1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
|
/*
* Copyright 2015-2021 Arm Limited
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* At your option, you may choose to accept this material under either:
* 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
* 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
*/
#include "spirv_cross.hpp"
#include "GLSL.std.450.h"
#include "spirv_cfg.hpp"
#include "spirv_common.hpp"
#include "spirv_parser.hpp"
#include <algorithm>
#include <cstring>
#include <utility>
using namespace std;
using namespace spv;
using namespace SPIRV_CROSS_NAMESPACE;
Compiler::Compiler(vector<uint32_t> ir_)
{
Parser parser(std::move(ir_));
parser.parse();
set_ir(std::move(parser.get_parsed_ir()));
}
Compiler::Compiler(const uint32_t *ir_, size_t word_count)
{
Parser parser(ir_, word_count);
parser.parse();
set_ir(std::move(parser.get_parsed_ir()));
}
Compiler::Compiler(const ParsedIR &ir_)
{
set_ir(ir_);
}
Compiler::Compiler(ParsedIR &&ir_)
{
set_ir(std::move(ir_));
}
void Compiler::set_ir(ParsedIR &&ir_)
{
ir = std::move(ir_);
parse_fixup();
}
void Compiler::set_ir(const ParsedIR &ir_)
{
ir = ir_;
parse_fixup();
}
string Compiler::compile()
{
return "";
}
bool Compiler::variable_storage_is_aliased(const SPIRVariable &v)
{
auto &type = get<SPIRType>(v.basetype);
bool ssbo = v.storage == StorageClassStorageBuffer ||
ir.meta[type.self].decoration.decoration_flags.get(DecorationBufferBlock);
bool image = type.basetype == SPIRType::Image;
bool counter = type.basetype == SPIRType::AtomicCounter;
bool buffer_reference = type.storage == StorageClassPhysicalStorageBufferEXT;
bool is_restrict;
if (ssbo)
is_restrict = ir.get_buffer_block_flags(v).get(DecorationRestrict);
else
is_restrict = has_decoration(v.self, DecorationRestrict);
return !is_restrict && (ssbo || image || counter || buffer_reference);
}
bool Compiler::block_is_pure(const SPIRBlock &block)
{
// This is a global side effect of the function.
if (block.terminator == SPIRBlock::Kill ||
block.terminator == SPIRBlock::TerminateRay ||
block.terminator == SPIRBlock::IgnoreIntersection ||
block.terminator == SPIRBlock::EmitMeshTasks)
return false;
for (auto &i : block.ops)
{
auto ops = stream(i);
auto op = static_cast<Op>(i.op);
switch (op)
{
case OpFunctionCall:
{
uint32_t func = ops[2];
if (!function_is_pure(get<SPIRFunction>(func)))
return false;
break;
}
case OpCopyMemory:
case OpStore:
{
auto &type = expression_type(ops[0]);
if (type.storage != StorageClassFunction)
return false;
break;
}
case OpImageWrite:
return false;
// Atomics are impure.
case OpAtomicLoad:
case OpAtomicStore:
case OpAtomicExchange:
case OpAtomicCompareExchange:
case OpAtomicCompareExchangeWeak:
case OpAtomicIIncrement:
case OpAtomicIDecrement:
case OpAtomicIAdd:
case OpAtomicISub:
case OpAtomicSMin:
case OpAtomicUMin:
case OpAtomicSMax:
case OpAtomicUMax:
case OpAtomicAnd:
case OpAtomicOr:
case OpAtomicXor:
return false;
// Geometry shader builtins modify global state.
case OpEndPrimitive:
case OpEmitStreamVertex:
case OpEndStreamPrimitive:
case OpEmitVertex:
return false;
// Mesh shader functions modify global state.
// (EmitMeshTasks is a terminator).
case OpSetMeshOutputsEXT:
return false;
// Barriers disallow any reordering, so we should treat blocks with barrier as writing.
case OpControlBarrier:
case OpMemoryBarrier:
return false;
// Ray tracing builtins are impure.
case OpReportIntersectionKHR:
case OpIgnoreIntersectionNV:
case OpTerminateRayNV:
case OpTraceNV:
case OpTraceRayKHR:
case OpExecuteCallableNV:
case OpExecuteCallableKHR:
case OpRayQueryInitializeKHR:
case OpRayQueryTerminateKHR:
case OpRayQueryGenerateIntersectionKHR:
case OpRayQueryConfirmIntersectionKHR:
case OpRayQueryProceedKHR:
// There are various getters in ray query, but they are considered pure.
return false;
// OpExtInst is potentially impure depending on extension, but GLSL builtins are at least pure.
case OpDemoteToHelperInvocationEXT:
// This is a global side effect of the function.
return false;
case OpExtInst:
{
uint32_t extension_set = ops[2];
if (get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
{
auto op_450 = static_cast<GLSLstd450>(ops[3]);
switch (op_450)
{
case GLSLstd450Modf:
case GLSLstd450Frexp:
{
auto &type = expression_type(ops[5]);
if (type.storage != StorageClassFunction)
return false;
break;
}
default:
break;
}
}
break;
}
default:
break;
}
}
return true;
}
string Compiler::to_name(uint32_t id, bool allow_alias) const
{
if (allow_alias && ir.ids[id].get_type() == TypeType)
{
// If this type is a simple alias, emit the
// name of the original type instead.
// We don't want to override the meta alias
// as that can be overridden by the reflection APIs after parse.
auto &type = get<SPIRType>(id);
if (type.type_alias)
{
// If the alias master has been specially packed, we will have emitted a clean variant as well,
// so skip the name aliasing here.
if (!has_extended_decoration(type.type_alias, SPIRVCrossDecorationBufferBlockRepacked))
return to_name(type.type_alias);
}
}
auto &alias = ir.get_name(id);
if (alias.empty())
return join("_", id);
else
return alias;
}
bool Compiler::function_is_pure(const SPIRFunction &func)
{
for (auto block : func.blocks)
{
if (!block_is_pure(get<SPIRBlock>(block)))
{
//fprintf(stderr, "Function %s is impure!\n", to_name(func.self).c_str());
return false;
}
}
//fprintf(stderr, "Function %s is pure!\n", to_name(func.self).c_str());
return true;
}
void Compiler::register_global_read_dependencies(const SPIRBlock &block, uint32_t id)
{
for (auto &i : block.ops)
{
auto ops = stream(i);
auto op = static_cast<Op>(i.op);
switch (op)
{
case OpFunctionCall:
{
uint32_t func = ops[2];
register_global_read_dependencies(get<SPIRFunction>(func), id);
break;
}
case OpLoad:
case OpImageRead:
{
// If we're in a storage class which does not get invalidated, adding dependencies here is no big deal.
auto *var = maybe_get_backing_variable(ops[2]);
if (var && var->storage != StorageClassFunction)
{
auto &type = get<SPIRType>(var->basetype);
// InputTargets are immutable.
if (type.basetype != SPIRType::Image && type.image.dim != DimSubpassData)
var->dependees.push_back(id);
}
break;
}
default:
break;
}
}
}
void Compiler::register_global_read_dependencies(const SPIRFunction &func, uint32_t id)
{
for (auto block : func.blocks)
register_global_read_dependencies(get<SPIRBlock>(block), id);
}
SPIRVariable *Compiler::maybe_get_backing_variable(uint32_t chain)
{
auto *var = maybe_get<SPIRVariable>(chain);
if (!var)
{
auto *cexpr = maybe_get<SPIRExpression>(chain);
if (cexpr)
var = maybe_get<SPIRVariable>(cexpr->loaded_from);
auto *access_chain = maybe_get<SPIRAccessChain>(chain);
if (access_chain)
var = maybe_get<SPIRVariable>(access_chain->loaded_from);
}
return var;
}
void Compiler::register_read(uint32_t expr, uint32_t chain, bool forwarded)
{
auto &e = get<SPIRExpression>(expr);
auto *var = maybe_get_backing_variable(chain);
if (var)
{
e.loaded_from = var->self;
// If the backing variable is immutable, we do not need to depend on the variable.
if (forwarded && !is_immutable(var->self))
var->dependees.push_back(e.self);
// If we load from a parameter, make sure we create "inout" if we also write to the parameter.
// The default is "in" however, so we never invalidate our compilation by reading.
if (var && var->parameter)
var->parameter->read_count++;
}
}
void Compiler::register_write(uint32_t chain)
{
auto *var = maybe_get<SPIRVariable>(chain);
if (!var)
{
// If we're storing through an access chain, invalidate the backing variable instead.
auto *expr = maybe_get<SPIRExpression>(chain);
if (expr && expr->loaded_from)
var = maybe_get<SPIRVariable>(expr->loaded_from);
auto *access_chain = maybe_get<SPIRAccessChain>(chain);
if (access_chain && access_chain->loaded_from)
var = maybe_get<SPIRVariable>(access_chain->loaded_from);
}
auto &chain_type = expression_type(chain);
if (var)
{
bool check_argument_storage_qualifier = true;
auto &type = expression_type(chain);
// If our variable is in a storage class which can alias with other buffers,
// invalidate all variables which depend on aliased variables. And if this is a
// variable pointer, then invalidate all variables regardless.
if (get_variable_data_type(*var).pointer)
{
flush_all_active_variables();
if (type.pointer_depth == 1)
{
// We have a backing variable which is a pointer-to-pointer type.
// We are storing some data through a pointer acquired through that variable,
// but we are not writing to the value of the variable itself,
// i.e., we are not modifying the pointer directly.
// If we are storing a non-pointer type (pointer_depth == 1),
// we know that we are storing some unrelated data.
// A case here would be
// void foo(Foo * const *arg) {
// Foo *bar = *arg;
// bar->unrelated = 42;
// }
// arg, the argument is constant.
check_argument_storage_qualifier = false;
}
}
if (type.storage == StorageClassPhysicalStorageBufferEXT || variable_storage_is_aliased(*var))
flush_all_aliased_variables();
else if (var)
flush_dependees(*var);
// We tried to write to a parameter which is not marked with out qualifier, force a recompile.
if (check_argument_storage_qualifier && var->parameter && var->parameter->write_count == 0)
{
var->parameter->write_count++;
force_recompile();
}
}
else if (chain_type.pointer)
{
// If we stored through a variable pointer, then we don't know which
// variable we stored to. So *all* expressions after this point need to
// be invalidated.
// FIXME: If we can prove that the variable pointer will point to
// only certain variables, we can invalidate only those.
flush_all_active_variables();
}
// If chain_type.pointer is false, we're not writing to memory backed variables, but temporaries instead.
// This can happen in copy_logical_type where we unroll complex reads and writes to temporaries.
}
void Compiler::flush_dependees(SPIRVariable &var)
{
for (auto expr : var.dependees)
invalid_expressions.insert(expr);
var.dependees.clear();
}
void Compiler::flush_all_aliased_variables()
{
for (auto aliased : aliased_variables)
flush_dependees(get<SPIRVariable>(aliased));
}
void Compiler::flush_all_atomic_capable_variables()
{
for (auto global : global_variables)
flush_dependees(get<SPIRVariable>(global));
flush_all_aliased_variables();
}
void Compiler::flush_control_dependent_expressions(uint32_t block_id)
{
auto &block = get<SPIRBlock>(block_id);
for (auto &expr : block.invalidate_expressions)
invalid_expressions.insert(expr);
block.invalidate_expressions.clear();
}
void Compiler::flush_all_active_variables()
{
// Invalidate all temporaries we read from variables in this block since they were forwarded.
// Invalidate all temporaries we read from globals.
for (auto &v : current_function->local_variables)
flush_dependees(get<SPIRVariable>(v));
for (auto &arg : current_function->arguments)
flush_dependees(get<SPIRVariable>(arg.id));
for (auto global : global_variables)
flush_dependees(get<SPIRVariable>(global));
flush_all_aliased_variables();
}
uint32_t Compiler::expression_type_id(uint32_t id) const
{
switch (ir.ids[id].get_type())
{
case TypeVariable:
return get<SPIRVariable>(id).basetype;
case TypeExpression:
return get<SPIRExpression>(id).expression_type;
case TypeConstant:
return get<SPIRConstant>(id).constant_type;
case TypeConstantOp:
return get<SPIRConstantOp>(id).basetype;
case TypeUndef:
return get<SPIRUndef>(id).basetype;
case TypeCombinedImageSampler:
return get<SPIRCombinedImageSampler>(id).combined_type;
case TypeAccessChain:
return get<SPIRAccessChain>(id).basetype;
default:
SPIRV_CROSS_THROW("Cannot resolve expression type.");
}
}
const SPIRType &Compiler::expression_type(uint32_t id) const
{
return get<SPIRType>(expression_type_id(id));
}
bool Compiler::expression_is_lvalue(uint32_t id) const
{
auto &type = expression_type(id);
switch (type.basetype)
{
case SPIRType::SampledImage:
case SPIRType::Image:
case SPIRType::Sampler:
return false;
default:
return true;
}
}
bool Compiler::is_immutable(uint32_t id) const
{
if (ir.ids[id].get_type() == TypeVariable)
{
auto &var = get<SPIRVariable>(id);
// Anything we load from the UniformConstant address space is guaranteed to be immutable.
bool pointer_to_const = var.storage == StorageClassUniformConstant;
return pointer_to_const || var.phi_variable || !expression_is_lvalue(id);
}
else if (ir.ids[id].get_type() == TypeAccessChain)
return get<SPIRAccessChain>(id).immutable;
else if (ir.ids[id].get_type() == TypeExpression)
return get<SPIRExpression>(id).immutable;
else if (ir.ids[id].get_type() == TypeConstant || ir.ids[id].get_type() == TypeConstantOp ||
ir.ids[id].get_type() == TypeUndef)
return true;
else
return false;
}
static inline bool storage_class_is_interface(spv::StorageClass storage)
{
switch (storage)
{
case StorageClassInput:
case StorageClassOutput:
case StorageClassUniform:
case StorageClassUniformConstant:
case StorageClassAtomicCounter:
case StorageClassPushConstant:
case StorageClassStorageBuffer:
return true;
default:
return false;
}
}
bool Compiler::is_hidden_variable(const SPIRVariable &var, bool include_builtins) const
{
if ((is_builtin_variable(var) && !include_builtins) || var.remapped_variable)
return true;
// Combined image samplers are always considered active as they are "magic" variables.
if (find_if(begin(combined_image_samplers), end(combined_image_samplers), [&var](const CombinedImageSampler &samp) {
return samp.combined_id == var.self;
}) != end(combined_image_samplers))
{
return false;
}
// In SPIR-V 1.4 and up we must also use the active variable interface to disable global variables
// which are not part of the entry point.
if (ir.get_spirv_version() >= 0x10400 && var.storage != spv::StorageClassGeneric &&
var.storage != spv::StorageClassFunction && !interface_variable_exists_in_entry_point(var.self))
{
return true;
}
return check_active_interface_variables && storage_class_is_interface(var.storage) &&
active_interface_variables.find(var.self) == end(active_interface_variables);
}
bool Compiler::is_builtin_type(const SPIRType &type) const
{
auto *type_meta = ir.find_meta(type.self);
// We can have builtin structs as well. If one member of a struct is builtin, the struct must also be builtin.
if (type_meta)
for (auto &m : type_meta->members)
if (m.builtin)
return true;
return false;
}
bool Compiler::is_builtin_variable(const SPIRVariable &var) const
{
auto *m = ir.find_meta(var.self);
if (var.compat_builtin || (m && m->decoration.builtin))
return true;
else
return is_builtin_type(get<SPIRType>(var.basetype));
}
bool Compiler::is_member_builtin(const SPIRType &type, uint32_t index, BuiltIn *builtin) const
{
auto *type_meta = ir.find_meta(type.self);
if (type_meta)
{
auto &memb = type_meta->members;
if (index < memb.size() && memb[index].builtin)
{
if (builtin)
*builtin = memb[index].builtin_type;
return true;
}
}
return false;
}
bool Compiler::is_scalar(const SPIRType &type) const
{
return type.basetype != SPIRType::Struct && type.vecsize == 1 && type.columns == 1;
}
bool Compiler::is_vector(const SPIRType &type) const
{
return type.vecsize > 1 && type.columns == 1;
}
bool Compiler::is_matrix(const SPIRType &type) const
{
return type.vecsize > 1 && type.columns > 1;
}
bool Compiler::is_array(const SPIRType &type) const
{
return !type.array.empty();
}
bool Compiler::is_runtime_size_array(const SPIRType &type)
{
if (type.array.empty())
return false;
assert(type.array.size() == type.array_size_literal.size());
return type.array_size_literal.back() && type.array.back() == 0;
}
ShaderResources Compiler::get_shader_resources() const
{
return get_shader_resources(nullptr);
}
ShaderResources Compiler::get_shader_resources(const unordered_set<VariableID> &active_variables) const
{
return get_shader_resources(&active_variables);
}
bool Compiler::InterfaceVariableAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length)
{
uint32_t variable = 0;
switch (opcode)
{
// Need this first, otherwise, GCC complains about unhandled switch statements.
default:
break;
case OpFunctionCall:
{
// Invalid SPIR-V.
if (length < 3)
return false;
uint32_t count = length - 3;
args += 3;
for (uint32_t i = 0; i < count; i++)
{
auto *var = compiler.maybe_get<SPIRVariable>(args[i]);
if (var && storage_class_is_interface(var->storage))
variables.insert(args[i]);
}
break;
}
case OpSelect:
{
// Invalid SPIR-V.
if (length < 5)
return false;
uint32_t count = length - 3;
args += 3;
for (uint32_t i = 0; i < count; i++)
{
auto *var = compiler.maybe_get<SPIRVariable>(args[i]);
if (var && storage_class_is_interface(var->storage))
variables.insert(args[i]);
}
break;
}
case OpPhi:
{
// Invalid SPIR-V.
if (length < 2)
return false;
uint32_t count = length - 2;
args += 2;
for (uint32_t i = 0; i < count; i += 2)
{
auto *var = compiler.maybe_get<SPIRVariable>(args[i]);
if (var && storage_class_is_interface(var->storage))
variables.insert(args[i]);
}
break;
}
case OpAtomicStore:
case OpStore:
// Invalid SPIR-V.
if (length < 1)
return false;
variable = args[0];
break;
case OpCopyMemory:
{
if (length < 2)
return false;
auto *var = compiler.maybe_get<SPIRVariable>(args[0]);
if (var && storage_class_is_interface(var->storage))
variables.insert(args[0]);
var = compiler.maybe_get<SPIRVariable>(args[1]);
if (var && storage_class_is_interface(var->storage))
variables.insert(args[1]);
break;
}
case OpExtInst:
{
if (length < 3)
return false;
auto &extension_set = compiler.get<SPIRExtension>(args[2]);
switch (extension_set.ext)
{
case SPIRExtension::GLSL:
{
auto op = static_cast<GLSLstd450>(args[3]);
switch (op)
{
case GLSLstd450InterpolateAtCentroid:
case GLSLstd450InterpolateAtSample:
case GLSLstd450InterpolateAtOffset:
{
auto *var = compiler.maybe_get<SPIRVariable>(args[4]);
if (var && storage_class_is_interface(var->storage))
variables.insert(args[4]);
break;
}
case GLSLstd450Modf:
case GLSLstd450Fract:
{
auto *var = compiler.maybe_get<SPIRVariable>(args[5]);
if (var && storage_class_is_interface(var->storage))
variables.insert(args[5]);
break;
}
default:
break;
}
break;
}
case SPIRExtension::SPV_AMD_shader_explicit_vertex_parameter:
{
enum AMDShaderExplicitVertexParameter
{
InterpolateAtVertexAMD = 1
};
auto op = static_cast<AMDShaderExplicitVertexParameter>(args[3]);
switch (op)
{
case InterpolateAtVertexAMD:
{
auto *var = compiler.maybe_get<SPIRVariable>(args[4]);
if (var && storage_class_is_interface(var->storage))
variables.insert(args[4]);
break;
}
default:
break;
}
break;
}
default:
break;
}
break;
}
case OpAccessChain:
case OpInBoundsAccessChain:
case OpPtrAccessChain:
case OpLoad:
case OpCopyObject:
case OpImageTexelPointer:
case OpAtomicLoad:
case OpAtomicExchange:
case OpAtomicCompareExchange:
case OpAtomicCompareExchangeWeak:
case OpAtomicIIncrement:
case OpAtomicIDecrement:
case OpAtomicIAdd:
case OpAtomicISub:
case OpAtomicSMin:
case OpAtomicUMin:
case OpAtomicSMax:
case OpAtomicUMax:
case OpAtomicAnd:
case OpAtomicOr:
case OpAtomicXor:
case OpArrayLength:
// Invalid SPIR-V.
if (length < 3)
return false;
variable = args[2];
break;
}
if (variable)
{
auto *var = compiler.maybe_get<SPIRVariable>(variable);
if (var && storage_class_is_interface(var->storage))
variables.insert(variable);
}
return true;
}
unordered_set<VariableID> Compiler::get_active_interface_variables() const
{
// Traverse the call graph and find all interface variables which are in use.
unordered_set<VariableID> variables;
InterfaceVariableAccessHandler handler(*this, variables);
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) {
if (var.storage != StorageClassOutput)
return;
if (!interface_variable_exists_in_entry_point(var.self))
return;
// An output variable which is just declared (but uninitialized) might be read by subsequent stages
// so we should force-enable these outputs,
// since compilation will fail if a subsequent stage attempts to read from the variable in question.
// Also, make sure we preserve output variables which are only initialized, but never accessed by any code.
if (var.initializer != ID(0) || get_execution_model() != ExecutionModelFragment)
variables.insert(var.self);
});
// If we needed to create one, we'll need it.
if (dummy_sampler_id)
variables.insert(dummy_sampler_id);
return variables;
}
void Compiler::set_enabled_interface_variables(std::unordered_set<VariableID> active_variables)
{
active_interface_variables = std::move(active_variables);
check_active_interface_variables = true;
}
ShaderResources Compiler::get_shader_resources(const unordered_set<VariableID> *active_variables) const
{
ShaderResources res;
bool ssbo_instance_name = reflection_ssbo_instance_name_is_significant();
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) {
auto &type = this->get<SPIRType>(var.basetype);
// It is possible for uniform storage classes to be passed as function parameters, so detect
// that. To detect function parameters, check of StorageClass of variable is function scope.
if (var.storage == StorageClassFunction || !type.pointer)
return;
if (active_variables && active_variables->find(var.self) == end(*active_variables))
return;
// In SPIR-V 1.4 and up, every global must be present in the entry point interface list,
// not just IO variables.
bool active_in_entry_point = true;
if (ir.get_spirv_version() < 0x10400)
{
if (var.storage == StorageClassInput || var.storage == StorageClassOutput)
active_in_entry_point = interface_variable_exists_in_entry_point(var.self);
}
else
active_in_entry_point = interface_variable_exists_in_entry_point(var.self);
if (!active_in_entry_point)
return;
bool is_builtin = is_builtin_variable(var);
if (is_builtin)
{
if (var.storage != StorageClassInput && var.storage != StorageClassOutput)
return;
auto &list = var.storage == StorageClassInput ? res.builtin_inputs : res.builtin_outputs;
BuiltInResource resource;
if (has_decoration(type.self, DecorationBlock))
{
resource.resource = { var.self, var.basetype, type.self,
get_remapped_declared_block_name(var.self, false) };
for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++)
{
resource.value_type_id = type.member_types[i];
resource.builtin = BuiltIn(get_member_decoration(type.self, i, DecorationBuiltIn));
list.push_back(resource);
}
}
else
{
bool strip_array =
!has_decoration(var.self, DecorationPatch) && (
get_execution_model() == ExecutionModelTessellationControl ||
(get_execution_model() == ExecutionModelTessellationEvaluation &&
var.storage == StorageClassInput));
resource.resource = { var.self, var.basetype, type.self, get_name(var.self) };
if (strip_array && !type.array.empty())
resource.value_type_id = get_variable_data_type(var).parent_type;
else
resource.value_type_id = get_variable_data_type_id(var);
assert(resource.value_type_id);
resource.builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
list.push_back(std::move(resource));
}
return;
}
// Input
if (var.storage == StorageClassInput)
{
if (has_decoration(type.self, DecorationBlock))
{
res.stage_inputs.push_back(
{ var.self, var.basetype, type.self,
get_remapped_declared_block_name(var.self, false) });
}
else
res.stage_inputs.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
}
// Subpass inputs
else if (var.storage == StorageClassUniformConstant && type.image.dim == DimSubpassData)
{
res.subpass_inputs.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
}
// Outputs
else if (var.storage == StorageClassOutput)
{
if (has_decoration(type.self, DecorationBlock))
{
res.stage_outputs.push_back(
{ var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, false) });
}
else
res.stage_outputs.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
}
// UBOs
else if (type.storage == StorageClassUniform && has_decoration(type.self, DecorationBlock))
{
res.uniform_buffers.push_back(
{ var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, false) });
}
// Old way to declare SSBOs.
else if (type.storage == StorageClassUniform && has_decoration(type.self, DecorationBufferBlock))
{
res.storage_buffers.push_back(
{ var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, ssbo_instance_name) });
}
// Modern way to declare SSBOs.
else if (type.storage == StorageClassStorageBuffer)
{
res.storage_buffers.push_back(
{ var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, ssbo_instance_name) });
}
// Push constant blocks
else if (type.storage == StorageClassPushConstant)
{
// There can only be one push constant block, but keep the vector in case this restriction is lifted
// in the future.
res.push_constant_buffers.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
}
else if (type.storage == StorageClassShaderRecordBufferKHR)
{
res.shader_record_buffers.push_back({ var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, ssbo_instance_name) });
}
// Atomic counters
else if (type.storage == StorageClassAtomicCounter)
{
res.atomic_counters.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
}
else if (type.storage == StorageClassUniformConstant)
{
if (type.basetype == SPIRType::Image)
{
// Images
if (type.image.sampled == 2)
{
res.storage_images.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
}
// Separate images
else if (type.image.sampled == 1)
{
res.separate_images.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
}
}
// Separate samplers
else if (type.basetype == SPIRType::Sampler)
{
res.separate_samplers.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
}
// Textures
else if (type.basetype == SPIRType::SampledImage)
{
res.sampled_images.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
}
// Acceleration structures
else if (type.basetype == SPIRType::AccelerationStructure)
{
res.acceleration_structures.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
}
else
{
res.gl_plain_uniforms.push_back({ var.self, var.basetype, type.self, get_name(var.self) });
}
}
});
return res;
}
bool Compiler::type_is_top_level_block(const SPIRType &type) const
{
if (type.basetype != SPIRType::Struct)
return false;
return has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);
}
bool Compiler::type_is_block_like(const SPIRType &type) const
{
if (type_is_top_level_block(type))
return true;
if (type.basetype == SPIRType::Struct)
{
// Block-like types may have Offset decorations.
for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++)
if (has_member_decoration(type.self, i, DecorationOffset))
return true;
}
return false;
}
void Compiler::parse_fixup()
{
// Figure out specialization constants for work group sizes.
for (auto id_ : ir.ids_for_constant_or_variable)
{
auto &id = ir.ids[id_];
if (id.get_type() == TypeConstant)
{
auto &c = id.get<SPIRConstant>();
if (has_decoration(c.self, DecorationBuiltIn) &&
BuiltIn(get_decoration(c.self, DecorationBuiltIn)) == BuiltInWorkgroupSize)
{
// In current SPIR-V, there can be just one constant like this.
// All entry points will receive the constant value.
// WorkgroupSize take precedence over LocalSizeId.
for (auto &entry : ir.entry_points)
{
entry.second.workgroup_size.constant = c.self;
entry.second.workgroup_size.x = c.scalar(0, 0);
entry.second.workgroup_size.y = c.scalar(0, 1);
entry.second.workgroup_size.z = c.scalar(0, 2);
}
}
}
else if (id.get_type() == TypeVariable)
{
auto &var = id.get<SPIRVariable>();
if (var.storage == StorageClassPrivate || var.storage == StorageClassWorkgroup ||
var.storage == StorageClassTaskPayloadWorkgroupEXT ||
var.storage == StorageClassOutput)
{
global_variables.push_back(var.self);
}
if (variable_storage_is_aliased(var))
aliased_variables.push_back(var.self);
}
}
}
void Compiler::update_name_cache(unordered_set<string> &cache_primary, const unordered_set<string> &cache_secondary,
string &name)
{
if (name.empty())
return;
const auto find_name = [&](const string &n) -> bool {
if (cache_primary.find(n) != end(cache_primary))
return true;
if (&cache_primary != &cache_secondary)
if (cache_secondary.find(n) != end(cache_secondary))
return true;
return false;
};
const auto insert_name = [&](const string &n) { cache_primary.insert(n); };
if (!find_name(name))
{
insert_name(name);
return;
}
uint32_t counter = 0;
auto tmpname = name;
bool use_linked_underscore = true;
if (tmpname == "_")
{
// We cannot just append numbers, as we will end up creating internally reserved names.
// Make it like _0_<counter> instead.
tmpname += "0";
}
else if (tmpname.back() == '_')
{
// The last_character is an underscore, so we don't need to link in underscore.
// This would violate double underscore rules.
use_linked_underscore = false;
}
// If there is a collision (very rare),
// keep tacking on extra identifier until it's unique.
do
{
counter++;
name = tmpname + (use_linked_underscore ? "_" : "") + convert_to_string(counter);
} while (find_name(name));
insert_name(name);
}
void Compiler::update_name_cache(unordered_set<string> &cache, string &name)
{
update_name_cache(cache, cache, name);
}
void Compiler::set_name(ID id, const std::string &name)
{
ir.set_name(id, name);
}
const SPIRType &Compiler::get_type(TypeID id) const
{
return get<SPIRType>(id);
}
const SPIRType &Compiler::get_type_from_variable(VariableID id) const
{
return get<SPIRType>(get<SPIRVariable>(id).basetype);
}
uint32_t Compiler::get_pointee_type_id(uint32_t type_id) const
{
auto *p_type = &get<SPIRType>(type_id);
if (p_type->pointer)
{
assert(p_type->parent_type);
type_id = p_type->parent_type;
}
return type_id;
}
const SPIRType &Compiler::get_pointee_type(const SPIRType &type) const
{
auto *p_type = &type;
if (p_type->pointer)
{
assert(p_type->parent_type);
p_type = &get<SPIRType>(p_type->parent_type);
}
return *p_type;
}
const SPIRType &Compiler::get_pointee_type(uint32_t type_id) const
{
return get_pointee_type(get<SPIRType>(type_id));
}
uint32_t Compiler::get_variable_data_type_id(const SPIRVariable &var) const
{
if (var.phi_variable)
return var.basetype;
return get_pointee_type_id(var.basetype);
}
SPIRType &Compiler::get_variable_data_type(const SPIRVariable &var)
{
return get<SPIRType>(get_variable_data_type_id(var));
}
const SPIRType &Compiler::get_variable_data_type(const SPIRVariable &var) const
{
return get<SPIRType>(get_variable_data_type_id(var));
}
SPIRType &Compiler::get_variable_element_type(const SPIRVariable &var)
{
SPIRType *type = &get_variable_data_type(var);
if (is_array(*type))
type = &get<SPIRType>(type->parent_type);
return *type;
}
const SPIRType &Compiler::get_variable_element_type(const SPIRVariable &var) const
{
const SPIRType *type = &get_variable_data_type(var);
if (is_array(*type))
type = &get<SPIRType>(type->parent_type);
return *type;
}
bool Compiler::is_sampled_image_type(const SPIRType &type)
{
return (type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage) && type.image.sampled == 1 &&
type.image.dim != DimBuffer;
}
void Compiler::set_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration,
const std::string &argument)
{
ir.set_member_decoration_string(id, index, decoration, argument);
}
void Compiler::set_member_decoration(TypeID id, uint32_t index, Decoration decoration, uint32_t argument)
{
ir.set_member_decoration(id, index, decoration, argument);
}
void Compiler::set_member_name(TypeID id, uint32_t index, const std::string &name)
{
ir.set_member_name(id, index, name);
}
const std::string &Compiler::get_member_name(TypeID id, uint32_t index) const
{
return ir.get_member_name(id, index);
}
void Compiler::set_qualified_name(uint32_t id, const string &name)
{
ir.meta[id].decoration.qualified_alias = name;
}
void Compiler::set_member_qualified_name(uint32_t type_id, uint32_t index, const std::string &name)
{
ir.meta[type_id].members.resize(max(ir.meta[type_id].members.size(), size_t(index) + 1));
ir.meta[type_id].members[index].qualified_alias = name;
}
const string &Compiler::get_member_qualified_name(TypeID type_id, uint32_t index) const
{
auto *m = ir.find_meta(type_id);
if (m && index < m->members.size())
return m->members[index].qualified_alias;
else
return ir.get_empty_string();
}
uint32_t Compiler::get_member_decoration(TypeID id, uint32_t index, Decoration decoration) const
{
return ir.get_member_decoration(id, index, decoration);
}
const Bitset &Compiler::get_member_decoration_bitset(TypeID id, uint32_t index) const
{
return ir.get_member_decoration_bitset(id, index);
}
bool Compiler::has_member_decoration(TypeID id, uint32_t index, Decoration decoration) const
{
return ir.has_member_decoration(id, index, decoration);
}
void Compiler::unset_member_decoration(TypeID id, uint32_t index, Decoration decoration)
{
ir.unset_member_decoration(id, index, decoration);
}
void Compiler::set_decoration_string(ID id, spv::Decoration decoration, const std::string &argument)
{
ir.set_decoration_string(id, decoration, argument);
}
void Compiler::set_decoration(ID id, Decoration decoration, uint32_t argument)
{
ir.set_decoration(id, decoration, argument);
}
void Compiler::set_extended_decoration(uint32_t id, ExtendedDecorations decoration, uint32_t value)
{
auto &dec = ir.meta[id].decoration;
dec.extended.flags.set(decoration);
dec.extended.values[decoration] = value;
}
void Compiler::set_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration,
uint32_t value)
{
ir.meta[type].members.resize(max(ir.meta[type].members.size(), size_t(index) + 1));
auto &dec = ir.meta[type].members[index];
dec.extended.flags.set(decoration);
dec.extended.values[decoration] = value;
}
static uint32_t get_default_extended_decoration(ExtendedDecorations decoration)
{
switch (decoration)
{
case SPIRVCrossDecorationResourceIndexPrimary:
case SPIRVCrossDecorationResourceIndexSecondary:
case SPIRVCrossDecorationResourceIndexTertiary:
case SPIRVCrossDecorationResourceIndexQuaternary:
case SPIRVCrossDecorationInterfaceMemberIndex:
return ~(0u);
default:
return 0;
}
}
uint32_t Compiler::get_extended_decoration(uint32_t id, ExtendedDecorations decoration) const
{
auto *m = ir.find_meta(id);
if (!m)
return 0;
auto &dec = m->decoration;
if (!dec.extended.flags.get(decoration))
return get_default_extended_decoration(decoration);
return dec.extended.values[decoration];
}
uint32_t Compiler::get_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const
{
auto *m = ir.find_meta(type);
if (!m)
return 0;
if (index >= m->members.size())
return 0;
auto &dec = m->members[index];
if (!dec.extended.flags.get(decoration))
return get_default_extended_decoration(decoration);
return dec.extended.values[decoration];
}
bool Compiler::has_extended_decoration(uint32_t id, ExtendedDecorations decoration) const
{
auto *m = ir.find_meta(id);
if (!m)
return false;
auto &dec = m->decoration;
return dec.extended.flags.get(decoration);
}
bool Compiler::has_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const
{
auto *m = ir.find_meta(type);
if (!m)
return false;
if (index >= m->members.size())
return false;
auto &dec = m->members[index];
return dec.extended.flags.get(decoration);
}
void Compiler::unset_extended_decoration(uint32_t id, ExtendedDecorations decoration)
{
auto &dec = ir.meta[id].decoration;
dec.extended.flags.clear(decoration);
dec.extended.values[decoration] = 0;
}
void Compiler::unset_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration)
{
ir.meta[type].members.resize(max(ir.meta[type].members.size(), size_t(index) + 1));
auto &dec = ir.meta[type].members[index];
dec.extended.flags.clear(decoration);
dec.extended.values[decoration] = 0;
}
StorageClass Compiler::get_storage_class(VariableID id) const
{
return get<SPIRVariable>(id).storage;
}
const std::string &Compiler::get_name(ID id) const
{
return ir.get_name(id);
}
const std::string Compiler::get_fallback_name(ID id) const
{
return join("_", id);
}
const std::string Compiler::get_block_fallback_name(VariableID id) const
{
auto &var = get<SPIRVariable>(id);
if (get_name(id).empty())
return join("_", get<SPIRType>(var.basetype).self, "_", id);
else
return get_name(id);
}
const Bitset &Compiler::get_decoration_bitset(ID id) const
{
return ir.get_decoration_bitset(id);
}
bool Compiler::has_decoration(ID id, Decoration decoration) const
{
return ir.has_decoration(id, decoration);
}
const string &Compiler::get_decoration_string(ID id, Decoration decoration) const
{
return ir.get_decoration_string(id, decoration);
}
const string &Compiler::get_member_decoration_string(TypeID id, uint32_t index, Decoration decoration) const
{
return ir.get_member_decoration_string(id, index, decoration);
}
uint32_t Compiler::get_decoration(ID id, Decoration decoration) const
{
return ir.get_decoration(id, decoration);
}
void Compiler::unset_decoration(ID id, Decoration decoration)
{
ir.unset_decoration(id, decoration);
}
bool Compiler::get_binary_offset_for_decoration(VariableID id, spv::Decoration decoration, uint32_t &word_offset) const
{
auto *m = ir.find_meta(id);
if (!m)
return false;
auto &word_offsets = m->decoration_word_offset;
auto itr = word_offsets.find(decoration);
if (itr == end(word_offsets))
return false;
word_offset = itr->second;
return true;
}
bool Compiler::block_is_noop(const SPIRBlock &block) const
{
if (block.terminator != SPIRBlock::Direct)
return false;
auto &child = get<SPIRBlock>(block.next_block);
// If this block participates in PHI, the block isn't really noop.
for (auto &phi : block.phi_variables)
if (phi.parent == block.self || phi.parent == child.self)
return false;
for (auto &phi : child.phi_variables)
if (phi.parent == block.self)
return false;
// Verify all instructions have no semantic impact.
for (auto &i : block.ops)
{
auto op = static_cast<Op>(i.op);
switch (op)
{
// Non-Semantic instructions.
case OpLine:
case OpNoLine:
break;
case OpExtInst:
{
auto *ops = stream(i);
auto ext = get<SPIRExtension>(ops[2]).ext;
bool ext_is_nonsemantic_only =
ext == SPIRExtension::NonSemanticShaderDebugInfo ||
ext == SPIRExtension::SPV_debug_info ||
ext == SPIRExtension::NonSemanticGeneric;
if (!ext_is_nonsemantic_only)
return false;
break;
}
default:
return false;
}
}
return true;
}
bool Compiler::block_is_loop_candidate(const SPIRBlock &block, SPIRBlock::Method method) const
{
// Tried and failed.
if (block.disable_block_optimization || block.complex_continue)
return false;
if (method == SPIRBlock::MergeToSelectForLoop || method == SPIRBlock::MergeToSelectContinueForLoop)
{
// Try to detect common for loop pattern
// which the code backend can use to create cleaner code.
// for(;;) { if (cond) { some_body; } else { break; } }
// is the pattern we're looking for.
const auto *false_block = maybe_get<SPIRBlock>(block.false_block);
const auto *true_block = maybe_get<SPIRBlock>(block.true_block);
const auto *merge_block = maybe_get<SPIRBlock>(block.merge_block);
bool false_block_is_merge = block.false_block == block.merge_block ||
(false_block && merge_block && execution_is_noop(*false_block, *merge_block));
bool true_block_is_merge = block.true_block == block.merge_block ||
(true_block && merge_block && execution_is_noop(*true_block, *merge_block));
bool positive_candidate =
block.true_block != block.merge_block && block.true_block != block.self && false_block_is_merge;
bool negative_candidate =
block.false_block != block.merge_block && block.false_block != block.self && true_block_is_merge;
bool ret = block.terminator == SPIRBlock::Select && block.merge == SPIRBlock::MergeLoop &&
(positive_candidate || negative_candidate);
if (ret && positive_candidate && method == SPIRBlock::MergeToSelectContinueForLoop)
ret = block.true_block == block.continue_block;
else if (ret && negative_candidate && method == SPIRBlock::MergeToSelectContinueForLoop)
ret = block.false_block == block.continue_block;
// If we have OpPhi which depends on branches which came from our own block,
// we need to flush phi variables in else block instead of a trivial break,
// so we cannot assume this is a for loop candidate.
if (ret)
{
for (auto &phi : block.phi_variables)
if (phi.parent == block.self)
return false;
auto *merge = maybe_get<SPIRBlock>(block.merge_block);
if (merge)
for (auto &phi : merge->phi_variables)
if (phi.parent == block.self)
return false;
}
return ret;
}
else if (method == SPIRBlock::MergeToDirectForLoop)
{
// Empty loop header that just sets up merge target
// and branches to loop body.
bool ret = block.terminator == SPIRBlock::Direct && block.merge == SPIRBlock::MergeLoop && block_is_noop(block);
if (!ret)
return false;
auto &child = get<SPIRBlock>(block.next_block);
const auto *false_block = maybe_get<SPIRBlock>(child.false_block);
const auto *true_block = maybe_get<SPIRBlock>(child.true_block);
const auto *merge_block = maybe_get<SPIRBlock>(block.merge_block);
bool false_block_is_merge = child.false_block == block.merge_block ||
(false_block && merge_block && execution_is_noop(*false_block, *merge_block));
bool true_block_is_merge = child.true_block == block.merge_block ||
(true_block && merge_block && execution_is_noop(*true_block, *merge_block));
bool positive_candidate =
child.true_block != block.merge_block && child.true_block != block.self && false_block_is_merge;
bool negative_candidate =
child.false_block != block.merge_block && child.false_block != block.self && true_block_is_merge;
ret = child.terminator == SPIRBlock::Select && child.merge == SPIRBlock::MergeNone &&
(positive_candidate || negative_candidate);
if (ret)
{
auto *merge = maybe_get<SPIRBlock>(block.merge_block);
if (merge)
for (auto &phi : merge->phi_variables)
if (phi.parent == block.self || phi.parent == child.false_block)
return false;
}
return ret;
}
else
return false;
}
bool Compiler::execution_is_noop(const SPIRBlock &from, const SPIRBlock &to) const
{
if (!execution_is_branchless(from, to))
return false;
auto *start = &from;
for (;;)
{
if (start->self == to.self)
return true;
if (!block_is_noop(*start))
return false;
auto &next = get<SPIRBlock>(start->next_block);
start = &next;
}
}
bool Compiler::execution_is_branchless(const SPIRBlock &from, const SPIRBlock &to) const
{
auto *start = &from;
for (;;)
{
if (start->self == to.self)
return true;
if (start->terminator == SPIRBlock::Direct && start->merge == SPIRBlock::MergeNone)
start = &get<SPIRBlock>(start->next_block);
else
return false;
}
}
bool Compiler::execution_is_direct_branch(const SPIRBlock &from, const SPIRBlock &to) const
{
return from.terminator == SPIRBlock::Direct && from.merge == SPIRBlock::MergeNone && from.next_block == to.self;
}
SPIRBlock::ContinueBlockType Compiler::continue_block_type(const SPIRBlock &block) const
{
// The block was deemed too complex during code emit, pick conservative fallback paths.
if (block.complex_continue)
return SPIRBlock::ComplexLoop;
// In older glslang output continue block can be equal to the loop header.
// In this case, execution is clearly branchless, so just assume a while loop header here.
if (block.merge == SPIRBlock::MergeLoop)
return SPIRBlock::WhileLoop;
if (block.loop_dominator == BlockID(SPIRBlock::NoDominator))
{
// Continue block is never reached from CFG.
return SPIRBlock::ComplexLoop;
}
auto &dominator = get<SPIRBlock>(block.loop_dominator);
if (execution_is_noop(block, dominator))
return SPIRBlock::WhileLoop;
else if (execution_is_branchless(block, dominator))
return SPIRBlock::ForLoop;
else
{
const auto *false_block = maybe_get<SPIRBlock>(block.false_block);
const auto *true_block = maybe_get<SPIRBlock>(block.true_block);
const auto *merge_block = maybe_get<SPIRBlock>(dominator.merge_block);
// If we need to flush Phi in this block, we cannot have a DoWhile loop.
bool flush_phi_to_false = false_block && flush_phi_required(block.self, block.false_block);
bool flush_phi_to_true = true_block && flush_phi_required(block.self, block.true_block);
if (flush_phi_to_false || flush_phi_to_true)
return SPIRBlock::ComplexLoop;
bool positive_do_while = block.true_block == dominator.self &&
(block.false_block == dominator.merge_block ||
(false_block && merge_block && execution_is_noop(*false_block, *merge_block)));
bool negative_do_while = block.false_block == dominator.self &&
(block.true_block == dominator.merge_block ||
(true_block && merge_block && execution_is_noop(*true_block, *merge_block)));
if (block.merge == SPIRBlock::MergeNone && block.terminator == SPIRBlock::Select &&
(positive_do_while || negative_do_while))
{
return SPIRBlock::DoWhileLoop;
}
else
return SPIRBlock::ComplexLoop;
}
}
const SmallVector<SPIRBlock::Case> &Compiler::get_case_list(const SPIRBlock &block) const
{
uint32_t width = 0;
// First we check if we can get the type directly from the block.condition
// since it can be a SPIRConstant or a SPIRVariable.
if (const auto *constant = maybe_get<SPIRConstant>(block.condition))
{
const auto &type = get<SPIRType>(constant->constant_type);
width = type.width;
}
else if (const auto *var = maybe_get<SPIRVariable>(block.condition))
{
const auto &type = get<SPIRType>(var->basetype);
width = type.width;
}
else if (const auto *undef = maybe_get<SPIRUndef>(block.condition))
{
const auto &type = get<SPIRType>(undef->basetype);
width = type.width;
}
else
{
auto search = ir.load_type_width.find(block.condition);
if (search == ir.load_type_width.end())
{
SPIRV_CROSS_THROW("Use of undeclared variable on a switch statement.");
}
width = search->second;
}
if (width > 32)
return block.cases_64bit;
return block.cases_32bit;
}
bool Compiler::traverse_all_reachable_opcodes(const SPIRBlock &block, OpcodeHandler &handler) const
{
handler.set_current_block(block);
handler.rearm_current_block(block);
// Ideally, perhaps traverse the CFG instead of all blocks in order to eliminate dead blocks,
// but this shouldn't be a problem in practice unless the SPIR-V is doing insane things like recursing
// inside dead blocks ...
for (auto &i : block.ops)
{
auto ops = stream(i);
auto op = static_cast<Op>(i.op);
if (!handler.handle(op, ops, i.length))
return false;
if (op == OpFunctionCall)
{
auto &func = get<SPIRFunction>(ops[2]);
if (handler.follow_function_call(func))
{
if (!handler.begin_function_scope(ops, i.length))
return false;
if (!traverse_all_reachable_opcodes(get<SPIRFunction>(ops[2]), handler))
return false;
if (!handler.end_function_scope(ops, i.length))
return false;
handler.rearm_current_block(block);
}
}
}
if (!handler.handle_terminator(block))
return false;
return true;
}
bool Compiler::traverse_all_reachable_opcodes(const SPIRFunction &func, OpcodeHandler &handler) const
{
for (auto block : func.blocks)
if (!traverse_all_reachable_opcodes(get<SPIRBlock>(block), handler))
return false;
return true;
}
uint32_t Compiler::type_struct_member_offset(const SPIRType &type, uint32_t index) const
{
auto *type_meta = ir.find_meta(type.self);
if (type_meta)
{
// Decoration must be set in valid SPIR-V, otherwise throw.
auto &dec = type_meta->members[index];
if (dec.decoration_flags.get(DecorationOffset))
return dec.offset;
else
SPIRV_CROSS_THROW("Struct member does not have Offset set.");
}
else
SPIRV_CROSS_THROW("Struct member does not have Offset set.");
}
uint32_t Compiler::type_struct_member_array_stride(const SPIRType &type, uint32_t index) const
{
auto *type_meta = ir.find_meta(type.member_types[index]);
if (type_meta)
{
// Decoration must be set in valid SPIR-V, otherwise throw.
// ArrayStride is part of the array type not OpMemberDecorate.
auto &dec = type_meta->decoration;
if (dec.decoration_flags.get(DecorationArrayStride))
return dec.array_stride;
else
SPIRV_CROSS_THROW("Struct member does not have ArrayStride set.");
}
else
SPIRV_CROSS_THROW("Struct member does not have ArrayStride set.");
}
uint32_t Compiler::type_struct_member_matrix_stride(const SPIRType &type, uint32_t index) const
{
auto *type_meta = ir.find_meta(type.self);
if (type_meta)
{
// Decoration must be set in valid SPIR-V, otherwise throw.
// MatrixStride is part of OpMemberDecorate.
auto &dec = type_meta->members[index];
if (dec.decoration_flags.get(DecorationMatrixStride))
return dec.matrix_stride;
else
SPIRV_CROSS_THROW("Struct member does not have MatrixStride set.");
}
else
SPIRV_CROSS_THROW("Struct member does not have MatrixStride set.");
}
size_t Compiler::get_declared_struct_size(const SPIRType &type) const
{
if (type.member_types.empty())
SPIRV_CROSS_THROW("Declared struct in block cannot be empty.");
// Offsets can be declared out of order, so we need to deduce the actual size
// based on last member instead.
uint32_t member_index = 0;
size_t highest_offset = 0;
for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++)
{
size_t offset = type_struct_member_offset(type, i);
if (offset > highest_offset)
{
highest_offset = offset;
member_index = i;
}
}
size_t size = get_declared_struct_member_size(type, member_index);
return highest_offset + size;
}
size_t Compiler::get_declared_struct_size_runtime_array(const SPIRType &type, size_t array_size) const
{
if (type.member_types.empty())
SPIRV_CROSS_THROW("Declared struct in block cannot be empty.");
size_t size = get_declared_struct_size(type);
auto &last_type = get<SPIRType>(type.member_types.back());
if (!last_type.array.empty() && last_type.array_size_literal[0] && last_type.array[0] == 0) // Runtime array
size += array_size * type_struct_member_array_stride(type, uint32_t(type.member_types.size() - 1));
return size;
}
uint32_t Compiler::evaluate_spec_constant_u32(const SPIRConstantOp &spec) const
{
auto &result_type = get<SPIRType>(spec.basetype);
if (result_type.basetype != SPIRType::UInt && result_type.basetype != SPIRType::Int &&
result_type.basetype != SPIRType::Boolean)
{
SPIRV_CROSS_THROW(
"Only 32-bit integers and booleans are currently supported when evaluating specialization constants.\n");
}
if (!is_scalar(result_type))
SPIRV_CROSS_THROW("Spec constant evaluation must be a scalar.\n");
uint32_t value = 0;
const auto eval_u32 = [&](uint32_t id) -> uint32_t {
auto &type = expression_type(id);
if (type.basetype != SPIRType::UInt && type.basetype != SPIRType::Int && type.basetype != SPIRType::Boolean)
{
SPIRV_CROSS_THROW("Only 32-bit integers and booleans are currently supported when evaluating "
"specialization constants.\n");
}
if (!is_scalar(type))
SPIRV_CROSS_THROW("Spec constant evaluation must be a scalar.\n");
if (const auto *c = this->maybe_get<SPIRConstant>(id))
return c->scalar();
else
return evaluate_spec_constant_u32(this->get<SPIRConstantOp>(id));
};
#define binary_spec_op(op, binary_op) \
case Op##op: \
value = eval_u32(spec.arguments[0]) binary_op eval_u32(spec.arguments[1]); \
break
#define binary_spec_op_cast(op, binary_op, type) \
case Op##op: \
value = uint32_t(type(eval_u32(spec.arguments[0])) binary_op type(eval_u32(spec.arguments[1]))); \
break
// Support the basic opcodes which are typically used when computing array sizes.
switch (spec.opcode)
{
binary_spec_op(IAdd, +);
binary_spec_op(ISub, -);
binary_spec_op(IMul, *);
binary_spec_op(BitwiseAnd, &);
binary_spec_op(BitwiseOr, |);
binary_spec_op(BitwiseXor, ^);
binary_spec_op(LogicalAnd, &);
binary_spec_op(LogicalOr, |);
binary_spec_op(ShiftLeftLogical, <<);
binary_spec_op(ShiftRightLogical, >>);
binary_spec_op_cast(ShiftRightArithmetic, >>, int32_t);
binary_spec_op(LogicalEqual, ==);
binary_spec_op(LogicalNotEqual, !=);
binary_spec_op(IEqual, ==);
binary_spec_op(INotEqual, !=);
binary_spec_op(ULessThan, <);
binary_spec_op(ULessThanEqual, <=);
binary_spec_op(UGreaterThan, >);
binary_spec_op(UGreaterThanEqual, >=);
binary_spec_op_cast(SLessThan, <, int32_t);
binary_spec_op_cast(SLessThanEqual, <=, int32_t);
binary_spec_op_cast(SGreaterThan, >, int32_t);
binary_spec_op_cast(SGreaterThanEqual, >=, int32_t);
#undef binary_spec_op
#undef binary_spec_op_cast
case OpLogicalNot:
value = uint32_t(!eval_u32(spec.arguments[0]));
break;
case OpNot:
value = ~eval_u32(spec.arguments[0]);
break;
case OpSNegate:
value = uint32_t(-int32_t(eval_u32(spec.arguments[0])));
break;
case OpSelect:
value = eval_u32(spec.arguments[0]) ? eval_u32(spec.arguments[1]) : eval_u32(spec.arguments[2]);
break;
case OpUMod:
{
uint32_t a = eval_u32(spec.arguments[0]);
uint32_t b = eval_u32(spec.arguments[1]);
if (b == 0)
SPIRV_CROSS_THROW("Undefined behavior in UMod, b == 0.\n");
value = a % b;
break;
}
case OpSRem:
{
auto a = int32_t(eval_u32(spec.arguments[0]));
auto b = int32_t(eval_u32(spec.arguments[1]));
if (b == 0)
SPIRV_CROSS_THROW("Undefined behavior in SRem, b == 0.\n");
value = a % b;
break;
}
case OpSMod:
{
auto a = int32_t(eval_u32(spec.arguments[0]));
auto b = int32_t(eval_u32(spec.arguments[1]));
if (b == 0)
SPIRV_CROSS_THROW("Undefined behavior in SMod, b == 0.\n");
auto v = a % b;
// Makes sure we match the sign of b, not a.
if ((b < 0 && v > 0) || (b > 0 && v < 0))
v += b;
value = v;
break;
}
case OpUDiv:
{
uint32_t a = eval_u32(spec.arguments[0]);
uint32_t b = eval_u32(spec.arguments[1]);
if (b == 0)
SPIRV_CROSS_THROW("Undefined behavior in UDiv, b == 0.\n");
value = a / b;
break;
}
case OpSDiv:
{
auto a = int32_t(eval_u32(spec.arguments[0]));
auto b = int32_t(eval_u32(spec.arguments[1]));
if (b == 0)
SPIRV_CROSS_THROW("Undefined behavior in SDiv, b == 0.\n");
value = a / b;
break;
}
default:
SPIRV_CROSS_THROW("Unsupported spec constant opcode for evaluation.\n");
}
return value;
}
uint32_t Compiler::evaluate_constant_u32(uint32_t id) const
{
if (const auto *c = maybe_get<SPIRConstant>(id))
return c->scalar();
else
return evaluate_spec_constant_u32(get<SPIRConstantOp>(id));
}
size_t Compiler::get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const
{
if (struct_type.member_types.empty())
SPIRV_CROSS_THROW("Declared struct in block cannot be empty.");
auto &flags = get_member_decoration_bitset(struct_type.self, index);
auto &type = get<SPIRType>(struct_type.member_types[index]);
switch (type.basetype)
{
case SPIRType::Unknown:
case SPIRType::Void:
case SPIRType::Boolean: // Bools are purely logical, and cannot be used for externally visible types.
case SPIRType::AtomicCounter:
case SPIRType::Image:
case SPIRType::SampledImage:
case SPIRType::Sampler:
SPIRV_CROSS_THROW("Querying size for object with opaque size.");
default:
break;
}
if (type.pointer && type.storage == StorageClassPhysicalStorageBuffer)
{
// Check if this is a top-level pointer type, and not an array of pointers.
if (type.pointer_depth > get<SPIRType>(type.parent_type).pointer_depth)
return 8;
}
if (!type.array.empty())
{
// For arrays, we can use ArrayStride to get an easy check.
bool array_size_literal = type.array_size_literal.back();
uint32_t array_size = array_size_literal ? type.array.back() : evaluate_constant_u32(type.array.back());
return type_struct_member_array_stride(struct_type, index) * array_size;
}
else if (type.basetype == SPIRType::Struct)
{
return get_declared_struct_size(type);
}
else
{
unsigned vecsize = type.vecsize;
unsigned columns = type.columns;
// Vectors.
if (columns == 1)
{
size_t component_size = type.width / 8;
return vecsize * component_size;
}
else
{
uint32_t matrix_stride = type_struct_member_matrix_stride(struct_type, index);
// Per SPIR-V spec, matrices must be tightly packed and aligned up for vec3 accesses.
if (flags.get(DecorationRowMajor))
return matrix_stride * vecsize;
else if (flags.get(DecorationColMajor))
return matrix_stride * columns;
else
SPIRV_CROSS_THROW("Either row-major or column-major must be declared for matrices.");
}
}
}
bool Compiler::BufferAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length)
{
if (opcode != OpAccessChain && opcode != OpInBoundsAccessChain && opcode != OpPtrAccessChain)
return true;
bool ptr_chain = (opcode == OpPtrAccessChain);
// Invalid SPIR-V.
if (length < (ptr_chain ? 5u : 4u))
return false;
if (args[2] != id)
return true;
// Don't bother traversing the entire access chain tree yet.
// If we access a struct member, assume we access the entire member.
uint32_t index = compiler.get<SPIRConstant>(args[ptr_chain ? 4 : 3]).scalar();
// Seen this index already.
if (seen.find(index) != end(seen))
return true;
seen.insert(index);
auto &type = compiler.expression_type(id);
uint32_t offset = compiler.type_struct_member_offset(type, index);
size_t range;
// If we have another member in the struct, deduce the range by looking at the next member.
// This is okay since structs in SPIR-V can have padding, but Offset decoration must be
// monotonically increasing.
// Of course, this doesn't take into account if the SPIR-V for some reason decided to add
// very large amounts of padding, but that's not really a big deal.
if (index + 1 < type.member_types.size())
{
range = compiler.type_struct_member_offset(type, index + 1) - offset;
}
else
{
// No padding, so just deduce it from the size of the member directly.
range = compiler.get_declared_struct_member_size(type, index);
}
ranges.push_back({ index, offset, range });
return true;
}
SmallVector<BufferRange> Compiler::get_active_buffer_ranges(VariableID id) const
{
SmallVector<BufferRange> ranges;
BufferAccessHandler handler(*this, ranges, id);
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
return ranges;
}
bool Compiler::types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const
{
if (a.basetype != b.basetype)
return false;
if (a.width != b.width)
return false;
if (a.vecsize != b.vecsize)
return false;
if (a.columns != b.columns)
return false;
if (a.array.size() != b.array.size())
return false;
size_t array_count = a.array.size();
if (array_count && memcmp(a.array.data(), b.array.data(), array_count * sizeof(uint32_t)) != 0)
return false;
if (a.basetype == SPIRType::Image || a.basetype == SPIRType::SampledImage)
{
if (memcmp(&a.image, &b.image, sizeof(SPIRType::Image)) != 0)
return false;
}
if (a.member_types.size() != b.member_types.size())
return false;
size_t member_types = a.member_types.size();
for (size_t i = 0; i < member_types; i++)
{
if (!types_are_logically_equivalent(get<SPIRType>(a.member_types[i]), get<SPIRType>(b.member_types[i])))
return false;
}
return true;
}
const Bitset &Compiler::get_execution_mode_bitset() const
{
return get_entry_point().flags;
}
void Compiler::set_execution_mode(ExecutionMode mode, uint32_t arg0, uint32_t arg1, uint32_t arg2)
{
auto &execution = get_entry_point();
execution.flags.set(mode);
switch (mode)
{
case ExecutionModeLocalSize:
execution.workgroup_size.x = arg0;
execution.workgroup_size.y = arg1;
execution.workgroup_size.z = arg2;
break;
case ExecutionModeLocalSizeId:
execution.workgroup_size.id_x = arg0;
execution.workgroup_size.id_y = arg1;
execution.workgroup_size.id_z = arg2;
break;
case ExecutionModeInvocations:
execution.invocations = arg0;
break;
case ExecutionModeOutputVertices:
execution.output_vertices = arg0;
break;
case ExecutionModeOutputPrimitivesEXT:
execution.output_primitives = arg0;
break;
default:
break;
}
}
void Compiler::unset_execution_mode(ExecutionMode mode)
{
auto &execution = get_entry_point();
execution.flags.clear(mode);
}
uint32_t Compiler::get_work_group_size_specialization_constants(SpecializationConstant &x, SpecializationConstant &y,
SpecializationConstant &z) const
{
auto &execution = get_entry_point();
x = { 0, 0 };
y = { 0, 0 };
z = { 0, 0 };
// WorkgroupSize builtin takes precedence over LocalSize / LocalSizeId.
if (execution.workgroup_size.constant != 0)
{
auto &c = get<SPIRConstant>(execution.workgroup_size.constant);
if (c.m.c[0].id[0] != ID(0))
{
x.id = c.m.c[0].id[0];
x.constant_id = get_decoration(c.m.c[0].id[0], DecorationSpecId);
}
if (c.m.c[0].id[1] != ID(0))
{
y.id = c.m.c[0].id[1];
y.constant_id = get_decoration(c.m.c[0].id[1], DecorationSpecId);
}
if (c.m.c[0].id[2] != ID(0))
{
z.id = c.m.c[0].id[2];
z.constant_id = get_decoration(c.m.c[0].id[2], DecorationSpecId);
}
}
else if (execution.flags.get(ExecutionModeLocalSizeId))
{
auto &cx = get<SPIRConstant>(execution.workgroup_size.id_x);
if (cx.specialization)
{
x.id = execution.workgroup_size.id_x;
x.constant_id = get_decoration(execution.workgroup_size.id_x, DecorationSpecId);
}
auto &cy = get<SPIRConstant>(execution.workgroup_size.id_y);
if (cy.specialization)
{
y.id = execution.workgroup_size.id_y;
y.constant_id = get_decoration(execution.workgroup_size.id_y, DecorationSpecId);
}
auto &cz = get<SPIRConstant>(execution.workgroup_size.id_z);
if (cz.specialization)
{
z.id = execution.workgroup_size.id_z;
z.constant_id = get_decoration(execution.workgroup_size.id_z, DecorationSpecId);
}
}
return execution.workgroup_size.constant;
}
uint32_t Compiler::get_execution_mode_argument(spv::ExecutionMode mode, uint32_t index) const
{
auto &execution = get_entry_point();
switch (mode)
{
case ExecutionModeLocalSizeId:
if (execution.flags.get(ExecutionModeLocalSizeId))
{
switch (index)
{
case 0:
return execution.workgroup_size.id_x;
case 1:
return execution.workgroup_size.id_y;
case 2:
return execution.workgroup_size.id_z;
default:
return 0;
}
}
else
return 0;
case ExecutionModeLocalSize:
switch (index)
{
case 0:
if (execution.flags.get(ExecutionModeLocalSizeId) && execution.workgroup_size.id_x != 0)
return get<SPIRConstant>(execution.workgroup_size.id_x).scalar();
else
return execution.workgroup_size.x;
case 1:
if (execution.flags.get(ExecutionModeLocalSizeId) && execution.workgroup_size.id_y != 0)
return get<SPIRConstant>(execution.workgroup_size.id_y).scalar();
else
return execution.workgroup_size.y;
case 2:
if (execution.flags.get(ExecutionModeLocalSizeId) && execution.workgroup_size.id_z != 0)
return get<SPIRConstant>(execution.workgroup_size.id_z).scalar();
else
return execution.workgroup_size.z;
default:
return 0;
}
case ExecutionModeInvocations:
return execution.invocations;
case ExecutionModeOutputVertices:
return execution.output_vertices;
case ExecutionModeOutputPrimitivesEXT:
return execution.output_primitives;
default:
return 0;
}
}
ExecutionModel Compiler::get_execution_model() const
{
auto &execution = get_entry_point();
return execution.model;
}
bool Compiler::is_tessellation_shader(ExecutionModel model)
{
return model == ExecutionModelTessellationControl || model == ExecutionModelTessellationEvaluation;
}
bool Compiler::is_vertex_like_shader() const
{
auto model = get_execution_model();
return model == ExecutionModelVertex || model == ExecutionModelGeometry ||
model == ExecutionModelTessellationControl || model == ExecutionModelTessellationEvaluation;
}
bool Compiler::is_tessellation_shader() const
{
return is_tessellation_shader(get_execution_model());
}
bool Compiler::is_tessellating_triangles() const
{
return get_execution_mode_bitset().get(ExecutionModeTriangles);
}
void Compiler::set_remapped_variable_state(VariableID id, bool remap_enable)
{
get<SPIRVariable>(id).remapped_variable = remap_enable;
}
bool Compiler::get_remapped_variable_state(VariableID id) const
{
return get<SPIRVariable>(id).remapped_variable;
}
void Compiler::set_subpass_input_remapped_components(VariableID id, uint32_t components)
{
get<SPIRVariable>(id).remapped_components = components;
}
uint32_t Compiler::get_subpass_input_remapped_components(VariableID id) const
{
return get<SPIRVariable>(id).remapped_components;
}
void Compiler::add_implied_read_expression(SPIRExpression &e, uint32_t source)
{
auto itr = find(begin(e.implied_read_expressions), end(e.implied_read_expressions), ID(source));
if (itr == end(e.implied_read_expressions))
e.implied_read_expressions.push_back(source);
}
void Compiler::add_implied_read_expression(SPIRAccessChain &e, uint32_t source)
{
auto itr = find(begin(e.implied_read_expressions), end(e.implied_read_expressions), ID(source));
if (itr == end(e.implied_read_expressions))
e.implied_read_expressions.push_back(source);
}
void Compiler::add_active_interface_variable(uint32_t var_id)
{
active_interface_variables.insert(var_id);
// In SPIR-V 1.4 and up we must also track the interface variable in the entry point.
if (ir.get_spirv_version() >= 0x10400)
{
auto &vars = get_entry_point().interface_variables;
if (find(begin(vars), end(vars), VariableID(var_id)) == end(vars))
vars.push_back(var_id);
}
}
void Compiler::inherit_expression_dependencies(uint32_t dst, uint32_t source_expression)
{
// Don't inherit any expression dependencies if the expression in dst
// is not a forwarded temporary.
if (forwarded_temporaries.find(dst) == end(forwarded_temporaries) ||
forced_temporaries.find(dst) != end(forced_temporaries))
{
return;
}
auto &e = get<SPIRExpression>(dst);
auto *phi = maybe_get<SPIRVariable>(source_expression);
if (phi && phi->phi_variable)
{
// We have used a phi variable, which can change at the end of the block,
// so make sure we take a dependency on this phi variable.
phi->dependees.push_back(dst);
}
auto *s = maybe_get<SPIRExpression>(source_expression);
if (!s)
return;
auto &e_deps = e.expression_dependencies;
auto &s_deps = s->expression_dependencies;
// If we depend on a expression, we also depend on all sub-dependencies from source.
e_deps.push_back(source_expression);
e_deps.insert(end(e_deps), begin(s_deps), end(s_deps));
// Eliminate duplicated dependencies.
sort(begin(e_deps), end(e_deps));
e_deps.erase(unique(begin(e_deps), end(e_deps)), end(e_deps));
}
SmallVector<EntryPoint> Compiler::get_entry_points_and_stages() const
{
SmallVector<EntryPoint> entries;
for (auto &entry : ir.entry_points)
entries.push_back({ entry.second.orig_name, entry.second.model });
return entries;
}
void Compiler::rename_entry_point(const std::string &old_name, const std::string &new_name, spv::ExecutionModel model)
{
auto &entry = get_entry_point(old_name, model);
entry.orig_name = new_name;
entry.name = new_name;
}
void Compiler::set_entry_point(const std::string &name, spv::ExecutionModel model)
{
auto &entry = get_entry_point(name, model);
ir.default_entry_point = entry.self;
}
SPIREntryPoint &Compiler::get_first_entry_point(const std::string &name)
{
auto itr = find_if(
begin(ir.entry_points), end(ir.entry_points),
[&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { return entry.second.orig_name == name; });
if (itr == end(ir.entry_points))
SPIRV_CROSS_THROW("Entry point does not exist.");
return itr->second;
}
const SPIREntryPoint &Compiler::get_first_entry_point(const std::string &name) const
{
auto itr = find_if(
begin(ir.entry_points), end(ir.entry_points),
[&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { return entry.second.orig_name == name; });
if (itr == end(ir.entry_points))
SPIRV_CROSS_THROW("Entry point does not exist.");
return itr->second;
}
SPIREntryPoint &Compiler::get_entry_point(const std::string &name, ExecutionModel model)
{
auto itr = find_if(begin(ir.entry_points), end(ir.entry_points),
[&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool {
return entry.second.orig_name == name && entry.second.model == model;
});
if (itr == end(ir.entry_points))
SPIRV_CROSS_THROW("Entry point does not exist.");
return itr->second;
}
const SPIREntryPoint &Compiler::get_entry_point(const std::string &name, ExecutionModel model) const
{
auto itr = find_if(begin(ir.entry_points), end(ir.entry_points),
[&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool {
return entry.second.orig_name == name && entry.second.model == model;
});
if (itr == end(ir.entry_points))
SPIRV_CROSS_THROW("Entry point does not exist.");
return itr->second;
}
const string &Compiler::get_cleansed_entry_point_name(const std::string &name, ExecutionModel model) const
{
return get_entry_point(name, model).name;
}
const SPIREntryPoint &Compiler::get_entry_point() const
{
return ir.entry_points.find(ir.default_entry_point)->second;
}
SPIREntryPoint &Compiler::get_entry_point()
{
return ir.entry_points.find(ir.default_entry_point)->second;
}
bool Compiler::interface_variable_exists_in_entry_point(uint32_t id) const
{
auto &var = get<SPIRVariable>(id);
if (ir.get_spirv_version() < 0x10400)
{
if (var.storage != StorageClassInput && var.storage != StorageClassOutput &&
var.storage != StorageClassUniformConstant)
SPIRV_CROSS_THROW("Only Input, Output variables and Uniform constants are part of a shader linking interface.");
// This is to avoid potential problems with very old glslang versions which did
// not emit input/output interfaces properly.
// We can assume they only had a single entry point, and single entry point
// shaders could easily be assumed to use every interface variable anyways.
if (ir.entry_points.size() <= 1)
return true;
}
// In SPIR-V 1.4 and later, all global resource variables must be present.
auto &execution = get_entry_point();
return find(begin(execution.interface_variables), end(execution.interface_variables), VariableID(id)) !=
end(execution.interface_variables);
}
void Compiler::CombinedImageSamplerHandler::push_remap_parameters(const SPIRFunction &func, const uint32_t *args,
uint32_t length)
{
// If possible, pipe through a remapping table so that parameters know
// which variables they actually bind to in this scope.
unordered_map<uint32_t, uint32_t> remapping;
for (uint32_t i = 0; i < length; i++)
remapping[func.arguments[i].id] = remap_parameter(args[i]);
parameter_remapping.push(std::move(remapping));
}
void Compiler::CombinedImageSamplerHandler::pop_remap_parameters()
{
parameter_remapping.pop();
}
uint32_t Compiler::CombinedImageSamplerHandler::remap_parameter(uint32_t id)
{
auto *var = compiler.maybe_get_backing_variable(id);
if (var)
id = var->self;
if (parameter_remapping.empty())
return id;
auto &remapping = parameter_remapping.top();
auto itr = remapping.find(id);
if (itr != end(remapping))
return itr->second;
else
return id;
}
bool Compiler::CombinedImageSamplerHandler::begin_function_scope(const uint32_t *args, uint32_t length)
{
if (length < 3)
return false;
auto &callee = compiler.get<SPIRFunction>(args[2]);
args += 3;
length -= 3;
push_remap_parameters(callee, args, length);
functions.push(&callee);
return true;
}
bool Compiler::CombinedImageSamplerHandler::end_function_scope(const uint32_t *args, uint32_t length)
{
if (length < 3)
return false;
auto &callee = compiler.get<SPIRFunction>(args[2]);
args += 3;
// There are two types of cases we have to handle,
// a callee might call sampler2D(texture2D, sampler) directly where
// one or more parameters originate from parameters.
// Alternatively, we need to provide combined image samplers to our callees,
// and in this case we need to add those as well.
pop_remap_parameters();
// Our callee has now been processed at least once.
// No point in doing it again.
callee.do_combined_parameters = false;
auto ¶ms = functions.top()->combined_parameters;
functions.pop();
if (functions.empty())
return true;
auto &caller = *functions.top();
if (caller.do_combined_parameters)
{
for (auto ¶m : params)
{
VariableID image_id = param.global_image ? param.image_id : VariableID(args[param.image_id]);
VariableID sampler_id = param.global_sampler ? param.sampler_id : VariableID(args[param.sampler_id]);
auto *i = compiler.maybe_get_backing_variable(image_id);
auto *s = compiler.maybe_get_backing_variable(sampler_id);
if (i)
image_id = i->self;
if (s)
sampler_id = s->self;
register_combined_image_sampler(caller, 0, image_id, sampler_id, param.depth);
}
}
return true;
}
void Compiler::CombinedImageSamplerHandler::register_combined_image_sampler(SPIRFunction &caller,
VariableID combined_module_id,
VariableID image_id, VariableID sampler_id,
bool depth)
{
// We now have a texture ID and a sampler ID which will either be found as a global
// or a parameter in our own function. If both are global, they will not need a parameter,
// otherwise, add it to our list.
SPIRFunction::CombinedImageSamplerParameter param = {
0u, image_id, sampler_id, true, true, depth,
};
auto texture_itr = find_if(begin(caller.arguments), end(caller.arguments),
[image_id](const SPIRFunction::Parameter &p) { return p.id == image_id; });
auto sampler_itr = find_if(begin(caller.arguments), end(caller.arguments),
[sampler_id](const SPIRFunction::Parameter &p) { return p.id == sampler_id; });
if (texture_itr != end(caller.arguments))
{
param.global_image = false;
param.image_id = uint32_t(texture_itr - begin(caller.arguments));
}
if (sampler_itr != end(caller.arguments))
{
param.global_sampler = false;
param.sampler_id = uint32_t(sampler_itr - begin(caller.arguments));
}
if (param.global_image && param.global_sampler)
return;
auto itr = find_if(begin(caller.combined_parameters), end(caller.combined_parameters),
[¶m](const SPIRFunction::CombinedImageSamplerParameter &p) {
return param.image_id == p.image_id && param.sampler_id == p.sampler_id &&
param.global_image == p.global_image && param.global_sampler == p.global_sampler;
});
if (itr == end(caller.combined_parameters))
{
uint32_t id = compiler.ir.increase_bound_by(3);
auto type_id = id + 0;
auto ptr_type_id = id + 1;
auto combined_id = id + 2;
auto &base = compiler.expression_type(image_id);
auto &type = compiler.set<SPIRType>(type_id);
auto &ptr_type = compiler.set<SPIRType>(ptr_type_id);
type = base;
type.self = type_id;
type.basetype = SPIRType::SampledImage;
type.pointer = false;
type.storage = StorageClassGeneric;
type.image.depth = depth;
ptr_type = type;
ptr_type.pointer = true;
ptr_type.storage = StorageClassUniformConstant;
ptr_type.parent_type = type_id;
// Build new variable.
compiler.set<SPIRVariable>(combined_id, ptr_type_id, StorageClassFunction, 0);
// Inherit RelaxedPrecision.
// If any of OpSampledImage, underlying image or sampler are marked, inherit the decoration.
bool relaxed_precision =
compiler.has_decoration(sampler_id, DecorationRelaxedPrecision) ||
compiler.has_decoration(image_id, DecorationRelaxedPrecision) ||
(combined_module_id && compiler.has_decoration(combined_module_id, DecorationRelaxedPrecision));
if (relaxed_precision)
compiler.set_decoration(combined_id, DecorationRelaxedPrecision);
param.id = combined_id;
compiler.set_name(combined_id,
join("SPIRV_Cross_Combined", compiler.to_name(image_id), compiler.to_name(sampler_id)));
caller.combined_parameters.push_back(param);
caller.shadow_arguments.push_back({ ptr_type_id, combined_id, 0u, 0u, true });
}
}
bool Compiler::DummySamplerForCombinedImageHandler::handle(Op opcode, const uint32_t *args, uint32_t length)
{
if (need_dummy_sampler)
{
// No need to traverse further, we know the result.
return false;
}
switch (opcode)
{
case OpLoad:
{
if (length < 3)
return false;
uint32_t result_type = args[0];
auto &type = compiler.get<SPIRType>(result_type);
bool separate_image =
type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer;
// If not separate image, don't bother.
if (!separate_image)
return true;
uint32_t id = args[1];
uint32_t ptr = args[2];
compiler.set<SPIRExpression>(id, "", result_type, true);
compiler.register_read(id, ptr, true);
break;
}
case OpImageFetch:
case OpImageQuerySizeLod:
case OpImageQuerySize:
case OpImageQueryLevels:
case OpImageQuerySamples:
{
// If we are fetching or querying LOD from a plain OpTypeImage, we must pre-combine with our dummy sampler.
auto *var = compiler.maybe_get_backing_variable(args[2]);
if (var)
{
auto &type = compiler.get<SPIRType>(var->basetype);
if (type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer)
need_dummy_sampler = true;
}
break;
}
case OpInBoundsAccessChain:
case OpAccessChain:
case OpPtrAccessChain:
{
if (length < 3)
return false;
uint32_t result_type = args[0];
auto &type = compiler.get<SPIRType>(result_type);
bool separate_image =
type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer;
if (!separate_image)
return true;
uint32_t id = args[1];
uint32_t ptr = args[2];
compiler.set<SPIRExpression>(id, "", result_type, true);
compiler.register_read(id, ptr, true);
// Other backends might use SPIRAccessChain for this later.
compiler.ir.ids[id].set_allow_type_rewrite();
break;
}
default:
break;
}
return true;
}
bool Compiler::CombinedImageSamplerHandler::handle(Op opcode, const uint32_t *args, uint32_t length)
{
// We need to figure out where samplers and images are loaded from, so do only the bare bones compilation we need.
bool is_fetch = false;
switch (opcode)
{
case OpLoad:
{
if (length < 3)
return false;
uint32_t result_type = args[0];
auto &type = compiler.get<SPIRType>(result_type);
bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1;
bool separate_sampler = type.basetype == SPIRType::Sampler;
// If not separate image or sampler, don't bother.
if (!separate_image && !separate_sampler)
return true;
uint32_t id = args[1];
uint32_t ptr = args[2];
compiler.set<SPIRExpression>(id, "", result_type, true);
compiler.register_read(id, ptr, true);
return true;
}
case OpInBoundsAccessChain:
case OpAccessChain:
case OpPtrAccessChain:
{
if (length < 3)
return false;
// Technically, it is possible to have arrays of textures and arrays of samplers and combine them, but this becomes essentially
// impossible to implement, since we don't know which concrete sampler we are accessing.
// One potential way is to create a combinatorial explosion where N textures and M samplers are combined into N * M sampler2Ds,
// but this seems ridiculously complicated for a problem which is easy to work around.
// Checking access chains like this assumes we don't have samplers or textures inside uniform structs, but this makes no sense.
uint32_t result_type = args[0];
auto &type = compiler.get<SPIRType>(result_type);
bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1;
bool separate_sampler = type.basetype == SPIRType::Sampler;
if (separate_sampler)
SPIRV_CROSS_THROW(
"Attempting to use arrays or structs of separate samplers. This is not possible to statically "
"remap to plain GLSL.");
if (separate_image)
{
uint32_t id = args[1];
uint32_t ptr = args[2];
compiler.set<SPIRExpression>(id, "", result_type, true);
compiler.register_read(id, ptr, true);
}
return true;
}
case OpImageFetch:
case OpImageQuerySizeLod:
case OpImageQuerySize:
case OpImageQueryLevels:
case OpImageQuerySamples:
{
// If we are fetching from a plain OpTypeImage or querying LOD, we must pre-combine with our dummy sampler.
auto *var = compiler.maybe_get_backing_variable(args[2]);
if (!var)
return true;
auto &type = compiler.get<SPIRType>(var->basetype);
if (type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer)
{
if (compiler.dummy_sampler_id == 0)
SPIRV_CROSS_THROW("texelFetch without sampler was found, but no dummy sampler has been created with "
"build_dummy_sampler_for_combined_images().");
// Do it outside.
is_fetch = true;
break;
}
return true;
}
case OpSampledImage:
// Do it outside.
break;
default:
return true;
}
// Registers sampler2D calls used in case they are parameters so
// that their callees know which combined image samplers to propagate down the call stack.
if (!functions.empty())
{
auto &callee = *functions.top();
if (callee.do_combined_parameters)
{
uint32_t image_id = args[2];
auto *image = compiler.maybe_get_backing_variable(image_id);
if (image)
image_id = image->self;
uint32_t sampler_id = is_fetch ? compiler.dummy_sampler_id : args[3];
auto *sampler = compiler.maybe_get_backing_variable(sampler_id);
if (sampler)
sampler_id = sampler->self;
uint32_t combined_id = args[1];
auto &combined_type = compiler.get<SPIRType>(args[0]);
register_combined_image_sampler(callee, combined_id, image_id, sampler_id, combined_type.image.depth);
}
}
// For function calls, we need to remap IDs which are function parameters into global variables.
// This information is statically known from the current place in the call stack.
// Function parameters are not necessarily pointers, so if we don't have a backing variable, remapping will know
// which backing variable the image/sample came from.
VariableID image_id = remap_parameter(args[2]);
VariableID sampler_id = is_fetch ? compiler.dummy_sampler_id : remap_parameter(args[3]);
auto itr = find_if(begin(compiler.combined_image_samplers), end(compiler.combined_image_samplers),
[image_id, sampler_id](const CombinedImageSampler &combined) {
return combined.image_id == image_id && combined.sampler_id == sampler_id;
});
if (itr == end(compiler.combined_image_samplers))
{
uint32_t sampled_type;
uint32_t combined_module_id;
if (is_fetch)
{
// Have to invent the sampled image type.
sampled_type = compiler.ir.increase_bound_by(1);
auto &type = compiler.set<SPIRType>(sampled_type);
type = compiler.expression_type(args[2]);
type.self = sampled_type;
type.basetype = SPIRType::SampledImage;
type.image.depth = false;
combined_module_id = 0;
}
else
{
sampled_type = args[0];
combined_module_id = args[1];
}
auto id = compiler.ir.increase_bound_by(2);
auto type_id = id + 0;
auto combined_id = id + 1;
// Make a new type, pointer to OpTypeSampledImage, so we can make a variable of this type.
// We will probably have this type lying around, but it doesn't hurt to make duplicates for internal purposes.
auto &type = compiler.set<SPIRType>(type_id);
auto &base = compiler.get<SPIRType>(sampled_type);
type = base;
type.pointer = true;
type.storage = StorageClassUniformConstant;
type.parent_type = type_id;
// Build new variable.
compiler.set<SPIRVariable>(combined_id, type_id, StorageClassUniformConstant, 0);
// Inherit RelaxedPrecision (and potentially other useful flags if deemed relevant).
// If any of OpSampledImage, underlying image or sampler are marked, inherit the decoration.
bool relaxed_precision =
(sampler_id && compiler.has_decoration(sampler_id, DecorationRelaxedPrecision)) ||
(image_id && compiler.has_decoration(image_id, DecorationRelaxedPrecision)) ||
(combined_module_id && compiler.has_decoration(combined_module_id, DecorationRelaxedPrecision));
if (relaxed_precision)
compiler.set_decoration(combined_id, DecorationRelaxedPrecision);
// Propagate the array type for the original image as well.
auto *var = compiler.maybe_get_backing_variable(image_id);
if (var)
{
auto &parent_type = compiler.get<SPIRType>(var->basetype);
type.array = parent_type.array;
type.array_size_literal = parent_type.array_size_literal;
}
compiler.combined_image_samplers.push_back({ combined_id, image_id, sampler_id });
}
return true;
}
VariableID Compiler::build_dummy_sampler_for_combined_images()
{
DummySamplerForCombinedImageHandler handler(*this);
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
if (handler.need_dummy_sampler)
{
uint32_t offset = ir.increase_bound_by(3);
auto type_id = offset + 0;
auto ptr_type_id = offset + 1;
auto var_id = offset + 2;
SPIRType sampler_type;
auto &sampler = set<SPIRType>(type_id);
sampler.basetype = SPIRType::Sampler;
auto &ptr_sampler = set<SPIRType>(ptr_type_id);
ptr_sampler = sampler;
ptr_sampler.self = type_id;
ptr_sampler.storage = StorageClassUniformConstant;
ptr_sampler.pointer = true;
ptr_sampler.parent_type = type_id;
set<SPIRVariable>(var_id, ptr_type_id, StorageClassUniformConstant, 0);
set_name(var_id, "SPIRV_Cross_DummySampler");
dummy_sampler_id = var_id;
return var_id;
}
else
return 0;
}
void Compiler::build_combined_image_samplers()
{
ir.for_each_typed_id<SPIRFunction>([&](uint32_t, SPIRFunction &func) {
func.combined_parameters.clear();
func.shadow_arguments.clear();
func.do_combined_parameters = true;
});
combined_image_samplers.clear();
CombinedImageSamplerHandler handler(*this);
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
}
SmallVector<SpecializationConstant> Compiler::get_specialization_constants() const
{
SmallVector<SpecializationConstant> spec_consts;
ir.for_each_typed_id<SPIRConstant>([&](uint32_t, const SPIRConstant &c) {
if (c.specialization && has_decoration(c.self, DecorationSpecId))
spec_consts.push_back({ c.self, get_decoration(c.self, DecorationSpecId) });
});
return spec_consts;
}
SPIRConstant &Compiler::get_constant(ConstantID id)
{
return get<SPIRConstant>(id);
}
const SPIRConstant &Compiler::get_constant(ConstantID id) const
{
return get<SPIRConstant>(id);
}
static bool exists_unaccessed_path_to_return(const CFG &cfg, uint32_t block, const unordered_set<uint32_t> &blocks,
unordered_set<uint32_t> &visit_cache)
{
// This block accesses the variable.
if (blocks.find(block) != end(blocks))
return false;
// We are at the end of the CFG.
if (cfg.get_succeeding_edges(block).empty())
return true;
// If any of our successors have a path to the end, there exists a path from block.
for (auto &succ : cfg.get_succeeding_edges(block))
{
if (visit_cache.count(succ) == 0)
{
if (exists_unaccessed_path_to_return(cfg, succ, blocks, visit_cache))
return true;
visit_cache.insert(succ);
}
}
return false;
}
void Compiler::analyze_parameter_preservation(
SPIRFunction &entry, const CFG &cfg, const unordered_map<uint32_t, unordered_set<uint32_t>> &variable_to_blocks,
const unordered_map<uint32_t, unordered_set<uint32_t>> &complete_write_blocks)
{
for (auto &arg : entry.arguments)
{
// Non-pointers are always inputs.
auto &type = get<SPIRType>(arg.type);
if (!type.pointer)
continue;
// Opaque argument types are always in
bool potential_preserve;
switch (type.basetype)
{
case SPIRType::Sampler:
case SPIRType::Image:
case SPIRType::SampledImage:
case SPIRType::AtomicCounter:
potential_preserve = false;
break;
default:
potential_preserve = true;
break;
}
if (!potential_preserve)
continue;
auto itr = variable_to_blocks.find(arg.id);
if (itr == end(variable_to_blocks))
{
// Variable is never accessed.
continue;
}
// We have accessed a variable, but there was no complete writes to that variable.
// We deduce that we must preserve the argument.
itr = complete_write_blocks.find(arg.id);
if (itr == end(complete_write_blocks))
{
arg.read_count++;
continue;
}
// If there is a path through the CFG where no block completely writes to the variable, the variable will be in an undefined state
// when the function returns. We therefore need to implicitly preserve the variable in case there are writers in the function.
// Major case here is if a function is
// void foo(int &var) { if (cond) var = 10; }
// Using read/write counts, we will think it's just an out variable, but it really needs to be inout,
// because if we don't write anything whatever we put into the function must return back to the caller.
unordered_set<uint32_t> visit_cache;
if (exists_unaccessed_path_to_return(cfg, entry.entry_block, itr->second, visit_cache))
arg.read_count++;
}
}
Compiler::AnalyzeVariableScopeAccessHandler::AnalyzeVariableScopeAccessHandler(Compiler &compiler_,
SPIRFunction &entry_)
: compiler(compiler_)
, entry(entry_)
{
}
bool Compiler::AnalyzeVariableScopeAccessHandler::follow_function_call(const SPIRFunction &)
{
// Only analyze within this function.
return false;
}
void Compiler::AnalyzeVariableScopeAccessHandler::set_current_block(const SPIRBlock &block)
{
current_block = █
// If we're branching to a block which uses OpPhi, in GLSL
// this will be a variable write when we branch,
// so we need to track access to these variables as well to
// have a complete picture.
const auto test_phi = [this, &block](uint32_t to) {
auto &next = compiler.get<SPIRBlock>(to);
for (auto &phi : next.phi_variables)
{
if (phi.parent == block.self)
{
accessed_variables_to_block[phi.function_variable].insert(block.self);
// Phi variables are also accessed in our target branch block.
accessed_variables_to_block[phi.function_variable].insert(next.self);
notify_variable_access(phi.local_variable, block.self);
}
}
};
switch (block.terminator)
{
case SPIRBlock::Direct:
notify_variable_access(block.condition, block.self);
test_phi(block.next_block);
break;
case SPIRBlock::Select:
notify_variable_access(block.condition, block.self);
test_phi(block.true_block);
test_phi(block.false_block);
break;
case SPIRBlock::MultiSelect:
{
notify_variable_access(block.condition, block.self);
auto &cases = compiler.get_case_list(block);
for (auto &target : cases)
test_phi(target.block);
if (block.default_block)
test_phi(block.default_block);
break;
}
default:
break;
}
}
void Compiler::AnalyzeVariableScopeAccessHandler::notify_variable_access(uint32_t id, uint32_t block)
{
if (id == 0)
return;
// Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers.
auto itr = rvalue_forward_children.find(id);
if (itr != end(rvalue_forward_children))
for (auto child_id : itr->second)
notify_variable_access(child_id, block);
if (id_is_phi_variable(id))
accessed_variables_to_block[id].insert(block);
else if (id_is_potential_temporary(id))
accessed_temporaries_to_block[id].insert(block);
}
bool Compiler::AnalyzeVariableScopeAccessHandler::id_is_phi_variable(uint32_t id) const
{
if (id >= compiler.get_current_id_bound())
return false;
auto *var = compiler.maybe_get<SPIRVariable>(id);
return var && var->phi_variable;
}
bool Compiler::AnalyzeVariableScopeAccessHandler::id_is_potential_temporary(uint32_t id) const
{
if (id >= compiler.get_current_id_bound())
return false;
// Temporaries are not created before we start emitting code.
return compiler.ir.ids[id].empty() || (compiler.ir.ids[id].get_type() == TypeExpression);
}
bool Compiler::AnalyzeVariableScopeAccessHandler::handle_terminator(const SPIRBlock &block)
{
switch (block.terminator)
{
case SPIRBlock::Return:
if (block.return_value)
notify_variable_access(block.return_value, block.self);
break;
case SPIRBlock::Select:
case SPIRBlock::MultiSelect:
notify_variable_access(block.condition, block.self);
break;
default:
break;
}
return true;
}
bool Compiler::AnalyzeVariableScopeAccessHandler::handle(spv::Op op, const uint32_t *args, uint32_t length)
{
// Keep track of the types of temporaries, so we can hoist them out as necessary.
uint32_t result_type, result_id;
if (compiler.instruction_to_result_type(result_type, result_id, op, args, length))
{
// For some opcodes, we will need to override the result id.
// If we need to hoist the temporary, the temporary type is the input, not the result.
// FIXME: This will likely break with OpCopyObject + hoisting, but we'll have to
// solve it if we ever get there ...
if (op == OpConvertUToAccelerationStructureKHR)
{
auto itr = result_id_to_type.find(args[2]);
if (itr != result_id_to_type.end())
result_type = itr->second;
}
result_id_to_type[result_id] = result_type;
}
switch (op)
{
case OpStore:
{
if (length < 2)
return false;
ID ptr = args[0];
auto *var = compiler.maybe_get_backing_variable(ptr);
// If we store through an access chain, we have a partial write.
if (var)
{
accessed_variables_to_block[var->self].insert(current_block->self);
if (var->self == ptr)
complete_write_variables_to_block[var->self].insert(current_block->self);
else
partial_write_variables_to_block[var->self].insert(current_block->self);
}
// args[0] might be an access chain we have to track use of.
notify_variable_access(args[0], current_block->self);
// Might try to store a Phi variable here.
notify_variable_access(args[1], current_block->self);
break;
}
case OpAccessChain:
case OpInBoundsAccessChain:
case OpPtrAccessChain:
{
if (length < 3)
return false;
// Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers.
uint32_t ptr = args[2];
auto *var = compiler.maybe_get<SPIRVariable>(ptr);
if (var)
{
accessed_variables_to_block[var->self].insert(current_block->self);
rvalue_forward_children[args[1]].insert(var->self);
}
// args[2] might be another access chain we have to track use of.
for (uint32_t i = 2; i < length; i++)
{
notify_variable_access(args[i], current_block->self);
rvalue_forward_children[args[1]].insert(args[i]);
}
// Also keep track of the access chain pointer itself.
// In exceptionally rare cases, we can end up with a case where
// the access chain is generated in the loop body, but is consumed in continue block.
// This means we need complex loop workarounds, and we must detect this via CFG analysis.
notify_variable_access(args[1], current_block->self);
// The result of an access chain is a fixed expression and is not really considered a temporary.
auto &e = compiler.set<SPIRExpression>(args[1], "", args[0], true);
auto *backing_variable = compiler.maybe_get_backing_variable(ptr);
e.loaded_from = backing_variable ? VariableID(backing_variable->self) : VariableID(0);
// Other backends might use SPIRAccessChain for this later.
compiler.ir.ids[args[1]].set_allow_type_rewrite();
access_chain_expressions.insert(args[1]);
break;
}
case OpCopyMemory:
{
if (length < 2)
return false;
ID lhs = args[0];
ID rhs = args[1];
auto *var = compiler.maybe_get_backing_variable(lhs);
// If we store through an access chain, we have a partial write.
if (var)
{
accessed_variables_to_block[var->self].insert(current_block->self);
if (var->self == lhs)
complete_write_variables_to_block[var->self].insert(current_block->self);
else
partial_write_variables_to_block[var->self].insert(current_block->self);
}
// args[0:1] might be access chains we have to track use of.
for (uint32_t i = 0; i < 2; i++)
notify_variable_access(args[i], current_block->self);
var = compiler.maybe_get_backing_variable(rhs);
if (var)
accessed_variables_to_block[var->self].insert(current_block->self);
break;
}
case OpCopyObject:
{
if (length < 3)
return false;
auto *var = compiler.maybe_get_backing_variable(args[2]);
if (var)
accessed_variables_to_block[var->self].insert(current_block->self);
// Might be an access chain which we have to keep track of.
notify_variable_access(args[1], current_block->self);
if (access_chain_expressions.count(args[2]))
access_chain_expressions.insert(args[1]);
// Might try to copy a Phi variable here.
notify_variable_access(args[2], current_block->self);
break;
}
case OpLoad:
{
if (length < 3)
return false;
uint32_t ptr = args[2];
auto *var = compiler.maybe_get_backing_variable(ptr);
if (var)
accessed_variables_to_block[var->self].insert(current_block->self);
// Loaded value is a temporary.
notify_variable_access(args[1], current_block->self);
// Might be an access chain we have to track use of.
notify_variable_access(args[2], current_block->self);
// If we're loading an opaque type we cannot lower it to a temporary,
// we must defer access of args[2] until it's used.
auto &type = compiler.get<SPIRType>(args[0]);
if (compiler.type_is_opaque_value(type))
rvalue_forward_children[args[1]].insert(args[2]);
break;
}
case OpFunctionCall:
{
if (length < 3)
return false;
// Return value may be a temporary.
if (compiler.get_type(args[0]).basetype != SPIRType::Void)
notify_variable_access(args[1], current_block->self);
length -= 3;
args += 3;
for (uint32_t i = 0; i < length; i++)
{
auto *var = compiler.maybe_get_backing_variable(args[i]);
if (var)
{
accessed_variables_to_block[var->self].insert(current_block->self);
// Assume we can get partial writes to this variable.
partial_write_variables_to_block[var->self].insert(current_block->self);
}
// Cannot easily prove if argument we pass to a function is completely written.
// Usually, functions write to a dummy variable,
// which is then copied to in full to the real argument.
// Might try to copy a Phi variable here.
notify_variable_access(args[i], current_block->self);
}
break;
}
case OpSelect:
{
// In case of variable pointers, we might access a variable here.
// We cannot prove anything about these accesses however.
for (uint32_t i = 1; i < length; i++)
{
if (i >= 3)
{
auto *var = compiler.maybe_get_backing_variable(args[i]);
if (var)
{
accessed_variables_to_block[var->self].insert(current_block->self);
// Assume we can get partial writes to this variable.
partial_write_variables_to_block[var->self].insert(current_block->self);
}
}
// Might try to copy a Phi variable here.
notify_variable_access(args[i], current_block->self);
}
break;
}
case OpExtInst:
{
for (uint32_t i = 4; i < length; i++)
notify_variable_access(args[i], current_block->self);
notify_variable_access(args[1], current_block->self);
uint32_t extension_set = args[2];
if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
{
auto op_450 = static_cast<GLSLstd450>(args[3]);
switch (op_450)
{
case GLSLstd450Modf:
case GLSLstd450Frexp:
{
uint32_t ptr = args[5];
auto *var = compiler.maybe_get_backing_variable(ptr);
if (var)
{
accessed_variables_to_block[var->self].insert(current_block->self);
if (var->self == ptr)
complete_write_variables_to_block[var->self].insert(current_block->self);
else
partial_write_variables_to_block[var->self].insert(current_block->self);
}
break;
}
default:
break;
}
}
break;
}
case OpArrayLength:
// Only result is a temporary.
notify_variable_access(args[1], current_block->self);
break;
case OpLine:
case OpNoLine:
// Uses literals, but cannot be a phi variable or temporary, so ignore.
break;
// Atomics shouldn't be able to access function-local variables.
// Some GLSL builtins access a pointer.
case OpCompositeInsert:
case OpVectorShuffle:
// Specialize for opcode which contains literals.
for (uint32_t i = 1; i < 4; i++)
notify_variable_access(args[i], current_block->self);
break;
case OpCompositeExtract:
// Specialize for opcode which contains literals.
for (uint32_t i = 1; i < 3; i++)
notify_variable_access(args[i], current_block->self);
break;
case OpImageWrite:
for (uint32_t i = 0; i < length; i++)
{
// Argument 3 is a literal.
if (i != 3)
notify_variable_access(args[i], current_block->self);
}
break;
case OpImageSampleImplicitLod:
case OpImageSampleExplicitLod:
case OpImageSparseSampleImplicitLod:
case OpImageSparseSampleExplicitLod:
case OpImageSampleProjImplicitLod:
case OpImageSampleProjExplicitLod:
case OpImageSparseSampleProjImplicitLod:
case OpImageSparseSampleProjExplicitLod:
case OpImageFetch:
case OpImageSparseFetch:
case OpImageRead:
case OpImageSparseRead:
for (uint32_t i = 1; i < length; i++)
{
// Argument 4 is a literal.
if (i != 4)
notify_variable_access(args[i], current_block->self);
}
break;
case OpImageSampleDrefImplicitLod:
case OpImageSampleDrefExplicitLod:
case OpImageSparseSampleDrefImplicitLod:
case OpImageSparseSampleDrefExplicitLod:
case OpImageSampleProjDrefImplicitLod:
case OpImageSampleProjDrefExplicitLod:
case OpImageSparseSampleProjDrefImplicitLod:
case OpImageSparseSampleProjDrefExplicitLod:
case OpImageGather:
case OpImageSparseGather:
case OpImageDrefGather:
case OpImageSparseDrefGather:
for (uint32_t i = 1; i < length; i++)
{
// Argument 5 is a literal.
if (i != 5)
notify_variable_access(args[i], current_block->self);
}
break;
default:
{
// Rather dirty way of figuring out where Phi variables are used.
// As long as only IDs are used, we can scan through instructions and try to find any evidence that
// the ID of a variable has been used.
// There are potential false positives here where a literal is used in-place of an ID,
// but worst case, it does not affect the correctness of the compile.
// Exhaustive analysis would be better here, but it's not worth it for now.
for (uint32_t i = 0; i < length; i++)
notify_variable_access(args[i], current_block->self);
break;
}
}
return true;
}
Compiler::StaticExpressionAccessHandler::StaticExpressionAccessHandler(Compiler &compiler_, uint32_t variable_id_)
: compiler(compiler_)
, variable_id(variable_id_)
{
}
bool Compiler::StaticExpressionAccessHandler::follow_function_call(const SPIRFunction &)
{
return false;
}
bool Compiler::StaticExpressionAccessHandler::handle(spv::Op op, const uint32_t *args, uint32_t length)
{
switch (op)
{
case OpStore:
if (length < 2)
return false;
if (args[0] == variable_id)
{
static_expression = args[1];
write_count++;
}
break;
case OpLoad:
if (length < 3)
return false;
if (args[2] == variable_id && static_expression == 0) // Tried to read from variable before it was initialized.
return false;
break;
case OpAccessChain:
case OpInBoundsAccessChain:
case OpPtrAccessChain:
if (length < 3)
return false;
if (args[2] == variable_id) // If we try to access chain our candidate variable before we store to it, bail.
return false;
break;
default:
break;
}
return true;
}
void Compiler::find_function_local_luts(SPIRFunction &entry, const AnalyzeVariableScopeAccessHandler &handler,
bool single_function)
{
auto &cfg = *function_cfgs.find(entry.self)->second;
// For each variable which is statically accessed.
for (auto &accessed_var : handler.accessed_variables_to_block)
{
auto &blocks = accessed_var.second;
auto &var = get<SPIRVariable>(accessed_var.first);
auto &type = expression_type(accessed_var.first);
// Only consider function local variables here.
// If we only have a single function in our CFG, private storage is also fine,
// since it behaves like a function local variable.
bool allow_lut = var.storage == StorageClassFunction || (single_function && var.storage == StorageClassPrivate);
if (!allow_lut)
continue;
// We cannot be a phi variable.
if (var.phi_variable)
continue;
// Only consider arrays here.
if (type.array.empty())
continue;
// If the variable has an initializer, make sure it is a constant expression.
uint32_t static_constant_expression = 0;
if (var.initializer)
{
if (ir.ids[var.initializer].get_type() != TypeConstant)
continue;
static_constant_expression = var.initializer;
// There can be no stores to this variable, we have now proved we have a LUT.
if (handler.complete_write_variables_to_block.count(var.self) != 0 ||
handler.partial_write_variables_to_block.count(var.self) != 0)
continue;
}
else
{
// We can have one, and only one write to the variable, and that write needs to be a constant.
// No partial writes allowed.
if (handler.partial_write_variables_to_block.count(var.self) != 0)
continue;
auto itr = handler.complete_write_variables_to_block.find(var.self);
// No writes?
if (itr == end(handler.complete_write_variables_to_block))
continue;
// We write to the variable in more than one block.
auto &write_blocks = itr->second;
if (write_blocks.size() != 1)
continue;
// The write needs to happen in the dominating block.
DominatorBuilder builder(cfg);
for (auto &block : blocks)
builder.add_block(block);
uint32_t dominator = builder.get_dominator();
// The complete write happened in a branch or similar, cannot deduce static expression.
if (write_blocks.count(dominator) == 0)
continue;
// Find the static expression for this variable.
StaticExpressionAccessHandler static_expression_handler(*this, var.self);
traverse_all_reachable_opcodes(get<SPIRBlock>(dominator), static_expression_handler);
// We want one, and exactly one write
if (static_expression_handler.write_count != 1 || static_expression_handler.static_expression == 0)
continue;
// Is it a constant expression?
if (ir.ids[static_expression_handler.static_expression].get_type() != TypeConstant)
continue;
// We found a LUT!
static_constant_expression = static_expression_handler.static_expression;
}
get<SPIRConstant>(static_constant_expression).is_used_as_lut = true;
var.static_expression = static_constant_expression;
var.statically_assigned = true;
var.remapped_variable = true;
}
}
void Compiler::analyze_variable_scope(SPIRFunction &entry, AnalyzeVariableScopeAccessHandler &handler)
{
// First, we map out all variable access within a function.
// Essentially a map of block -> { variables accessed in the basic block }
traverse_all_reachable_opcodes(entry, handler);
auto &cfg = *function_cfgs.find(entry.self)->second;
// Analyze if there are parameters which need to be implicitly preserved with an "in" qualifier.
analyze_parameter_preservation(entry, cfg, handler.accessed_variables_to_block,
handler.complete_write_variables_to_block);
unordered_map<uint32_t, uint32_t> potential_loop_variables;
// Find the loop dominator block for each block.
for (auto &block_id : entry.blocks)
{
auto &block = get<SPIRBlock>(block_id);
auto itr = ir.continue_block_to_loop_header.find(block_id);
if (itr != end(ir.continue_block_to_loop_header) && itr->second != block_id)
{
// Continue block might be unreachable in the CFG, but we still like to know the loop dominator.
// Edge case is when continue block is also the loop header, don't set the dominator in this case.
block.loop_dominator = itr->second;
}
else
{
uint32_t loop_dominator = cfg.find_loop_dominator(block_id);
if (loop_dominator != block_id)
block.loop_dominator = loop_dominator;
else
block.loop_dominator = SPIRBlock::NoDominator;
}
}
// For each variable which is statically accessed.
for (auto &var : handler.accessed_variables_to_block)
{
// Only deal with variables which are considered local variables in this function.
if (find(begin(entry.local_variables), end(entry.local_variables), VariableID(var.first)) ==
end(entry.local_variables))
continue;
DominatorBuilder builder(cfg);
auto &blocks = var.second;
auto &type = expression_type(var.first);
BlockID potential_continue_block = 0;
// Figure out which block is dominating all accesses of those variables.
for (auto &block : blocks)
{
// If we're accessing a variable inside a continue block, this variable might be a loop variable.
// We can only use loop variables with scalars, as we cannot track static expressions for vectors.
if (is_continue(block))
{
// Potentially awkward case to check for.
// We might have a variable inside a loop, which is touched by the continue block,
// but is not actually a loop variable.
// The continue block is dominated by the inner part of the loop, which does not make sense in high-level
// language output because it will be declared before the body,
// so we will have to lift the dominator up to the relevant loop header instead.
builder.add_block(ir.continue_block_to_loop_header[block]);
// Arrays or structs cannot be loop variables.
if (type.vecsize == 1 && type.columns == 1 && type.basetype != SPIRType::Struct && type.array.empty())
{
// The variable is used in multiple continue blocks, this is not a loop
// candidate, signal that by setting block to -1u.
if (potential_continue_block == 0)
potential_continue_block = block;
else
potential_continue_block = ~(0u);
}
}
builder.add_block(block);
}
builder.lift_continue_block_dominator();
// Add it to a per-block list of variables.
BlockID dominating_block = builder.get_dominator();
if (dominating_block && potential_continue_block != 0 && potential_continue_block != ~0u)
{
auto &inner_block = get<SPIRBlock>(dominating_block);
BlockID merge_candidate = 0;
// Analyze the dominator. If it lives in a different loop scope than the candidate continue
// block, reject the loop variable candidate.
if (inner_block.merge == SPIRBlock::MergeLoop)
merge_candidate = inner_block.merge_block;
else if (inner_block.loop_dominator != SPIRBlock::NoDominator)
merge_candidate = get<SPIRBlock>(inner_block.loop_dominator).merge_block;
if (merge_candidate != 0 && cfg.is_reachable(merge_candidate))
{
// If the merge block has a higher post-visit order, we know that continue candidate
// cannot reach the merge block, and we have two separate scopes.
if (!cfg.is_reachable(potential_continue_block) ||
cfg.get_visit_order(merge_candidate) > cfg.get_visit_order(potential_continue_block))
{
potential_continue_block = 0;
}
}
}
if (potential_continue_block != 0 && potential_continue_block != ~0u)
potential_loop_variables[var.first] = potential_continue_block;
// For variables whose dominating block is inside a loop, there is a risk that these variables
// actually need to be preserved across loop iterations. We can express this by adding
// a "read" access to the loop header.
// In the dominating block, we must see an OpStore or equivalent as the first access of an OpVariable.
// Should that fail, we look for the outermost loop header and tack on an access there.
// Phi nodes cannot have this problem.
if (dominating_block)
{
auto &variable = get<SPIRVariable>(var.first);
if (!variable.phi_variable)
{
auto *block = &get<SPIRBlock>(dominating_block);
bool preserve = may_read_undefined_variable_in_block(*block, var.first);
if (preserve)
{
// Find the outermost loop scope.
while (block->loop_dominator != BlockID(SPIRBlock::NoDominator))
block = &get<SPIRBlock>(block->loop_dominator);
if (block->self != dominating_block)
{
builder.add_block(block->self);
dominating_block = builder.get_dominator();
}
}
}
}
// If all blocks here are dead code, this will be 0, so the variable in question
// will be completely eliminated.
if (dominating_block)
{
auto &block = get<SPIRBlock>(dominating_block);
block.dominated_variables.push_back(var.first);
get<SPIRVariable>(var.first).dominator = dominating_block;
}
}
for (auto &var : handler.accessed_temporaries_to_block)
{
auto itr = handler.result_id_to_type.find(var.first);
if (itr == end(handler.result_id_to_type))
{
// We found a false positive ID being used, ignore.
// This should probably be an assert.
continue;
}
// There is no point in doing domination analysis for opaque types.
auto &type = get<SPIRType>(itr->second);
if (type_is_opaque_value(type))
continue;
DominatorBuilder builder(cfg);
bool force_temporary = false;
bool used_in_header_hoisted_continue_block = false;
// Figure out which block is dominating all accesses of those temporaries.
auto &blocks = var.second;
for (auto &block : blocks)
{
builder.add_block(block);
if (blocks.size() != 1 && is_continue(block))
{
// The risk here is that inner loop can dominate the continue block.
// Any temporary we access in the continue block must be declared before the loop.
// This is moot for complex loops however.
auto &loop_header_block = get<SPIRBlock>(ir.continue_block_to_loop_header[block]);
assert(loop_header_block.merge == SPIRBlock::MergeLoop);
builder.add_block(loop_header_block.self);
used_in_header_hoisted_continue_block = true;
}
}
uint32_t dominating_block = builder.get_dominator();
if (blocks.size() != 1 && is_single_block_loop(dominating_block))
{
// Awkward case, because the loop header is also the continue block,
// so hoisting to loop header does not help.
force_temporary = true;
}
if (dominating_block)
{
// If we touch a variable in the dominating block, this is the expected setup.
// SPIR-V normally mandates this, but we have extra cases for temporary use inside loops.
bool first_use_is_dominator = blocks.count(dominating_block) != 0;
if (!first_use_is_dominator || force_temporary)
{
if (handler.access_chain_expressions.count(var.first))
{
// Exceptionally rare case.
// We cannot declare temporaries of access chains (except on MSL perhaps with pointers).
// Rather than do that, we force the indexing expressions to be declared in the right scope by
// tracking their usage to that end. There is no temporary to hoist.
// However, we still need to observe declaration order of the access chain.
if (used_in_header_hoisted_continue_block)
{
// For this scenario, we used an access chain inside a continue block where we also registered an access to header block.
// This is a problem as we need to declare an access chain properly first with full definition.
// We cannot use temporaries for these expressions,
// so we must make sure the access chain is declared ahead of time.
// Force a complex for loop to deal with this.
// TODO: Out-of-order declaring for loops where continue blocks are emitted last might be another option.
auto &loop_header_block = get<SPIRBlock>(dominating_block);
assert(loop_header_block.merge == SPIRBlock::MergeLoop);
loop_header_block.complex_continue = true;
}
}
else
{
// This should be very rare, but if we try to declare a temporary inside a loop,
// and that temporary is used outside the loop as well (spirv-opt inliner likes this)
// we should actually emit the temporary outside the loop.
hoisted_temporaries.insert(var.first);
forced_temporaries.insert(var.first);
auto &block_temporaries = get<SPIRBlock>(dominating_block).declare_temporary;
block_temporaries.emplace_back(handler.result_id_to_type[var.first], var.first);
}
}
else if (blocks.size() > 1)
{
// Keep track of the temporary as we might have to declare this temporary.
// This can happen if the loop header dominates a temporary, but we have a complex fallback loop.
// In this case, the header is actually inside the for (;;) {} block, and we have problems.
// What we need to do is hoist the temporaries outside the for (;;) {} block in case the header block
// declares the temporary.
auto &block_temporaries = get<SPIRBlock>(dominating_block).potential_declare_temporary;
block_temporaries.emplace_back(handler.result_id_to_type[var.first], var.first);
}
}
}
unordered_set<uint32_t> seen_blocks;
// Now, try to analyze whether or not these variables are actually loop variables.
for (auto &loop_variable : potential_loop_variables)
{
auto &var = get<SPIRVariable>(loop_variable.first);
auto dominator = var.dominator;
BlockID block = loop_variable.second;
// The variable was accessed in multiple continue blocks, ignore.
if (block == BlockID(~(0u)) || block == BlockID(0))
continue;
// Dead code.
if (dominator == ID(0))
continue;
BlockID header = 0;
// Find the loop header for this block if we are a continue block.
{
auto itr = ir.continue_block_to_loop_header.find(block);
if (itr != end(ir.continue_block_to_loop_header))
{
header = itr->second;
}
else if (get<SPIRBlock>(block).continue_block == block)
{
// Also check for self-referential continue block.
header = block;
}
}
assert(header);
auto &header_block = get<SPIRBlock>(header);
auto &blocks = handler.accessed_variables_to_block[loop_variable.first];
// If a loop variable is not used before the loop, it's probably not a loop variable.
bool has_accessed_variable = blocks.count(header) != 0;
// Now, there are two conditions we need to meet for the variable to be a loop variable.
// 1. The dominating block must have a branch-free path to the loop header,
// this way we statically know which expression should be part of the loop variable initializer.
// Walk from the dominator, if there is one straight edge connecting
// dominator and loop header, we statically know the loop initializer.
bool static_loop_init = true;
while (dominator != header)
{
if (blocks.count(dominator) != 0)
has_accessed_variable = true;
auto &succ = cfg.get_succeeding_edges(dominator);
if (succ.size() != 1)
{
static_loop_init = false;
break;
}
auto &pred = cfg.get_preceding_edges(succ.front());
if (pred.size() != 1 || pred.front() != dominator)
{
static_loop_init = false;
break;
}
dominator = succ.front();
}
if (!static_loop_init || !has_accessed_variable)
continue;
// The second condition we need to meet is that no access after the loop
// merge can occur. Walk the CFG to see if we find anything.
seen_blocks.clear();
cfg.walk_from(seen_blocks, header_block.merge_block, [&](uint32_t walk_block) -> bool {
// We found a block which accesses the variable outside the loop.
if (blocks.find(walk_block) != end(blocks))
static_loop_init = false;
return true;
});
if (!static_loop_init)
continue;
// We have a loop variable.
header_block.loop_variables.push_back(loop_variable.first);
// Need to sort here as variables come from an unordered container, and pushing stuff in wrong order
// will break reproducability in regression runs.
sort(begin(header_block.loop_variables), end(header_block.loop_variables));
get<SPIRVariable>(loop_variable.first).loop_variable = true;
}
}
bool Compiler::may_read_undefined_variable_in_block(const SPIRBlock &block, uint32_t var)
{
for (auto &op : block.ops)
{
auto *ops = stream(op);
switch (op.op)
{
case OpStore:
case OpCopyMemory:
if (ops[0] == var)
return false;
break;
case OpAccessChain:
case OpInBoundsAccessChain:
case OpPtrAccessChain:
// Access chains are generally used to partially read and write. It's too hard to analyze
// if all constituents are written fully before continuing, so just assume it's preserved.
// This is the same as the parameter preservation analysis.
if (ops[2] == var)
return true;
break;
case OpSelect:
// Variable pointers.
// We might read before writing.
if (ops[3] == var || ops[4] == var)
return true;
break;
case OpPhi:
{
// Variable pointers.
// We might read before writing.
if (op.length < 2)
break;
uint32_t count = op.length - 2;
for (uint32_t i = 0; i < count; i += 2)
if (ops[i + 2] == var)
return true;
break;
}
case OpCopyObject:
case OpLoad:
if (ops[2] == var)
return true;
break;
case OpFunctionCall:
{
if (op.length < 3)
break;
// May read before writing.
uint32_t count = op.length - 3;
for (uint32_t i = 0; i < count; i++)
if (ops[i + 3] == var)
return true;
break;
}
default:
break;
}
}
// Not accessed somehow, at least not in a usual fashion.
// It's likely accessed in a branch, so assume we must preserve.
return true;
}
Bitset Compiler::get_buffer_block_flags(VariableID id) const
{
return ir.get_buffer_block_flags(get<SPIRVariable>(id));
}
bool Compiler::get_common_basic_type(const SPIRType &type, SPIRType::BaseType &base_type)
{
if (type.basetype == SPIRType::Struct)
{
base_type = SPIRType::Unknown;
for (auto &member_type : type.member_types)
{
SPIRType::BaseType member_base;
if (!get_common_basic_type(get<SPIRType>(member_type), member_base))
return false;
if (base_type == SPIRType::Unknown)
base_type = member_base;
else if (base_type != member_base)
return false;
}
return true;
}
else
{
base_type = type.basetype;
return true;
}
}
void Compiler::ActiveBuiltinHandler::handle_builtin(const SPIRType &type, BuiltIn builtin,
const Bitset &decoration_flags)
{
// If used, we will need to explicitly declare a new array size for these builtins.
if (builtin == BuiltInClipDistance)
{
if (!type.array_size_literal[0])
SPIRV_CROSS_THROW("Array size for ClipDistance must be a literal.");
uint32_t array_size = type.array[0];
if (array_size == 0)
SPIRV_CROSS_THROW("Array size for ClipDistance must not be unsized.");
compiler.clip_distance_count = array_size;
}
else if (builtin == BuiltInCullDistance)
{
if (!type.array_size_literal[0])
SPIRV_CROSS_THROW("Array size for CullDistance must be a literal.");
uint32_t array_size = type.array[0];
if (array_size == 0)
SPIRV_CROSS_THROW("Array size for CullDistance must not be unsized.");
compiler.cull_distance_count = array_size;
}
else if (builtin == BuiltInPosition)
{
if (decoration_flags.get(DecorationInvariant))
compiler.position_invariant = true;
}
}
void Compiler::ActiveBuiltinHandler::add_if_builtin(uint32_t id, bool allow_blocks)
{
// Only handle plain variables here.
// Builtins which are part of a block are handled in AccessChain.
// If allow_blocks is used however, this is to handle initializers of blocks,
// which implies that all members are written to.
auto *var = compiler.maybe_get<SPIRVariable>(id);
auto *m = compiler.ir.find_meta(id);
if (var && m)
{
auto &type = compiler.get<SPIRType>(var->basetype);
auto &decorations = m->decoration;
auto &flags = type.storage == StorageClassInput ?
compiler.active_input_builtins : compiler.active_output_builtins;
if (decorations.builtin)
{
flags.set(decorations.builtin_type);
handle_builtin(type, decorations.builtin_type, decorations.decoration_flags);
}
else if (allow_blocks && compiler.has_decoration(type.self, DecorationBlock))
{
uint32_t member_count = uint32_t(type.member_types.size());
for (uint32_t i = 0; i < member_count; i++)
{
if (compiler.has_member_decoration(type.self, i, DecorationBuiltIn))
{
auto &member_type = compiler.get<SPIRType>(type.member_types[i]);
BuiltIn builtin = BuiltIn(compiler.get_member_decoration(type.self, i, DecorationBuiltIn));
flags.set(builtin);
handle_builtin(member_type, builtin, compiler.get_member_decoration_bitset(type.self, i));
}
}
}
}
}
void Compiler::ActiveBuiltinHandler::add_if_builtin(uint32_t id)
{
add_if_builtin(id, false);
}
void Compiler::ActiveBuiltinHandler::add_if_builtin_or_block(uint32_t id)
{
add_if_builtin(id, true);
}
bool Compiler::ActiveBuiltinHandler::handle(spv::Op opcode, const uint32_t *args, uint32_t length)
{
switch (opcode)
{
case OpStore:
if (length < 1)
return false;
add_if_builtin(args[0]);
break;
case OpCopyMemory:
if (length < 2)
return false;
add_if_builtin(args[0]);
add_if_builtin(args[1]);
break;
case OpCopyObject:
case OpLoad:
if (length < 3)
return false;
add_if_builtin(args[2]);
break;
case OpSelect:
if (length < 5)
return false;
add_if_builtin(args[3]);
add_if_builtin(args[4]);
break;
case OpPhi:
{
if (length < 2)
return false;
uint32_t count = length - 2;
args += 2;
for (uint32_t i = 0; i < count; i += 2)
add_if_builtin(args[i]);
break;
}
case OpFunctionCall:
{
if (length < 3)
return false;
uint32_t count = length - 3;
args += 3;
for (uint32_t i = 0; i < count; i++)
add_if_builtin(args[i]);
break;
}
case OpAccessChain:
case OpInBoundsAccessChain:
case OpPtrAccessChain:
{
if (length < 4)
return false;
// Only consider global variables, cannot consider variables in functions yet, or other
// access chains as they have not been created yet.
auto *var = compiler.maybe_get<SPIRVariable>(args[2]);
if (!var)
break;
// Required if we access chain into builtins like gl_GlobalInvocationID.
add_if_builtin(args[2]);
// Start traversing type hierarchy at the proper non-pointer types.
auto *type = &compiler.get_variable_data_type(*var);
auto &flags =
var->storage == StorageClassInput ? compiler.active_input_builtins : compiler.active_output_builtins;
uint32_t count = length - 3;
args += 3;
for (uint32_t i = 0; i < count; i++)
{
// Pointers
if (opcode == OpPtrAccessChain && i == 0)
{
type = &compiler.get<SPIRType>(type->parent_type);
continue;
}
// Arrays
if (!type->array.empty())
{
type = &compiler.get<SPIRType>(type->parent_type);
}
// Structs
else if (type->basetype == SPIRType::Struct)
{
uint32_t index = compiler.get<SPIRConstant>(args[i]).scalar();
if (index < uint32_t(compiler.ir.meta[type->self].members.size()))
{
auto &decorations = compiler.ir.meta[type->self].members[index];
if (decorations.builtin)
{
flags.set(decorations.builtin_type);
handle_builtin(compiler.get<SPIRType>(type->member_types[index]), decorations.builtin_type,
decorations.decoration_flags);
}
}
type = &compiler.get<SPIRType>(type->member_types[index]);
}
else
{
// No point in traversing further. We won't find any extra builtins.
break;
}
}
break;
}
default:
break;
}
return true;
}
void Compiler::update_active_builtins()
{
active_input_builtins.reset();
active_output_builtins.reset();
cull_distance_count = 0;
clip_distance_count = 0;
ActiveBuiltinHandler handler(*this);
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) {
if (var.storage != StorageClassOutput)
return;
if (!interface_variable_exists_in_entry_point(var.self))
return;
// Also, make sure we preserve output variables which are only initialized, but never accessed by any code.
if (var.initializer != ID(0))
handler.add_if_builtin_or_block(var.self);
});
}
// Returns whether this shader uses a builtin of the storage class
bool Compiler::has_active_builtin(BuiltIn builtin, StorageClass storage) const
{
const Bitset *flags;
switch (storage)
{
case StorageClassInput:
flags = &active_input_builtins;
break;
case StorageClassOutput:
flags = &active_output_builtins;
break;
default:
return false;
}
return flags->get(builtin);
}
void Compiler::analyze_image_and_sampler_usage()
{
CombinedImageSamplerDrefHandler dref_handler(*this);
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), dref_handler);
CombinedImageSamplerUsageHandler handler(*this, dref_handler.dref_combined_samplers);
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
// Need to run this traversal twice. First time, we propagate any comparison sampler usage from leaf functions
// down to main().
// In the second pass, we can propagate up forced depth state coming from main() up into leaf functions.
handler.dependency_hierarchy.clear();
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
comparison_ids = std::move(handler.comparison_ids);
need_subpass_input = handler.need_subpass_input;
need_subpass_input_ms = handler.need_subpass_input_ms;
// Forward information from separate images and samplers into combined image samplers.
for (auto &combined : combined_image_samplers)
if (comparison_ids.count(combined.sampler_id))
comparison_ids.insert(combined.combined_id);
}
bool Compiler::CombinedImageSamplerDrefHandler::handle(spv::Op opcode, const uint32_t *args, uint32_t)
{
// Mark all sampled images which are used with Dref.
switch (opcode)
{
case OpImageSampleDrefExplicitLod:
case OpImageSampleDrefImplicitLod:
case OpImageSampleProjDrefExplicitLod:
case OpImageSampleProjDrefImplicitLod:
case OpImageSparseSampleProjDrefImplicitLod:
case OpImageSparseSampleDrefImplicitLod:
case OpImageSparseSampleProjDrefExplicitLod:
case OpImageSparseSampleDrefExplicitLod:
case OpImageDrefGather:
case OpImageSparseDrefGather:
dref_combined_samplers.insert(args[2]);
return true;
default:
break;
}
return true;
}
const CFG &Compiler::get_cfg_for_current_function() const
{
assert(current_function);
return get_cfg_for_function(current_function->self);
}
const CFG &Compiler::get_cfg_for_function(uint32_t id) const
{
auto cfg_itr = function_cfgs.find(id);
assert(cfg_itr != end(function_cfgs));
assert(cfg_itr->second);
return *cfg_itr->second;
}
void Compiler::build_function_control_flow_graphs_and_analyze()
{
CFGBuilder handler(*this);
handler.function_cfgs[ir.default_entry_point].reset(new CFG(*this, get<SPIRFunction>(ir.default_entry_point)));
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
function_cfgs = std::move(handler.function_cfgs);
bool single_function = function_cfgs.size() <= 1;
for (auto &f : function_cfgs)
{
auto &func = get<SPIRFunction>(f.first);
AnalyzeVariableScopeAccessHandler scope_handler(*this, func);
analyze_variable_scope(func, scope_handler);
find_function_local_luts(func, scope_handler, single_function);
// Check if we can actually use the loop variables we found in analyze_variable_scope.
// To use multiple initializers, we need the same type and qualifiers.
for (auto block : func.blocks)
{
auto &b = get<SPIRBlock>(block);
if (b.loop_variables.size() < 2)
continue;
auto &flags = get_decoration_bitset(b.loop_variables.front());
uint32_t type = get<SPIRVariable>(b.loop_variables.front()).basetype;
bool invalid_initializers = false;
for (auto loop_variable : b.loop_variables)
{
if (flags != get_decoration_bitset(loop_variable) ||
type != get<SPIRVariable>(b.loop_variables.front()).basetype)
{
invalid_initializers = true;
break;
}
}
if (invalid_initializers)
{
for (auto loop_variable : b.loop_variables)
get<SPIRVariable>(loop_variable).loop_variable = false;
b.loop_variables.clear();
}
}
}
}
Compiler::CFGBuilder::CFGBuilder(Compiler &compiler_)
: compiler(compiler_)
{
}
bool Compiler::CFGBuilder::handle(spv::Op, const uint32_t *, uint32_t)
{
return true;
}
bool Compiler::CFGBuilder::follow_function_call(const SPIRFunction &func)
{
if (function_cfgs.find(func.self) == end(function_cfgs))
{
function_cfgs[func.self].reset(new CFG(compiler, func));
return true;
}
else
return false;
}
void Compiler::CombinedImageSamplerUsageHandler::add_dependency(uint32_t dst, uint32_t src)
{
dependency_hierarchy[dst].insert(src);
// Propagate up any comparison state if we're loading from one such variable.
if (comparison_ids.count(src))
comparison_ids.insert(dst);
}
bool Compiler::CombinedImageSamplerUsageHandler::begin_function_scope(const uint32_t *args, uint32_t length)
{
if (length < 3)
return false;
auto &func = compiler.get<SPIRFunction>(args[2]);
const auto *arg = &args[3];
length -= 3;
for (uint32_t i = 0; i < length; i++)
{
auto &argument = func.arguments[i];
add_dependency(argument.id, arg[i]);
}
return true;
}
void Compiler::CombinedImageSamplerUsageHandler::add_hierarchy_to_comparison_ids(uint32_t id)
{
// Traverse the variable dependency hierarchy and tag everything in its path with comparison ids.
comparison_ids.insert(id);
for (auto &dep_id : dependency_hierarchy[id])
add_hierarchy_to_comparison_ids(dep_id);
}
bool Compiler::CombinedImageSamplerUsageHandler::handle(Op opcode, const uint32_t *args, uint32_t length)
{
switch (opcode)
{
case OpAccessChain:
case OpInBoundsAccessChain:
case OpPtrAccessChain:
case OpLoad:
{
if (length < 3)
return false;
add_dependency(args[1], args[2]);
// Ideally defer this to OpImageRead, but then we'd need to track loaded IDs.
// If we load an image, we're going to use it and there is little harm in declaring an unused gl_FragCoord.
auto &type = compiler.get<SPIRType>(args[0]);
if (type.image.dim == DimSubpassData)
{
need_subpass_input = true;
if (type.image.ms)
need_subpass_input_ms = true;
}
// If we load a SampledImage and it will be used with Dref, propagate the state up.
if (dref_combined_samplers.count(args[1]) != 0)
add_hierarchy_to_comparison_ids(args[1]);
break;
}
case OpSampledImage:
{
if (length < 4)
return false;
// If the underlying resource has been used for comparison then duplicate loads of that resource must be too.
// This image must be a depth image.
uint32_t result_id = args[1];
uint32_t image = args[2];
uint32_t sampler = args[3];
if (dref_combined_samplers.count(result_id) != 0)
{
add_hierarchy_to_comparison_ids(image);
// This sampler must be a SamplerComparisonState, and not a regular SamplerState.
add_hierarchy_to_comparison_ids(sampler);
// Mark the OpSampledImage itself as being comparison state.
comparison_ids.insert(result_id);
}
return true;
}
default:
break;
}
return true;
}
bool Compiler::buffer_is_hlsl_counter_buffer(VariableID id) const
{
auto *m = ir.find_meta(id);
return m && m->hlsl_is_magic_counter_buffer;
}
bool Compiler::buffer_get_hlsl_counter_buffer(VariableID id, uint32_t &counter_id) const
{
auto *m = ir.find_meta(id);
// First, check for the proper decoration.
if (m && m->hlsl_magic_counter_buffer != 0)
{
counter_id = m->hlsl_magic_counter_buffer;
return true;
}
else
return false;
}
void Compiler::make_constant_null(uint32_t id, uint32_t type)
{
auto &constant_type = get<SPIRType>(type);
if (constant_type.pointer)
{
auto &constant = set<SPIRConstant>(id, type);
constant.make_null(constant_type);
}
else if (!constant_type.array.empty())
{
assert(constant_type.parent_type);
uint32_t parent_id = ir.increase_bound_by(1);
make_constant_null(parent_id, constant_type.parent_type);
if (!constant_type.array_size_literal.back())
SPIRV_CROSS_THROW("Array size of OpConstantNull must be a literal.");
SmallVector<uint32_t> elements(constant_type.array.back());
for (uint32_t i = 0; i < constant_type.array.back(); i++)
elements[i] = parent_id;
set<SPIRConstant>(id, type, elements.data(), uint32_t(elements.size()), false);
}
else if (!constant_type.member_types.empty())
{
uint32_t member_ids = ir.increase_bound_by(uint32_t(constant_type.member_types.size()));
SmallVector<uint32_t> elements(constant_type.member_types.size());
for (uint32_t i = 0; i < constant_type.member_types.size(); i++)
{
make_constant_null(member_ids + i, constant_type.member_types[i]);
elements[i] = member_ids + i;
}
set<SPIRConstant>(id, type, elements.data(), uint32_t(elements.size()), false);
}
else
{
auto &constant = set<SPIRConstant>(id, type);
constant.make_null(constant_type);
}
}
const SmallVector<spv::Capability> &Compiler::get_declared_capabilities() const
{
return ir.declared_capabilities;
}
const SmallVector<std::string> &Compiler::get_declared_extensions() const
{
return ir.declared_extensions;
}
std::string Compiler::get_remapped_declared_block_name(VariableID id) const
{
return get_remapped_declared_block_name(id, false);
}
std::string Compiler::get_remapped_declared_block_name(uint32_t id, bool fallback_prefer_instance_name) const
{
auto itr = declared_block_names.find(id);
if (itr != end(declared_block_names))
{
return itr->second;
}
else
{
auto &var = get<SPIRVariable>(id);
if (fallback_prefer_instance_name)
{
return to_name(var.self);
}
else
{
auto &type = get<SPIRType>(var.basetype);
auto *type_meta = ir.find_meta(type.self);
auto *block_name = type_meta ? &type_meta->decoration.alias : nullptr;
return (!block_name || block_name->empty()) ? get_block_fallback_name(id) : *block_name;
}
}
}
bool Compiler::reflection_ssbo_instance_name_is_significant() const
{
if (ir.source.known)
{
// UAVs from HLSL source tend to be declared in a way where the type is reused
// but the instance name is significant, and that's the name we should report.
// For GLSL, SSBOs each have their own block type as that's how GLSL is written.
return ir.source.hlsl;
}
unordered_set<uint32_t> ssbo_type_ids;
bool aliased_ssbo_types = false;
// If we don't have any OpSource information, we need to perform some shaky heuristics.
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) {
auto &type = this->get<SPIRType>(var.basetype);
if (!type.pointer || var.storage == StorageClassFunction)
return;
bool ssbo = var.storage == StorageClassStorageBuffer ||
(var.storage == StorageClassUniform && has_decoration(type.self, DecorationBufferBlock));
if (ssbo)
{
if (ssbo_type_ids.count(type.self))
aliased_ssbo_types = true;
else
ssbo_type_ids.insert(type.self);
}
});
// If the block name is aliased, assume we have HLSL-style UAV declarations.
return aliased_ssbo_types;
}
bool Compiler::instruction_to_result_type(uint32_t &result_type, uint32_t &result_id, spv::Op op,
const uint32_t *args, uint32_t length)
{
if (length < 2)
return false;
bool has_result_id = false, has_result_type = false;
HasResultAndType(op, &has_result_id, &has_result_type);
if (has_result_id && has_result_type)
{
result_type = args[0];
result_id = args[1];
return true;
}
else
return false;
}
Bitset Compiler::combined_decoration_for_member(const SPIRType &type, uint32_t index) const
{
Bitset flags;
auto *type_meta = ir.find_meta(type.self);
if (type_meta)
{
auto &members = type_meta->members;
if (index >= members.size())
return flags;
auto &dec = members[index];
flags.merge_or(dec.decoration_flags);
auto &member_type = get<SPIRType>(type.member_types[index]);
// If our member type is a struct, traverse all the child members as well recursively.
auto &member_childs = member_type.member_types;
for (uint32_t i = 0; i < member_childs.size(); i++)
{
auto &child_member_type = get<SPIRType>(member_childs[i]);
if (!child_member_type.pointer)
flags.merge_or(combined_decoration_for_member(member_type, i));
}
}
return flags;
}
bool Compiler::is_desktop_only_format(spv::ImageFormat format)
{
switch (format)
{
// Desktop-only formats
case ImageFormatR11fG11fB10f:
case ImageFormatR16f:
case ImageFormatRgb10A2:
case ImageFormatR8:
case ImageFormatRg8:
case ImageFormatR16:
case ImageFormatRg16:
case ImageFormatRgba16:
case ImageFormatR16Snorm:
case ImageFormatRg16Snorm:
case ImageFormatRgba16Snorm:
case ImageFormatR8Snorm:
case ImageFormatRg8Snorm:
case ImageFormatR8ui:
case ImageFormatRg8ui:
case ImageFormatR16ui:
case ImageFormatRgb10a2ui:
case ImageFormatR8i:
case ImageFormatRg8i:
case ImageFormatR16i:
return true;
default:
break;
}
return false;
}
// An image is determined to be a depth image if it is marked as a depth image and is not also
// explicitly marked with a color format, or if there are any sample/gather compare operations on it.
bool Compiler::is_depth_image(const SPIRType &type, uint32_t id) const
{
return (type.image.depth && type.image.format == ImageFormatUnknown) || comparison_ids.count(id);
}
bool Compiler::type_is_opaque_value(const SPIRType &type) const
{
return !type.pointer && (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Image ||
type.basetype == SPIRType::Sampler);
}
// Make these member functions so we can easily break on any force_recompile events.
void Compiler::force_recompile()
{
is_force_recompile = true;
}
void Compiler::force_recompile_guarantee_forward_progress()
{
force_recompile();
is_force_recompile_forward_progress = true;
}
bool Compiler::is_forcing_recompilation() const
{
return is_force_recompile;
}
void Compiler::clear_force_recompile()
{
is_force_recompile = false;
is_force_recompile_forward_progress = false;
}
Compiler::PhysicalStorageBufferPointerHandler::PhysicalStorageBufferPointerHandler(Compiler &compiler_)
: compiler(compiler_)
{
}
Compiler::PhysicalBlockMeta *Compiler::PhysicalStorageBufferPointerHandler::find_block_meta(uint32_t id) const
{
auto chain_itr = access_chain_to_physical_block.find(id);
if (chain_itr != access_chain_to_physical_block.end())
return chain_itr->second;
else
return nullptr;
}
void Compiler::PhysicalStorageBufferPointerHandler::mark_aligned_access(uint32_t id, const uint32_t *args, uint32_t length)
{
uint32_t mask = *args;
args++;
length--;
if (length && (mask & MemoryAccessVolatileMask) != 0)
{
args++;
length--;
}
if (length && (mask & MemoryAccessAlignedMask) != 0)
{
uint32_t alignment = *args;
auto *meta = find_block_meta(id);
// This makes the assumption that the application does not rely on insane edge cases like:
// Bind buffer with ADDR = 8, use block offset of 8 bytes, load/store with 16 byte alignment.
// If we emit the buffer with alignment = 16 here, the first element at offset = 0 should
// actually have alignment of 8 bytes, but this is too theoretical and awkward to support.
// We could potentially keep track of any offset in the access chain, but it's
// practically impossible for high level compilers to emit code like that,
// so deducing overall alignment requirement based on maximum observed Alignment value is probably fine.
if (meta && alignment > meta->alignment)
meta->alignment = alignment;
}
}
bool Compiler::PhysicalStorageBufferPointerHandler::type_is_bda_block_entry(uint32_t type_id) const
{
auto &type = compiler.get<SPIRType>(type_id);
return type.storage == StorageClassPhysicalStorageBufferEXT && type.pointer &&
type.pointer_depth == 1 && !compiler.type_is_array_of_pointers(type);
}
uint32_t Compiler::PhysicalStorageBufferPointerHandler::get_minimum_scalar_alignment(const SPIRType &type) const
{
if (type.storage == spv::StorageClassPhysicalStorageBufferEXT)
return 8;
else if (type.basetype == SPIRType::Struct)
{
uint32_t alignment = 0;
for (auto &member_type : type.member_types)
{
uint32_t member_align = get_minimum_scalar_alignment(compiler.get<SPIRType>(member_type));
if (member_align > alignment)
alignment = member_align;
}
return alignment;
}
else
return type.width / 8;
}
void Compiler::PhysicalStorageBufferPointerHandler::setup_meta_chain(uint32_t type_id, uint32_t var_id)
{
if (type_is_bda_block_entry(type_id))
{
auto &meta = physical_block_type_meta[type_id];
access_chain_to_physical_block[var_id] = &meta;
auto &type = compiler.get<SPIRType>(type_id);
if (type.basetype != SPIRType::Struct)
non_block_types.insert(type_id);
if (meta.alignment == 0)
meta.alignment = get_minimum_scalar_alignment(compiler.get_pointee_type(type));
}
}
bool Compiler::PhysicalStorageBufferPointerHandler::handle(Op op, const uint32_t *args, uint32_t length)
{
// When a BDA pointer comes to life, we need to keep a mapping of SSA ID -> type ID for the pointer type.
// For every load and store, we'll need to be able to look up the type ID being accessed and mark any alignment
// requirements.
switch (op)
{
case OpConvertUToPtr:
case OpBitcast:
case OpCompositeExtract:
// Extract can begin a new chain if we had a struct or array of pointers as input.
// We don't begin chains before we have a pure scalar pointer.
setup_meta_chain(args[0], args[1]);
break;
case OpAccessChain:
case OpInBoundsAccessChain:
case OpPtrAccessChain:
case OpCopyObject:
{
auto itr = access_chain_to_physical_block.find(args[2]);
if (itr != access_chain_to_physical_block.end())
access_chain_to_physical_block[args[1]] = itr->second;
break;
}
case OpLoad:
{
setup_meta_chain(args[0], args[1]);
if (length >= 4)
mark_aligned_access(args[2], args + 3, length - 3);
break;
}
case OpStore:
{
if (length >= 3)
mark_aligned_access(args[0], args + 2, length - 2);
break;
}
default:
break;
}
return true;
}
uint32_t Compiler::PhysicalStorageBufferPointerHandler::get_base_non_block_type_id(uint32_t type_id) const
{
auto *type = &compiler.get<SPIRType>(type_id);
while (type->pointer &&
type->storage == StorageClassPhysicalStorageBufferEXT &&
!type_is_bda_block_entry(type_id))
{
type_id = type->parent_type;
type = &compiler.get<SPIRType>(type_id);
}
assert(type_is_bda_block_entry(type_id));
return type_id;
}
void Compiler::PhysicalStorageBufferPointerHandler::analyze_non_block_types_from_block(const SPIRType &type)
{
for (auto &member : type.member_types)
{
auto &subtype = compiler.get<SPIRType>(member);
if (subtype.basetype != SPIRType::Struct && subtype.pointer &&
subtype.storage == spv::StorageClassPhysicalStorageBufferEXT)
{
non_block_types.insert(get_base_non_block_type_id(member));
}
else if (subtype.basetype == SPIRType::Struct && !subtype.pointer)
analyze_non_block_types_from_block(subtype);
}
}
void Compiler::analyze_non_block_pointer_types()
{
PhysicalStorageBufferPointerHandler handler(*this);
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
// Analyze any block declaration we have to make. It might contain
// physical pointers to POD types which we never used, and thus never added to the list.
// We'll need to add those pointer types to the set of types we declare.
ir.for_each_typed_id<SPIRType>([&](uint32_t, SPIRType &type) {
if (has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock))
handler.analyze_non_block_types_from_block(type);
});
physical_storage_non_block_pointer_types.reserve(handler.non_block_types.size());
for (auto type : handler.non_block_types)
physical_storage_non_block_pointer_types.push_back(type);
sort(begin(physical_storage_non_block_pointer_types), end(physical_storage_non_block_pointer_types));
physical_storage_type_to_alignment = std::move(handler.physical_block_type_meta);
}
bool Compiler::InterlockedResourceAccessPrepassHandler::handle(Op op, const uint32_t *, uint32_t)
{
if (op == OpBeginInvocationInterlockEXT || op == OpEndInvocationInterlockEXT)
{
if (interlock_function_id != 0 && interlock_function_id != call_stack.back())
{
// Most complex case, we have no sensible way of dealing with this
// other than taking the 100% conservative approach, exit early.
split_function_case = true;
return false;
}
else
{
interlock_function_id = call_stack.back();
// If this call is performed inside control flow we have a problem.
auto &cfg = compiler.get_cfg_for_function(interlock_function_id);
uint32_t from_block_id = compiler.get<SPIRFunction>(interlock_function_id).entry_block;
bool outside_control_flow = cfg.node_terminates_control_flow_in_sub_graph(from_block_id, current_block_id);
if (!outside_control_flow)
control_flow_interlock = true;
}
}
return true;
}
void Compiler::InterlockedResourceAccessPrepassHandler::rearm_current_block(const SPIRBlock &block)
{
current_block_id = block.self;
}
bool Compiler::InterlockedResourceAccessPrepassHandler::begin_function_scope(const uint32_t *args, uint32_t length)
{
if (length < 3)
return false;
call_stack.push_back(args[2]);
return true;
}
bool Compiler::InterlockedResourceAccessPrepassHandler::end_function_scope(const uint32_t *, uint32_t)
{
call_stack.pop_back();
return true;
}
bool Compiler::InterlockedResourceAccessHandler::begin_function_scope(const uint32_t *args, uint32_t length)
{
if (length < 3)
return false;
if (args[2] == interlock_function_id)
call_stack_is_interlocked = true;
call_stack.push_back(args[2]);
return true;
}
bool Compiler::InterlockedResourceAccessHandler::end_function_scope(const uint32_t *, uint32_t)
{
if (call_stack.back() == interlock_function_id)
call_stack_is_interlocked = false;
call_stack.pop_back();
return true;
}
void Compiler::InterlockedResourceAccessHandler::access_potential_resource(uint32_t id)
{
if ((use_critical_section && in_crit_sec) || (control_flow_interlock && call_stack_is_interlocked) ||
split_function_case)
{
compiler.interlocked_resources.insert(id);
}
}
bool Compiler::InterlockedResourceAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length)
{
// Only care about critical section analysis if we have simple case.
if (use_critical_section)
{
if (opcode == OpBeginInvocationInterlockEXT)
{
in_crit_sec = true;
return true;
}
if (opcode == OpEndInvocationInterlockEXT)
{
// End critical section--nothing more to do.
return false;
}
}
// We need to figure out where images and buffers are loaded from, so do only the bare bones compilation we need.
switch (opcode)
{
case OpLoad:
{
if (length < 3)
return false;
uint32_t ptr = args[2];
auto *var = compiler.maybe_get_backing_variable(ptr);
// We're only concerned with buffer and image memory here.
if (!var)
break;
switch (var->storage)
{
default:
break;
case StorageClassUniformConstant:
{
uint32_t result_type = args[0];
uint32_t id = args[1];
compiler.set<SPIRExpression>(id, "", result_type, true);
compiler.register_read(id, ptr, true);
break;
}
case StorageClassUniform:
// Must have BufferBlock; we only care about SSBOs.
if (!compiler.has_decoration(compiler.get<SPIRType>(var->basetype).self, DecorationBufferBlock))
break;
// fallthrough
case StorageClassStorageBuffer:
access_potential_resource(var->self);
break;
}
break;
}
case OpInBoundsAccessChain:
case OpAccessChain:
case OpPtrAccessChain:
{
if (length < 3)
return false;
uint32_t result_type = args[0];
auto &type = compiler.get<SPIRType>(result_type);
if (type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant ||
type.storage == StorageClassStorageBuffer)
{
uint32_t id = args[1];
uint32_t ptr = args[2];
compiler.set<SPIRExpression>(id, "", result_type, true);
compiler.register_read(id, ptr, true);
compiler.ir.ids[id].set_allow_type_rewrite();
}
break;
}
case OpImageTexelPointer:
{
if (length < 3)
return false;
uint32_t result_type = args[0];
uint32_t id = args[1];
uint32_t ptr = args[2];
auto &e = compiler.set<SPIRExpression>(id, "", result_type, true);
auto *var = compiler.maybe_get_backing_variable(ptr);
if (var)
e.loaded_from = var->self;
break;
}
case OpStore:
case OpImageWrite:
case OpAtomicStore:
{
if (length < 1)
return false;
uint32_t ptr = args[0];
auto *var = compiler.maybe_get_backing_variable(ptr);
if (var && (var->storage == StorageClassUniform || var->storage == StorageClassUniformConstant ||
var->storage == StorageClassStorageBuffer))
{
access_potential_resource(var->self);
}
break;
}
case OpCopyMemory:
{
if (length < 2)
return false;
uint32_t dst = args[0];
uint32_t src = args[1];
auto *dst_var = compiler.maybe_get_backing_variable(dst);
auto *src_var = compiler.maybe_get_backing_variable(src);
if (dst_var && (dst_var->storage == StorageClassUniform || dst_var->storage == StorageClassStorageBuffer))
access_potential_resource(dst_var->self);
if (src_var)
{
if (src_var->storage != StorageClassUniform && src_var->storage != StorageClassStorageBuffer)
break;
if (src_var->storage == StorageClassUniform &&
!compiler.has_decoration(compiler.get<SPIRType>(src_var->basetype).self, DecorationBufferBlock))
{
break;
}
access_potential_resource(src_var->self);
}
break;
}
case OpImageRead:
case OpAtomicLoad:
{
if (length < 3)
return false;
uint32_t ptr = args[2];
auto *var = compiler.maybe_get_backing_variable(ptr);
// We're only concerned with buffer and image memory here.
if (!var)
break;
switch (var->storage)
{
default:
break;
case StorageClassUniform:
// Must have BufferBlock; we only care about SSBOs.
if (!compiler.has_decoration(compiler.get<SPIRType>(var->basetype).self, DecorationBufferBlock))
break;
// fallthrough
case StorageClassUniformConstant:
case StorageClassStorageBuffer:
access_potential_resource(var->self);
break;
}
break;
}
case OpAtomicExchange:
case OpAtomicCompareExchange:
case OpAtomicIIncrement:
case OpAtomicIDecrement:
case OpAtomicIAdd:
case OpAtomicISub:
case OpAtomicSMin:
case OpAtomicUMin:
case OpAtomicSMax:
case OpAtomicUMax:
case OpAtomicAnd:
case OpAtomicOr:
case OpAtomicXor:
{
if (length < 3)
return false;
uint32_t ptr = args[2];
auto *var = compiler.maybe_get_backing_variable(ptr);
if (var && (var->storage == StorageClassUniform || var->storage == StorageClassUniformConstant ||
var->storage == StorageClassStorageBuffer))
{
access_potential_resource(var->self);
}
break;
}
default:
break;
}
return true;
}
void Compiler::analyze_interlocked_resource_usage()
{
if (get_execution_model() == ExecutionModelFragment &&
(get_entry_point().flags.get(ExecutionModePixelInterlockOrderedEXT) ||
get_entry_point().flags.get(ExecutionModePixelInterlockUnorderedEXT) ||
get_entry_point().flags.get(ExecutionModeSampleInterlockOrderedEXT) ||
get_entry_point().flags.get(ExecutionModeSampleInterlockUnorderedEXT)))
{
InterlockedResourceAccessPrepassHandler prepass_handler(*this, ir.default_entry_point);
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), prepass_handler);
InterlockedResourceAccessHandler handler(*this, ir.default_entry_point);
handler.interlock_function_id = prepass_handler.interlock_function_id;
handler.split_function_case = prepass_handler.split_function_case;
handler.control_flow_interlock = prepass_handler.control_flow_interlock;
handler.use_critical_section = !handler.split_function_case && !handler.control_flow_interlock;
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler);
// For GLSL. If we hit any of these cases, we have to fall back to conservative approach.
interlocked_is_complex =
!handler.use_critical_section || handler.interlock_function_id != ir.default_entry_point;
}
}
// Helper function
bool Compiler::check_internal_recursion(const SPIRType &type, std::unordered_set<uint32_t> &checked_ids)
{
if (type.basetype != SPIRType::Struct)
return false;
if (checked_ids.count(type.self))
return true;
// Recurse into struct members
bool is_recursive = false;
checked_ids.insert(type.self);
uint32_t mbr_cnt = uint32_t(type.member_types.size());
for (uint32_t mbr_idx = 0; !is_recursive && mbr_idx < mbr_cnt; mbr_idx++)
{
uint32_t mbr_type_id = type.member_types[mbr_idx];
auto &mbr_type = get<SPIRType>(mbr_type_id);
is_recursive |= check_internal_recursion(mbr_type, checked_ids);
}
checked_ids.erase(type.self);
return is_recursive;
}
// Return whether the struct type contains a structural recursion nested somewhere within its content.
bool Compiler::type_contains_recursion(const SPIRType &type)
{
std::unordered_set<uint32_t> checked_ids;
return check_internal_recursion(type, checked_ids);
}
bool Compiler::type_is_array_of_pointers(const SPIRType &type) const
{
if (!type_is_top_level_array(type))
return false;
// BDA types must have parent type hierarchy.
if (!type.parent_type)
return false;
// Punch through all array layers.
auto *parent = &get<SPIRType>(type.parent_type);
while (type_is_top_level_array(*parent))
parent = &get<SPIRType>(parent->parent_type);
return type_is_top_level_pointer(*parent);
}
bool Compiler::type_is_top_level_pointer(const SPIRType &type) const
{
if (!type.pointer)
return false;
// Function pointers, should not be hit by valid SPIR-V.
// Parent type will be SPIRFunction instead.
if (type.basetype == SPIRType::Unknown)
return false;
// Some types are synthesized in-place without complete type hierarchy and might not have parent types,
// but these types are never array-of-pointer or any complicated BDA type, infer reasonable defaults.
if (type.parent_type)
return type.pointer_depth > get<SPIRType>(type.parent_type).pointer_depth;
else
return true;
}
bool Compiler::type_is_top_level_physical_pointer(const SPIRType &type) const
{
return type_is_top_level_pointer(type) && type.storage == StorageClassPhysicalStorageBuffer;
}
bool Compiler::type_is_top_level_array(const SPIRType &type) const
{
if (type.array.empty())
return false;
// If we have pointer and array, we infer pointer-to-array as it's the only meaningful thing outside BDA.
if (type.parent_type)
return type.array.size() > get<SPIRType>(type.parent_type).array.size();
else
return !type.pointer;
}
bool Compiler::flush_phi_required(BlockID from, BlockID to) const
{
auto &child = get<SPIRBlock>(to);
for (auto &phi : child.phi_variables)
if (phi.parent == from)
return true;
return false;
}
void Compiler::add_loop_level()
{
current_loop_level++;
}
|