summaryrefslogtreecommitdiff
path: root/test/dm/pci.c
blob: 70a736cfdb8abd63bcfe96f9cae7ddf4ed5c31aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (C) 2015 Google, Inc
 */

#include <common.h>
#include <dm.h>
#include <asm/io.h>
#include <asm/test.h>
#include <dm/test.h>
#include <test/test.h>
#include <test/ut.h>

/* Test that sandbox PCI works correctly */
static int dm_test_pci_base(struct unit_test_state *uts)
{
	struct udevice *bus;

	ut_assertok(uclass_get_device(UCLASS_PCI, 0, &bus));

	return 0;
}
DM_TEST(dm_test_pci_base, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);

/* Test that sandbox PCI bus numbering and device works correctly */
static int dm_test_pci_busdev(struct unit_test_state *uts)
{
	struct udevice *bus;
	struct udevice *swap;
	u16 vendor, device;

	/* Test bus#0 and its devices */
	ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 0, &bus));

	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x00, 0), &swap));
	vendor = 0;
	ut_assertok(dm_pci_read_config16(swap, PCI_VENDOR_ID, &vendor));
	ut_asserteq(SANDBOX_PCI_VENDOR_ID, vendor);
	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap));
	device = 0;
	ut_assertok(dm_pci_read_config16(swap, PCI_DEVICE_ID, &device));
	ut_asserteq(SANDBOX_PCI_SWAP_CASE_EMUL_ID, device);

	/* Test bus#1 and its devices */
	ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 1, &bus));

	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &swap));
	vendor = 0;
	ut_assertok(dm_pci_read_config16(swap, PCI_VENDOR_ID, &vendor));
	ut_asserteq(SANDBOX_PCI_VENDOR_ID, vendor);
	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x0c, 0), &swap));
	device = 0;
	ut_assertok(dm_pci_read_config16(swap, PCI_DEVICE_ID, &device));
	ut_asserteq(SANDBOX_PCI_SWAP_CASE_EMUL_ID, device);

	return 0;
}
DM_TEST(dm_test_pci_busdev, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);

/* Test that we can use the swapcase device correctly */
static int dm_test_pci_swapcase(struct unit_test_state *uts)
{
	struct udevice *swap;
	ulong io_addr, mem_addr;
	char *ptr;

	/* Check that asking for the device 0 automatically fires up PCI */
	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x00, 0), &swap));

	/* First test I/O */
	io_addr = dm_pci_read_bar32(swap, 0);
	outb(2, io_addr);
	ut_asserteq(2, inb(io_addr));

	/*
	 * Now test memory mapping - note we must unmap and remap to cause
	 * the swapcase emulation to see our data and response.
	 */
	mem_addr = dm_pci_read_bar32(swap, 1);
	ptr = map_sysmem(mem_addr, 20);
	strcpy(ptr, "This is a TesT");
	unmap_sysmem(ptr);

	ptr = map_sysmem(mem_addr, 20);
	ut_asserteq_str("tHIS IS A tESt", ptr);
	unmap_sysmem(ptr);

	/* Check that asking for the device 1 automatically fires up PCI */
	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap));

	/* First test I/O */
	io_addr = dm_pci_read_bar32(swap, 0);
	outb(2, io_addr);
	ut_asserteq(2, inb(io_addr));

	/*
	 * Now test memory mapping - note we must unmap and remap to cause
	 * the swapcase emulation to see our data and response.
	 */
	mem_addr = dm_pci_read_bar32(swap, 1);
	ptr = map_sysmem(mem_addr, 20);
	strcpy(ptr, "This is a TesT");
	unmap_sysmem(ptr);

	ptr = map_sysmem(mem_addr, 20);
	ut_asserteq_str("tHIS IS A tESt", ptr);
	unmap_sysmem(ptr);

	return 0;
}
DM_TEST(dm_test_pci_swapcase, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);

/* Test that we can dynamically bind the device driver correctly */
static int dm_test_pci_drvdata(struct unit_test_state *uts)
{
	struct udevice *bus, *swap;

	/* Check that asking for the device automatically fires up PCI */
	ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 1, &bus));

	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &swap));
	ut_asserteq(SWAP_CASE_DRV_DATA, swap->driver_data);
	ut_assertok(dev_has_ofnode(swap));
	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x0c, 0), &swap));
	ut_asserteq(SWAP_CASE_DRV_DATA, swap->driver_data);
	ut_assertok(dev_has_ofnode(swap));
	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x10, 0), &swap));
	ut_asserteq(SWAP_CASE_DRV_DATA, swap->driver_data);
	ut_assertok(!dev_has_ofnode(swap));

	return 0;
}
DM_TEST(dm_test_pci_drvdata, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);

/* Test that devices on PCI bus#2 can be accessed correctly */
static int dm_test_pci_mixed(struct unit_test_state *uts)
{
	/* PCI bus#2 has both statically and dynamic declared devices */
	struct udevice *bus, *swap;
	u16 vendor, device;
	ulong io_addr, mem_addr;
	char *ptr;

	ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 2, &bus));

	/* Test the dynamic device */
	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(2, 0x08, 0), &swap));
	vendor = 0;
	ut_assertok(dm_pci_read_config16(swap, PCI_VENDOR_ID, &vendor));
	ut_asserteq(SANDBOX_PCI_VENDOR_ID, vendor);

	/* First test I/O */
	io_addr = dm_pci_read_bar32(swap, 0);
	outb(2, io_addr);
	ut_asserteq(2, inb(io_addr));

	/*
	 * Now test memory mapping - note we must unmap and remap to cause
	 * the swapcase emulation to see our data and response.
	 */
	mem_addr = dm_pci_read_bar32(swap, 1);
	ptr = map_sysmem(mem_addr, 30);
	strcpy(ptr, "This is a TesT oN dYNAMIc");
	unmap_sysmem(ptr);

	ptr = map_sysmem(mem_addr, 30);
	ut_asserteq_str("tHIS IS A tESt On DynamiC", ptr);
	unmap_sysmem(ptr);

	/* Test the static device */
	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(2, 0x1f, 0), &swap));
	device = 0;
	ut_assertok(dm_pci_read_config16(swap, PCI_DEVICE_ID, &device));
	ut_asserteq(SANDBOX_PCI_SWAP_CASE_EMUL_ID, device);

	/* First test I/O */
	io_addr = dm_pci_read_bar32(swap, 0);
	outb(2, io_addr);
	ut_asserteq(2, inb(io_addr));

	/*
	 * Now test memory mapping - note we must unmap and remap to cause
	 * the swapcase emulation to see our data and response.
	 */
	mem_addr = dm_pci_read_bar32(swap, 1);
	ptr = map_sysmem(mem_addr, 30);
	strcpy(ptr, "This is a TesT oN sTATIc");
	unmap_sysmem(ptr);

	ptr = map_sysmem(mem_addr, 30);
	ut_asserteq_str("tHIS IS A tESt On StatiC", ptr);
	unmap_sysmem(ptr);

	return 0;
}
DM_TEST(dm_test_pci_mixed, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);

/* Test looking up PCI capability and extended capability */
static int dm_test_pci_cap(struct unit_test_state *uts)
{
	struct udevice *bus, *swap;
	int cap;

	ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 0, &bus));
	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap));

	/* look up PCI_CAP_ID_EXP */
	cap = dm_pci_find_capability(swap, PCI_CAP_ID_EXP);
	ut_asserteq(PCI_CAP_ID_EXP_OFFSET, cap);

	/* look up PCI_CAP_ID_PCIX */
	cap = dm_pci_find_capability(swap, PCI_CAP_ID_PCIX);
	ut_asserteq(0, cap);

	/* look up PCI_CAP_ID_MSIX starting from PCI_CAP_ID_PM_OFFSET */
	cap = dm_pci_find_next_capability(swap, PCI_CAP_ID_PM_OFFSET,
					  PCI_CAP_ID_MSIX);
	ut_asserteq(PCI_CAP_ID_MSIX_OFFSET, cap);

	/* look up PCI_CAP_ID_VNDR starting from PCI_CAP_ID_EXP_OFFSET */
	cap = dm_pci_find_next_capability(swap, PCI_CAP_ID_EXP_OFFSET,
					  PCI_CAP_ID_VNDR);
	ut_asserteq(0, cap);

	ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 1, &bus));
	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &swap));

	/* look up PCI_EXT_CAP_ID_DSN */
	cap = dm_pci_find_ext_capability(swap, PCI_EXT_CAP_ID_DSN);
	ut_asserteq(PCI_EXT_CAP_ID_DSN_OFFSET, cap);

	/* look up PCI_EXT_CAP_ID_SRIOV */
	cap = dm_pci_find_ext_capability(swap, PCI_EXT_CAP_ID_SRIOV);
	ut_asserteq(0, cap);

	/* look up PCI_EXT_CAP_ID_DSN starting from PCI_EXT_CAP_ID_ERR_OFFSET */
	cap = dm_pci_find_next_ext_capability(swap, PCI_EXT_CAP_ID_ERR_OFFSET,
					      PCI_EXT_CAP_ID_DSN);
	ut_asserteq(PCI_EXT_CAP_ID_DSN_OFFSET, cap);

	/* look up PCI_EXT_CAP_ID_RCRB starting from PCI_EXT_CAP_ID_VC_OFFSET */
	cap = dm_pci_find_next_ext_capability(swap, PCI_EXT_CAP_ID_VC_OFFSET,
					      PCI_EXT_CAP_ID_RCRB);
	ut_asserteq(0, cap);

	return 0;
}
DM_TEST(dm_test_pci_cap, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);

/* Test looking up BARs in EA capability structure */
static int dm_test_pci_ea(struct unit_test_state *uts)
{
	struct udevice *bus, *swap;
	void *bar;
	int cap;

	/*
	 * use emulated device mapping function, we're not using real physical
	 * addresses in this test
	 */
	sandbox_set_enable_pci_map(true);

	ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 0, &bus));
	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x01, 0), &swap));

	/* look up PCI_CAP_ID_EA */
	cap = dm_pci_find_capability(swap, PCI_CAP_ID_EA);
	ut_asserteq(PCI_CAP_ID_EA_OFFSET, cap);

	/* test swap case in BAR 1 */
	bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_0, 0, 0, PCI_REGION_TYPE, 0);
	ut_assertnonnull(bar);
	*(int *)bar = 2; /* swap upper/lower */

	bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_1, 0, 0, PCI_REGION_TYPE, 0);
	ut_assertnonnull(bar);
	strcpy(bar, "ea TEST");
	unmap_sysmem(bar);
	bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_1, 0, 0, PCI_REGION_TYPE, 0);
	ut_assertnonnull(bar);
	ut_asserteq_str("EA test", bar);

	/* test magic values in BARs2, 4;  BAR 3 is n/a */
	bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_2, 0, 0, PCI_REGION_TYPE, 0);
	ut_assertnonnull(bar);
	ut_asserteq(PCI_EA_BAR2_MAGIC, *(u32 *)bar);

	bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_3, 0, 0, PCI_REGION_TYPE, 0);
	ut_assertnull(bar);

	bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_4, 0, 0, PCI_REGION_TYPE, 0);
	ut_assertnonnull(bar);
	ut_asserteq(PCI_EA_BAR4_MAGIC, *(u32 *)bar);

	return 0;
}
DM_TEST(dm_test_pci_ea, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);

/* Test the dev_read_addr_pci() function */
static int dm_test_pci_addr_flat(struct unit_test_state *uts)
{
	struct udevice *swap1f, *swap1;
	ulong io_addr, mem_addr;

	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap1f));
	io_addr = dm_pci_read_bar32(swap1f, 0);
	ut_asserteq(io_addr, dev_read_addr_pci(swap1f));

	/*
	 * This device has both I/O and MEM spaces but the MEM space appears
	 * first
	 */
	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1, 0), &swap1));
	mem_addr = dm_pci_read_bar32(swap1, 1);
	ut_asserteq(mem_addr, dev_read_addr_pci(swap1));

	return 0;
}
DM_TEST(dm_test_pci_addr_flat, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT |
		UT_TESTF_FLAT_TREE);

/*
 * Test the dev_read_addr_pci() function with livetree. That function is
 * not currently fully implemented, in that it fails to return the BAR address.
 * Once that is implemented this test can be removed and dm_test_pci_addr_flat()
 * can be used for both flattree and livetree by removing the UT_TESTF_FLAT_TREE
 * flag above.
 */
static int dm_test_pci_addr_live(struct unit_test_state *uts)
{
	struct udevice *swap1f, *swap1;

	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap1f));
	ut_asserteq_64(FDT_ADDR_T_NONE, dev_read_addr_pci(swap1f));

	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1, 0), &swap1));
	ut_asserteq_64(FDT_ADDR_T_NONE, dev_read_addr_pci(swap1));

	return 0;
}
DM_TEST(dm_test_pci_addr_live, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT |
		UT_TESTF_LIVE_TREE);

/* Test device_is_on_pci_bus() */
static int dm_test_pci_on_bus(struct unit_test_state *uts)
{
	struct udevice *dev;

	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &dev));
	ut_asserteq(true, device_is_on_pci_bus(dev));
	ut_asserteq(false, device_is_on_pci_bus(dev_get_parent(dev)));
	ut_asserteq(true, device_is_on_pci_bus(dev));

	return 0;
}
DM_TEST(dm_test_pci_on_bus, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);

/*
 * Test support for multiple memory regions enabled via
 * CONFIG_PCI_REGION_MULTI_ENTRY. When this feature is not enabled,
 * only the last region of one type is stored. In this test-case,
 * we have 2 memory regions, the first at 0x3000.0000 and the 2nd
 * at 0x3100.0000. A correct test results now in BAR1 located at
 * 0x3000.0000.
 */
static int dm_test_pci_region_multi(struct unit_test_state *uts)
{
	struct udevice *dev;
	ulong mem_addr;

	/* Test memory BAR1 on bus#1 */
	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &dev));
	mem_addr = dm_pci_read_bar32(dev, 1);
	ut_asserteq(mem_addr, 0x30000000);

	return 0;
}
DM_TEST(dm_test_pci_region_multi, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);

/*
 * Test the translation of PCI bus addresses to physical addresses using the
 * ranges from bus#1.
 */
static int dm_test_pci_bus_to_phys(struct unit_test_state *uts)
{
	unsigned long mask = PCI_REGION_TYPE;
	unsigned long flags = PCI_REGION_MEM;
	struct udevice *dev;
	phys_addr_t phys_addr;

	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &dev));

	/* Before any of the ranges. */
	phys_addr = dm_pci_bus_to_phys(dev, 0x20000000, 0x400, mask, flags);
	ut_asserteq(0, phys_addr);

	/* Identity range: whole, start, mid, end */
	phys_addr = dm_pci_bus_to_phys(dev, 0x2ffff000, 0x2000, mask, flags);
	ut_asserteq(0, phys_addr);
	phys_addr = dm_pci_bus_to_phys(dev, 0x30000000, 0x2000, mask, flags);
	ut_asserteq(0x30000000, phys_addr);
	phys_addr = dm_pci_bus_to_phys(dev, 0x30000000, 0x1000, mask, flags);
	ut_asserteq(0x30000000, phys_addr);
	phys_addr = dm_pci_bus_to_phys(dev, 0x30000abc, 0x12, mask, flags);
	ut_asserteq(0x30000abc, phys_addr);
	phys_addr = dm_pci_bus_to_phys(dev, 0x30000800, 0x1800, mask, flags);
	ut_asserteq(0x30000800, phys_addr);
	phys_addr = dm_pci_bus_to_phys(dev, 0x30008000, 0x1801, mask, flags);
	ut_asserteq(0, phys_addr);

	/* Translated range: whole, start, mid, end */
	phys_addr = dm_pci_bus_to_phys(dev, 0x30fff000, 0x2000, mask, flags);
	ut_asserteq(0, phys_addr);
	phys_addr = dm_pci_bus_to_phys(dev, 0x31000000, 0x2000, mask, flags);
	ut_asserteq(0x3e000000, phys_addr);
	phys_addr = dm_pci_bus_to_phys(dev, 0x31000000, 0x1000, mask, flags);
	ut_asserteq(0x3e000000, phys_addr);
	phys_addr = dm_pci_bus_to_phys(dev, 0x31000abc, 0x12, mask, flags);
	ut_asserteq(0x3e000abc, phys_addr);
	phys_addr = dm_pci_bus_to_phys(dev, 0x31000800, 0x1800, mask, flags);
	ut_asserteq(0x3e000800, phys_addr);
	phys_addr = dm_pci_bus_to_phys(dev, 0x31008000, 0x1801, mask, flags);
	ut_asserteq(0, phys_addr);

	/* Beyond all of the ranges. */
	phys_addr = dm_pci_bus_to_phys(dev, 0x32000000, 0x400, mask, flags);
	ut_asserteq(0, phys_addr);

	return 0;
}
DM_TEST(dm_test_pci_bus_to_phys, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);

/*
 * Test the translation of physical addresses to PCI bus addresses using the
 * ranges from bus#1.
 */
static int dm_test_pci_phys_to_bus(struct unit_test_state *uts)
{
	unsigned long mask = PCI_REGION_TYPE;
	unsigned long flags = PCI_REGION_MEM;
	struct udevice *dev;
	pci_addr_t pci_addr;

	ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &dev));

	/* Before any of the ranges. */
	pci_addr = dm_pci_phys_to_bus(dev, 0x20000000, 0x400, mask, flags);
	ut_asserteq(0, pci_addr);

	/* Identity range: partial overlap, whole, start, mid, end */
	pci_addr = dm_pci_phys_to_bus(dev, 0x2ffff000, 0x2000, mask, flags);
	ut_asserteq(0, pci_addr);
	pci_addr = dm_pci_phys_to_bus(dev, 0x30000000, 0x2000, mask, flags);
	ut_asserteq(0x30000000, pci_addr);
	pci_addr = dm_pci_phys_to_bus(dev, 0x30000000, 0x1000, mask, flags);
	ut_asserteq(0x30000000, pci_addr);
	pci_addr = dm_pci_phys_to_bus(dev, 0x30000abc, 0x12, mask, flags);
	ut_asserteq(0x30000abc, pci_addr);
	pci_addr = dm_pci_phys_to_bus(dev, 0x30000800, 0x1800, mask, flags);
	ut_asserteq(0x30000800, pci_addr);
	pci_addr = dm_pci_phys_to_bus(dev, 0x30008000, 0x1801, mask, flags);
	ut_asserteq(0, pci_addr);

	/* Translated range: partial overlap, whole, start, mid, end */
	pci_addr = dm_pci_phys_to_bus(dev, 0x3dfff000, 0x2000, mask, flags);
	ut_asserteq(0, pci_addr);
	pci_addr = dm_pci_phys_to_bus(dev, 0x3e000000, 0x2000, mask, flags);
	ut_asserteq(0x31000000, pci_addr);
	pci_addr = dm_pci_phys_to_bus(dev, 0x3e000000, 0x1000, mask, flags);
	ut_asserteq(0x31000000, pci_addr);
	pci_addr = dm_pci_phys_to_bus(dev, 0x3e000abc, 0x12, mask, flags);
	ut_asserteq(0x31000abc, pci_addr);
	pci_addr = dm_pci_phys_to_bus(dev, 0x3e000800, 0x1800, mask, flags);
	ut_asserteq(0x31000800, pci_addr);
	pci_addr = dm_pci_phys_to_bus(dev, 0x3e008000, 0x1801, mask, flags);
	ut_asserteq(0, pci_addr);

	/* Beyond all of the ranges. */
	pci_addr = dm_pci_phys_to_bus(dev, 0x3f000000, 0x400, mask, flags);
	ut_asserteq(0, pci_addr);

	return 0;
}
DM_TEST(dm_test_pci_phys_to_bus, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);