summaryrefslogtreecommitdiff
path: root/source/opt/loop_utils.cpp
blob: 6c2a15f9cbf72112aca023308cd94d5cd9744838 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
// Copyright (c) 2018 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "opt/cfg.h"
#include "opt/ir_builder.h"
#include "opt/ir_context.h"
#include "opt/loop_descriptor.h"
#include "opt/loop_utils.h"

namespace spvtools {
namespace opt {

namespace {
// Return true if |bb| is dominated by at least one block in |exits|
static inline bool DominatesAnExit(
    ir::BasicBlock* bb, const std::unordered_set<ir::BasicBlock*>& exits,
    const opt::DominatorTree& dom_tree) {
  for (ir::BasicBlock* e_bb : exits)
    if (dom_tree.Dominates(bb, e_bb)) return true;
  return false;
}

// Utility class to rewrite out-of-loop uses of an in-loop definition in terms
// of phi instructions to achieve a LCSSA form.
// For a given definition, the class user registers phi instructions using that
// definition in all loop exit blocks by which the definition escapes.
// Then, when rewriting a use of the definition, the rewriter walks the
// paths from the use the loop exits. At each step, it will insert a phi
// instruction to merge the incoming value according to exit blocks definition.
class LCSSARewriter {
 public:
  LCSSARewriter(ir::IRContext* context, const opt::DominatorTree& dom_tree,
                const std::unordered_set<ir::BasicBlock*>& exit_bb,
                ir::BasicBlock* merge_block)
      : context_(context),
        cfg_(context_->cfg()),
        dom_tree_(dom_tree),
        exit_bb_(exit_bb),
        merge_block_id_(merge_block ? merge_block->id() : 0) {}

  struct UseRewriter {
    explicit UseRewriter(LCSSARewriter* base, const ir::Instruction& def_insn)
        : base_(base), def_insn_(def_insn) {}
    // Rewrites the use of |def_insn_| by the instruction |user| at the index
    // |operand_index| in terms of phi instruction. This recursively builds new
    // phi instructions from |user| to the loop exit blocks' phis. The use of
    // |def_insn_| in |user| is replaced by the relevant phi instruction at the
    // end of the operation.
    // It is assumed that |user| does not dominates any of the loop exit basic
    // block. This operation does not update the def/use manager, instead it
    // records what needs to be updated. The actual update is performed by
    // UpdateManagers.
    void RewriteUse(ir::BasicBlock* bb, ir::Instruction* user,
                    uint32_t operand_index) {
      assert(
          (user->opcode() != SpvOpPhi || bb != GetParent(user)) &&
          "The root basic block must be the incoming edge if |user| is a phi "
          "instruction");
      assert((user->opcode() == SpvOpPhi || bb == GetParent(user)) &&
             "The root basic block must be the instruction parent if |user| is "
             "not "
             "phi instruction");

      ir::Instruction* new_def = GetOrBuildIncoming(bb->id());

      user->SetOperand(operand_index, {new_def->result_id()});
      rewritten_.insert(user);
    }

    // In-place update of some managers (avoid full invalidation).
    inline void UpdateManagers() {
      opt::analysis::DefUseManager* def_use_mgr =
          base_->context_->get_def_use_mgr();
      // Register all new definitions.
      for (ir::Instruction* insn : rewritten_) {
        def_use_mgr->AnalyzeInstDef(insn);
      }
      // Register all new uses.
      for (ir::Instruction* insn : rewritten_) {
        def_use_mgr->AnalyzeInstUse(insn);
      }
    }

   private:
    // Return the basic block that |instr| belongs to.
    ir::BasicBlock* GetParent(ir::Instruction* instr) {
      return base_->context_->get_instr_block(instr);
    }

    // Builds a phi instruction for the basic block |bb|. The function assumes
    // that |defining_blocks| contains the list of basic block that define the
    // usable value for each predecessor of |bb|.
    inline ir::Instruction* CreatePhiInstruction(
        ir::BasicBlock* bb, const std::vector<uint32_t>& defining_blocks) {
      std::vector<uint32_t> incomings;
      const std::vector<uint32_t>& bb_preds = base_->cfg_->preds(bb->id());
      assert(bb_preds.size() == defining_blocks.size());
      for (size_t i = 0; i < bb_preds.size(); i++) {
        incomings.push_back(
            GetOrBuildIncoming(defining_blocks[i])->result_id());
        incomings.push_back(bb_preds[i]);
      }
      opt::InstructionBuilder builder(
          base_->context_, &*bb->begin(),
          ir::IRContext::kAnalysisInstrToBlockMapping);
      ir::Instruction* incoming_phi =
          builder.AddPhi(def_insn_.type_id(), incomings);

      rewritten_.insert(incoming_phi);
      return incoming_phi;
    }

    // Builds a phi instruction for the basic block |bb|, all incoming values
    // will be |value|.
    inline ir::Instruction* CreatePhiInstruction(ir::BasicBlock* bb,
                                                 const ir::Instruction& value) {
      std::vector<uint32_t> incomings;
      const std::vector<uint32_t>& bb_preds = base_->cfg_->preds(bb->id());
      for (size_t i = 0; i < bb_preds.size(); i++) {
        incomings.push_back(value.result_id());
        incomings.push_back(bb_preds[i]);
      }
      opt::InstructionBuilder builder(
          base_->context_, &*bb->begin(),
          ir::IRContext::kAnalysisInstrToBlockMapping);
      ir::Instruction* incoming_phi =
          builder.AddPhi(def_insn_.type_id(), incomings);

      rewritten_.insert(incoming_phi);
      return incoming_phi;
    }

    // Return the new def to use for the basic block |bb_id|.
    // If |bb_id| does not have a suitable def to use then we:
    //   - return the common def used by all predecessors;
    //   - if there is no common def, then we build a new phi instr at the
    //     beginning of |bb_id| and return this new instruction.
    ir::Instruction* GetOrBuildIncoming(uint32_t bb_id) {
      assert(base_->cfg_->block(bb_id) != nullptr && "Unknown basic block");

      ir::Instruction*& incoming_phi = bb_to_phi_[bb_id];
      if (incoming_phi) {
        return incoming_phi;
      }

      ir::BasicBlock* bb = &*base_->cfg_->block(bb_id);
      // If this is an exit basic block, look if there already is an eligible
      // phi instruction. An eligible phi has |def_insn_| as all incoming
      // values.
      if (base_->exit_bb_.count(bb)) {
        // Look if there is an eligible phi in this block.
        if (!bb->WhileEachPhiInst([&incoming_phi, this](ir::Instruction* phi) {
              for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) {
                if (phi->GetSingleWordInOperand(i) != def_insn_.result_id())
                  return true;
              }
              incoming_phi = phi;
              rewritten_.insert(incoming_phi);
              return false;
            })) {
          return incoming_phi;
        }
        incoming_phi = CreatePhiInstruction(bb, def_insn_);
        return incoming_phi;
      }

      // Get the block that defines the value to use for each predecessor.
      // If the vector has 1 value, then it means that this block does not need
      // to build a phi instruction unless |bb_id| is the loop merge block.
      const std::vector<uint32_t>& defining_blocks =
          base_->GetDefiningBlocks(bb_id);

      // Special case for structured loops: merge block might be different from
      // the exit block set. To maintain structured properties it will ease
      // transformations if the merge block also holds a phi instruction like
      // the exit ones.
      if (defining_blocks.size() > 1 || bb_id == base_->merge_block_id_) {
        if (defining_blocks.size() > 1) {
          incoming_phi = CreatePhiInstruction(bb, defining_blocks);
        } else {
          assert(bb_id == base_->merge_block_id_);
          incoming_phi =
              CreatePhiInstruction(bb, *GetOrBuildIncoming(defining_blocks[0]));
        }
      } else {
        incoming_phi = GetOrBuildIncoming(defining_blocks[0]);
      }

      return incoming_phi;
    }

    LCSSARewriter* base_;
    const ir::Instruction& def_insn_;
    std::unordered_map<uint32_t, ir::Instruction*> bb_to_phi_;
    std::unordered_set<ir::Instruction*> rewritten_;
  };

 private:
  // Return the new def to use for the basic block |bb_id|.
  // If |bb_id| does not have a suitable def to use then we:
  //   - return the common def used by all predecessors;
  //   - if there is no common def, then we build a new phi instr at the
  //     beginning of |bb_id| and return this new instruction.
  const std::vector<uint32_t>& GetDefiningBlocks(uint32_t bb_id) {
    assert(cfg_->block(bb_id) != nullptr && "Unknown basic block");
    std::vector<uint32_t>& defining_blocks = bb_to_defining_blocks_[bb_id];

    if (defining_blocks.size()) return defining_blocks;

    // Check if one of the loop exit basic block dominates |bb_id|.
    for (const ir::BasicBlock* e_bb : exit_bb_) {
      if (dom_tree_.Dominates(e_bb->id(), bb_id)) {
        defining_blocks.push_back(e_bb->id());
        return defining_blocks;
      }
    }

    // Process parents, they will returns their suitable blocks.
    // If they are all the same, this means this basic block is dominated by a
    // common block, so we won't need to build a phi instruction.
    for (uint32_t pred_id : cfg_->preds(bb_id)) {
      const std::vector<uint32_t>& pred_blocks = GetDefiningBlocks(pred_id);
      if (pred_blocks.size() == 1)
        defining_blocks.push_back(pred_blocks[0]);
      else
        defining_blocks.push_back(pred_id);
    }
    assert(defining_blocks.size());
    if (std::all_of(defining_blocks.begin(), defining_blocks.end(),
                    [&defining_blocks](uint32_t id) {
                      return id == defining_blocks[0];
                    })) {
      // No need for a phi.
      defining_blocks.resize(1);
    }

    return defining_blocks;
  }

  ir::IRContext* context_;
  ir::CFG* cfg_;
  const opt::DominatorTree& dom_tree_;
  const std::unordered_set<ir::BasicBlock*>& exit_bb_;
  uint32_t merge_block_id_;
  // This map represent the set of known paths. For each key, the vector
  // represent the set of blocks holding the definition to be used to build the
  // phi instruction.
  // If the vector has 0 value, then the path is unknown yet, and must be built.
  // If the vector has 1 value, then the value defined by that basic block
  //   should be used.
  // If the vector has more than 1 value, then a phi node must be created, the
  //   basic block ordering is the same as the predecessor ordering.
  std::unordered_map<uint32_t, std::vector<uint32_t>> bb_to_defining_blocks_;
};

// Make the set |blocks| closed SSA. The set is closed SSA if all the uses
// outside the set are phi instructions in exiting basic block set (hold by
// |lcssa_rewriter|).
inline void MakeSetClosedSSA(ir::IRContext* context, ir::Function* function,
                             const std::unordered_set<uint32_t>& blocks,
                             const std::unordered_set<ir::BasicBlock*>& exit_bb,
                             LCSSARewriter* lcssa_rewriter) {
  ir::CFG& cfg = *context->cfg();
  opt::DominatorTree& dom_tree =
      context->GetDominatorAnalysis(function, cfg)->GetDomTree();
  opt::analysis::DefUseManager* def_use_manager = context->get_def_use_mgr();

  for (uint32_t bb_id : blocks) {
    ir::BasicBlock* bb = cfg.block(bb_id);
    // If bb does not dominate an exit block, then it cannot have escaping defs.
    if (!DominatesAnExit(bb, exit_bb, dom_tree)) continue;
    for (ir::Instruction& inst : *bb) {
      LCSSARewriter::UseRewriter rewriter(lcssa_rewriter, inst);
      def_use_manager->ForEachUse(
          &inst, [&blocks, &rewriter, &exit_bb, context](
                     ir::Instruction* use, uint32_t operand_index) {
            ir::BasicBlock* use_parent = context->get_instr_block(use);
            assert(use_parent);
            if (blocks.count(use_parent->id())) return;

            if (use->opcode() == SpvOpPhi) {
              // If the use is a Phi instruction and the incoming block is
              // coming from the loop, then that's consistent with LCSSA form.
              if (exit_bb.count(use_parent)) {
                return;
              } else {
                // That's not an exit block, but the user is a phi instruction.
                // Consider the incoming branch only.
                use_parent = context->get_instr_block(
                    use->GetSingleWordOperand(operand_index + 1));
              }
            }
            // Rewrite the use. Note that this call does not invalidate the
            // def/use manager. So this operation is safe.
            rewriter.RewriteUse(use_parent, use, operand_index);
          });
      rewriter.UpdateManagers();
    }
  }
}

}  // namespace

void LoopUtils::CreateLoopDedicatedExits() {
  ir::Function* function = loop_->GetHeaderBlock()->GetParent();
  ir::LoopDescriptor& loop_desc = *context_->GetLoopDescriptor(function);
  ir::CFG& cfg = *context_->cfg();
  opt::analysis::DefUseManager* def_use_mgr = context_->get_def_use_mgr();

  const ir::IRContext::Analysis PreservedAnalyses =
      ir::IRContext::kAnalysisDefUse |
      ir::IRContext::kAnalysisInstrToBlockMapping;

  // Gathers the set of basic block that are not in this loop and have at least
  // one predecessor in the loop and one not in the loop.
  std::unordered_set<uint32_t> exit_bb_set;
  loop_->GetExitBlocks(&exit_bb_set);

  std::unordered_set<ir::BasicBlock*> new_loop_exits;
  bool made_change = false;
  // For each block, we create a new one that gathers all branches from
  // the loop and fall into the block.
  for (uint32_t non_dedicate_id : exit_bb_set) {
    ir::BasicBlock* non_dedicate = cfg.block(non_dedicate_id);
    const std::vector<uint32_t>& bb_pred = cfg.preds(non_dedicate_id);
    // Ignore the block if all the predecessors are in the loop.
    if (std::all_of(bb_pred.begin(), bb_pred.end(),
                    [this](uint32_t id) { return loop_->IsInsideLoop(id); })) {
      new_loop_exits.insert(non_dedicate);
      continue;
    }

    made_change = true;
    ir::Function::iterator insert_pt = function->begin();
    for (; insert_pt != function->end() && &*insert_pt != non_dedicate;
         ++insert_pt) {
    }
    assert(insert_pt != function->end() && "Basic Block not found");

    // Create the dedicate exit basic block.
    ir::BasicBlock& exit = *insert_pt.InsertBefore(
        std::unique_ptr<ir::BasicBlock>(new ir::BasicBlock(
            std::unique_ptr<ir::Instruction>(new ir::Instruction(
                context_, SpvOpLabel, 0, context_->TakeNextId(), {})))));
    exit.SetParent(function);

    // Redirect in loop predecessors to |exit| block.
    for (uint32_t exit_pred_id : bb_pred) {
      if (loop_->IsInsideLoop(exit_pred_id)) {
        ir::BasicBlock* pred_block = cfg.block(exit_pred_id);
        pred_block->ForEachSuccessorLabel([non_dedicate, &exit](uint32_t* id) {
          if (*id == non_dedicate->id()) *id = exit.id();
        });
        // Update the CFG.
        // |non_dedicate|'s predecessor list will be updated at the end of the
        // loop.
        cfg.RegisterBlock(pred_block);
      }
    }

    // Register the label to the def/use manager, requires for the phi patching.
    def_use_mgr->AnalyzeInstDefUse(exit.GetLabelInst());
    context_->set_instr_block(exit.GetLabelInst(), &exit);

    opt::InstructionBuilder builder(context_, &exit, PreservedAnalyses);
    // Now jump from our dedicate basic block to the old exit.
    // We also reset the insert point so all instructions are inserted before
    // the branch.
    builder.SetInsertPoint(builder.AddBranch(non_dedicate->id()));
    non_dedicate->ForEachPhiInst([&builder, &exit, def_use_mgr,
                                  this](ir::Instruction* phi) {
      // New phi operands for this instruction.
      std::vector<uint32_t> new_phi_op;
      // Phi operands for the dedicated exit block.
      std::vector<uint32_t> exit_phi_op;
      for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) {
        uint32_t def_id = phi->GetSingleWordInOperand(i);
        uint32_t incoming_id = phi->GetSingleWordInOperand(i + 1);
        if (loop_->IsInsideLoop(incoming_id)) {
          exit_phi_op.push_back(def_id);
          exit_phi_op.push_back(incoming_id);
        } else {
          new_phi_op.push_back(def_id);
          new_phi_op.push_back(incoming_id);
        }
      }

      // Build the new phi instruction dedicated exit block.
      ir::Instruction* exit_phi = builder.AddPhi(phi->type_id(), exit_phi_op);
      // Build the new incoming branch.
      new_phi_op.push_back(exit_phi->result_id());
      new_phi_op.push_back(exit.id());
      // Rewrite operands.
      uint32_t idx = 0;
      for (; idx < new_phi_op.size(); idx++)
        phi->SetInOperand(idx, {new_phi_op[idx]});
      // Remove extra operands, from last to first (more efficient).
      for (uint32_t j = phi->NumInOperands() - 1; j >= idx; j--)
        phi->RemoveInOperand(j);
      // Update the def/use manager for this |phi|.
      def_use_mgr->AnalyzeInstUse(phi);
    });
    // Update the CFG.
    cfg.RegisterBlock(&exit);
    cfg.RemoveNonExistingEdges(non_dedicate->id());
    new_loop_exits.insert(&exit);
    // If non_dedicate is in a loop, add the new dedicated exit in that loop.
    if (ir::Loop* parent_loop = loop_desc[non_dedicate])
      parent_loop->AddBasicBlock(&exit);
  }

  if (new_loop_exits.size() == 1) {
    loop_->SetMergeBlock(*new_loop_exits.begin());
  }

  if (made_change) {
    context_->InvalidateAnalysesExceptFor(
        PreservedAnalyses | ir::IRContext::kAnalysisCFG |
        ir::IRContext::Analysis::kAnalysisLoopAnalysis);
  }
}

void LoopUtils::MakeLoopClosedSSA() {
  CreateLoopDedicatedExits();

  ir::Function* function = loop_->GetHeaderBlock()->GetParent();
  ir::CFG& cfg = *context_->cfg();
  opt::DominatorTree& dom_tree =
      context_->GetDominatorAnalysis(function, cfg)->GetDomTree();

  std::unordered_set<ir::BasicBlock*> exit_bb;
  {
    std::unordered_set<uint32_t> exit_bb_id;
    loop_->GetExitBlocks(&exit_bb_id);
    for (uint32_t bb_id : exit_bb_id) {
      exit_bb.insert(cfg.block(bb_id));
    }
  }

  LCSSARewriter lcssa_rewriter(context_, dom_tree, exit_bb,
                               loop_->GetMergeBlock());
  MakeSetClosedSSA(context_, function, loop_->GetBlocks(), exit_bb,
                   &lcssa_rewriter);

  // Make sure all defs post-dominated by the merge block have their last use no
  // further than the merge block.
  if (loop_->GetMergeBlock()) {
    std::unordered_set<uint32_t> merging_bb_id;
    loop_->GetMergingBlocks(&merging_bb_id);
    merging_bb_id.erase(loop_->GetMergeBlock()->id());
    // Reset the exit set, now only the merge block is the exit.
    exit_bb.clear();
    exit_bb.insert(loop_->GetMergeBlock());
    // LCSSARewriter is reusable here only because it forces the creation of a
    // phi instruction in the merge block.
    MakeSetClosedSSA(context_, function, merging_bb_id, exit_bb,
                     &lcssa_rewriter);
  }

  context_->InvalidateAnalysesExceptFor(
      ir::IRContext::Analysis::kAnalysisDefUse |
      ir::IRContext::Analysis::kAnalysisCFG |
      ir::IRContext::Analysis::kAnalysisDominatorAnalysis |
      ir::IRContext::Analysis::kAnalysisLoopAnalysis);
}

}  // namespace opt
}  // namespace spvtools