summaryrefslogtreecommitdiff
path: root/examples/graph_lenet.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/graph_lenet.cpp')
-rw-r--r--examples/graph_lenet.cpp142
1 files changed, 142 insertions, 0 deletions
diff --git a/examples/graph_lenet.cpp b/examples/graph_lenet.cpp
new file mode 100644
index 000000000..676fdb9ce
--- /dev/null
+++ b/examples/graph_lenet.cpp
@@ -0,0 +1,142 @@
+/*
+ * Copyright (c) 2017 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CL /* Needed by Utils.cpp to handle OpenCL exceptions properly */
+#error "This example needs to be built with -DARM_COMPUTE_CL"
+#endif /* ARM_COMPUTE_CL */
+
+#include "arm_compute/graph/Graph.h"
+#include "arm_compute/graph/Nodes.h"
+#include "arm_compute/runtime/CL/CLScheduler.h"
+#include "arm_compute/runtime/Scheduler.h"
+#include "support/ToolchainSupport.h"
+#include "utils/GraphUtils.h"
+#include "utils/Utils.h"
+
+#include <cstdlib>
+#include <iostream>
+#include <memory>
+
+using namespace arm_compute::graph;
+using namespace arm_compute::graph_utils;
+
+/** Generates appropriate accessor according to the specified path
+ *
+ * @note If path is empty will generate a DummyAccessor else will generate a NumPyBinLoader
+ *
+ * @param path Path to the data files
+ * @param data_file Relative path to the data files from path
+ *
+ * @return An appropriate tensor accessor
+ */
+std::unique_ptr<ITensorAccessor> get_accessor(const std::string &path, const std::string &data_file)
+{
+ if(path.empty())
+ {
+ return arm_compute::support::cpp14::make_unique<DummyAccessor>();
+ }
+ else
+ {
+ return arm_compute::support::cpp14::make_unique<NumPyBinLoader>(path + data_file);
+ }
+}
+
+/** Example demonstrating how to implement LeNet's network using the Compute Library's graph API
+ *
+ * @param[in] argc Number of arguments
+ * @param[in] argv Arguments ( [optional] Path to the weights folder, [optional] batches )
+ */
+void main_graph_lenet(int argc, const char **argv)
+{
+ std::string data_path; /** Path to the trainable data */
+ unsigned int batches = 4; /** Number of batches */
+
+ // Parse arguments
+ if(argc < 2)
+ {
+ // Print help
+ std::cout << "Usage: " << argv[0] << " [path_to_data] [batches]\n\n";
+ std::cout << "No data folder provided: using random values\n\n";
+ }
+ else if(argc == 2)
+ {
+ //Do something with argv[1]
+ data_path = argv[1];
+ std::cout << "Usage: " << argv[0] << " [path_to_data] [batches]\n\n";
+ std::cout << "No number of batches where specified, thus will use the default : " << batches << "\n\n";
+ }
+ else
+ {
+ //Do something with argv[1] and argv[2]
+ data_path = argv[1];
+ batches = std::strtol(argv[2], nullptr, 0);
+ }
+
+ // Check if OpenCL is available and initialize the scheduler
+ if(arm_compute::opencl_is_available())
+ {
+ arm_compute::CLScheduler::get().default_init();
+ }
+
+ Graph graph;
+ graph.set_info_enablement(true);
+
+ //conv1 << pool1 << conv2 << pool2 << fc1 << act1 << fc2 << smx
+ graph << Hint::OPENCL
+ << Tensor(TensorInfo(TensorShape(28U, 28U, 1U, batches), 1, DataType::F32), DummyAccessor())
+ << ConvolutionLayer(
+ 5U, 5U, 20U,
+ get_accessor(data_path, "/cnn_data/lenet_model/conv1_w.npy"),
+ get_accessor(data_path, "/cnn_data/lenet_model/conv1_b.npy"),
+ PadStrideInfo(1, 1, 0, 0))
+ << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0)))
+ << ConvolutionLayer(
+ 5U, 5U, 50U,
+ get_accessor(data_path, "/cnn_data/lenet_model/conv2_w.npy"),
+ get_accessor(data_path, "/cnn_data/lenet_model/conv2_b.npy"),
+ PadStrideInfo(1, 1, 0, 0))
+ << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0)))
+ << FullyConnectedLayer(
+ 500U,
+ get_accessor(data_path, "/cnn_data/lenet_model/ip1_w.npy"),
+ get_accessor(data_path, "/cnn_data/lenet_model/ip1_b.npy"))
+ << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+ << FullyConnectedLayer(
+ 10U,
+ get_accessor(data_path, "/cnn_data/lenet_model/ip2_w.npy"),
+ get_accessor(data_path, "/cnn_data/lenet_model/ip2_b.npy"))
+ << SoftmaxLayer()
+ << Tensor(DummyAccessor());
+
+ graph.run();
+}
+
+/** Main program for LeNet
+ *
+ * @param[in] argc Number of arguments
+ * @param[in] argv Arguments ( [optional] Path to the weights folder, [optional] batches )
+ */
+int main(int argc, const char **argv)
+{
+ return arm_compute::utils::run_example(argc, argv, main_graph_lenet);
+}