1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
|
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "tests/AssetsLibrary.h"
#include "Utils.h"
#include "utils/TypePrinter.h"
#include "arm_compute/core/ITensor.h"
#include <cctype>
#include <fstream>
#include <limits>
#include <map>
#include <mutex>
#include <sstream>
#include <stdexcept>
#include <tuple>
#include <unordered_map>
#include <utility>
namespace arm_compute
{
namespace test
{
namespace
{
template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
void rgb_to_luminance(const RawTensor &src, RawTensor &dst)
{
// Ensure in/out tensors have same image dimensions (independent of element size and number of channels)
ARM_COMPUTE_ERROR_ON_MSG(src.num_elements() != dst.num_elements(), "Input and output images must have equal dimensions");
const size_t num_elements = dst.num_elements();
// Currently, input is always RGB888 (3 U8 channels per element). Output can be U8, U16/S16 or U32
// Note that src.data()[i] returns pointer to first channel of element[i], so RGB values have [0,1,2] offsets
for(size_t i = 0, j = 0; j < num_elements; i += 3, ++j)
{
reinterpret_cast<T *>(dst.data())[j] = 0.2126f * src.data()[i] + 0.7152f * src.data()[i + 1] + 0.0722f * src.data()[i + 2];
}
}
void extract_r_from_rgb(const RawTensor &src, RawTensor &dst)
{
ARM_COMPUTE_ERROR_ON(src.size() != 3 * dst.size());
const size_t num_elements = dst.num_elements();
for(size_t i = 0, j = 0; j < num_elements; i += 3, ++j)
{
dst.data()[j] = src.data()[i];
}
}
void extract_g_from_rgb(const RawTensor &src, RawTensor &dst)
{
ARM_COMPUTE_ERROR_ON(src.size() != 3 * dst.size());
const size_t num_elements = dst.num_elements();
for(size_t i = 1, j = 0; j < num_elements; i += 3, ++j)
{
dst.data()[j] = src.data()[i];
}
}
void extract_b_from_rgb(const RawTensor &src, RawTensor &dst)
{
ARM_COMPUTE_ERROR_ON(src.size() != 3 * dst.size());
const size_t num_elements = dst.num_elements();
for(size_t i = 2, j = 0; j < num_elements; i += 3, ++j)
{
dst.data()[j] = src.data()[i];
}
}
void discard_comments(std::ifstream &fs)
{
while(fs.peek() == '#')
{
fs.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
}
}
void discard_comments_and_spaces(std::ifstream &fs)
{
while(true)
{
discard_comments(fs);
if(isspace(fs.peek()) == 0)
{
break;
}
fs.ignore(1);
}
}
std::tuple<unsigned int, unsigned int, int> parse_netpbm_format_header(std::ifstream &fs, char number)
{
// check file type magic number is valid
std::array<char, 2> magic_number{ { 0 } };
fs >> magic_number[0] >> magic_number[1];
if(magic_number[0] != 'P' || magic_number[1] != number)
{
throw std::runtime_error("File type magic number not supported");
}
discard_comments_and_spaces(fs);
unsigned int width = 0;
fs >> width;
discard_comments_and_spaces(fs);
unsigned int height = 0;
fs >> height;
discard_comments_and_spaces(fs);
int max_value = 0;
fs >> max_value;
if(!fs.good())
{
throw std::runtime_error("Cannot read image dimensions");
}
if(max_value != 255)
{
throw std::runtime_error("RawTensor doesn't have 8-bit values");
}
discard_comments(fs);
if(isspace(fs.peek()) == 0)
{
throw std::runtime_error("Invalid image header");
}
fs.ignore(1);
return std::make_tuple(width, height, max_value);
}
std::tuple<unsigned int, unsigned int, int> parse_ppm_header(std::ifstream &fs)
{
return parse_netpbm_format_header(fs, '6');
}
std::tuple<unsigned int, unsigned int, int> parse_pgm_header(std::ifstream &fs)
{
return parse_netpbm_format_header(fs, '5');
}
void check_image_size(std::ifstream &fs, size_t raw_size)
{
const size_t current_position = fs.tellg();
fs.seekg(0, std::ios_base::end);
const size_t end_position = fs.tellg();
fs.seekg(current_position, std::ios_base::beg);
if((end_position - current_position) < raw_size)
{
throw std::runtime_error("Not enough data in file");
}
}
void read_image_buffer(std::ifstream &fs, RawTensor &raw)
{
fs.read(reinterpret_cast<std::fstream::char_type *>(raw.data()), raw.size());
if(!fs.good())
{
throw std::runtime_error("Failure while reading image buffer");
}
}
RawTensor load_ppm(const std::string &path)
{
std::ifstream file(path, std::ios::in | std::ios::binary);
if(!file.good())
{
throw framework::FileNotFound("Could not load PPM image: " + path);
}
unsigned int width = 0;
unsigned int height = 0;
std::tie(width, height, std::ignore) = parse_ppm_header(file);
RawTensor raw(TensorShape(width, height), Format::RGB888);
check_image_size(file, raw.size());
read_image_buffer(file, raw);
return raw;
}
RawTensor load_pgm(const std::string &path)
{
std::ifstream file(path, std::ios::in | std::ios::binary);
if(!file.good())
{
throw framework::FileNotFound("Could not load PGM image: " + path);
}
unsigned int width = 0;
unsigned int height = 0;
std::tie(width, height, std::ignore) = parse_pgm_header(file);
RawTensor raw(TensorShape(width, height), Format::U8);
check_image_size(file, raw.size());
read_image_buffer(file, raw);
return raw;
}
} // namespace
AssetsLibrary::AssetsLibrary(std::string path, std::random_device::result_type seed) //NOLINT
: _library_path(std::move(path)),
_seed{ seed }
{
}
std::string AssetsLibrary::path() const
{
return _library_path;
}
std::random_device::result_type AssetsLibrary::seed() const
{
return _seed;
}
void AssetsLibrary::fill(RawTensor &raw, const std::string &name, Format format) const
{
const RawTensor &src = get(name, format);
std::copy_n(src.data(), raw.size(), raw.data());
}
void AssetsLibrary::fill(RawTensor &raw, const std::string &name, Channel channel) const
{
fill(raw, name, get_format_for_channel(channel), channel);
}
void AssetsLibrary::fill(RawTensor &raw, const std::string &name, Format format, Channel channel) const
{
const RawTensor &src = get(name, format, channel);
std::copy_n(src.data(), raw.size(), raw.data());
}
const AssetsLibrary::Loader &AssetsLibrary::get_loader(const std::string &extension) const
{
static std::unordered_map<std::string, Loader> loaders =
{
{ "ppm", load_ppm },
{ "pgm", load_pgm }
};
const auto it = loaders.find(extension);
if(it != loaders.end())
{
return it->second;
}
else
{
throw std::invalid_argument("Cannot load image with extension '" + extension + "'");
}
}
const AssetsLibrary::Converter &AssetsLibrary::get_converter(Format src, Format dst) const
{
static std::map<std::pair<Format, Format>, Converter> converters =
{
{ std::make_pair(Format::RGB888, Format::U8), rgb_to_luminance<uint8_t> },
{ std::make_pair(Format::RGB888, Format::U16), rgb_to_luminance<uint16_t> },
{ std::make_pair(Format::RGB888, Format::S16), rgb_to_luminance<int16_t> },
{ std::make_pair(Format::RGB888, Format::U32), rgb_to_luminance<uint32_t> }
};
const auto it = converters.find(std::make_pair(src, dst));
if(it != converters.end())
{
return it->second;
}
else
{
std::stringstream msg;
msg << "Cannot convert from format '" << src << "' to format '" << dst << "'\n";
throw std::invalid_argument(msg.str());
}
}
const AssetsLibrary::Converter &AssetsLibrary::get_converter(DataType src, Format dst) const
{
static std::map<std::pair<DataType, Format>, Converter> converters = {};
const auto it = converters.find(std::make_pair(src, dst));
if(it != converters.end())
{
return it->second;
}
else
{
std::stringstream msg;
msg << "Cannot convert from data type '" << src << "' to format '" << dst << "'\n";
throw std::invalid_argument(msg.str());
}
}
const AssetsLibrary::Converter &AssetsLibrary::get_converter(DataType src, DataType dst) const
{
static std::map<std::pair<DataType, DataType>, Converter> converters = {};
const auto it = converters.find(std::make_pair(src, dst));
if(it != converters.end())
{
return it->second;
}
else
{
std::stringstream msg;
msg << "Cannot convert from data type '" << src << "' to data type '" << dst << "'\n";
throw std::invalid_argument(msg.str());
}
}
const AssetsLibrary::Converter &AssetsLibrary::get_converter(Format src, DataType dst) const
{
static std::map<std::pair<Format, DataType>, Converter> converters = {};
const auto it = converters.find(std::make_pair(src, dst));
if(it != converters.end())
{
return it->second;
}
else
{
std::stringstream msg;
msg << "Cannot convert from format '" << src << "' to data type '" << dst << "'\n";
throw std::invalid_argument(msg.str());
}
}
const AssetsLibrary::Extractor &AssetsLibrary::get_extractor(Format format, Channel channel) const
{
static std::map<std::pair<Format, Channel>, Extractor> extractors =
{
{ std::make_pair(Format::RGB888, Channel::R), extract_r_from_rgb },
{ std::make_pair(Format::RGB888, Channel::G), extract_g_from_rgb },
{ std::make_pair(Format::RGB888, Channel::B), extract_b_from_rgb }
};
const auto it = extractors.find(std::make_pair(format, channel));
if(it != extractors.end())
{
return it->second;
}
else
{
std::stringstream msg;
msg << "Cannot extract channel '" << channel << "' from format '" << format << "'\n";
throw std::invalid_argument(msg.str());
}
}
RawTensor AssetsLibrary::load_image(const std::string &name) const
{
#ifdef _WIN32
const std::string image_path = ("\\images\\");
#else /* _WIN32 */
const std::string image_path = ("/images/");
#endif /* _WIN32 */
const std::string path = _library_path + image_path + name;
const std::string extension = path.substr(path.find_last_of('.') + 1);
return (*get_loader(extension))(path);
}
const RawTensor &AssetsLibrary::find_or_create_raw_tensor(const std::string &name, Format format) const
{
std::lock_guard<std::mutex> guard(_format_lock);
const RawTensor *ptr = _cache.find(std::forward_as_tuple(name, format));
if(ptr != nullptr)
{
return *ptr;
}
RawTensor raw = load_image(name);
if(raw.format() != format)
{
RawTensor dst(raw.shape(), format);
(*get_converter(raw.format(), format))(raw, dst);
raw = std::move(dst);
}
return _cache.add(std::forward_as_tuple(name, format), std::move(raw));
}
const RawTensor &AssetsLibrary::find_or_create_raw_tensor(const std::string &name, Format format, Channel channel) const
{
std::lock_guard<std::mutex> guard(_channel_lock);
const RawTensor *ptr = _cache.find(std::forward_as_tuple(name, format, channel));
if(ptr != nullptr)
{
return *ptr;
}
const RawTensor &src = get(name, format);
RawTensor dst(src.shape(), get_channel_format(channel));
(*get_extractor(format, channel))(src, dst);
return _cache.add(std::forward_as_tuple(name, format, channel), std::move(dst));
}
TensorShape AssetsLibrary::get_image_shape(const std::string &name)
{
return load_image(name).shape();
}
const RawTensor &AssetsLibrary::get(const std::string &name) const
{
return find_or_create_raw_tensor(name, Format::RGB888);
}
RawTensor AssetsLibrary::get(const std::string &name)
{
return RawTensor(find_or_create_raw_tensor(name, Format::RGB888));
}
RawTensor AssetsLibrary::get(const std::string &name, DataType data_type, int num_channels) const
{
const RawTensor &raw = get(name);
return RawTensor(raw.shape(), data_type, num_channels);
}
const RawTensor &AssetsLibrary::get(const std::string &name, Format format) const
{
return find_or_create_raw_tensor(name, format);
}
RawTensor AssetsLibrary::get(const std::string &name, Format format)
{
return RawTensor(find_or_create_raw_tensor(name, format));
}
const RawTensor &AssetsLibrary::get(const std::string &name, Channel channel) const
{
return get(name, get_format_for_channel(channel), channel);
}
RawTensor AssetsLibrary::get(const std::string &name, Channel channel)
{
return RawTensor(get(name, get_format_for_channel(channel), channel));
}
const RawTensor &AssetsLibrary::get(const std::string &name, Format format, Channel channel) const
{
return find_or_create_raw_tensor(name, format, channel);
}
RawTensor AssetsLibrary::get(const std::string &name, Format format, Channel channel)
{
return RawTensor(find_or_create_raw_tensor(name, format, channel));
}
} // namespace test
} // namespace arm_compute
|