summaryrefslogtreecommitdiff
path: root/source/opt/mem_pass.cpp
blob: 2102aa4b80756c3b5e36b942cd8226a808c6d8ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
// Copyright (c) 2017 The Khronos Group Inc.
// Copyright (c) 2017 Valve Corporation
// Copyright (c) 2017 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "mem_pass.h"

#include "basic_block.h"
#include "cfa.h"
#include "dominator_analysis.h"
#include "ir_context.h"
#include "iterator.h"

namespace spvtools {
namespace opt {

namespace {

const uint32_t kCopyObjectOperandInIdx = 0;
const uint32_t kLoadPtrIdInIdx = 0;
const uint32_t kLoopMergeMergeBlockIdInIdx = 0;
const uint32_t kStorePtrIdInIdx = 0;
const uint32_t kStoreValIdInIdx = 1;
const uint32_t kTypePointerStorageClassInIdx = 0;
const uint32_t kTypePointerTypeIdInIdx = 1;
const uint32_t kVariableInitIdInIdx = 1;

}  // namespace

bool MemPass::IsBaseTargetType(const ir::Instruction* typeInst) const {
  switch (typeInst->opcode()) {
    case SpvOpTypeInt:
    case SpvOpTypeFloat:
    case SpvOpTypeBool:
    case SpvOpTypeVector:
    case SpvOpTypeMatrix:
    case SpvOpTypeImage:
    case SpvOpTypeSampler:
    case SpvOpTypeSampledImage:
    case SpvOpTypePointer:
      return true;
    default:
      break;
  }
  return false;
}

bool MemPass::IsTargetType(const ir::Instruction* typeInst) const {
  if (IsBaseTargetType(typeInst)) return true;
  if (typeInst->opcode() == SpvOpTypeArray) {
    if (!IsTargetType(
            get_def_use_mgr()->GetDef(typeInst->GetSingleWordOperand(1)))) {
      return false;
    }
    return true;
  }
  if (typeInst->opcode() != SpvOpTypeStruct) return false;
  // All struct members must be math type
  return typeInst->WhileEachInId([this](const uint32_t* tid) {
    ir::Instruction* compTypeInst = get_def_use_mgr()->GetDef(*tid);
    if (!IsTargetType(compTypeInst)) return false;
    return true;
  });
}

bool MemPass::IsNonPtrAccessChain(const SpvOp opcode) const {
  return opcode == SpvOpAccessChain || opcode == SpvOpInBoundsAccessChain;
}

bool MemPass::IsPtr(uint32_t ptrId) {
  uint32_t varId = ptrId;
  ir::Instruction* ptrInst = get_def_use_mgr()->GetDef(varId);
  while (ptrInst->opcode() == SpvOpCopyObject) {
    varId = ptrInst->GetSingleWordInOperand(kCopyObjectOperandInIdx);
    ptrInst = get_def_use_mgr()->GetDef(varId);
  }
  const SpvOp op = ptrInst->opcode();
  if (op == SpvOpVariable || IsNonPtrAccessChain(op)) return true;
  if (op != SpvOpFunctionParameter) return false;
  const uint32_t varTypeId = ptrInst->type_id();
  const ir::Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
  return varTypeInst->opcode() == SpvOpTypePointer;
}

ir::Instruction* MemPass::GetPtr(uint32_t ptrId, uint32_t* varId) {
  *varId = ptrId;
  ir::Instruction* ptrInst = get_def_use_mgr()->GetDef(*varId);
  ir::Instruction* varInst;

  if (ptrInst->opcode() != SpvOpVariable &&
      ptrInst->opcode() != SpvOpFunctionParameter) {
    varInst = ptrInst->GetBaseAddress();
  } else {
    varInst = ptrInst;
  }
  if (varInst->opcode() == SpvOpVariable) {
    *varId = varInst->result_id();
  } else {
    *varId = 0;
  }

  while (ptrInst->opcode() == SpvOpCopyObject) {
    uint32_t temp = ptrInst->GetSingleWordInOperand(0);
    ptrInst = get_def_use_mgr()->GetDef(temp);
  }

  return ptrInst;
}

ir::Instruction* MemPass::GetPtr(ir::Instruction* ip, uint32_t* varId) {
  const SpvOp op = ip->opcode();
  assert(op == SpvOpStore || op == SpvOpLoad);
  const uint32_t ptrId = ip->GetSingleWordInOperand(
      op == SpvOpStore ? kStorePtrIdInIdx : kLoadPtrIdInIdx);
  return GetPtr(ptrId, varId);
}

bool MemPass::HasOnlyNamesAndDecorates(uint32_t id) const {
  return get_def_use_mgr()->WhileEachUser(id, [this](ir::Instruction* user) {
    SpvOp op = user->opcode();
    if (op != SpvOpName && !IsNonTypeDecorate(op)) {
      return false;
    }
    return true;
  });
}

void MemPass::KillAllInsts(ir::BasicBlock* bp, bool killLabel) {
  bp->KillAllInsts(killLabel);
}

bool MemPass::HasLoads(uint32_t varId) const {
  return !get_def_use_mgr()->WhileEachUser(varId, [this](
                                                      ir::Instruction* user) {
    SpvOp op = user->opcode();
    // TODO(): The following is slightly conservative. Could be
    // better handling of non-store/name.
    if (IsNonPtrAccessChain(op) || op == SpvOpCopyObject) {
      if (HasLoads(user->result_id())) {
        return false;
      }
    } else if (op != SpvOpStore && op != SpvOpName && !IsNonTypeDecorate(op)) {
      return false;
    }
    return true;
  });
}

bool MemPass::IsLiveVar(uint32_t varId) const {
  const ir::Instruction* varInst = get_def_use_mgr()->GetDef(varId);
  // assume live if not a variable eg. function parameter
  if (varInst->opcode() != SpvOpVariable) return true;
  // non-function scope vars are live
  const uint32_t varTypeId = varInst->type_id();
  const ir::Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
  if (varTypeInst->GetSingleWordInOperand(kTypePointerStorageClassInIdx) !=
      SpvStorageClassFunction)
    return true;
  // test if variable is loaded from
  return HasLoads(varId);
}

bool MemPass::IsLiveStore(ir::Instruction* storeInst) {
  // get store's variable
  uint32_t varId;
  (void)GetPtr(storeInst, &varId);
  if (varId == 0) {
    // If we do not know which variable we are accessing, assume the store is
    // live.
    return true;
  }
  return IsLiveVar(varId);
}

void MemPass::AddStores(uint32_t ptr_id, std::queue<ir::Instruction*>* insts) {
  get_def_use_mgr()->ForEachUser(ptr_id, [this, insts](ir::Instruction* user) {
    SpvOp op = user->opcode();
    if (IsNonPtrAccessChain(op)) {
      AddStores(user->result_id(), insts);
    } else if (op == SpvOpStore) {
      insts->push(user);
    }
  });
}

void MemPass::DCEInst(ir::Instruction* inst,
                      const function<void(ir::Instruction*)>& call_back) {
  std::queue<ir::Instruction*> deadInsts;
  deadInsts.push(inst);
  while (!deadInsts.empty()) {
    ir::Instruction* di = deadInsts.front();
    // Don't delete labels
    if (di->opcode() == SpvOpLabel) {
      deadInsts.pop();
      continue;
    }
    // Remember operands
    std::set<uint32_t> ids;
    di->ForEachInId([&ids](uint32_t* iid) { ids.insert(*iid); });
    uint32_t varId = 0;
    // Remember variable if dead load
    if (di->opcode() == SpvOpLoad) (void)GetPtr(di, &varId);
    if (call_back) {
      call_back(di);
    }
    context()->KillInst(di);
    // For all operands with no remaining uses, add their instruction
    // to the dead instruction queue.
    for (auto id : ids)
      if (HasOnlyNamesAndDecorates(id)) {
        ir::Instruction* odi = get_def_use_mgr()->GetDef(id);
        if (context()->IsCombinatorInstruction(odi)) deadInsts.push(odi);
      }
    // if a load was deleted and it was the variable's
    // last load, add all its stores to dead queue
    if (varId != 0 && !IsLiveVar(varId)) AddStores(varId, &deadInsts);
    deadInsts.pop();
  }
}

MemPass::MemPass() {}

bool MemPass::HasOnlySupportedRefs(uint32_t varId) {
  if (supported_ref_vars_.find(varId) != supported_ref_vars_.end()) return true;
  return get_def_use_mgr()->WhileEachUser(varId, [this](ir::Instruction* user) {
    SpvOp op = user->opcode();
    if (op != SpvOpStore && op != SpvOpLoad && op != SpvOpName &&
        !IsNonTypeDecorate(op)) {
      return false;
    }
    return true;
  });
}

void MemPass::InitSSARewrite(ir::Function* func) {
  // Clear collections.
  seen_target_vars_.clear();
  seen_non_target_vars_.clear();
  visitedBlocks_.clear();
  type2undefs_.clear();
  supported_ref_vars_.clear();
  block_defs_map_.clear();
  phis_to_patch_.clear();
  dominator_ = context()->GetDominatorAnalysis(func, *cfg());

  // Collect target (and non-) variable sets. Remove variables with
  // non-load/store refs from target variable set
  for (auto& blk : *func) {
    for (auto& inst : blk) {
      switch (inst.opcode()) {
        case SpvOpStore:
        case SpvOpLoad: {
          uint32_t varId;
          (void)GetPtr(&inst, &varId);
          if (!IsTargetVar(varId)) break;
          if (HasOnlySupportedRefs(varId)) break;
          seen_non_target_vars_.insert(varId);
          seen_target_vars_.erase(varId);
        } break;
        default:
          break;
      }
    }
  }
}

bool MemPass::IsLiveAfter(uint32_t var_id, uint32_t label) const {
  // For now, return very conservative result: true. This will result in
  // correct, but possibly usused, phi code to be generated. A subsequent
  // DCE pass should eliminate this code.
  // TODO(greg-lunarg): Return more accurate information
  (void)var_id;
  (void)label;
  return true;
}

uint32_t MemPass::Type2Undef(uint32_t type_id) {
  const auto uitr = type2undefs_.find(type_id);
  if (uitr != type2undefs_.end()) return uitr->second;
  const uint32_t undefId = TakeNextId();
  std::unique_ptr<ir::Instruction> undef_inst(
      new ir::Instruction(context(), SpvOpUndef, type_id, undefId, {}));
  get_def_use_mgr()->AnalyzeInstDefUse(&*undef_inst);
  get_module()->AddGlobalValue(std::move(undef_inst));
  type2undefs_[type_id] = undefId;
  return undefId;
}

void MemPass::CollectLiveVars(uint32_t block_label,
                              std::map<uint32_t, uint32_t>* live_vars) {
  // Walk up the dominator chain starting at |block_label| looking for variables
  // defined at each block in the chain.  Since we are only interested for the
  // most recent value for each live variable, we only add a <variable, value>
  // pair to |live_vars| if this is the first time we find the variable in the
  // chain.
  for (ir::BasicBlock* block = cfg()->block(block_label); block != nullptr;
       block = dominator_->ImmediateDominator(block)) {
    for (const auto& var_val : block_defs_map_[block->id()]) {
      auto live_vars_it = live_vars->find(var_val.first);
      if (live_vars_it == live_vars->end()) live_vars->insert(var_val);
    }
  }
}

uint32_t MemPass::GetCurrentValue(uint32_t var_id, uint32_t block_label) {
  // Walk up the dominator chain starting at |block_label| looking for the
  // current value of variable |var_id|.  The first block we find containing a
  // definition for |var_id| is the one we are interested in.
  for (ir::BasicBlock* block = cfg()->block(block_label); block != nullptr;
       block = dominator_->ImmediateDominator(block)) {
    const auto& block_defs = block_defs_map_[block->id()];
    const auto& var_val_it = block_defs.find(var_id);
    if (var_val_it != block_defs.end()) return var_val_it->second;
  }
  return 0;
}

bool MemPass::SSABlockInitLoopHeader(
    std::list<ir::BasicBlock*>::iterator block_itr) {
  bool modified = false;
  const uint32_t label = (*block_itr)->id();

  // Determine the back-edge label.
  uint32_t backLabel = 0;
  for (uint32_t predLabel : cfg()->preds(label))
    if (visitedBlocks_.find(predLabel) == visitedBlocks_.end()) {
      assert(backLabel == 0);
      backLabel = predLabel;
      break;
    }
  assert(backLabel != 0);

  // Determine merge block.
  auto mergeInst = (*block_itr)->end();
  --mergeInst;
  --mergeInst;
  uint32_t mergeLabel =
      mergeInst->GetSingleWordInOperand(kLoopMergeMergeBlockIdInIdx);

  // Collect all live variables and a default value for each across all
  // non-backedge predecesors. Must be ordered map because phis are
  // generated based on order and test results will otherwise vary across
  // platforms.
  std::map<uint32_t, uint32_t> liveVars;
  for (uint32_t predLabel : cfg()->preds(label)) {
    CollectLiveVars(predLabel, &liveVars);
  }

  // Add all stored variables in loop. Set their default value id to zero.
  for (auto bi = block_itr; (*bi)->id() != mergeLabel; ++bi) {
    ir::BasicBlock* bp = *bi;
    for (auto ii = bp->begin(); ii != bp->end(); ++ii) {
      if (ii->opcode() != SpvOpStore) {
        continue;
      }
      uint32_t varId;
      (void)GetPtr(&*ii, &varId);
      if (!IsTargetVar(varId)) {
        continue;
      }
      liveVars[varId] = 0;
    }
  }
  // Insert phi for all live variables that require them. All variables
  // defined in loop require a phi. Otherwise all variables
  // with differing predecessor values require a phi.
  auto insertItr = (*block_itr)->begin();
  for (auto var_val : liveVars) {
    const uint32_t varId = var_val.first;
    if (!IsLiveAfter(varId, label)) {
      continue;
    }
    const uint32_t val0Id = var_val.second;
    bool needsPhi = false;
    if (val0Id != 0) {
      for (uint32_t predLabel : cfg()->preds(label)) {
        // Skip back edge predecessor.
        if (predLabel == backLabel) continue;
        uint32_t current_value = GetCurrentValue(varId, predLabel);
        // Missing (undef) values always cause difference with (defined) value
        if (current_value == 0) {
          needsPhi = true;
          break;
        }
        if (current_value != val0Id) {
          needsPhi = true;
          break;
        }
      }
    } else {
      needsPhi = true;
    }

    // If val is the same for all predecessors, enter it in map
    if (!needsPhi) {
      block_defs_map_[label].insert(var_val);
      continue;
    }

    // Val differs across predecessors. Add phi op to block and
    // add its result id to the map. For back edge predecessor,
    // use the variable id. We will patch this after visiting back
    // edge predecessor. For predecessors that do not define a value,
    // use undef.
    modified = true;
    std::vector<ir::Operand> phi_in_operands;
    uint32_t typeId = GetPointeeTypeId(get_def_use_mgr()->GetDef(varId));
    for (uint32_t predLabel : cfg()->preds(label)) {
      uint32_t valId;
      if (predLabel == backLabel) {
        valId = varId;
      } else {
        uint32_t current_value = GetCurrentValue(varId, predLabel);
        if (current_value == 0)
          valId = Type2Undef(typeId);
        else
          valId = current_value;
      }
      phi_in_operands.push_back(
          {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {valId}});
      phi_in_operands.push_back(
          {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {predLabel}});
    }
    const uint32_t phiId = TakeNextId();
    std::unique_ptr<ir::Instruction> newPhi(new ir::Instruction(
        context(), SpvOpPhi, typeId, phiId, phi_in_operands));
    // The only phis requiring patching are the ones we create.
    phis_to_patch_.insert(phiId);
    // Only analyze the phi define now; analyze the phi uses after the
    // phi backedge predecessor value is patched.
    get_def_use_mgr()->AnalyzeInstDef(&*newPhi);
    context()->set_instr_block(&*newPhi, *block_itr);
    insertItr = insertItr.InsertBefore(std::move(newPhi));
    ++insertItr;
    block_defs_map_[label].insert({varId, phiId});
  }
  return modified;
}

bool MemPass::SSABlockInitMultiPred(ir::BasicBlock* block_ptr) {
  bool modified = false;
  const uint32_t label = block_ptr->id();
  // Collect all live variables and a default value for each across all
  // predecesors. Must be ordered map because phis are generated based on
  // order and test results will otherwise vary across platforms.
  std::map<uint32_t, uint32_t> liveVars;
  for (uint32_t predLabel : cfg()->preds(label)) {
    assert(visitedBlocks_.find(predLabel) != visitedBlocks_.end());
    CollectLiveVars(predLabel, &liveVars);
  }

  // For each live variable, look for a difference in values across
  // predecessors that would require a phi and insert one.
  auto insertItr = block_ptr->begin();
  for (auto var_val : liveVars) {
    const uint32_t varId = var_val.first;
    if (!IsLiveAfter(varId, label)) continue;
    const uint32_t val0Id = var_val.second;
    bool differs = false;
    for (uint32_t predLabel : cfg()->preds(label)) {
      uint32_t current_value = GetCurrentValue(varId, predLabel);
      // Missing values cause a difference because we'll need to create an
      // undef for that predecessor.
      if (current_value == 0) {
        differs = true;
        break;
      }
      if (current_value != val0Id) {
        differs = true;
        break;
      }
    }
    // If val is the same for all predecessors, enter it in map
    if (!differs) {
      block_defs_map_[label].insert(var_val);
      continue;
    }

    modified = true;

    // Val differs across predecessors. Add phi op to block and add its result
    // id to the map.
    std::vector<ir::Operand> phi_in_operands;
    const uint32_t typeId = GetPointeeTypeId(get_def_use_mgr()->GetDef(varId));
    for (uint32_t predLabel : cfg()->preds(label)) {
      uint32_t current_value = GetCurrentValue(varId, predLabel);
      // If variable not defined on this path, use undef
      const uint32_t valId =
          (current_value > 0) ? current_value : Type2Undef(typeId);
      phi_in_operands.push_back(
          {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {valId}});
      phi_in_operands.push_back(
          {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {predLabel}});
    }
    const uint32_t phiId = TakeNextId();
    std::unique_ptr<ir::Instruction> newPhi(new ir::Instruction(
        context(), SpvOpPhi, typeId, phiId, phi_in_operands));
    get_def_use_mgr()->AnalyzeInstDefUse(&*newPhi);
    context()->set_instr_block(&*newPhi, block_ptr);
    insertItr = insertItr.InsertBefore(std::move(newPhi));
    ++insertItr;
    block_defs_map_[label].insert({varId, phiId});
  }
  return modified;
}

bool MemPass::SSABlockInit(std::list<ir::BasicBlock*>::iterator block_itr) {
  const size_t numPreds = cfg()->preds((*block_itr)->id()).size();
  if (numPreds == 0) return false;
  if ((*block_itr)->IsLoopHeader())
    return SSABlockInitLoopHeader(block_itr);
  else
    return SSABlockInitMultiPred(*block_itr);
}

bool MemPass::IsTargetVar(uint32_t varId) {
  if (varId == 0) {
    return false;
  }

  if (seen_non_target_vars_.find(varId) != seen_non_target_vars_.end())
    return false;
  if (seen_target_vars_.find(varId) != seen_target_vars_.end()) return true;
  const ir::Instruction* varInst = get_def_use_mgr()->GetDef(varId);
  if (varInst->opcode() != SpvOpVariable) return false;
  const uint32_t varTypeId = varInst->type_id();
  const ir::Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
  if (varTypeInst->GetSingleWordInOperand(kTypePointerStorageClassInIdx) !=
      SpvStorageClassFunction) {
    seen_non_target_vars_.insert(varId);
    return false;
  }
  const uint32_t varPteTypeId =
      varTypeInst->GetSingleWordInOperand(kTypePointerTypeIdInIdx);
  ir::Instruction* varPteTypeInst = get_def_use_mgr()->GetDef(varPteTypeId);
  if (!IsTargetType(varPteTypeInst)) {
    seen_non_target_vars_.insert(varId);
    return false;
  }
  seen_target_vars_.insert(varId);
  return true;
}

void MemPass::PatchPhis(uint32_t header_id, uint32_t back_id) {
  ir::BasicBlock* header = cfg()->block(header_id);
  auto phiItr = header->begin();
  for (; phiItr->opcode() == SpvOpPhi; ++phiItr) {
    // Only patch phis that we created in a loop header.
    // There might be other phis unrelated to our optimizations.
    if (0 == phis_to_patch_.count(phiItr->result_id())) continue;

    // Find phi operand index for back edge
    uint32_t cnt = 0;
    uint32_t idx = phiItr->NumInOperands();
    phiItr->ForEachInId([&cnt, &back_id, &idx](uint32_t* iid) {
      if (cnt % 2 == 1 && *iid == back_id) idx = cnt - 1;
      ++cnt;
    });
    assert(idx != phiItr->NumInOperands());

    // Replace temporary phi operand with variable's value in backedge block
    // map. Use undef if variable not in map.
    const uint32_t varId = phiItr->GetSingleWordInOperand(idx);
    uint32_t current_value = GetCurrentValue(varId, back_id);
    uint32_t valId =
        (current_value > 0)
            ? current_value
            : Type2Undef(GetPointeeTypeId(get_def_use_mgr()->GetDef(varId)));
    phiItr->SetInOperand(idx, {valId});
    // Analyze uses now that they are complete
    get_def_use_mgr()->AnalyzeInstUse(&*phiItr);
  }
}

bool MemPass::InsertPhiInstructions(ir::Function* func) {
  // TODO(dnovillo) the current Phi placement mechanism assumes structured
  // control-flow. This should be generalized
  // (https://github.com/KhronosGroup/SPIRV-Tools/issues/893).
  assert(context()->get_feature_mgr()->HasCapability(SpvCapabilityShader) &&
         "This only works on structured control flow");

  bool modified = false;

  // Initialize the data structures used to insert Phi instructions.
  InitSSARewrite(func);

  // Process all blocks in structured order. This is just one way (the
  // simplest?) to make sure all predecessors blocks are processed before
  // a block itself.
  std::list<ir::BasicBlock*> structuredOrder;
  cfg()->ComputeStructuredOrder(func, cfg()->pseudo_entry_block(),
                                &structuredOrder);
  for (auto bi = structuredOrder.begin(); bi != structuredOrder.end(); ++bi) {
    // Skip pseudo entry block
    if (cfg()->IsPseudoEntryBlock(*bi)) {
      continue;
    }

    // Process all stores and loads of targeted variables.
    if (SSABlockInit(bi)) {
      modified = true;
    }

    ir::BasicBlock* bp = *bi;
    const uint32_t label = bp->id();
    ir::Instruction* inst = &*bp->begin();
    while (inst) {
      ir::Instruction* next_instruction = inst->NextNode();
      switch (inst->opcode()) {
        case SpvOpStore: {
          uint32_t varId;
          (void)GetPtr(inst, &varId);
          if (!IsTargetVar(varId)) break;
          // Register new stored value for the variable
          block_defs_map_[label][varId] =
              inst->GetSingleWordInOperand(kStoreValIdInIdx);
        } break;
        case SpvOpVariable: {
          // Treat initialized OpVariable like an OpStore
          if (inst->NumInOperands() < 2) break;
          uint32_t varId = inst->result_id();
          if (!IsTargetVar(varId)) break;
          // Register new stored value for the variable
          block_defs_map_[label][varId] =
              inst->GetSingleWordInOperand(kVariableInitIdInIdx);
        } break;
        case SpvOpLoad: {
          uint32_t varId;
          (void)GetPtr(inst, &varId);
          if (!IsTargetVar(varId)) break;
          modified = true;
          uint32_t replId = GetCurrentValue(varId, label);
          // If the variable is not defined, use undef.
          if (replId == 0) {
            replId =
                Type2Undef(GetPointeeTypeId(get_def_use_mgr()->GetDef(varId)));
          }

          // Replace load's id with the last stored value id for variable
          // and delete load. Kill any names or decorates using id before
          // replacing to prevent incorrect replacement in those instructions.
          const uint32_t loadId = inst->result_id();
          context()->KillNamesAndDecorates(loadId);
          (void)context()->ReplaceAllUsesWith(loadId, replId);
          context()->KillInst(inst);
        } break;
        default:
          break;
      }
      inst = next_instruction;
    }
    visitedBlocks_.insert(label);
    // Look for successor backedge and patch phis in loop header
    // if found.
    uint32_t header = 0;
    const auto* const_bp = bp;
    const_bp->ForEachSuccessorLabel([&header, this](uint32_t succ) {
      if (visitedBlocks_.find(succ) == visitedBlocks_.end()) return;
      assert(header == 0);
      header = succ;
    });
    if (header != 0) PatchPhis(header, label);
  }

  return modified;
}

// Remove all |phi| operands coming from unreachable blocks (i.e., blocks not in
// |reachable_blocks|).  There are two types of removal that this function can
// perform:
//
// 1- Any operand that comes directly from an unreachable block is completely
//    removed.  Since the block is unreachable, the edge between the unreachable
//    block and the block holding |phi| has been removed.
//
// 2- Any operand that comes via a live block and was defined at an unreachable
//    block gets its value replaced with an OpUndef value. Since the argument
//    was generated in an unreachable block, it no longer exists, so it cannot
//    be referenced.  However, since the value does not reach |phi| directly
//    from the unreachable block, the operand cannot be removed from |phi|.
//    Therefore, we replace the argument value with OpUndef.
//
// For example, in the switch() below, assume that we want to remove the
// argument with value %11 coming from block %41.
//
//          [ ... ]
//          %41 = OpLabel                    <--- Unreachable block
//          %11 = OpLoad %int %y
//          [ ... ]
//                OpSelectionMerge %16 None
//                OpSwitch %12 %16 10 %13 13 %14 18 %15
//          %13 = OpLabel
//                OpBranch %16
//          %14 = OpLabel
//                OpStore %outparm %int_14
//                OpBranch %16
//          %15 = OpLabel
//                OpStore %outparm %int_15
//                OpBranch %16
//          %16 = OpLabel
//          %30 = OpPhi %int %11 %41 %int_42 %13 %11 %14 %11 %15
//
// Since %41 is now an unreachable block, the first operand of |phi| needs to
// be removed completely.  But the operands (%11 %14) and (%11 %15) cannot be
// removed because %14 and %15 are reachable blocks.  Since %11 no longer exist,
// in those arguments, we replace all references to %11 with an OpUndef value.
// This results in |phi| looking like:
//
//           %50 = OpUndef %int
//           [ ... ]
//           %30 = OpPhi %int %int_42 %13 %50 %14 %50 %15
void MemPass::RemovePhiOperands(
    ir::Instruction* phi,
    std::unordered_set<ir::BasicBlock*> reachable_blocks) {
  std::vector<ir::Operand> keep_operands;
  uint32_t type_id = 0;
  // The id of an undefined value we've generated.
  uint32_t undef_id = 0;

  // Traverse all the operands in |phi|. Build the new operand vector by adding
  // all the original operands from |phi| except the unwanted ones.
  for (uint32_t i = 0; i < phi->NumOperands();) {
    if (i < 2) {
      // The first two arguments are always preserved.
      keep_operands.push_back(phi->GetOperand(i));
      ++i;
      continue;
    }

    // The remaining Phi arguments come in pairs. Index 'i' contains the
    // variable id, index 'i + 1' is the originating block id.
    assert(i % 2 == 0 && i < phi->NumOperands() - 1 &&
           "malformed Phi arguments");

    ir::BasicBlock* in_block = cfg()->block(phi->GetSingleWordOperand(i + 1));
    if (reachable_blocks.find(in_block) == reachable_blocks.end()) {
      // If the incoming block is unreachable, remove both operands as this
      // means that the |phi| has lost an incoming edge.
      i += 2;
      continue;
    }

    // In all other cases, the operand must be kept but may need to be changed.
    uint32_t arg_id = phi->GetSingleWordOperand(i);
    ir::Instruction* arg_def_instr = get_def_use_mgr()->GetDef(arg_id);
    ir::BasicBlock* def_block = context()->get_instr_block(arg_def_instr);
    if (def_block &&
        reachable_blocks.find(def_block) == reachable_blocks.end()) {
      // If the current |phi| argument was defined in an unreachable block, it
      // means that this |phi| argument is no longer defined. Replace it with
      // |undef_id|.
      if (!undef_id) {
        type_id = arg_def_instr->type_id();
        undef_id = Type2Undef(type_id);
      }
      keep_operands.push_back(
          ir::Operand(spv_operand_type_t::SPV_OPERAND_TYPE_ID, {undef_id}));
    } else {
      // Otherwise, the argument comes from a reachable block or from no block
      // at all (meaning that it was defined in the global section of the
      // program).  In both cases, keep the argument intact.
      keep_operands.push_back(phi->GetOperand(i));
    }

    keep_operands.push_back(phi->GetOperand(i + 1));

    i += 2;
  }

  context()->ForgetUses(phi);
  phi->ReplaceOperands(keep_operands);
  context()->AnalyzeUses(phi);
}

void MemPass::RemoveBlock(ir::Function::iterator* bi) {
  auto& rm_block = **bi;

  // Remove instructions from the block.
  rm_block.ForEachInst([&rm_block, this](ir::Instruction* inst) {
    // Note that we do not kill the block label instruction here. The label
    // instruction is needed to identify the block, which is needed by the
    // removal of phi operands.
    if (inst != rm_block.GetLabelInst()) {
      context()->KillInst(inst);
    }
  });

  // Remove the label instruction last.
  auto label = rm_block.GetLabelInst();
  context()->KillInst(label);

  *bi = bi->Erase();
}

bool MemPass::RemoveUnreachableBlocks(ir::Function* func) {
  bool modified = false;

  // Mark reachable all blocks reachable from the function's entry block.
  std::unordered_set<ir::BasicBlock*> reachable_blocks;
  std::unordered_set<ir::BasicBlock*> visited_blocks;
  std::queue<ir::BasicBlock*> worklist;
  reachable_blocks.insert(func->entry().get());

  // Initially mark the function entry point as reachable.
  worklist.push(func->entry().get());

  auto mark_reachable = [&reachable_blocks, &visited_blocks, &worklist,
                         this](uint32_t label_id) {
    auto successor = cfg()->block(label_id);
    if (visited_blocks.count(successor) == 0) {
      reachable_blocks.insert(successor);
      worklist.push(successor);
      visited_blocks.insert(successor);
    }
  };

  // Transitively mark all blocks reachable from the entry as reachable.
  while (!worklist.empty()) {
    ir::BasicBlock* block = worklist.front();
    worklist.pop();

    // All the successors of a live block are also live.
    static_cast<const ir::BasicBlock*>(block)->ForEachSuccessorLabel(
        mark_reachable);

    // All the Merge and ContinueTarget blocks of a live block are also live.
    block->ForMergeAndContinueLabel(mark_reachable);
  }

  // Update operands of Phi nodes that reference unreachable blocks.
  for (auto& block : *func) {
    // If the block is about to be removed, don't bother updating its
    // Phi instructions.
    if (reachable_blocks.count(&block) == 0) {
      continue;
    }

    // If the block is reachable and has Phi instructions, remove all
    // operands from its Phi instructions that reference unreachable blocks.
    // If the block has no Phi instructions, this is a no-op.
    block.ForEachPhiInst([&reachable_blocks, this](ir::Instruction* phi) {
      RemovePhiOperands(phi, reachable_blocks);
    });
  }

  // Erase unreachable blocks.
  for (auto ebi = func->begin(); ebi != func->end();) {
    if (reachable_blocks.count(&*ebi) == 0) {
      RemoveBlock(&ebi);
      modified = true;
    } else {
      ++ebi;
    }
  }

  return modified;
}

bool MemPass::CFGCleanup(ir::Function* func) {
  bool modified = false;
  modified |= RemoveUnreachableBlocks(func);
  return modified;
}

}  // namespace opt
}  // namespace spvtools