1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
|
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Performs validation on instructions that appear inside of a SPIR-V block.
#include "validate.h"
#include <algorithm>
#include <cassert>
#include <sstream>
#include <string>
#include "binary.h"
#include "diagnostic.h"
#include "enum_set.h"
#include "enum_string_mapping.h"
#include "extensions.h"
#include "opcode.h"
#include "operand.h"
#include "spirv_definition.h"
#include "spirv_validator_options.h"
#include "util/string_utils.h"
#include "val/function.h"
#include "val/validation_state.h"
using libspirv::AssemblyGrammar;
using libspirv::CapabilitySet;
using libspirv::DiagnosticStream;
using libspirv::ExtensionSet;
using libspirv::ValidationState_t;
namespace {
std::string ToString(const CapabilitySet& capabilities,
const AssemblyGrammar& grammar) {
std::stringstream ss;
capabilities.ForEach([&grammar, &ss](SpvCapability cap) {
spv_operand_desc desc;
if (SPV_SUCCESS ==
grammar.lookupOperand(SPV_OPERAND_TYPE_CAPABILITY, cap, &desc))
ss << desc->name << " ";
else
ss << cap << " ";
});
return ss.str();
}
// Reports a missing-capability error to _'s diagnostic stream and returns
// SPV_ERROR_INVALID_CAPABILITY.
spv_result_t CapabilityError(ValidationState_t& _, int which_operand,
SpvOp opcode,
const std::string& required_capabilities) {
return _.diag(SPV_ERROR_INVALID_CAPABILITY)
<< "Operand " << which_operand << " of " << spvOpcodeString(opcode)
<< " requires one of these capabilities: " << required_capabilities;
}
// Returns an operand's required capabilities.
CapabilitySet RequiredCapabilities(const ValidationState_t& state,
spv_operand_type_t type, uint32_t operand) {
// Mere mention of PointSize, ClipDistance, or CullDistance in a Builtin
// decoration does not require the associated capability. The use of such
// a variable value should trigger the capability requirement, but that's
// not implemented yet. This rule is independent of target environment.
// See https://github.com/KhronosGroup/SPIRV-Tools/issues/365
if (type == SPV_OPERAND_TYPE_BUILT_IN) {
switch (operand) {
case SpvBuiltInPointSize:
case SpvBuiltInClipDistance:
case SpvBuiltInCullDistance:
return CapabilitySet();
default:
break;
}
} else if (type == SPV_OPERAND_TYPE_FP_ROUNDING_MODE) {
// Allow all FP rounding modes if requested
if (state.features().free_fp_rounding_mode) {
return CapabilitySet();
}
}
spv_operand_desc operand_desc;
const auto ret = state.grammar().lookupOperand(type, operand, &operand_desc);
if (ret == SPV_SUCCESS) {
CapabilitySet result(operand_desc->numCapabilities,
operand_desc->capabilities);
// Allow FPRoundingMode decoration if requested
if (state.features().free_fp_rounding_mode &&
type == SPV_OPERAND_TYPE_DECORATION &&
operand_desc->value == SpvDecorationFPRoundingMode) {
return CapabilitySet();
}
return result;
}
return CapabilitySet();
}
// Returns operand's required extensions.
ExtensionSet RequiredExtensions(const ValidationState_t& state,
spv_operand_type_t type, uint32_t operand) {
spv_operand_desc operand_desc;
if (state.grammar().lookupOperand(type, operand, &operand_desc) ==
SPV_SUCCESS) {
assert(operand_desc);
return {operand_desc->numExtensions, operand_desc->extensions};
}
return ExtensionSet();
}
} // namespace
namespace libspirv {
spv_result_t CapabilityCheck(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
spv_opcode_desc opcode_desc = {};
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
if (SPV_SUCCESS == _.grammar().lookupOpcode(opcode, &opcode_desc)) {
CapabilitySet opcode_caps(opcode_desc->numCapabilities,
opcode_desc->capabilities);
if (!_.HasAnyOfCapabilities(opcode_caps))
return _.diag(SPV_ERROR_INVALID_CAPABILITY)
<< "Opcode " << spvOpcodeString(opcode)
<< " requires one of these capabilities: "
<< ToString(opcode_caps, _.grammar());
}
for (int i = 0; i < inst->num_operands; ++i) {
const auto& operand = inst->operands[i];
const auto word = inst->words[operand.offset];
if (spvOperandIsConcreteMask(operand.type)) {
// Check for required capabilities for each bit position of the mask.
for (uint32_t mask_bit = 0x80000000; mask_bit; mask_bit >>= 1) {
if (word & mask_bit) {
const auto caps = RequiredCapabilities(_, operand.type, mask_bit);
if (!_.HasAnyOfCapabilities(caps)) {
return CapabilityError(_, i + 1, opcode,
ToString(caps, _.grammar()));
}
}
}
} else if (spvIsIdType(operand.type)) {
// TODO(dneto): Check the value referenced by this Id, if we can compute
// it. For now, just punt, to fix issue 248:
// https://github.com/KhronosGroup/SPIRV-Tools/issues/248
} else {
// Check the operand word as a whole.
const auto caps = RequiredCapabilities(_, operand.type, word);
if (!_.HasAnyOfCapabilities(caps)) {
return CapabilityError(_, i + 1, opcode, ToString(caps, _.grammar()));
}
}
}
return SPV_SUCCESS;
}
// Checks that all required extensions were declared in the module.
spv_result_t ExtensionCheck(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
for (size_t operand_index = 0; operand_index < inst->num_operands;
++operand_index) {
const auto& operand = inst->operands[operand_index];
const uint32_t word = inst->words[operand.offset];
const ExtensionSet required_extensions =
RequiredExtensions(_, operand.type, word);
if (!_.HasAnyOfExtensions(required_extensions)) {
return _.diag(SPV_ERROR_MISSING_EXTENSION)
<< spvutils::CardinalToOrdinal(operand_index + 1) << " operand of "
<< spvOpcodeString(opcode) << ": operand " << word
<< " requires one of these extensions: "
<< ExtensionSetToString(required_extensions);
}
}
return SPV_SUCCESS;
}
// Checks that the instruction is not reserved for future use.
spv_result_t ReservedCheck(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
switch (opcode) {
case SpvOpImageSparseSampleProjImplicitLod:
case SpvOpImageSparseSampleProjExplicitLod:
case SpvOpImageSparseSampleProjDrefImplicitLod:
case SpvOpImageSparseSampleProjDrefExplicitLod:
return _.diag(SPV_ERROR_INVALID_VALUE)
<< spvOpcodeString(opcode) << " is reserved for future use.";
default:
return SPV_SUCCESS;
}
}
// Checks that the Resuld <id> is within the valid bound.
spv_result_t LimitCheckIdBound(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
if (inst->result_id >= _.getIdBound()) {
return _.diag(SPV_ERROR_INVALID_BINARY)
<< "Result <id> '" << inst->result_id
<< "' must be less than the ID bound '" << _.getIdBound() << "'.";
}
return SPV_SUCCESS;
}
// Checks that the number of OpTypeStruct members is within the limit.
spv_result_t LimitCheckStruct(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
if (SpvOpTypeStruct != inst->opcode) {
return SPV_SUCCESS;
}
// Number of members is the number of operands of the instruction minus 1.
// One operand is the result ID.
const uint16_t limit =
static_cast<uint16_t>(_.options()->universal_limits_.max_struct_members);
if (inst->num_operands - 1 > limit) {
return _.diag(SPV_ERROR_INVALID_BINARY)
<< "Number of OpTypeStruct members (" << inst->num_operands - 1
<< ") has exceeded the limit (" << limit << ").";
}
// Section 2.17 of SPIRV Spec specifies that the "Structure Nesting Depth"
// must be less than or equal to 255.
// This is interpreted as structures including other structures as members.
// The code does not follow pointers or look into arrays to see if we reach a
// structure downstream.
// The nesting depth of a struct is 1+(largest depth of any member).
// Scalars are at depth 0.
uint32_t max_member_depth = 0;
// Struct members start at word 2 of OpTypeStruct instruction.
for (size_t word_i = 2; word_i < inst->num_words; ++word_i) {
auto member = inst->words[word_i];
auto memberTypeInstr = _.FindDef(member);
if (memberTypeInstr && SpvOpTypeStruct == memberTypeInstr->opcode()) {
max_member_depth = std::max(
max_member_depth, _.struct_nesting_depth(memberTypeInstr->id()));
}
}
const uint32_t depth_limit = _.options()->universal_limits_.max_struct_depth;
const uint32_t cur_depth = 1 + max_member_depth;
_.set_struct_nesting_depth(inst->result_id, cur_depth);
if (cur_depth > depth_limit) {
return _.diag(SPV_ERROR_INVALID_BINARY)
<< "Structure Nesting Depth may not be larger than " << depth_limit
<< ". Found " << cur_depth << ".";
}
return SPV_SUCCESS;
}
// Checks that the number of (literal, label) pairs in OpSwitch is within the
// limit.
spv_result_t LimitCheckSwitch(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
if (SpvOpSwitch == inst->opcode) {
// The instruction syntax is as follows:
// OpSwitch <selector ID> <Default ID> literal label literal label ...
// literal,label pairs come after the first 2 operands.
// It is guaranteed at this point that num_operands is an even numner.
unsigned int num_pairs = (inst->num_operands - 2) / 2;
const unsigned int num_pairs_limit =
_.options()->universal_limits_.max_switch_branches;
if (num_pairs > num_pairs_limit) {
return _.diag(SPV_ERROR_INVALID_BINARY)
<< "Number of (literal, label) pairs in OpSwitch (" << num_pairs
<< ") exceeds the limit (" << num_pairs_limit << ").";
}
}
return SPV_SUCCESS;
}
// Ensure the number of variables of the given class does not exceed the limit.
spv_result_t LimitCheckNumVars(ValidationState_t& _, const uint32_t var_id,
const SpvStorageClass storage_class) {
if (SpvStorageClassFunction == storage_class) {
_.registerLocalVariable(var_id);
const uint32_t num_local_vars_limit =
_.options()->universal_limits_.max_local_variables;
if (_.num_local_vars() > num_local_vars_limit) {
return _.diag(SPV_ERROR_INVALID_BINARY)
<< "Number of local variables ('Function' Storage Class) "
"exceeded the valid limit ("
<< num_local_vars_limit << ").";
}
} else {
_.registerGlobalVariable(var_id);
const uint32_t num_global_vars_limit =
_.options()->universal_limits_.max_global_variables;
if (_.num_global_vars() > num_global_vars_limit) {
return _.diag(SPV_ERROR_INVALID_BINARY)
<< "Number of Global Variables (Storage Class other than "
"'Function') exceeded the valid limit ("
<< num_global_vars_limit << ").";
}
}
return SPV_SUCCESS;
}
// Registers necessary decoration(s) for the appropriate IDs based on the
// instruction.
spv_result_t RegisterDecorations(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
switch (inst->opcode) {
case SpvOpDecorate: {
const uint32_t target_id = inst->words[1];
const SpvDecoration dec_type = static_cast<SpvDecoration>(inst->words[2]);
std::vector<uint32_t> dec_params;
if (inst->num_words > 3) {
dec_params.insert(dec_params.end(), inst->words + 3,
inst->words + inst->num_words);
}
_.RegisterDecorationForId(target_id, Decoration(dec_type, dec_params));
break;
}
case SpvOpMemberDecorate: {
const uint32_t struct_id = inst->words[1];
const uint32_t index = inst->words[2];
const SpvDecoration dec_type = static_cast<SpvDecoration>(inst->words[3]);
std::vector<uint32_t> dec_params;
if (inst->num_words > 4) {
dec_params.insert(dec_params.end(), inst->words + 4,
inst->words + inst->num_words);
}
_.RegisterDecorationForId(struct_id,
Decoration(dec_type, dec_params, index));
break;
}
case SpvOpDecorationGroup: {
// We don't need to do anything right now. Assigning decorations to groups
// will be taken care of via OpGroupDecorate.
break;
}
case SpvOpGroupDecorate: {
// Word 1 is the group <id>. All subsequent words are target <id>s that
// are going to be decorated with the decorations.
const uint32_t decoration_group_id = inst->words[1];
std::vector<Decoration>& group_decorations =
_.id_decorations(decoration_group_id);
for (int i = 2; i < inst->num_words; ++i) {
const uint32_t target_id = inst->words[i];
_.RegisterDecorationsForId(target_id, group_decorations.begin(),
group_decorations.end());
}
break;
}
case SpvOpGroupMemberDecorate: {
// Word 1 is the Decoration Group <id> followed by (struct<id>,literal)
// pairs. All decorations of the group should be applied to all the struct
// members that are specified in the instructions.
const uint32_t decoration_group_id = inst->words[1];
std::vector<Decoration>& group_decorations =
_.id_decorations(decoration_group_id);
// Grammar checks ensures that the number of arguments to this instruction
// is an odd number: 1 decoration group + (id,literal) pairs.
for (int i = 2; i + 1 < inst->num_words; i = i + 2) {
const uint32_t struct_id = inst->words[i];
const uint32_t index = inst->words[i + 1];
// ID validation phase ensures this is in fact a struct instruction and
// that the index is not out of bound.
_.RegisterDecorationsForStructMember(struct_id, index,
group_decorations.begin(),
group_decorations.end());
}
break;
}
default:
break;
}
return SPV_SUCCESS;
}
// Parses OpExtension instruction and logs warnings if unsuccessful.
void CheckIfKnownExtension(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
const std::string extension_str = GetExtensionString(inst);
Extension extension;
if (!GetExtensionFromString(extension_str, &extension)) {
_.diag(SPV_SUCCESS) << "Found unrecognized extension " << extension_str;
return;
}
}
spv_result_t InstructionPass(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
if (opcode == SpvOpExtension) CheckIfKnownExtension(_, inst);
if (opcode == SpvOpCapability) {
_.RegisterCapability(
static_cast<SpvCapability>(inst->words[inst->operands[0].offset]));
}
if (opcode == SpvOpMemoryModel) {
_.set_addressing_model(
static_cast<SpvAddressingModel>(inst->words[inst->operands[0].offset]));
_.set_memory_model(
static_cast<SpvMemoryModel>(inst->words[inst->operands[1].offset]));
}
if (opcode == SpvOpVariable) {
const auto storage_class =
static_cast<SpvStorageClass>(inst->words[inst->operands[2].offset]);
if (auto error = LimitCheckNumVars(_, inst->result_id, storage_class)) {
return error;
}
if (storage_class == SpvStorageClassGeneric)
return _.diag(SPV_ERROR_INVALID_BINARY)
<< "OpVariable storage class cannot be Generic";
if (_.current_layout_section() == kLayoutFunctionDefinitions) {
if (storage_class != SpvStorageClassFunction) {
return _.diag(SPV_ERROR_INVALID_LAYOUT)
<< "Variables must have a function[7] storage class inside"
" of a function";
}
if (_.current_function().IsFirstBlock(
_.current_function().current_block()->id()) == false) {
return _.diag(SPV_ERROR_INVALID_CFG) << "Variables can only be defined "
"in the first block of a "
"function";
}
} else {
if (storage_class == SpvStorageClassFunction) {
return _.diag(SPV_ERROR_INVALID_LAYOUT)
<< "Variables can not have a function[7] storage class "
"outside of a function";
}
}
}
// SPIR-V Spec 2.16.3: Validation Rules for Kernel Capabilities: The
// Signedness in OpTypeInt must always be 0.
if (SpvOpTypeInt == inst->opcode && _.HasCapability(SpvCapabilityKernel) &&
inst->words[inst->operands[2].offset] != 0u) {
return _.diag(SPV_ERROR_INVALID_BINARY) << "The Signedness in OpTypeInt "
"must always be 0 when Kernel "
"capability is used.";
}
// In order to validate decoration rules, we need to know all the decorations
// that are applied to any given <id>.
RegisterDecorations(_, inst);
if (auto error = ExtensionCheck(_, inst)) return error;
if (auto error = CapabilityCheck(_, inst)) return error;
if (auto error = LimitCheckIdBound(_, inst)) return error;
if (auto error = LimitCheckStruct(_, inst)) return error;
if (auto error = LimitCheckSwitch(_, inst)) return error;
if (auto error = ReservedCheck(_, inst)) return error;
// All instruction checks have passed.
return SPV_SUCCESS;
}
} // namespace libspirv
|