1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
|
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "utils/GraphUtils.h"
#include "arm_compute/runtime/SubTensor.h"
#include "utils/Utils.h"
#ifdef ARM_COMPUTE_CL
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/runtime/CL/CLTensor.h"
#endif /* ARM_COMPUTE_CL */
#include <iomanip>
using namespace arm_compute::graph_utils;
void TFPreproccessor::preprocess(ITensor &tensor)
{
Window window;
window.use_tensor_dimensions(tensor.info()->tensor_shape());
execute_window_loop(window, [&](const Coordinates & id)
{
const float value = *reinterpret_cast<float *>(tensor.ptr_to_element(id));
float res = value / 255.f; // Normalize to [0, 1]
res = (res - 0.5f) * 2.f; // Map to [-1, 1]
*reinterpret_cast<float *>(tensor.ptr_to_element(id)) = res;
});
}
CaffePreproccessor::CaffePreproccessor(std::array<float, 3> mean, bool bgr)
: _mean(mean), _bgr(bgr)
{
if(_bgr)
{
std::swap(_mean[0], _mean[2]);
}
}
void CaffePreproccessor::preprocess(ITensor &tensor)
{
Window window;
window.use_tensor_dimensions(tensor.info()->tensor_shape());
execute_window_loop(window, [&](const Coordinates & id)
{
const float value = *reinterpret_cast<float *>(tensor.ptr_to_element(id)) - _mean[id.z()];
*reinterpret_cast<float *>(tensor.ptr_to_element(id)) = value;
});
}
PPMWriter::PPMWriter(std::string name, unsigned int maximum)
: _name(std::move(name)), _iterator(0), _maximum(maximum)
{
}
bool PPMWriter::access_tensor(ITensor &tensor)
{
std::stringstream ss;
ss << _name << _iterator << ".ppm";
arm_compute::utils::save_to_ppm(tensor, ss.str());
_iterator++;
if(_maximum == 0)
{
return true;
}
return _iterator < _maximum;
}
DummyAccessor::DummyAccessor(unsigned int maximum)
: _iterator(0), _maximum(maximum)
{
}
bool DummyAccessor::access_tensor(ITensor &tensor)
{
ARM_COMPUTE_UNUSED(tensor);
bool ret = _maximum == 0 || _iterator < _maximum;
if(_iterator == _maximum)
{
_iterator = 0;
}
else
{
_iterator++;
}
return ret;
}
PPMAccessor::PPMAccessor(std::string ppm_path, bool bgr, std::unique_ptr<IPreprocessor> preprocessor)
: _ppm_path(std::move(ppm_path)), _bgr(bgr), _preprocessor(std::move(preprocessor))
{
}
bool PPMAccessor::access_tensor(ITensor &tensor)
{
utils::PPMLoader ppm;
// Open PPM file
ppm.open(_ppm_path);
ARM_COMPUTE_ERROR_ON_MSG(ppm.width() != tensor.info()->dimension(0) || ppm.height() != tensor.info()->dimension(1),
"Failed to load image file: dimensions [%d,%d] not correct, expected [%d,%d].", ppm.width(), ppm.height(), tensor.info()->dimension(0), tensor.info()->dimension(1));
// Fill the tensor with the PPM content (BGR)
ppm.fill_planar_tensor(tensor, _bgr);
// Preprocess tensor
if(_preprocessor)
{
_preprocessor->preprocess(tensor);
}
return true;
}
TopNPredictionsAccessor::TopNPredictionsAccessor(const std::string &labels_path, size_t top_n, std::ostream &output_stream)
: _labels(), _output_stream(output_stream), _top_n(top_n)
{
_labels.clear();
std::ifstream ifs;
try
{
ifs.exceptions(std::ifstream::badbit);
ifs.open(labels_path, std::ios::in | std::ios::binary);
for(std::string line; !std::getline(ifs, line).fail();)
{
_labels.emplace_back(line);
}
}
catch(const std::ifstream::failure &e)
{
ARM_COMPUTE_ERROR("Accessing %s: %s", labels_path.c_str(), e.what());
}
}
template <typename T>
void TopNPredictionsAccessor::access_predictions_tensor(ITensor &tensor)
{
// Get the predicted class
std::vector<T> classes_prob;
std::vector<size_t> index;
const auto output_net = reinterpret_cast<T *>(tensor.buffer() + tensor.info()->offset_first_element_in_bytes());
const size_t num_classes = tensor.info()->dimension(0);
classes_prob.resize(num_classes);
index.resize(num_classes);
std::copy(output_net, output_net + num_classes, classes_prob.begin());
// Sort results
std::iota(std::begin(index), std::end(index), static_cast<size_t>(0));
std::sort(std::begin(index), std::end(index),
[&](size_t a, size_t b)
{
return classes_prob[a] > classes_prob[b];
});
_output_stream << "---------- Top " << _top_n << " predictions ----------" << std::endl
<< std::endl;
for(size_t i = 0; i < _top_n; ++i)
{
_output_stream << std::fixed << std::setprecision(4)
<< +classes_prob[index.at(i)]
<< " - [id = " << index.at(i) << "]"
<< ", " << _labels[index.at(i)] << std::endl;
}
}
bool TopNPredictionsAccessor::access_tensor(ITensor &tensor)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32, DataType::QASYMM8);
ARM_COMPUTE_ERROR_ON(_labels.size() != tensor.info()->dimension(0));
switch(tensor.info()->data_type())
{
case DataType::QASYMM8:
access_predictions_tensor<uint8_t>(tensor);
break;
case DataType::F32:
access_predictions_tensor<float>(tensor);
break;
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
return false;
}
RandomAccessor::RandomAccessor(PixelValue lower, PixelValue upper, std::random_device::result_type seed)
: _lower(lower), _upper(upper), _seed(seed)
{
}
template <typename T, typename D>
void RandomAccessor::fill(ITensor &tensor, D &&distribution)
{
std::mt19937 gen(_seed);
if(tensor.info()->padding().empty() && (dynamic_cast<SubTensor *>(&tensor) == nullptr))
{
for(size_t offset = 0; offset < tensor.info()->total_size(); offset += tensor.info()->element_size())
{
const T value = distribution(gen);
*reinterpret_cast<T *>(tensor.buffer() + offset) = value;
}
}
else
{
// If tensor has padding accessing tensor elements through execution window.
Window window;
window.use_tensor_dimensions(tensor.info()->tensor_shape());
execute_window_loop(window, [&](const Coordinates & id)
{
const T value = distribution(gen);
*reinterpret_cast<T *>(tensor.ptr_to_element(id)) = value;
});
}
}
bool RandomAccessor::access_tensor(ITensor &tensor)
{
switch(tensor.info()->data_type())
{
case DataType::U8:
{
std::uniform_int_distribution<uint8_t> distribution_u8(_lower.get<uint8_t>(), _upper.get<uint8_t>());
fill<uint8_t>(tensor, distribution_u8);
break;
}
case DataType::S8:
case DataType::QS8:
{
std::uniform_int_distribution<int8_t> distribution_s8(_lower.get<int8_t>(), _upper.get<int8_t>());
fill<int8_t>(tensor, distribution_s8);
break;
}
case DataType::U16:
{
std::uniform_int_distribution<uint16_t> distribution_u16(_lower.get<uint16_t>(), _upper.get<uint16_t>());
fill<uint16_t>(tensor, distribution_u16);
break;
}
case DataType::S16:
case DataType::QS16:
{
std::uniform_int_distribution<int16_t> distribution_s16(_lower.get<int16_t>(), _upper.get<int16_t>());
fill<int16_t>(tensor, distribution_s16);
break;
}
case DataType::U32:
{
std::uniform_int_distribution<uint32_t> distribution_u32(_lower.get<uint32_t>(), _upper.get<uint32_t>());
fill<uint32_t>(tensor, distribution_u32);
break;
}
case DataType::S32:
{
std::uniform_int_distribution<int32_t> distribution_s32(_lower.get<int32_t>(), _upper.get<int32_t>());
fill<int32_t>(tensor, distribution_s32);
break;
}
case DataType::U64:
{
std::uniform_int_distribution<uint64_t> distribution_u64(_lower.get<uint64_t>(), _upper.get<uint64_t>());
fill<uint64_t>(tensor, distribution_u64);
break;
}
case DataType::S64:
{
std::uniform_int_distribution<int64_t> distribution_s64(_lower.get<int64_t>(), _upper.get<int64_t>());
fill<int64_t>(tensor, distribution_s64);
break;
}
case DataType::F16:
{
std::uniform_real_distribution<float> distribution_f16(_lower.get<float>(), _upper.get<float>());
fill<float>(tensor, distribution_f16);
break;
}
case DataType::F32:
{
std::uniform_real_distribution<float> distribution_f32(_lower.get<float>(), _upper.get<float>());
fill<float>(tensor, distribution_f32);
break;
}
case DataType::F64:
{
std::uniform_real_distribution<double> distribution_f64(_lower.get<double>(), _upper.get<double>());
fill<double>(tensor, distribution_f64);
break;
}
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
return true;
}
NumPyBinLoader::NumPyBinLoader(std::string filename)
: _filename(std::move(filename))
{
}
bool NumPyBinLoader::access_tensor(ITensor &tensor)
{
const TensorShape tensor_shape = tensor.info()->tensor_shape();
std::vector<unsigned long> shape;
// Open file
std::ifstream stream(_filename, std::ios::in | std::ios::binary);
ARM_COMPUTE_ERROR_ON_MSG(!stream.good(), "Failed to load binary data");
std::string header = npy::read_header(stream);
// Parse header
bool fortran_order = false;
std::string typestr;
npy::parse_header(header, typestr, fortran_order, shape);
// Check if the typestring matches the given one
std::string expect_typestr = arm_compute::utils::get_typestring(tensor.info()->data_type());
ARM_COMPUTE_ERROR_ON_MSG(typestr != expect_typestr, "Typestrings mismatch");
// Reverse vector in case of non fortran order
if(!fortran_order)
{
std::reverse(shape.begin(), shape.end());
}
// Correct dimensions (Needs to match TensorShape dimension corrections)
if(shape.size() != tensor_shape.num_dimensions())
{
for(int i = static_cast<int>(shape.size()) - 1; i > 0; --i)
{
if(shape[i] == 1)
{
shape.pop_back();
}
else
{
break;
}
}
}
// Validate tensor ranks
ARM_COMPUTE_ERROR_ON_MSG(shape.size() != tensor_shape.num_dimensions(), "Tensor ranks mismatch");
// Validate shapes
for(size_t i = 0; i < shape.size(); ++i)
{
ARM_COMPUTE_ERROR_ON_MSG(tensor_shape[i] != shape[i], "Tensor dimensions mismatch");
}
// Read data
if(tensor.info()->padding().empty() && (dynamic_cast<SubTensor *>(&tensor) == nullptr))
{
// If tensor has no padding read directly from stream.
stream.read(reinterpret_cast<char *>(tensor.buffer()), tensor.info()->total_size());
}
else
{
// If tensor has padding accessing tensor elements through execution window.
Window window;
window.use_tensor_dimensions(tensor_shape);
execute_window_loop(window, [&](const Coordinates & id)
{
stream.read(reinterpret_cast<char *>(tensor.ptr_to_element(id)), tensor.info()->element_size());
});
}
return true;
}
|