summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/graph/backends/NEON/NEFunctionFactory.cpp72
-rw-r--r--src/runtime/NEON/functions/NEConvolutionLayer.cpp4
2 files changed, 2 insertions, 74 deletions
diff --git a/src/graph/backends/NEON/NEFunctionFactory.cpp b/src/graph/backends/NEON/NEFunctionFactory.cpp
index 0aea15d94..454215e7e 100644
--- a/src/graph/backends/NEON/NEFunctionFactory.cpp
+++ b/src/graph/backends/NEON/NEFunctionFactory.cpp
@@ -80,78 +80,6 @@ struct NEFusedLayerTypes
namespace detail
{
-// Specialized functions
-template <>
-std::unique_ptr<IFunction> create_convolution_layer<NEConvolutionLayerFunctions, NETargetInfo>(ConvolutionLayerNode &node,
- GraphContext &ctx)
-{
- validate_node<NETargetInfo>(node, 3 /* expected inputs */, 1 /* expected outputs */);
-
- // Extract IO and info
- NETargetInfo::TensorType *input = get_backing_tensor<NETargetInfo>(node.input(0));
- NETargetInfo::TensorType *weights = get_backing_tensor<NETargetInfo>(node.input(1));
- NETargetInfo::TensorType *biases = get_backing_tensor<NETargetInfo>(node.input(2));
- NETargetInfo::TensorType *output = get_backing_tensor<NETargetInfo>(node.output(0));
-
- const bool is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
-
- if(is_quantized)
- {
- biases->info()->set_data_type(DataType::S32);
- }
-
- const PadStrideInfo conv_info = node.convolution_info();
- const ConvolutionMethod conv_algorithm = node.convolution_method();
- const ActivationLayerInfo fused_act = node.fused_activation();
-
- // Create and configure function (we assume that functions have been validated before creation)
- std::shared_ptr<IMemoryManager> mm = get_memory_manager(ctx, Target::NEON);
- std::unique_ptr<IFunction> func;
- std::string func_name;
-
- if(conv_algorithm == ConvolutionMethod::Direct)
- {
- std::tie(func, func_name) = create_named_memory_managed_function<NEDirectConvolutionLayer>(
- std::string("DirectConvolutionLayer"), mm, input, weights, biases, output, conv_info, fused_act);
- }
- else if(conv_algorithm == ConvolutionMethod::GEMM)
- {
- std::tie(func, func_name) = create_named_memory_managed_function<NEGEMMConvolutionLayer>(
- std::string("GEMMConvolutionLayer"), mm, input, weights, biases, output, conv_info, WeightsInfo(), Size2D(1, 1), fused_act);
- }
- else if(conv_algorithm == ConvolutionMethod::Winograd)
- {
- std::tie(func, func_name) = create_named_memory_managed_function<NEWinogradConvolutionLayer>(
- std::string("WinogradConvolutionLayer"), mm, input, weights, biases, output, conv_info, fused_act);
- }
- else
- {
- std::tie(func, func_name) = create_named_memory_managed_function<NEConvolutionLayer>(
- std::string("ConvolutionLayer"), mm, input, weights, biases, output, conv_info, WeightsInfo(), Size2D(1, 1), fused_act);
- }
-
- // Log info
- std::ostringstream qss;
- if(is_quantized)
- {
- qss << " Input QuantInfo: " << input->info()->quantization_info()
- << " Weights QuantInfo: " << weights->info()->quantization_info()
- << " Output QuantInfo: " << output->info()->quantization_info();
- }
- ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated "
- << node.name()
- << " Type: " << func_name
- << " Target: " << NETargetInfo::TargetType
- << " Data Type: " << input->info()->data_type()
- << qss.str()
- << " Input shape: " << input->info()->tensor_shape()
- << " Weights shape: " << weights->info()->tensor_shape()
- << " Output shape: " << output->info()->tensor_shape()
- << (fused_act.enabled() ? " " + to_string(fused_act.activation()) : "")
- << std::endl);
- return func;
-}
-
template <>
std::unique_ptr<IFunction> create_normalization_layer<NENormalizationLayer, NETargetInfo>(NormalizationLayerNode &node, GraphContext &ctx)
{
diff --git a/src/runtime/NEON/functions/NEConvolutionLayer.cpp b/src/runtime/NEON/functions/NEConvolutionLayer.cpp
index dcd26fc1c..4a779917a 100644
--- a/src/runtime/NEON/functions/NEConvolutionLayer.cpp
+++ b/src/runtime/NEON/functions/NEConvolutionLayer.cpp
@@ -50,7 +50,7 @@ void NEConvolutionLayer::configure(ITensor *input, const ITensor *weights, const
ARM_COMPUTE_ERROR_THROW_ON(NEConvolutionLayer::validate(input->info(), weights->info(), ((biases != nullptr) ? biases->info() : nullptr), output->info(), conv_info, weights_info, dilation, act_info,
enable_fast_math));
- switch(NEConvolutionLayer::get_convolution_method(input->info(), weights->info(), output->info(), conv_info, weights_info, dilation, act_info))
+ switch(NEConvolutionLayer::get_convolution_method(input->info(), weights->info(), output->info(), conv_info, weights_info, dilation, act_info, enable_fast_math))
{
case ConvolutionMethod::WINOGRAD:
{
@@ -91,7 +91,7 @@ Status NEConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG((num_groups != 1), "Grouping (num_groups != 1) is not supported on NEON");
- switch(NEConvolutionLayer::get_convolution_method(input, weights, output, conv_info, weights_info, dilation, act_info))
+ switch(NEConvolutionLayer::get_convolution_method(input, weights, output, conv_info, weights_info, dilation, act_info, enable_fast_math))
{
case ConvolutionMethod::WINOGRAD:
//Validate Winograd