diff options
author | Anthony Barbier <Anthony.barbier@arm.com> | 2017-12-14 23:48:46 +0000 |
---|---|---|
committer | Anthony Barbier <anthony.barbier@arm.com> | 2018-01-24 10:01:21 +0000 |
commit | 8140e1e155d3430992fa46e04ef8938ff09ffd2d (patch) | |
tree | 9bcf86d01635bfc73e8debd1bda75e6f75b8b406 /utils/Utils.h | |
parent | 8a3da6f91f90c566b844d568f4ec43b946915af8 (diff) | |
download | armcl-8140e1e155d3430992fa46e04ef8938ff09ffd2d.tar.gz armcl-8140e1e155d3430992fa46e04ef8938ff09ffd2d.tar.bz2 armcl-8140e1e155d3430992fa46e04ef8938ff09ffd2d.zip |
arm_compute v17.12
Diffstat (limited to 'utils/Utils.h')
-rw-r--r-- | utils/Utils.h | 450 |
1 files changed, 398 insertions, 52 deletions
diff --git a/utils/Utils.h b/utils/Utils.h index c88de0e16..cfc9c8cb1 100644 --- a/utils/Utils.h +++ b/utils/Utils.h @@ -30,17 +30,26 @@ #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "arm_compute/runtime/Tensor.h" +#include "libnpy/npy.hpp" #include "support/ToolchainSupport.h" #ifdef ARM_COMPUTE_CL #include "arm_compute/core/CL/OpenCL.h" +#include "arm_compute/runtime/CL/CLDistribution1D.h" #include "arm_compute/runtime/CL/CLTensor.h" #endif /* ARM_COMPUTE_CL */ +#ifdef ARM_COMPUTE_GC +#include "arm_compute/runtime/GLES_COMPUTE/GCTensor.h" +#endif /* ARM_COMPUTE_GC */ #include <cstdlib> #include <cstring> #include <fstream> #include <iostream> +#include <random> +#include <string> +#include <tuple> +#include <vector> namespace arm_compute { @@ -80,6 +89,66 @@ void draw_detection_rectangle(arm_compute::ITensor *tensor, const arm_compute::D */ std::tuple<unsigned int, unsigned int, int> parse_ppm_header(std::ifstream &fs); +/** Parse the npy header from an input file stream. At the end of the execution, + * the file position pointer will be located at the first pixel stored in the npy file + * + * @param[in] fs Input file stream to parse + * + * @return The width and height stored in the header of the NPY file + */ +std::tuple<std::vector<unsigned long>, bool, std::string> parse_npy_header(std::ifstream &fs); + +/** Obtain numpy type string from DataType. + * + * @param[in] data_type Data type. + * + * @return numpy type string. + */ +inline std::string get_typestring(DataType data_type) +{ + // Check endianness + const unsigned int i = 1; + const char *c = reinterpret_cast<const char *>(&i); + std::string endianness; + if(*c == 1) + { + endianness = std::string("<"); + } + else + { + endianness = std::string(">"); + } + const std::string no_endianness("|"); + + switch(data_type) + { + case DataType::U8: + return no_endianness + "u" + support::cpp11::to_string(sizeof(uint8_t)); + case DataType::S8: + return no_endianness + "i" + support::cpp11::to_string(sizeof(int8_t)); + case DataType::U16: + return endianness + "u" + support::cpp11::to_string(sizeof(uint16_t)); + case DataType::S16: + return endianness + "i" + support::cpp11::to_string(sizeof(int16_t)); + case DataType::U32: + return endianness + "u" + support::cpp11::to_string(sizeof(uint32_t)); + case DataType::S32: + return endianness + "i" + support::cpp11::to_string(sizeof(int32_t)); + case DataType::U64: + return endianness + "u" + support::cpp11::to_string(sizeof(uint64_t)); + case DataType::S64: + return endianness + "i" + support::cpp11::to_string(sizeof(int64_t)); + case DataType::F32: + return endianness + "f" + support::cpp11::to_string(sizeof(float)); + case DataType::F64: + return endianness + "f" + support::cpp11::to_string(sizeof(double)); + case DataType::SIZET: + return endianness + "u" + support::cpp11::to_string(sizeof(size_t)); + default: + ARM_COMPUTE_ERROR("NOT SUPPORTED!"); + } +} + /** Maps a tensor if needed * * @param[in] tensor Tensor to be mapped @@ -121,8 +190,48 @@ inline void unmap(CLTensor &tensor) { tensor.unmap(); } + +/** Maps a distribution if needed + * + * @param[in] distribution Distribution to be mapped + * @param[in] blocking Specified if map is blocking or not + */ +inline void map(CLDistribution1D &distribution, bool blocking) +{ + distribution.map(blocking); +} + +/** Unmaps a distribution if needed + * + * @param distribution Distribution to be unmapped + */ +inline void unmap(CLDistribution1D &distribution) +{ + distribution.unmap(); +} #endif /* ARM_COMPUTE_CL */ +#ifdef ARM_COMPUTE_GC +/** Maps a tensor if needed + * + * @param[in] tensor Tensor to be mapped + * @param[in] blocking Specified if map is blocking or not + */ +inline void map(GCTensor &tensor, bool blocking) +{ + tensor.map(blocking); +} + +/** Unmaps a tensor if needed + * + * @param tensor Tensor to be unmapped + */ +inline void unmap(GCTensor &tensor) +{ + tensor.unmap(); +} +#endif /* ARM_COMPUTE_GC */ + /** Class to load the content of a PPM file into an Image */ class PPMLoader @@ -191,7 +300,7 @@ public: ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(&image, arm_compute::Format::U8, arm_compute::Format::RGB888); try { - // Map buffer if creating a CLTensor + // Map buffer if creating a CLTensor/GCTensor map(image, true); // Check if the file is large enough to fill the image @@ -254,7 +363,7 @@ public: ARM_COMPUTE_ERROR("Unsupported format"); } - // Unmap buffer if creating a CLTensor + // Unmap buffer if creating a CLTensor/GCTensor unmap(image); } catch(const std::ifstream::failure &e) @@ -345,11 +454,178 @@ public: } } + /** Return the width of the currently open PPM file. + */ + unsigned int width() const + { + return _width; + } + + /** Return the height of the currently open PPM file. + */ + unsigned int height() const + { + return _height; + } + private: std::ifstream _fs; unsigned int _width, _height; }; +class NPYLoader +{ +public: + NPYLoader() + : _fs(), _shape(), _fortran_order(false), _typestring() + { + } + + /** Open a NPY file and reads its metadata + * + * @param[in] npy_filename File to open + */ + void open(const std::string &npy_filename) + { + ARM_COMPUTE_ERROR_ON(is_open()); + try + { + _fs.exceptions(std::ifstream::failbit | std::ifstream::badbit); + _fs.open(npy_filename, std::ios::in | std::ios::binary); + + std::tie(_shape, _fortran_order, _typestring) = parse_npy_header(_fs); + } + catch(const std::ifstream::failure &e) + { + ARM_COMPUTE_ERROR("Accessing %s: %s", npy_filename.c_str(), e.what()); + } + } + /** Return true if a NPY file is currently open */ + bool is_open() + { + return _fs.is_open(); + } + + /** Return true if a NPY file is in fortran order */ + bool is_fortran() + { + return _fortran_order; + } + + /** Initialise the tensor's metadata with the dimensions of the NPY file currently open + * + * @param[out] tensor Tensor to initialise + * @param[in] dt Data type to use for the tensor + */ + template <typename T> + void init_tensor(T &tensor, arm_compute::DataType dt) + { + ARM_COMPUTE_ERROR_ON(!is_open()); + ARM_COMPUTE_ERROR_ON(dt != arm_compute::DataType::F32); + + // Use the size of the input NPY tensor + TensorShape shape; + shape.set_num_dimensions(_shape.size()); + for(size_t i = 0; i < _shape.size(); ++i) + { + shape.set(i, _shape.at(i)); + } + + arm_compute::TensorInfo tensor_info(shape, 1, dt); + tensor.allocator()->init(tensor_info); + } + + /** Fill a tensor with the content of the currently open NPY file. + * + * @note If the tensor is a CLTensor, the function maps and unmaps the tensor + * + * @param[in,out] tensor Tensor to fill (Must be allocated, and of matching dimensions with the opened NPY). + */ + template <typename T> + void fill_tensor(T &tensor) + { + ARM_COMPUTE_ERROR_ON(!is_open()); + ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(&tensor, arm_compute::DataType::F32); + try + { + // Map buffer if creating a CLTensor + map(tensor, true); + + // Check if the file is large enough to fill the tensor + const size_t current_position = _fs.tellg(); + _fs.seekg(0, std::ios_base::end); + const size_t end_position = _fs.tellg(); + _fs.seekg(current_position, std::ios_base::beg); + + ARM_COMPUTE_ERROR_ON_MSG((end_position - current_position) < tensor.info()->tensor_shape().total_size() * tensor.info()->element_size(), + "Not enough data in file"); + ARM_COMPUTE_UNUSED(end_position); + + // Check if the typestring matches the given one + std::string expect_typestr = get_typestring(tensor.info()->data_type()); + ARM_COMPUTE_ERROR_ON_MSG(_typestring != expect_typestr, "Typestrings mismatch"); + + // Validate tensor shape + ARM_COMPUTE_ERROR_ON_MSG(_shape.size() != tensor.shape().num_dimensions(), "Tensor ranks mismatch"); + if(_fortran_order) + { + for(size_t i = 0; i < _shape.size(); ++i) + { + ARM_COMPUTE_ERROR_ON_MSG(tensor.shape()[i] != _shape[i], "Tensor dimensions mismatch"); + } + } + else + { + for(size_t i = 0; i < _shape.size(); ++i) + { + ARM_COMPUTE_ERROR_ON_MSG(tensor.shape()[i] != _shape[_shape.size() - i - 1], "Tensor dimensions mismatch"); + } + } + + switch(tensor.info()->data_type()) + { + case arm_compute::DataType::F32: + { + // Read data + if(tensor.info()->padding().empty()) + { + // If tensor has no padding read directly from stream. + _fs.read(reinterpret_cast<char *>(tensor.buffer()), tensor.info()->total_size()); + } + else + { + // If tensor has padding accessing tensor elements through execution window. + Window window; + window.use_tensor_dimensions(tensor.info()->tensor_shape()); + + execute_window_loop(window, [&](const Coordinates & id) + { + _fs.read(reinterpret_cast<char *>(tensor.ptr_to_element(id)), tensor.info()->element_size()); + }); + } + + break; + } + default: + ARM_COMPUTE_ERROR("Unsupported data type"); + } + + // Unmap buffer if creating a CLTensor + unmap(tensor); + } + catch(const std::ifstream::failure &e) + { + ARM_COMPUTE_ERROR("Loading NPY file: %s", e.what()); + } + } + +private: + std::ifstream _fs; + std::vector<unsigned long> _shape; + bool _fortran_order; + std::string _typestring; +}; + /** Template helper function to save a tensor image to a PPM file. * * @note Only U8 and RGB888 formats supported. @@ -378,7 +654,7 @@ void save_to_ppm(T &tensor, const std::string &ppm_filename) fs << "P6\n" << width << " " << height << " 255\n"; - // Map buffer if creating a CLTensor + // Map buffer if creating a CLTensor/GCTensor map(tensor, true); switch(tensor.info()->format()) @@ -421,7 +697,7 @@ void save_to_ppm(T &tensor, const std::string &ppm_filename) ARM_COMPUTE_ERROR("Unsupported format"); } - // Unmap buffer if creating a CLTensor + // Unmap buffer if creating a CLTensor/GCTensor unmap(tensor); } catch(const std::ofstream::failure &e) @@ -430,6 +706,83 @@ void save_to_ppm(T &tensor, const std::string &ppm_filename) } } +/** Template helper function to save a tensor image to a NPY file. + * + * @note Only F32 data type supported. + * @note Only works with 2D tensors. + * @note If the input tensor is a CLTensor, the function maps and unmaps the image + * + * @param[in] tensor The tensor to save as NPY file + * @param[in] npy_filename Filename of the file to create. + * @param[in] fortran_order If true, save matrix in fortran order. + */ +template <typename T> +void save_to_npy(T &tensor, const std::string &npy_filename, bool fortran_order) +{ + ARM_COMPUTE_ERROR_ON_DATA_TYPE_NOT_IN(&tensor, arm_compute::DataType::F32); + ARM_COMPUTE_ERROR_ON(tensor.info()->num_dimensions() > 2); + + std::ofstream fs; + + try + { + fs.exceptions(std::ofstream::failbit | std::ofstream::badbit | std::ofstream::eofbit); + fs.open(npy_filename, std::ios::out | std::ios::binary); + + const unsigned int width = tensor.info()->tensor_shape()[0]; + const unsigned int height = tensor.info()->tensor_shape()[1]; + std::vector<npy::ndarray_len_t> shape(2); + + if(!fortran_order) + { + shape[0] = height, shape[1] = width; + } + else + { + shape[0] = width, shape[1] = height; + } + + // Map buffer if creating a CLTensor + map(tensor, true); + + switch(tensor.info()->data_type()) + { + case arm_compute::DataType::F32: + { + std::vector<float> tmp; /* Used only to get the typestring */ + npy::Typestring typestring_o{ tmp }; + std::string typestring = typestring_o.str(); + + std::ofstream stream(npy_filename, std::ofstream::binary); + npy::write_header(stream, typestring, fortran_order, shape); + + arm_compute::Window window; + window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, width, 1)); + window.set(arm_compute::Window::DimY, arm_compute::Window::Dimension(0, height, 1)); + + arm_compute::Iterator in(&tensor, window); + + arm_compute::execute_window_loop(window, [&](const arm_compute::Coordinates & id) + { + stream.write(reinterpret_cast<const char *>(in.ptr()), sizeof(float)); + }, + in); + + break; + } + default: + ARM_COMPUTE_ERROR("Unsupported format"); + } + + // Unmap buffer if creating a CLTensor + unmap(tensor); + } + catch(const std::ofstream::failure &e) + { + ARM_COMPUTE_ERROR("Writing %s: (%s)", npy_filename.c_str(), e.what()); + } +} + /** Load the tensor with pre-trained data from a binary file * * @param[in] tensor The tensor to be filled. Data type supported: F32. @@ -453,7 +806,7 @@ void load_trained_data(T &tensor, const std::string &filename) throw std::runtime_error("Could not load binary data: " + filename); } - // Map buffer if creating a CLTensor + // Map buffer if creating a CLTensor/GCTensor map(tensor, true); Window window; @@ -473,10 +826,8 @@ void load_trained_data(T &tensor, const std::string &filename) }, in); -#ifdef ARM_COMPUTE_CL - // Unmap buffer if creating a CLTensor + // Unmap buffer if creating a CLTensor/GCTensor unmap(tensor); -#endif /* ARM_COMPUTE_CL */ } catch(const std::ofstream::failure &e) { @@ -484,56 +835,51 @@ void load_trained_data(T &tensor, const std::string &filename) } } -/** Obtain numpy type string from DataType. - * - * @param[in] data_type Data type. - * - * @return numpy type string. - */ -inline std::string get_typestring(DataType data_type) +template <typename T> +void fill_random_tensor(T &tensor, float lower_bound, float upper_bound) { - // Check endianness - const unsigned int i = 1; - const char *c = reinterpret_cast<const char *>(&i); - std::string endianness; - if(*c == 1) - { - endianness = std::string("<"); - } - else - { - endianness = std::string(">"); - } - const std::string no_endianness("|"); + std::random_device rd; + std::mt19937 gen(rd()); - switch(data_type) + TensorShape shape(tensor.info()->dimension(0), tensor.info()->dimension(1)); + + Window window; + window.set(Window::DimX, Window::Dimension(0, shape.x(), 1)); + window.set(Window::DimY, Window::Dimension(0, shape.y(), 1)); + + map(tensor, true); + + Iterator it(&tensor, window); + + switch(tensor.info()->data_type()) { - case DataType::U8: - return no_endianness + "u" + support::cpp11::to_string(sizeof(uint8_t)); - case DataType::S8: - return no_endianness + "i" + support::cpp11::to_string(sizeof(int8_t)); - case DataType::U16: - return endianness + "u" + support::cpp11::to_string(sizeof(uint16_t)); - case DataType::S16: - return endianness + "i" + support::cpp11::to_string(sizeof(int16_t)); - case DataType::U32: - return endianness + "u" + support::cpp11::to_string(sizeof(uint32_t)); - case DataType::S32: - return endianness + "i" + support::cpp11::to_string(sizeof(int32_t)); - case DataType::U64: - return endianness + "u" + support::cpp11::to_string(sizeof(uint64_t)); - case DataType::S64: - return endianness + "i" + support::cpp11::to_string(sizeof(int64_t)); - case DataType::F32: - return endianness + "f" + support::cpp11::to_string(sizeof(float)); - case DataType::F64: - return endianness + "f" + support::cpp11::to_string(sizeof(double)); - case DataType::SIZET: - return endianness + "u" + support::cpp11::to_string(sizeof(size_t)); + case arm_compute::DataType::F32: + { + std::uniform_real_distribution<float> dist(lower_bound, upper_bound); + + execute_window_loop(window, [&](const Coordinates & id) + { + *reinterpret_cast<float *>(it.ptr()) = dist(gen); + }, + it); + + break; + } default: - ARM_COMPUTE_ERROR("NOT SUPPORTED!"); + { + ARM_COMPUTE_ERROR("Unsupported format"); + } } + + unmap(tensor); } + +template <typename T> +void init_sgemm_output(T &dst, T &src0, T &src1, arm_compute::DataType dt) +{ + dst.allocator()->init(TensorInfo(TensorShape(src1.info()->dimension(0), src0.info()->dimension(1)), 1, dt)); +} + } // namespace utils } // namespace arm_compute #endif /* __UTILS_UTILS_H__*/ |