diff options
author | Kaizen <kaizen@arm.com> | 2017-09-28 14:38:23 +0100 |
---|---|---|
committer | Anthony Barbier <anthony.barbier@arm.com> | 2017-09-28 16:31:13 +0100 |
commit | 8938bd3f40ea62ff56d6ed4e2db0a8aee34dd64a (patch) | |
tree | c234331232f227e0cdfb567a54ecaa5460aaa064 /tests/AssetsLibrary.h | |
parent | f4a254c2745aeaab6f7276a675147d707002fe7a (diff) | |
download | armcl-8938bd3f40ea62ff56d6ed4e2db0a8aee34dd64a.tar.gz armcl-8938bd3f40ea62ff56d6ed4e2db0a8aee34dd64a.tar.bz2 armcl-8938bd3f40ea62ff56d6ed4e2db0a8aee34dd64a.zip |
arm_compute v17.09
Change-Id: I4bf8f4e6e5f84ce0d5b6f5ba570d276879f42a81
Diffstat (limited to 'tests/AssetsLibrary.h')
-rw-r--r-- | tests/AssetsLibrary.h | 736 |
1 files changed, 736 insertions, 0 deletions
diff --git a/tests/AssetsLibrary.h b/tests/AssetsLibrary.h new file mode 100644 index 000000000..f1504f36b --- /dev/null +++ b/tests/AssetsLibrary.h @@ -0,0 +1,736 @@ +/* + * Copyright (c) 2017 ARM Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#ifndef __ARM_COMPUTE_TEST_TENSOR_LIBRARY_H__ +#define __ARM_COMPUTE_TEST_TENSOR_LIBRARY_H__ + +#include "arm_compute/core/Coordinates.h" +#include "arm_compute/core/Error.h" +#include "arm_compute/core/Helpers.h" +#include "arm_compute/core/TensorInfo.h" +#include "arm_compute/core/TensorShape.h" +#include "arm_compute/core/Types.h" +#include "arm_compute/core/Window.h" +#include "libnpy/npy.hpp" +#include "tests/RawTensor.h" +#include "tests/TensorCache.h" +#include "tests/Utils.h" +#include "tests/framework/Exceptions.h" + +#include <algorithm> +#include <cstddef> +#include <fstream> +#include <random> +#include <string> +#include <type_traits> +#include <vector> + +namespace arm_compute +{ +namespace test +{ +/** Factory class to create and fill tensors. + * + * Allows to initialise tensors from loaded images or by specifying the shape + * explicitly. Furthermore, provides methods to fill tensors with the content of + * loaded images or with random values. + */ +class AssetsLibrary final +{ +public: + /** Initialises the library with a @p path to the image directory. + * Furthermore, sets the seed for the random generator to @p seed. + * + * @param[in] path Path to load images from. + * @param[in] seed Seed used to initialise the random number generator. + */ + AssetsLibrary(std::string path, std::random_device::result_type seed); + + /** Seed that is used to fill tensors with random values. */ + std::random_device::result_type seed() const; + + /** Provides a tensor shape for the specified image. + * + * @param[in] name Image file used to look up the raw tensor. + */ + TensorShape get_image_shape(const std::string &name); + + /** Provides a contant raw tensor for the specified image. + * + * @param[in] name Image file used to look up the raw tensor. + */ + const RawTensor &get(const std::string &name) const; + + /** Provides a raw tensor for the specified image. + * + * @param[in] name Image file used to look up the raw tensor. + */ + RawTensor get(const std::string &name); + + /** Creates an uninitialised raw tensor with the given @p data_type and @p + * num_channels. The shape is derived from the specified image. + * + * @param[in] name Image file used to initialise the tensor. + * @param[in] data_type Data type used to initialise the tensor. + * @param[in] num_channels Number of channels used to initialise the tensor. + */ + RawTensor get(const std::string &name, DataType data_type, int num_channels = 1) const; + + /** Provides a contant raw tensor for the specified image after it has been + * converted to @p format. + * + * @param[in] name Image file used to look up the raw tensor. + * @param[in] format Format used to look up the raw tensor. + */ + const RawTensor &get(const std::string &name, Format format) const; + + /** Provides a raw tensor for the specified image after it has been + * converted to @p format. + * + * @param[in] name Image file used to look up the raw tensor. + * @param[in] format Format used to look up the raw tensor. + */ + RawTensor get(const std::string &name, Format format); + + /** Provides a contant raw tensor for the specified channel after it has + * been extracted form the given image. + * + * @param[in] name Image file used to look up the raw tensor. + * @param[in] channel Channel used to look up the raw tensor. + * + * @note The channel has to be unambiguous so that the format can be + * inferred automatically. + */ + const RawTensor &get(const std::string &name, Channel channel) const; + + /** Provides a raw tensor for the specified channel after it has been + * extracted form the given image. + * + * @param[in] name Image file used to look up the raw tensor. + * @param[in] channel Channel used to look up the raw tensor. + * + * @note The channel has to be unambiguous so that the format can be + * inferred automatically. + */ + RawTensor get(const std::string &name, Channel channel); + + /** Provides a constant raw tensor for the specified channel after it has + * been extracted form the given image formatted to @p format. + * + * @param[in] name Image file used to look up the raw tensor. + * @param[in] format Format used to look up the raw tensor. + * @param[in] channel Channel used to look up the raw tensor. + */ + const RawTensor &get(const std::string &name, Format format, Channel channel) const; + + /** Provides a raw tensor for the specified channel after it has been + * extracted form the given image formatted to @p format. + * + * @param[in] name Image file used to look up the raw tensor. + * @param[in] format Format used to look up the raw tensor. + * @param[in] channel Channel used to look up the raw tensor. + */ + RawTensor get(const std::string &name, Format format, Channel channel); + + /** Puts garbage values all around the tensor for testing purposes + * + * @param[in, out] tensor To be filled tensor. + * @param[in] distribution Distribution used to fill the tensor's surroundings. + * @param[in] seed_offset The offset will be added to the global seed before initialising the random generator. + */ + template <typename T, typename D> + void fill_borders_with_garbage(T &&tensor, D &&distribution, std::random_device::result_type seed_offset) const; + + /** Fills the specified @p tensor with random values drawn from @p + * distribution. + * + * @param[in, out] tensor To be filled tensor. + * @param[in] distribution Distribution used to fill the tensor. + * @param[in] seed_offset The offset will be added to the global seed before initialising the random generator. + * + * @note The @p distribution has to provide operator(Generator &) which + * will be used to draw samples. + */ + template <typename T, typename D> + void fill(T &&tensor, D &&distribution, std::random_device::result_type seed_offset) const; + + /** Fills the specified @p raw tensor with random values drawn from @p + * distribution. + * + * @param[in, out] raw To be filled raw. + * @param[in] distribution Distribution used to fill the tensor. + * @param[in] seed_offset The offset will be added to the global seed before initialising the random generator. + * + * @note The @p distribution has to provide operator(Generator &) which + * will be used to draw samples. + */ + template <typename D> + void fill(RawTensor &raw, D &&distribution, std::random_device::result_type seed_offset) const; + + /** Fills the specified @p tensor with the content of the specified image + * converted to the given format. + * + * @param[in, out] tensor To be filled tensor. + * @param[in] name Image file used to fill the tensor. + * @param[in] format Format of the image used to fill the tensor. + * + * @warning No check is performed that the specified format actually + * matches the format of the tensor. + */ + template <typename T> + void fill(T &&tensor, const std::string &name, Format format) const; + + /** Fills the raw tensor with the content of the specified image + * converted to the given format. + * + * @param[in, out] raw To be filled raw tensor. + * @param[in] name Image file used to fill the tensor. + * @param[in] format Format of the image used to fill the tensor. + * + * @warning No check is performed that the specified format actually + * matches the format of the tensor. + */ + void fill(RawTensor &raw, const std::string &name, Format format) const; + + /** Fills the specified @p tensor with the content of the specified channel + * extracted from the given image. + * + * @param[in, out] tensor To be filled tensor. + * @param[in] name Image file used to fill the tensor. + * @param[in] channel Channel of the image used to fill the tensor. + * + * @note The channel has to be unambiguous so that the format can be + * inferred automatically. + * + * @warning No check is performed that the specified format actually + * matches the format of the tensor. + */ + template <typename T> + void fill(T &&tensor, const std::string &name, Channel channel) const; + + /** Fills the raw tensor with the content of the specified channel + * extracted from the given image. + * + * @param[in, out] raw To be filled raw tensor. + * @param[in] name Image file used to fill the tensor. + * @param[in] channel Channel of the image used to fill the tensor. + * + * @note The channel has to be unambiguous so that the format can be + * inferred automatically. + * + * @warning No check is performed that the specified format actually + * matches the format of the tensor. + */ + void fill(RawTensor &raw, const std::string &name, Channel channel) const; + + /** Fills the specified @p tensor with the content of the specified channel + * extracted from the given image after it has been converted to the given + * format. + * + * @param[in, out] tensor To be filled tensor. + * @param[in] name Image file used to fill the tensor. + * @param[in] format Format of the image used to fill the tensor. + * @param[in] channel Channel of the image used to fill the tensor. + * + * @warning No check is performed that the specified format actually + * matches the format of the tensor. + */ + template <typename T> + void fill(T &&tensor, const std::string &name, Format format, Channel channel) const; + + /** Fills the raw tensor with the content of the specified channel + * extracted from the given image after it has been converted to the given + * format. + * + * @param[in, out] raw To be filled raw tensor. + * @param[in] name Image file used to fill the tensor. + * @param[in] format Format of the image used to fill the tensor. + * @param[in] channel Channel of the image used to fill the tensor. + * + * @warning No check is performed that the specified format actually + * matches the format of the tensor. + */ + void fill(RawTensor &raw, const std::string &name, Format format, Channel channel) const; + + /** Fill a tensor with uniform distribution across the range of its type + * + * @param[in, out] tensor To be filled tensor. + * @param[in] seed_offset The offset will be added to the global seed before initialising the random generator. + */ + template <typename T> + void fill_tensor_uniform(T &&tensor, std::random_device::result_type seed_offset) const; + + /** Fill a tensor with uniform distribution across the a specified range + * + * @param[in, out] tensor To be filled tensor. + * @param[in] seed_offset The offset will be added to the global seed before initialising the random generator. + * @param[in] low lowest value in the range (inclusive) + * @param[in] high highest value in the range (inclusive) + * + * @note @p low and @p high must be of the same type as the data type of @p tensor + */ + template <typename T, typename D> + void fill_tensor_uniform(T &&tensor, std::random_device::result_type seed_offset, D low, D high) const; + + /** Fills the specified @p tensor with data loaded from .npy (numpy binary) in specified path. + * + * @param[in, out] tensor To be filled tensor. + * @param[in] name Data file. + * + * @note The numpy array stored in the binary .npy file must be row-major in the sense that it + * must store elements within a row consecutively in the memory, then rows within a 2D slice, + * then 2D slices within a 3D slice and so on. Note that it imposes no restrictions on what + * indexing convention is used in the numpy array. That is, the numpy array can be either fortran + * style or C style as long as it adheres to the rule above. + * + * More concretely, the orders of dimensions for each style are as follows: + * C-style (numpy default): + * array[HigherDims..., Z, Y, X] + * Fortran style: + * array[X, Y, Z, HigherDims...] + */ + template <typename T> + void fill_layer_data(T &&tensor, std::string name) const; + +private: + // Function prototype to convert between image formats. + using Converter = void (*)(const RawTensor &src, RawTensor &dst); + // Function prototype to extract a channel from an image. + using Extractor = void (*)(const RawTensor &src, RawTensor &dst); + // Function prototype to load an image file. + using Loader = RawTensor (*)(const std::string &path); + + const Converter &get_converter(Format src, Format dst) const; + const Converter &get_converter(DataType src, Format dst) const; + const Converter &get_converter(Format src, DataType dst) const; + const Converter &get_converter(DataType src, DataType dst) const; + const Extractor &get_extractor(Format format, Channel) const; + const Loader &get_loader(const std::string &extension) const; + + /** Creates a raw tensor from the specified image. + * + * @param[in] name To be loaded image file. + * + * @note If use_single_image is true @p name is ignored and the user image + * is loaded instead. + */ + RawTensor load_image(const std::string &name) const; + + /** Provides a raw tensor for the specified image and format. + * + * @param[in] name Image file used to look up the raw tensor. + * @param[in] format Format used to look up the raw tensor. + * + * If the tensor has already been requested before the cached version will + * be returned. Otherwise the tensor will be added to the cache. + * + * @note If use_single_image is true @p name is ignored and the user image + * is loaded instead. + */ + const RawTensor &find_or_create_raw_tensor(const std::string &name, Format format) const; + + /** Provides a raw tensor for the specified image, format and channel. + * + * @param[in] name Image file used to look up the raw tensor. + * @param[in] format Format used to look up the raw tensor. + * @param[in] channel Channel used to look up the raw tensor. + * + * If the tensor has already been requested before the cached version will + * be returned. Otherwise the tensor will be added to the cache. + * + * @note If use_single_image is true @p name is ignored and the user image + * is loaded instead. + */ + const RawTensor &find_or_create_raw_tensor(const std::string &name, Format format, Channel channel) const; + + mutable TensorCache _cache{}; + mutable std::mutex _format_lock{}; + mutable std::mutex _channel_lock{}; + const std::string _library_path; + std::random_device::result_type _seed; +}; + +template <typename T, typename D> +void AssetsLibrary::fill_borders_with_garbage(T &&tensor, D &&distribution, std::random_device::result_type seed_offset) const +{ + const PaddingSize padding_size = tensor.padding(); + + Window window; + window.set(0, Window::Dimension(-padding_size.left, tensor.shape()[0] + padding_size.right, 1)); + window.set(1, Window::Dimension(-padding_size.top, tensor.shape()[1] + padding_size.bottom, 1)); + + std::mt19937 gen(_seed); + + execute_window_loop(window, [&](const Coordinates & id) + { + TensorShape shape = tensor.shape(); + + // If outside of valid region + if(id.x() < 0 || id.x() >= static_cast<int>(shape.x()) || id.y() < 0 || id.y() >= static_cast<int>(shape.y())) + { + using ResultType = typename std::remove_reference<D>::type::result_type; + const ResultType value = distribution(gen); + void *const out_ptr = tensor(id); + store_value_with_data_type(out_ptr, value, tensor.data_type()); + } + }); +} + +template <typename T, typename D> +void AssetsLibrary::fill(T &&tensor, D &&distribution, std::random_device::result_type seed_offset) const +{ + Window window; + for(unsigned int d = 0; d < tensor.shape().num_dimensions(); ++d) + { + window.set(d, Window::Dimension(0, tensor.shape()[d], 1)); + } + + std::mt19937 gen(_seed + seed_offset); + + execute_window_loop(window, [&](const Coordinates & id) + { + using ResultType = typename std::remove_reference<D>::type::result_type; + const ResultType value = distribution(gen); + void *const out_ptr = tensor(id); + store_value_with_data_type(out_ptr, value, tensor.data_type()); + }); + + fill_borders_with_garbage(tensor, distribution, seed_offset); +} + +template <typename D> +void AssetsLibrary::fill(RawTensor &raw, D &&distribution, std::random_device::result_type seed_offset) const +{ + std::mt19937 gen(_seed + seed_offset); + + for(size_t offset = 0; offset < raw.size(); offset += raw.element_size()) + { + using ResultType = typename std::remove_reference<D>::type::result_type; + const ResultType value = distribution(gen); + store_value_with_data_type(raw.data() + offset, value, raw.data_type()); + } +} + +template <typename T> +void AssetsLibrary::fill(T &&tensor, const std::string &name, Format format) const +{ + const RawTensor &raw = get(name, format); + + for(size_t offset = 0; offset < raw.size(); offset += raw.element_size()) + { + const Coordinates id = index2coord(raw.shape(), offset / raw.element_size()); + + const RawTensor::value_type *const raw_ptr = raw.data() + offset; + const auto out_ptr = static_cast<RawTensor::value_type *>(tensor(id)); + std::copy_n(raw_ptr, raw.element_size(), out_ptr); + } +} + +template <typename T> +void AssetsLibrary::fill(T &&tensor, const std::string &name, Channel channel) const +{ + fill(std::forward<T>(tensor), name, get_format_for_channel(channel), channel); +} + +template <typename T> +void AssetsLibrary::fill(T &&tensor, const std::string &name, Format format, Channel channel) const +{ + const RawTensor &raw = get(name, format, channel); + + for(size_t offset = 0; offset < raw.size(); offset += raw.element_size()) + { + const Coordinates id = index2coord(raw.shape(), offset / raw.element_size()); + + const RawTensor::value_type *const raw_ptr = raw.data() + offset; + const auto out_ptr = static_cast<RawTensor::value_type *>(tensor(id)); + std::copy_n(raw_ptr, raw.element_size(), out_ptr); + } +} + +template <typename T> +void AssetsLibrary::fill_tensor_uniform(T &&tensor, std::random_device::result_type seed_offset) const +{ + switch(tensor.data_type()) + { + case DataType::U8: + { + std::uniform_int_distribution<uint8_t> distribution_u8(std::numeric_limits<uint8_t>::lowest(), std::numeric_limits<uint8_t>::max()); + fill(tensor, distribution_u8, seed_offset); + break; + } + case DataType::S8: + case DataType::QS8: + { + std::uniform_int_distribution<int8_t> distribution_s8(std::numeric_limits<int8_t>::lowest(), std::numeric_limits<int8_t>::max()); + fill(tensor, distribution_s8, seed_offset); + break; + } + case DataType::U16: + { + std::uniform_int_distribution<uint16_t> distribution_u16(std::numeric_limits<uint16_t>::lowest(), std::numeric_limits<uint16_t>::max()); + fill(tensor, distribution_u16, seed_offset); + break; + } + case DataType::S16: + case DataType::QS16: + { + std::uniform_int_distribution<int16_t> distribution_s16(std::numeric_limits<int16_t>::lowest(), std::numeric_limits<int16_t>::max()); + fill(tensor, distribution_s16, seed_offset); + break; + } + case DataType::U32: + { + std::uniform_int_distribution<uint32_t> distribution_u32(std::numeric_limits<uint32_t>::lowest(), std::numeric_limits<uint32_t>::max()); + fill(tensor, distribution_u32, seed_offset); + break; + } + case DataType::S32: + { + std::uniform_int_distribution<int32_t> distribution_s32(std::numeric_limits<int32_t>::lowest(), std::numeric_limits<int32_t>::max()); + fill(tensor, distribution_s32, seed_offset); + break; + } + case DataType::U64: + { + std::uniform_int_distribution<uint64_t> distribution_u64(std::numeric_limits<uint64_t>::lowest(), std::numeric_limits<uint64_t>::max()); + fill(tensor, distribution_u64, seed_offset); + break; + } + case DataType::S64: + { + std::uniform_int_distribution<int64_t> distribution_s64(std::numeric_limits<int64_t>::lowest(), std::numeric_limits<int64_t>::max()); + fill(tensor, distribution_s64, seed_offset); + break; + } + case DataType::F16: + { + // It doesn't make sense to check [-inf, inf], so hard code it to a big number + std::uniform_real_distribution<float> distribution_f16(-100.f, 100.f); + fill(tensor, distribution_f16, seed_offset); + break; + } + case DataType::F32: + { + // It doesn't make sense to check [-inf, inf], so hard code it to a big number + std::uniform_real_distribution<float> distribution_f32(-1000.f, 1000.f); + fill(tensor, distribution_f32, seed_offset); + break; + } + case DataType::F64: + { + // It doesn't make sense to check [-inf, inf], so hard code it to a big number + std::uniform_real_distribution<double> distribution_f64(-1000.f, 1000.f); + fill(tensor, distribution_f64, seed_offset); + break; + } + case DataType::SIZET: + { + std::uniform_int_distribution<size_t> distribution_sizet(std::numeric_limits<size_t>::lowest(), std::numeric_limits<size_t>::max()); + fill(tensor, distribution_sizet, seed_offset); + break; + } + default: + ARM_COMPUTE_ERROR("NOT SUPPORTED!"); + } +} + +template <typename T, typename D> +void AssetsLibrary::fill_tensor_uniform(T &&tensor, std::random_device::result_type seed_offset, D low, D high) const +{ + switch(tensor.data_type()) + { + case DataType::U8: + { + ARM_COMPUTE_ERROR_ON(!(std::is_same<uint8_t, D>::value)); + std::uniform_int_distribution<uint8_t> distribution_u8(low, high); + fill(tensor, distribution_u8, seed_offset); + break; + } + case DataType::S8: + case DataType::QS8: + { + ARM_COMPUTE_ERROR_ON(!(std::is_same<int8_t, D>::value)); + std::uniform_int_distribution<int8_t> distribution_s8(low, high); + fill(tensor, distribution_s8, seed_offset); + break; + } + case DataType::U16: + { + ARM_COMPUTE_ERROR_ON(!(std::is_same<uint16_t, D>::value)); + std::uniform_int_distribution<uint16_t> distribution_u16(low, high); + fill(tensor, distribution_u16, seed_offset); + break; + } + case DataType::S16: + case DataType::QS16: + { + ARM_COMPUTE_ERROR_ON(!(std::is_same<int16_t, D>::value)); + std::uniform_int_distribution<int16_t> distribution_s16(low, high); + fill(tensor, distribution_s16, seed_offset); + break; + } + case DataType::U32: + { + ARM_COMPUTE_ERROR_ON(!(std::is_same<uint32_t, D>::value)); + std::uniform_int_distribution<uint32_t> distribution_u32(low, high); + fill(tensor, distribution_u32, seed_offset); + break; + } + case DataType::S32: + { + ARM_COMPUTE_ERROR_ON(!(std::is_same<int32_t, D>::value)); + std::uniform_int_distribution<int32_t> distribution_s32(low, high); + fill(tensor, distribution_s32, seed_offset); + break; + } + case DataType::U64: + { + ARM_COMPUTE_ERROR_ON(!(std::is_same<uint64_t, D>::value)); + std::uniform_int_distribution<uint64_t> distribution_u64(low, high); + fill(tensor, distribution_u64, seed_offset); + break; + } + case DataType::S64: + { + ARM_COMPUTE_ERROR_ON(!(std::is_same<int64_t, D>::value)); + std::uniform_int_distribution<int64_t> distribution_s64(low, high); + fill(tensor, distribution_s64, seed_offset); + break; + } + case DataType::F16: + { + std::uniform_real_distribution<float> distribution_f16(low, high); + fill(tensor, distribution_f16, seed_offset); + break; + } + case DataType::F32: + { + ARM_COMPUTE_ERROR_ON(!(std::is_same<float, D>::value)); + std::uniform_real_distribution<float> distribution_f32(low, high); + fill(tensor, distribution_f32, seed_offset); + break; + } + case DataType::F64: + { + ARM_COMPUTE_ERROR_ON(!(std::is_same<double, D>::value)); + std::uniform_real_distribution<double> distribution_f64(low, high); + fill(tensor, distribution_f64, seed_offset); + break; + } + case DataType::SIZET: + { + ARM_COMPUTE_ERROR_ON(!(std::is_same<size_t, D>::value)); + std::uniform_int_distribution<size_t> distribution_sizet(low, high); + fill(tensor, distribution_sizet, seed_offset); + break; + } + default: + ARM_COMPUTE_ERROR("NOT SUPPORTED!"); + } +} + +template <typename T> +void AssetsLibrary::fill_layer_data(T &&tensor, std::string name) const +{ +#ifdef _WIN32 + const std::string path_separator("\\"); +#else /* _WIN32 */ + const std::string path_separator("/"); +#endif /* _WIN32 */ + const std::string path = _library_path + path_separator + name; + + std::vector<unsigned long> shape; + + // Open file + std::ifstream stream(path, std::ios::in | std::ios::binary); + if(!stream.good()) + { + throw framework::FileNotFound("Could not load npy file: " + path); + } + // Check magic bytes and version number + unsigned char v_major = 0; + unsigned char v_minor = 0; + npy::read_magic(stream, &v_major, &v_minor); + + // Read header + std::string header; + if(v_major == 1 && v_minor == 0) + { + header = npy::read_header_1_0(stream); + } + else if(v_major == 2 && v_minor == 0) + { + header = npy::read_header_2_0(stream); + } + else + { + ARM_COMPUTE_ERROR("Unsupported file format version"); + } + + // Parse header + bool fortran_order = false; + std::string typestr; + npy::ParseHeader(header, typestr, &fortran_order, shape); + + // Check if the typestring matches the given one + std::string expect_typestr = get_typestring(tensor.data_type()); + ARM_COMPUTE_ERROR_ON_MSG(typestr != expect_typestr, "Typestrings mismatch"); + + // Validate tensor shape + ARM_COMPUTE_ERROR_ON_MSG(shape.size() != tensor.shape().num_dimensions(), "Tensor ranks mismatch"); + if(fortran_order) + { + for(size_t i = 0; i < shape.size(); ++i) + { + ARM_COMPUTE_ERROR_ON_MSG(tensor.shape()[i] != shape[i], "Tensor dimensions mismatch"); + } + } + else + { + for(size_t i = 0; i < shape.size(); ++i) + { + ARM_COMPUTE_ERROR_ON_MSG(tensor.shape()[i] != shape[shape.size() - i - 1], "Tensor dimensions mismatch"); + } + } + + // Read data + if(tensor.padding().empty()) + { + // If tensor has no padding read directly from stream. + stream.read(reinterpret_cast<char *>(tensor.data()), tensor.size()); + } + else + { + // If tensor has padding accessing tensor elements through execution window. + Window window; + window.use_tensor_dimensions(tensor.shape()); + + execute_window_loop(window, [&](const Coordinates & id) + { + stream.read(reinterpret_cast<char *>(tensor(id)), tensor.element_size()); + }); + } +} +} // namespace test +} // namespace arm_compute +#endif /* __ARM_COMPUTE_TEST_TENSOR_LIBRARY_H__ */ |