Compute Library  18.05
graph_resnet50.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2017-2018 ARM Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
26 #include "utils/GraphUtils.h"
27 #include "utils/Utils.h"
28 
29 #include <cstdlib>
30 
31 using namespace arm_compute::utils;
32 using namespace arm_compute::graph::frontend;
33 using namespace arm_compute::graph_utils;
34 
40 class GraphResNet50Example : public Example
41 {
42 public:
43  void do_setup(int argc, char **argv) override
44  {
45  std::string data_path; /* Path to the trainable data */
46  std::string image; /* Image data */
47  std::string label; /* Label data */
48 
49  // Create a preprocessor object
50  const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
51  std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb,
52  false /* Do not convert to BGR */);
53 
54  // Set target. 0 (NEON), 1 (OpenCL), 2 (OpenCL with Tuner). By default it is NEON
55  const int target = argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0;
56  Target target_hint = set_target_hint(target);
57  FastMathHint fast_math_hint = FastMathHint::DISABLED;
58 
59  // Parse arguments
60  if(argc < 2)
61  {
62  // Print help
63  std::cout << "Usage: " << argv[0] << " [target] [path_to_data] [image] [labels] [fast_math_hint]\n\n";
64  std::cout << "No data folder provided: using random values\n\n";
65  }
66  else if(argc == 2)
67  {
68  std::cout << "Usage: " << argv[0] << " " << argv[1] << " [path_to_data] [image] [labels] [fast_math_hint]\n\n";
69  std::cout << "No data folder provided: using random values\n\n";
70  }
71  else if(argc == 3)
72  {
73  data_path = argv[2];
74  std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " [image] [labels] [fast_math_hint]\n\n";
75  std::cout << "No image provided: using random values\n\n";
76  }
77  else if(argc == 4)
78  {
79  data_path = argv[2];
80  image = argv[3];
81  std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " [labels] [fast_math_hint]\n\n";
82  std::cout << "No text file with labels provided: skipping output accessor\n\n";
83  }
84  else if(argc == 5)
85  {
86  data_path = argv[2];
87  image = argv[3];
88  label = argv[4];
89  std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " " << argv[4] << " [fast_math_hint]\n\n";
90  std::cout << "No fast math info provided: disabling fast math\n\n";
91  }
92  else
93  {
94  data_path = argv[2];
95  image = argv[3];
96  label = argv[4];
97  fast_math_hint = (std::strtol(argv[5], nullptr, 1) == 0) ? FastMathHint::DISABLED : FastMathHint::ENABLED;
98  }
99 
100  graph << target_hint
101  << fast_math_hint
102  << InputLayer(TensorDescriptor(TensorShape(224U, 224U, 3U, 1U), DataType::F32),
103  get_input_accessor(image, std::move(preprocessor), false /* Do not convert to BGR */))
104  << ConvolutionLayer(
105  7U, 7U, 64U,
106  get_weights_accessor(data_path, "/cnn_data/resnet50_model/conv1_weights.npy"),
107  std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
108  PadStrideInfo(2, 2, 3, 3))
109  .set_name("conv1/convolution")
111  get_weights_accessor(data_path, "/cnn_data/resnet50_model/conv1_BatchNorm_moving_mean.npy"),
112  get_weights_accessor(data_path, "/cnn_data/resnet50_model/conv1_BatchNorm_moving_variance.npy"),
113  get_weights_accessor(data_path, "/cnn_data/resnet50_model/conv1_BatchNorm_gamma.npy"),
114  get_weights_accessor(data_path, "/cnn_data/resnet50_model/conv1_BatchNorm_beta.npy"),
115  0.0000100099996416f)
116  .set_name("conv1/BatchNorm")
117  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1/Relu")
118  << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR))).set_name("pool1/MaxPool");
119 
120  add_residual_block(data_path, "block1", 64, 3, 2);
121  add_residual_block(data_path, "block2", 128, 4, 2);
122  add_residual_block(data_path, "block3", 256, 6, 2);
123  add_residual_block(data_path, "block4", 512, 3, 1);
124 
125  graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG)).set_name("pool5")
126  << ConvolutionLayer(
127  1U, 1U, 1000U,
128  get_weights_accessor(data_path, "/cnn_data/resnet50_model/logits_weights.npy"),
129  get_weights_accessor(data_path, "/cnn_data/resnet50_model/logits_biases.npy"),
130  PadStrideInfo(1, 1, 0, 0))
131  .set_name("logits/convolution")
132  << FlattenLayer().set_name("predictions/Reshape")
133  << SoftmaxLayer().set_name("predictions/Softmax")
134  << OutputLayer(get_output_accessor(label, 5));
135 
136  // Finalize graph
137  GraphConfig config;
138  config.use_tuner = (target == 2);
139  graph.finalize(target_hint, config);
140  }
141 
142  void do_run() override
143  {
144  // Run graph
145  graph.run();
146  }
147 
148 private:
149  Stream graph{ 0, "ResNet50" };
150 
151  void add_residual_block(const std::string &data_path, const std::string &name, unsigned int base_depth, unsigned int num_units, unsigned int stride)
152  {
153  for(unsigned int i = 0; i < num_units; ++i)
154  {
155  std::stringstream unit_path_ss;
156  unit_path_ss << "/cnn_data/resnet50_model/" << name << "_unit_" << (i + 1) << "_bottleneck_v1_";
157  std::stringstream unit_name_ss;
158  unit_name_ss << name << "/unit" << (i + 1) << "/bottleneck_v1/";
159 
160  std::string unit_path = unit_path_ss.str();
161  std::string unit_name = unit_name_ss.str();
162 
163  unsigned int middle_stride = 1;
164 
165  if(i == (num_units - 1))
166  {
167  middle_stride = stride;
168  }
169 
170  SubStream right(graph);
171  right << ConvolutionLayer(
172  1U, 1U, base_depth,
173  get_weights_accessor(data_path, unit_path + "conv1_weights.npy"),
174  std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
175  PadStrideInfo(1, 1, 0, 0))
176  .set_name(unit_name + "conv1/convolution")
178  get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_mean.npy"),
179  get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_variance.npy"),
180  get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_gamma.npy"),
181  get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_beta.npy"),
182  0.0000100099996416f)
183  .set_name(unit_name + "conv1/BatchNorm")
184  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu")
185 
186  << ConvolutionLayer(
187  3U, 3U, base_depth,
188  get_weights_accessor(data_path, unit_path + "conv2_weights.npy"),
189  std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
190  PadStrideInfo(middle_stride, middle_stride, 1, 1))
191  .set_name(unit_name + "conv2/convolution")
193  get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_mean.npy"),
194  get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_variance.npy"),
195  get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_gamma.npy"),
196  get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_beta.npy"),
197  0.0000100099996416f)
198  .set_name(unit_name + "conv2/BatchNorm")
199  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu")
200 
201  << ConvolutionLayer(
202  1U, 1U, base_depth * 4,
203  get_weights_accessor(data_path, unit_path + "conv3_weights.npy"),
204  std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
205  PadStrideInfo(1, 1, 0, 0))
206  .set_name(unit_name + "conv3/convolution")
208  get_weights_accessor(data_path, unit_path + "conv3_BatchNorm_moving_mean.npy"),
209  get_weights_accessor(data_path, unit_path + "conv3_BatchNorm_moving_variance.npy"),
210  get_weights_accessor(data_path, unit_path + "conv3_BatchNorm_gamma.npy"),
211  get_weights_accessor(data_path, unit_path + "conv3_BatchNorm_beta.npy"),
212  0.0000100099996416f)
213  .set_name(unit_name + "conv2/BatchNorm");
214 
215  if(i == 0)
216  {
217  SubStream left(graph);
218  left << ConvolutionLayer(
219  1U, 1U, base_depth * 4,
220  get_weights_accessor(data_path, unit_path + "shortcut_weights.npy"),
221  std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
222  PadStrideInfo(1, 1, 0, 0))
223  .set_name(unit_name + "shortcut/convolution")
225  get_weights_accessor(data_path, unit_path + "shortcut_BatchNorm_moving_mean.npy"),
226  get_weights_accessor(data_path, unit_path + "shortcut_BatchNorm_moving_variance.npy"),
227  get_weights_accessor(data_path, unit_path + "shortcut_BatchNorm_gamma.npy"),
228  get_weights_accessor(data_path, unit_path + "shortcut_BatchNorm_beta.npy"),
229  0.0000100099996416f)
230  .set_name(unit_name + "shortcut/BatchNorm");
231 
232  graph << BranchLayer(BranchMergeMethod::ADD, std::move(left), std::move(right)).set_name(unit_name + "add");
233  }
234  else if(middle_stride > 1)
235  {
236  SubStream left(graph);
237  left << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 1, PadStrideInfo(middle_stride, middle_stride, 0, 0), true)).set_name(unit_name + "shortcut/MaxPool");
238 
239  graph << BranchLayer(BranchMergeMethod::ADD, std::move(left), std::move(right)).set_name(unit_name + "add");
240  }
241  else
242  {
243  SubStream left(graph);
244  graph << BranchLayer(BranchMergeMethod::ADD, std::move(left), std::move(right)).set_name(unit_name + "add");
245  }
246 
247  graph << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Relu");
248  }
249  }
250 };
251 
257 int main(int argc, char **argv)
258 {
259  return arm_compute::utils::run_example<GraphResNet50Example>(argc, argv);
260 }
graph::Target set_target_hint(int target)
Utility function to return the TargetHint.
Definition: GraphUtils.h:370
std::unique_ptr< graph::ITensorAccessor > get_output_accessor(const std::string &labels_path, size_t top_n=5, std::ostream &output_stream=std::cout)
Generates appropriate output accessor according to the specified labels_path.
Definition: GraphUtils.h:330
1 channel, 1 F32 per channel
int main(int argc, char **argv)
Main program for ResNet50.
Abstract Example class.
Definition: Utils.h:62
std::unique_ptr< graph::ITensorAccessor > get_input_accessor(const std::string &ppm_path, std::unique_ptr< IPreprocessor > preprocessor=nullptr, bool bgr=true)
Generates appropriate input accessor according to the specified ppm_path.
Definition: GraphUtils.h:299
FastMathHint
Enable or disable fast math for Convolution layer.
Definition: Types.h:118
std::unique_ptr< graph::ITensorAccessor > get_weights_accessor(const std::string &path, const std::string &data_file, DataLayout file_layout=DataLayout::NCHW)
Generates appropriate weights accessor according to the specified path.
Definition: GraphUtils.h:275
Stream frontend class to construct simple graphs in a stream fashion.
Definition: Stream.h:45
ILayer & set_name(std::string name)
Sets the name of the layer.
Definition: ILayer.h:55