struct hash_control *
-hash_new ()
-{
- struct hash_control *retval;
- struct hash_entry *room; /* points to hash table */
- struct hash_entry *wall;
- struct hash_entry *entry;
- int *ip; /* scan stats block of struct hash_control */
- int *nd; /* limit of stats block */
-
- room = (struct hash_entry *) xmalloc (sizeof (struct hash_entry)
- /* +1 for the wall entry */
- * ((1 << START_POWER) + 1));
- retval = (struct hash_control *) xmalloc (sizeof (struct hash_control));
-
- nd = retval->hash_stat + STATLENGTH;
- for (ip = retval->hash_stat; ip < nd; ip++)
- *ip = 0;
-
- retval->hash_stat[STAT_SIZE] = 1 << START_POWER;
- retval->hash_mask = (1 << START_POWER) - 1;
- retval->hash_sizelog = START_POWER;
- /* works for 1's compl ok */
- retval->hash_where = room;
- retval->hash_wall =
- wall = room + (1 << START_POWER);
- retval->hash_full = FULL_VALUE (1 << START_POWER);
- for (entry = room; entry <= wall; entry++)
- entry->hash_string = NULL;
- return retval;
-}
-
-/*
- * h a s h _ d i e ( )
- *
- * Table should be empty, but this is not checked.
- * To empty the table, try hash_apply()ing a symbol deleter.
- * Return to free memory both the hash table and it's control
- * block.
- * 'handle' has no meaning after this function.
- * No errors are recoverable.
- */
-void
-hash_die (handle)
- struct hash_control *handle;
-{
- free ((char *) handle->hash_where);
- free ((char *) handle);
-}
-
-#ifdef TEST
-/*
- * h a s h _ s a y ( )
- *
- * Return the size of the statistics table, and as many statistics as
- * we can until either (a) we have run out of statistics or (b) caller
- * has run out of buffer.
- * NOTE: hash_say treats all statistics alike.
- * These numbers may change with time, due to insertions, deletions
- * and expansions of the table.
- * The first "statistic" returned is the length of hash_stat[].
- * Then contents of hash_stat[] are read out (in ascending order)
- * until your buffer or hash_stat[] is exausted.
- */
-static void
-hash_say (handle, buffer, bufsiz)
- struct hash_control *handle;
- int buffer[ /*bufsiz*/ ];
- int bufsiz;
-{
- int *nd; /* limit of statistics block */
- int *ip; /* scan statistics */
-
- ip = handle->hash_stat;
- nd = ip + min (bufsiz - 1, STATLENGTH);
- if (bufsiz > 0) /* trust nothing! bufsiz<=0 is dangerous */
- {
- *buffer++ = STATLENGTH;
- for (; ip < nd; ip++, buffer++)
- {
- *buffer = *ip;
- }
- }
-}
-#endif
-
-/*
- * h a s h _ d e l e t e ( )
- *
- * Try to delete a symbol from the table.
- * If it was there, return its value (and adjust STAT_USED).
- * Otherwise, return NULL.
- * Anyway, the symbol is not present after this function.
- *
- */
-PTR /* NULL if string not in table, else */
-/* returns value of deleted symbol */
-hash_delete (handle, string)
- struct hash_control *handle;
- const char *string;
-{
- PTR retval;
- struct hash_entry *entry;
-
- entry = hash_ask (handle, string, STAT__WRITE);
- if (hash_found)
- {
- retval = entry->hash_value;
- entry->hash_string = DELETED;
- handle->hash_stat[STAT_USED] -= 1;
-#ifdef SUSPECT
- if (handle->hash_stat[STAT_USED] < 0)
- {
- error ("hash_delete");
- }
-#endif /* def SUSPECT */
- }
- else
- {
- retval = NULL;
- }
- return (retval);
-}
-
-/*
- * h a s h _ r e p l a c e ( )
- *
- * Try to replace the old value of a symbol with a new value.
- * Normally return the old value.
- * Return NULL and don't change the table if the symbol is not already
- * in the table.
- */
-PTR
-hash_replace (handle, string, value)
- struct hash_control *handle;
- const char *string;
- PTR value;
-{
- struct hash_entry *entry;
- char *retval;
-
- entry = hash_ask (handle, string, STAT__WRITE);
- if (hash_found)
- {
- retval = entry->hash_value;
- entry->hash_value = value;
- }
- else
- {
- retval = NULL;
- }
- ;
- return retval;
-}
-
-/*
- * h a s h _ i n s e r t ( )
- *
- * Insert a (symbol-string, value) into the hash table.
- * Return an error string, 0 means OK.
- * It is an 'error' to insert an existing symbol.
- */
-
-const char * /* return error string */
-hash_insert (handle, string, value)
- struct hash_control *handle;
- const char *string;
- PTR value;
-{
- struct hash_entry *entry;
- const char *retval;
-
- retval = 0;
- if (handle->hash_stat[STAT_USED] > handle->hash_full)
- {
- retval = hash_grow (handle);
- }
- if (!retval)
- {
- entry = hash_ask (handle, string, STAT__WRITE);
- if (hash_found)
- {
- retval = "exists";
- }
- else
- {
- entry->hash_value = value;
- entry->hash_string = string;
- handle->hash_stat[STAT_USED] += 1;
- }
- }
- return retval;
-}
-
-/*
- * h a s h _ j a m ( )
- *
- * Regardless of what was in the symbol table before, after hash_jam()
- * the named symbol has the given value. The symbol is either inserted or
- * (its value is) replaced.
- * An error message string is returned, 0 means OK.
- *
- * WARNING: this may decide to grow the hashed symbol table.
- * To do this, we call hash_grow(), WHICH WILL recursively CALL US.
- *
- * We report status internally: hash_found is TRUE if we replaced, but
- * false if we inserted.
- */
-const char *
-hash_jam (handle, string, value)
- struct hash_control *handle;
- const char *string;
- PTR value;
-{
- const char *retval;
- struct hash_entry *entry;
-
- retval = 0;
- if (handle->hash_stat[STAT_USED] > handle->hash_full)
- {
- retval = hash_grow (handle);
- }
- if (!retval)
- {
- entry = hash_ask (handle, string, STAT__WRITE);
- if (!hash_found)
- {
- entry->hash_string = string;
- handle->hash_stat[STAT_USED] += 1;
- }
- entry->hash_value = value;
- }
- return retval;
-}
-
-/*
- * h a s h _ g r o w ( )
- *
- * Grow a new (bigger) hash table from the old one.
- * We choose to double the hash table's size.
- * Return a human-scrutible error string: 0 if OK.
- * Warning! This uses hash_jam(), which had better not recurse
- * back here! Hash_jam() conditionally calls us, but we ALWAYS
- * call hash_jam()!
- * Internal.
- */
-static const char *
-hash_grow (handle) /* make a hash table grow */
- struct hash_control *handle;
-{
- struct hash_entry *newwall;
- struct hash_entry *newwhere;
- struct hash_entry *newtrack;
- struct hash_entry *oldtrack;
- struct hash_entry *oldwhere;
- struct hash_entry *oldwall;
- int temp;
- int newsize;
- const char *string;
- const char *retval;
-#ifdef SUSPECT
- int oldused;
-#endif
-
- /*
- * capture info about old hash table
- */
- oldwhere = handle->hash_where;
- oldwall = handle->hash_wall;
-#ifdef SUSPECT
- oldused = handle->hash_stat[STAT_USED];
-#endif
- /*
- * attempt to get enough room for a hash table twice as big
- */
- temp = handle->hash_stat[STAT_SIZE];
- newwhere = ((struct hash_entry *)
- xmalloc ((unsigned long) ((temp << (GROW_FACTOR + 1))
- /* +1 for wall slot */
- * sizeof (struct hash_entry))));
- if (newwhere == NULL)
- return "no_room";
-
- /*
- * have enough room: now we do all the work.
- * double the size of everything in handle.
- */
- handle->hash_mask = ((handle->hash_mask + 1) << GROW_FACTOR) - 1;
- handle->hash_stat[STAT_SIZE] <<= GROW_FACTOR;
- newsize = handle->hash_stat[STAT_SIZE];
- handle->hash_where = newwhere;
- handle->hash_full <<= GROW_FACTOR;
- handle->hash_sizelog += GROW_FACTOR;
- handle->hash_wall = newwall = newwhere + newsize;
- /* Set all those pesky new slots to vacant. */
- for (newtrack = newwhere; newtrack <= newwall; newtrack++)
- newtrack->hash_string = NULL;
- /* We will do a scan of the old table, the hard way, using the
- * new control block to re-insert the data into new hash table. */
- handle->hash_stat[STAT_USED] = 0;
- for (oldtrack = oldwhere; oldtrack < oldwall; oldtrack++)
- if (((string = oldtrack->hash_string) != NULL) && string != DELETED)
- if ((retval = hash_jam (handle, string, oldtrack->hash_value)))
- return retval;
-
-#ifdef SUSPECT
- if (handle->hash_stat[STAT_USED] != oldused)
- return "hash_used";
-#endif
-
- /* We have a completely faked up control block.
- Return the old hash table. */
- free ((char *) oldwhere);
-
- return 0;
-}
-
-#ifdef TEST
-/*
- * h a s h _ a p p l y ( )
- *
- * Use this to scan each entry in symbol table.
- * For each symbol, this calls (applys) a nominated function supplying the
- * symbol's value (and the symbol's name).
- * The idea is you use this to destroy whatever is associted with
- * any values in the table BEFORE you destroy the table with hash_die.
- * Of course, you can use it for other jobs; whenever you need to
- * visit all extant symbols in the table.
- *
- * We choose to have a call-you-back idea for two reasons:
- * asthetic: it is a neater idea to use apply than an explicit loop
- * sensible: if we ever had to grow the symbol table (due to insertions)
- * then we would lose our place in the table when we re-hashed
- * symbols into the new table in a different order.
- *
- * The order symbols are visited depends entirely on the hashing function.
- * Whenever you insert a (symbol, value) you risk expanding the table. If
- * you do expand the table, then the hashing function WILL change, so you
- * MIGHT get a different order of symbols visited. In other words, if you
- * want the same order of visiting symbols as the last time you used
- * hash_apply() then you better not have done any hash_insert()s or
- * hash_jam()s since the last time you used hash_apply().
- *
- * In future we may use the value returned by your nominated function.
- * One idea is to abort the scan if, after applying the function to a
- * certain node, the function returns a certain code.
- *
- * The function you supply should be of the form:
- * void myfunct(string,value)
- * char * string; |* the symbol's name *|
- * char * value; |* the symbol's value *|
- * {
- * |* ... *|
- * }
- *
- */
-void
-hash_apply (handle, function)
- struct hash_control *handle;
- void (*function) ();
-{
- struct hash_entry *entry;
- struct hash_entry *wall;
-
- wall = handle->hash_wall;
- for (entry = handle->hash_where; entry < wall; entry++)
- {
- if (islive (entry)) /* silly code: tests entry->string twice! */
- {
- (*function) (entry->hash_string, entry->hash_value);
- }
- }
-}
-#endif
-
-/*
- * h a s h _ f i n d ( )
- *
- * Given symbol string, find value (if any).
- * Return found value or NULL.
- */
-PTR
-hash_find (handle, string)
- struct hash_control *handle;
- const char *string;
-{
- struct hash_entry *entry;
-
- entry = hash_ask (handle, string, STAT__READ);
- if (hash_found)
- return entry->hash_value;
- else
- return NULL;
-}
-
-/*
- * h a s h _ a s k ( )
- *
- * Searches for given symbol string.
- * Return the slot where it OUGHT to live. It may be there.
- * Return hash_found: TRUE only if symbol is in that slot.
- * Access argument is to help keep statistics in control block.
- * Internal.
- */
-static struct hash_entry * /* string slot, may be empty or deleted */
-hash_ask (handle, string, access_type)
- struct hash_control *handle;
- const char *string;
- int access_type;
-{
- const char *s;
- struct hash_entry *slot;
- int collision; /* count collisions */
- int strcmps;
- int hcode;
-
- /* start looking here */
- hcode = hash_code (handle, string);
- slot = handle->hash_where + (hcode & handle->hash_mask);
-
- handle->hash_stat[STAT_ACCESS + access_type] += 1;
- collision = strcmps = 0;
- hash_found = FALSE;
- while (((s = slot->hash_string) != NULL) && s != DELETED)
- {
- if (string == s)
- {
- hash_found = TRUE;
- break;
- }
- if (slot->h == (unsigned long) hcode)
- {
- if (!strcmp (string, s))
- {
- hash_found = TRUE;
- break;
- }
- strcmps++;
- }
- collision++;
- slot++;
- }
- /*
- * slot: return:
- * in use: we found string slot
- * at empty:
- * at wall: we fell off: wrap round ????
- * in table: dig here slot
- * at DELETED: dig here slot
- */
- if (slot == handle->hash_wall)
- {
- slot = handle->hash_where;/* now look again */
- while (((s = slot->hash_string) != NULL) && s != DELETED)
- {
- if (string == s)
- {
- hash_found = TRUE;
- break;
- }
- if (slot->h == (unsigned long) hcode)
- {
- if (!strcmp (string, s))
- {
- hash_found = TRUE;
- break;
- }
- strcmps++;
- }
- collision++;
- slot++;
- }
- /*
- * slot: return:
- * in use: we found it slot
- * empty: wall: ERROR IMPOSSIBLE !!!!
- * in table: dig here slot
- * DELETED:dig here slot
- */
- }
- handle->hash_stat[STAT_COLLIDE + access_type] += collision;
- handle->hash_stat[STAT_STRCMP + access_type] += strcmps;
- if (!hash_found)
- slot->h = hcode;
- return slot; /* also return hash_found */
-}
-
-/*
- * h a s h _ c o d e
- *
- * Does hashing of symbol string to hash number.
- * Internal.
- */
-static int
-hash_code (handle, string)
- struct hash_control *handle;
- const char *string;
-{
-#if 1 /* There seems to be some interesting property of this function
- that prevents the bfd version below from being an adequate
- substitute. @@ Figure out what this property is! */
- long h; /* hash code built here */
- long c; /* each character lands here */
- int n; /* Amount to shift h by */
-
- n = (handle->hash_sizelog - 3);
- h = 0;
- while ((c = *string++) != 0)
- {
- h += c;
- h = (h << 3) + (h >> n) + c;
- }
- return h;
-#else
- /* from bfd */
- unsigned long h = 0;
- unsigned int len = 0;
- unsigned int c;
-
- while ((c = *string++) != 0)
- {
- h += c + (c << 17);
- h ^= h >> 2;
- ++len;
- }
- h += len + (len << 17);
- h ^= h >> 2;
- return h;
-#endif
-}
-
-void
-hash_print_statistics (file, name, h)
- FILE *file;
- const char *name;
- struct hash_control *h;
-{
- unsigned long sz, used, pct;
-
- if (h == 0)
- return;
-
- sz = h->hash_stat[STAT_SIZE];
- used = h->hash_stat[STAT_USED];
- pct = (used * 100 + sz / 2) / sz;
-
- fprintf (file, "%s hash statistics:\n\t%lu/%lu slots used (%lu%%)\n",
- name, used, sz, pct);
-
-#define P(name, off) \
- fprintf (file, "\t%-16s %6dr + %6dw = %7d\n", name, \
- h->hash_stat[off+STAT__READ], \
- h->hash_stat[off+STAT__WRITE], \
- h->hash_stat[off+STAT__READ] + h->hash_stat[off+STAT__WRITE])
-
- P ("accesses:", STAT_ACCESS);
- P ("collisions:", STAT_COLLIDE);
- P ("string compares:", STAT_STRCMP);
-
-#undef P
-}
-
-/*
- * Here is a test program to exercise above.
- */
-#ifdef TEST
-
-#define TABLES (6) /* number of hash tables to maintain */
-/* (at once) in any testing */
-#define STATBUFSIZE (12) /* we can have 12 statistics */
-
-int statbuf[STATBUFSIZE]; /* display statistics here */
-char answer[100]; /* human farts here */
-char *hashtable[TABLES]; /* we test many hash tables at once */
-char *h; /* points to curent hash_control */
-char **pp;
-char *p;
-char *name;
-char *value;
-int size;
-int used;
-char command;
-int number; /* number 0:TABLES-1 of current hashed */
-/* symbol table */
-
-main ()
-{
- void applicatee ();
- void destroy ();
- char *what ();
- int *ip;
-
- number = 0;
- h = 0;
- printf ("type h <RETURN> for help\n");
- for (;;)
- {
- printf ("hash_test command: ");
- gets (answer);
- command = answer[0];
- if (isupper (command))
- command = tolower (command); /* ecch! */
- switch (command)
- {
- case '#':
- printf ("old hash table #=%d.\n", number);
- whattable ();
- break;
- case '?':
- for (pp = hashtable; pp < hashtable + TABLES; pp++)
- {
- printf ("address of hash table #%d control block is %xx\n"
- ,pp - hashtable, *pp);
- }
- break;
- case 'a':
- hash_apply (h, applicatee);
- break;
- case 'd':
- hash_apply (h, destroy);
- hash_die (h);
- break;
- case 'f':
- p = hash_find (h, name = what ("symbol"));
- printf ("value of \"%s\" is \"%s\"\n", name, p ? p : "NOT-PRESENT");
- break;
- case 'h':
- printf ("# show old, select new default hash table number\n");
- printf ("? display all hashtable control block addresses\n");
- printf ("a apply a simple display-er to each symbol in table\n");
- printf ("d die: destroy hashtable\n");
- printf ("f find value of nominated symbol\n");
- printf ("h this help\n");
- printf ("i insert value into symbol\n");
- printf ("j jam value into symbol\n");
- printf ("n new hashtable\n");
- printf ("r replace a value with another\n");
- printf ("s say what %% of table is used\n");
- printf ("q exit this program\n");
- printf ("x delete a symbol from table, report its value\n");
- break;
- case 'i':
- p = hash_insert (h, name = what ("symbol"), value = what ("value"));
- if (p)
- {
- printf ("symbol=\"%s\" value=\"%s\" error=%s\n", name, value,
- p);
- }
- break;
- case 'j':
- p = hash_jam (h, name = what ("symbol"), value = what ("value"));
- if (p)
- {
- printf ("symbol=\"%s\" value=\"%s\" error=%s\n", name, value, p);
- }
- break;
- case 'n':
- h = hashtable[number] = (char *) hash_new ();
- break;
- case 'q':
- exit (EXIT_SUCCESS);
- case 'r':
- p = hash_replace (h, name = what ("symbol"), value = what ("value"));
- printf ("old value was \"%s\"\n", p ? p : "{}");
- break;
- case 's':
- hash_say (h, statbuf, STATBUFSIZE);
- for (ip = statbuf; ip < statbuf + STATBUFSIZE; ip++)
- {
- printf ("%d ", *ip);
- }
- printf ("\n");
- break;
- case 'x':
- p = hash_delete (h, name = what ("symbol"));
- printf ("old value was \"%s\"\n", p ? p : "{}");
- break;
- default:
- printf ("I can't understand command \"%c\"\n", command);
- break;
- }
- }
-}
-
-char *
-what (description)
- char *description;
-{
- char *retval;
- char *malloc ();
-
- printf (" %s : ", description);
- gets (answer);
- /* will one day clean up answer here */
- retval = malloc (strlen (answer) + 1);
- if (!retval)
- {
- error ("room");
- }
- (void) strcpy (retval, answer);
- return (retval);
-}
-
-void
-destroy (string, value)
- char *string;
- char *value;
-{
- free (string);
- free (value);
-}
-
-
-void
-applicatee (string, value)
- char *string;
- char *value;
-{
- printf ("%.20s-%.20s\n", string, value);
-}
-
-whattable () /* determine number: what hash table to use */
- /* also determine h: points to hash_control */
-{
-
- for (;;)
- {
- printf (" what hash table (%d:%d) ? ", 0, TABLES - 1);
- gets (answer);
- sscanf (answer, "%d", &number);
- if (number >= 0 && number < TABLES)
- {
- h = hashtable[number];
- if (!h)
- {
- printf ("warning: current hash-table-#%d. has no hash-control\n", number);
- }
- return;
- }
- else
- {
- printf ("invalid hash table number: %d\n", number);
- }
- }
-}
-
-
-
-#endif /* #ifdef TEST */
-
-/* end of hash.c */