summaryrefslogtreecommitdiff
path: root/fs/btrfs/volumes.c
blob: 7d4095d9ca88d9933dd61a216bd91e875956f0d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
// SPDX-License-Identifier: GPL-2.0+
#include <stdlib.h>
#include <common.h>
#include <fs_internal.h>
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "extent-io.h"

const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
	[BTRFS_RAID_RAID10] = {
		.sub_stripes	= 2,
		.dev_stripes	= 1,
		.devs_max	= 0,	/* 0 == as many as possible */
		.devs_min	= 4,
		.tolerated_failures = 1,
		.devs_increment	= 2,
		.ncopies	= 2,
		.nparity	= 0,
		.raid_name	= "raid10",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
	},
	[BTRFS_RAID_RAID1] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 2,
		.devs_min	= 2,
		.tolerated_failures = 1,
		.devs_increment	= 2,
		.ncopies	= 2,
		.nparity	= 0,
		.raid_name	= "raid1",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
	},
	[BTRFS_RAID_RAID1C3] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 3,
		.devs_min	= 3,
		.tolerated_failures = 2,
		.devs_increment	= 3,
		.ncopies	= 3,
		.raid_name	= "raid1c3",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
	},
	[BTRFS_RAID_RAID1C4] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 4,
		.devs_min	= 4,
		.tolerated_failures = 3,
		.devs_increment	= 4,
		.ncopies	= 4,
		.raid_name	= "raid1c4",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
	},
	[BTRFS_RAID_DUP] = {
		.sub_stripes	= 1,
		.dev_stripes	= 2,
		.devs_max	= 1,
		.devs_min	= 1,
		.tolerated_failures = 0,
		.devs_increment	= 1,
		.ncopies	= 2,
		.nparity	= 0,
		.raid_name	= "dup",
		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
	},
	[BTRFS_RAID_RAID0] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
		.tolerated_failures = 0,
		.devs_increment	= 1,
		.ncopies	= 1,
		.nparity	= 0,
		.raid_name	= "raid0",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
	},
	[BTRFS_RAID_SINGLE] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 1,
		.devs_min	= 1,
		.tolerated_failures = 0,
		.devs_increment	= 1,
		.ncopies	= 1,
		.nparity	= 0,
		.raid_name	= "single",
		.bg_flag	= 0,
	},
	[BTRFS_RAID_RAID5] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
		.tolerated_failures = 1,
		.devs_increment	= 1,
		.ncopies	= 1,
		.nparity	= 1,
		.raid_name	= "raid5",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
	},
	[BTRFS_RAID_RAID6] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 3,
		.tolerated_failures = 2,
		.devs_increment	= 1,
		.ncopies	= 1,
		.nparity	= 2,
		.raid_name	= "raid6",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
	},
};

struct stripe {
	struct btrfs_device *dev;
	u64 physical;
};

static inline int nr_parity_stripes(struct map_lookup *map)
{
	if (map->type & BTRFS_BLOCK_GROUP_RAID5)
		return 1;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
		return 2;
	else
		return 0;
}

static inline int nr_data_stripes(struct map_lookup *map)
{
	return map->num_stripes - nr_parity_stripes(map);
}

#define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )

static LIST_HEAD(fs_uuids);

/*
 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
 * return NULL.
 *
 * If devid and uuid are both specified, the match must be exact, otherwise
 * only devid is used.
 */
static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
		u64 devid, u8 *uuid)
{
	struct list_head *head = &fs_devices->devices;
	struct btrfs_device *dev;

	list_for_each_entry(dev, head, dev_list) {
		if (dev->devid == devid &&
		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
			return dev;
		}
	}
	return NULL;
}

static struct btrfs_fs_devices *find_fsid(u8 *fsid, u8 *metadata_uuid)
{
	struct btrfs_fs_devices *fs_devices;

	list_for_each_entry(fs_devices, &fs_uuids, list) {
		if (metadata_uuid && (memcmp(fsid, fs_devices->fsid,
					     BTRFS_FSID_SIZE) == 0) &&
		    (memcmp(metadata_uuid, fs_devices->metadata_uuid,
			    BTRFS_FSID_SIZE) == 0)) {
			return fs_devices;
		} else if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0){
			return fs_devices;
		}
	}
	return NULL;
}

static int device_list_add(struct btrfs_super_block *disk_super,
			   u64 devid, struct blk_desc *desc,
			   struct disk_partition *part,
			   struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices;
	u64 found_transid = btrfs_super_generation(disk_super);
	bool metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);

	if (metadata_uuid)
		fs_devices = find_fsid(disk_super->fsid,
				       disk_super->metadata_uuid);
	else
		fs_devices = find_fsid(disk_super->fsid, NULL);

	if (!fs_devices) {
		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
		if (!fs_devices)
			return -ENOMEM;
		INIT_LIST_HEAD(&fs_devices->devices);
		list_add(&fs_devices->list, &fs_uuids);
		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
		if (metadata_uuid)
			memcpy(fs_devices->metadata_uuid,
			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
		else
			memcpy(fs_devices->metadata_uuid, fs_devices->fsid,
			       BTRFS_FSID_SIZE);

		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
		fs_devices->lowest_devid = (u64)-1;
		device = NULL;
	} else {
		device = find_device(fs_devices, devid,
				    disk_super->dev_item.uuid);
	}
	if (!device) {
		device = kzalloc(sizeof(*device), GFP_NOFS);
		if (!device) {
			/* we can safely leave the fs_devices entry around */
			return -ENOMEM;
		}
		device->devid = devid;
		device->desc = desc;
		device->part = part;
		device->generation = found_transid;
		memcpy(device->uuid, disk_super->dev_item.uuid,
		       BTRFS_UUID_SIZE);
		device->total_devs = btrfs_super_num_devices(disk_super);
		device->super_bytes_used = btrfs_super_bytes_used(disk_super);
		device->total_bytes =
			btrfs_stack_device_total_bytes(&disk_super->dev_item);
		device->bytes_used =
			btrfs_stack_device_bytes_used(&disk_super->dev_item);
		list_add(&device->dev_list, &fs_devices->devices);
		device->fs_devices = fs_devices;
	} else if (!device->desc || !device->part) {
		/*
		 * The existing device has newer generation, so this one could
		 * be a stale one, don't add it.
		 */
		if (found_transid < device->generation) {
			error(
	"adding devid %llu gen %llu but found an existing device gen %llu",
				device->devid, found_transid,
				device->generation);
			return -EEXIST;
		} else {
			device->desc = desc;
			device->part = part;
		}
	}


	if (found_transid > fs_devices->latest_trans) {
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
	}
	if (fs_devices->lowest_devid > devid) {
		fs_devices->lowest_devid = devid;
	}
	*fs_devices_ret = fs_devices;
	return 0;
}

int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
	struct btrfs_fs_devices *seed_devices;
	struct btrfs_device *device;
	int ret = 0;

again:
	if (!fs_devices)
		return 0;
	while (!list_empty(&fs_devices->devices)) {
		device = list_entry(fs_devices->devices.next,
				    struct btrfs_device, dev_list);
		list_del(&device->dev_list);
		/* free the memory */
		free(device);
	}

	seed_devices = fs_devices->seed;
	fs_devices->seed = NULL;
	if (seed_devices) {
		struct btrfs_fs_devices *orig;

		orig = fs_devices;
		fs_devices = seed_devices;
		list_del(&orig->list);
		free(orig);
		goto again;
	} else {
		list_del(&fs_devices->list);
		free(fs_devices);
	}

	return ret;
}

void btrfs_close_all_devices(void)
{
	struct btrfs_fs_devices *fs_devices;

	while (!list_empty(&fs_uuids)) {
		fs_devices = list_entry(fs_uuids.next, struct btrfs_fs_devices,
					list);
		btrfs_close_devices(fs_devices);
	}
}

int btrfs_open_devices(struct btrfs_fs_devices *fs_devices)
{
	struct btrfs_device *device;

	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		if (!device->desc || !device->part) {
			printf("no device found for devid %llu, skip it \n",
				device->devid);
			continue;
		}
	}
	return 0;
}

int btrfs_scan_one_device(struct blk_desc *desc, struct disk_partition *part,
			  struct btrfs_fs_devices **fs_devices_ret,
			  u64 *total_devs)
{
	struct btrfs_super_block *disk_super;
	char buf[BTRFS_SUPER_INFO_SIZE];
	int ret;
	u64 devid;

	disk_super = (struct btrfs_super_block *)buf;
	ret = btrfs_read_dev_super(desc, part, disk_super);
	if (ret < 0)
		return -EIO;
	devid = btrfs_stack_device_id(&disk_super->dev_item);
	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
		*total_devs = 1;
	else
		*total_devs = btrfs_super_num_devices(disk_super);

	ret = device_list_add(disk_super, devid, desc, part, fs_devices_ret);

	return ret;
}

struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
				       u8 *uuid, u8 *fsid)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *cur_devices;

	cur_devices = fs_info->fs_devices;
	while (cur_devices) {
		if (!fsid ||
		   !memcmp(cur_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
			device = find_device(cur_devices, devid, uuid);
			if (device)
				return device;
		}
		cur_devices = cur_devices->seed;
	}
	return NULL;
}

static struct btrfs_device *fill_missing_device(u64 devid)
{
	struct btrfs_device *device;

	device = kzalloc(sizeof(*device), GFP_NOFS);
	return device;
}

/*
 * slot == -1: SYSTEM chunk
 * return -EIO on error, otherwise return 0
 */
int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
			    struct extent_buffer *leaf,
			    struct btrfs_chunk *chunk,
			    int slot, u64 logical)
{
	u64 length;
	u64 stripe_len;
	u16 num_stripes;
	u16 sub_stripes;
	u64 type;
	u32 chunk_ondisk_size;
	u32 sectorsize = fs_info->sectorsize;

	/*
	 * Basic chunk item size check.  Note that btrfs_chunk already contains
	 * one stripe, so no "==" check.
	 */
	if (slot >= 0 &&
	    btrfs_item_size_nr(leaf, slot) < sizeof(struct btrfs_chunk)) {
		error("invalid chunk item size, have %u expect [%zu, %zu)",
			btrfs_item_size_nr(leaf, slot),
			sizeof(struct btrfs_chunk),
			BTRFS_LEAF_DATA_SIZE(fs_info));
		return -EUCLEAN;
	}
	length = btrfs_chunk_length(leaf, chunk);
	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
	type = btrfs_chunk_type(leaf, chunk);

	if (num_stripes == 0) {
		error("invalid num_stripes, have %u expect non-zero",
			num_stripes);
		return -EUCLEAN;
	}
	if (slot >= 0 && btrfs_chunk_item_size(num_stripes) !=
	    btrfs_item_size_nr(leaf, slot)) {
		error("invalid chunk item size, have %u expect %lu",
			btrfs_item_size_nr(leaf, slot),
			btrfs_chunk_item_size(num_stripes));
		return -EUCLEAN;
	}

	/*
	 * These valid checks may be insufficient to cover every corner cases.
	 */
	if (!IS_ALIGNED(logical, sectorsize)) {
		error("invalid chunk logical %llu",  logical);
		return -EIO;
	}
	if (btrfs_chunk_sector_size(leaf, chunk) != sectorsize) {
		error("invalid chunk sectorsize %llu",
		      (unsigned long long)btrfs_chunk_sector_size(leaf, chunk));
		return -EIO;
	}
	if (!length || !IS_ALIGNED(length, sectorsize)) {
		error("invalid chunk length %llu",  length);
		return -EIO;
	}
	if (stripe_len != BTRFS_STRIPE_LEN) {
		error("invalid chunk stripe length: %llu", stripe_len);
		return -EIO;
	}
	/* Check on chunk item type */
	if (slot == -1 && (type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
		error("invalid chunk type %llu", type);
		return -EIO;
	}
	if (type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
		     BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
		error("unrecognized chunk type: %llu",
		      ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
			BTRFS_BLOCK_GROUP_PROFILE_MASK) & type);
		return -EIO;
	}
	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
		error("missing chunk type flag: %llu", type);
		return -EIO;
	}
	if (!(is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) ||
	      (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)) {
		error("conflicting chunk type detected: %llu", type);
		return -EIO;
	}
	if ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
	    !is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
		error("conflicting chunk profile detected: %llu", type);
		return -EIO;
	}

	chunk_ondisk_size = btrfs_chunk_item_size(num_stripes);
	/*
	 * Btrfs_chunk contains at least one stripe, and for sys_chunk
	 * it can't exceed the system chunk array size
	 * For normal chunk, it should match its chunk item size.
	 */
	if (num_stripes < 1 ||
	    (slot == -1 && chunk_ondisk_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) ||
	    (slot >= 0 && chunk_ondisk_size > btrfs_item_size_nr(leaf, slot))) {
		error("invalid num_stripes: %u", num_stripes);
		return -EIO;
	}
	/*
	 * Device number check against profile
	 */
	if ((type & BTRFS_BLOCK_GROUP_RAID10 && (sub_stripes != 2 ||
		  !IS_ALIGNED(num_stripes, sub_stripes))) ||
	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
	    (type & BTRFS_BLOCK_GROUP_RAID1C3 && num_stripes < 3) ||
	    (type & BTRFS_BLOCK_GROUP_RAID1C4 && num_stripes < 4) ||
	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
	     num_stripes != 1)) {
		error("Invalid num_stripes:sub_stripes %u:%u for profile %llu",
		      num_stripes, sub_stripes,
		      type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
		return -EIO;
	}

	return 0;
}

/*
 * Slot is used to verify the chunk item is valid
 *
 * For sys chunk in superblock, pass -1 to indicate sys chunk.
 */
static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
			  struct extent_buffer *leaf,
			  struct btrfs_chunk *chunk, int slot)
{
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
	struct map_lookup *map;
	struct cache_extent *ce;
	u64 logical;
	u64 length;
	u64 devid;
	u8 uuid[BTRFS_UUID_SIZE];
	int num_stripes;
	int ret;
	int i;

	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	/* Validation check */
	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, slot, logical);
	if (ret) {
		error("%s checksums match, but it has an invalid chunk, %s",
		      (slot == -1) ? "Superblock" : "Metadata",
		      (slot == -1) ? "try btrfsck --repair -s <superblock> ie, 0,1,2" : "");
		return ret;
	}

	ce = search_cache_extent(&map_tree->cache_tree, logical);

	/* already mapped? */
	if (ce && ce->start <= logical && ce->start + ce->size > logical) {
		return 0;
	}

	map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
	if (!map)
		return -ENOMEM;

	map->ce.start = logical;
	map->ce.size = length;
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	map->type = btrfs_chunk_type(leaf, chunk);
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);

	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
		map->stripes[i].dev = btrfs_find_device(fs_info, devid, uuid,
							NULL);
		if (!map->stripes[i].dev) {
			map->stripes[i].dev = fill_missing_device(devid);
			printf("warning, device %llu is missing\n",
			       (unsigned long long)devid);
			list_add(&map->stripes[i].dev->dev_list,
				 &fs_info->fs_devices->devices);
		}

	}
	ret = insert_cache_extent(&map_tree->cache_tree, &map->ce);
	if (ret < 0) {
		errno = -ret;
		error("failed to add chunk map start=%llu len=%llu: %d (%m)",
		      map->ce.start, map->ce.size, ret);
	}

	return ret;
}

static int fill_device_from_item(struct extent_buffer *leaf,
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
	device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);

	return 0;
}

static int read_one_dev(struct btrfs_fs_info *fs_info,
			struct extent_buffer *leaf,
			struct btrfs_dev_item *dev_item)
{
	struct btrfs_device *device;
	u64 devid;
	int ret = 0;
	u8 fs_uuid[BTRFS_UUID_SIZE];
	u8 dev_uuid[BTRFS_UUID_SIZE];

	devid = btrfs_device_id(leaf, dev_item);
	read_extent_buffer(leaf, dev_uuid,
			   (unsigned long)btrfs_device_uuid(dev_item),
			   BTRFS_UUID_SIZE);
	read_extent_buffer(leaf, fs_uuid,
			   (unsigned long)btrfs_device_fsid(dev_item),
			   BTRFS_FSID_SIZE);

	if (memcmp(fs_uuid, fs_info->fs_devices->fsid, BTRFS_UUID_SIZE)) {
		error("Seed device is not yet supported\n");
		return -ENOTSUPP;
	}

	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
	if (!device) {
		device = kzalloc(sizeof(*device), GFP_NOFS);
		if (!device)
			return -ENOMEM;
		list_add(&device->dev_list,
			 &fs_info->fs_devices->devices);
	}

	fill_device_from_item(leaf, dev_item, device);
	fs_info->fs_devices->total_rw_bytes +=
		btrfs_device_total_bytes(leaf, dev_item);
	return ret;
}

int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
{
	struct btrfs_super_block *super_copy = fs_info->super_copy;
	struct extent_buffer *sb;
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	u8 *array_ptr;
	unsigned long sb_array_offset;
	int ret = 0;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur_offset;
	struct btrfs_key key;

	if (fs_info->nodesize < BTRFS_SUPER_INFO_SIZE) {
		printf("ERROR: nodesize %u too small to read superblock\n",
				fs_info->nodesize);
		return -EINVAL;
	}
	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET,
				       BTRFS_SUPER_INFO_SIZE);
	if (!sb)
		return -ENOMEM;
	btrfs_set_buffer_uptodate(sb);
	write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy));
	array_size = btrfs_super_sys_array_size(super_copy);

	array_ptr = super_copy->sys_chunk_array;
	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur_offset = 0;

	while (cur_offset < array_size) {
		disk_key = (struct btrfs_disk_key *)array_ptr;
		len = sizeof(*disk_key);
		if (cur_offset + len > array_size)
			goto out_short_read;

		btrfs_disk_key_to_cpu(&key, disk_key);

		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			chunk = (struct btrfs_chunk *)sb_array_offset;
			/*
			 * At least one btrfs_chunk with one stripe must be
			 * present, exact stripe count check comes afterwards
			 */
			len = btrfs_chunk_item_size(1);
			if (cur_offset + len > array_size)
				goto out_short_read;

			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
			if (!num_stripes) {
				printk(
	    "ERROR: invalid number of stripes %u in sys_array at offset %u\n",
					num_stripes, cur_offset);
				ret = -EIO;
				break;
			}

			len = btrfs_chunk_item_size(num_stripes);
			if (cur_offset + len > array_size)
				goto out_short_read;

			ret = read_one_chunk(fs_info, &key, sb, chunk, -1);
			if (ret)
				break;
		} else {
			printk(
		"ERROR: unexpected item type %u in sys_array at offset %u\n",
				(u32)key.type, cur_offset);
			ret = -EIO;
			break;
		}
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
	}
	free_extent_buffer(sb);
	return ret;

out_short_read:
	printk("ERROR: sys_array too short to read %u bytes at offset %u\n",
			len, cur_offset);
	free_extent_buffer(sb);
	return -EIO;
}

int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
{
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_root *root = fs_info->chunk_root;
	int ret;
	int slot;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	/*
	 * Read all device items, and then all the chunk items. All
	 * device items are found before any chunk item (their object id
	 * is smaller than the lowest possible object id for a chunk
	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;
	while(1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
			struct btrfs_dev_item *dev_item;
			dev_item = btrfs_item_ptr(leaf, slot,
						  struct btrfs_dev_item);
			ret = read_one_dev(fs_info, leaf, dev_item);
			if (ret < 0)
				goto error;
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
			ret = read_one_chunk(fs_info, &found_key, leaf, chunk,
					     slot);
			if (ret < 0)
				goto error;
		}
		path->slots[0]++;
	}

	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

/*
 * Get stripe length from chunk item and its stripe items
 *
 * Caller should only call this function after validating the chunk item
 * by using btrfs_check_chunk_valid().
 */
u64 btrfs_stripe_length(struct btrfs_fs_info *fs_info,
			struct extent_buffer *leaf,
			struct btrfs_chunk *chunk)
{
	u64 stripe_len;
	u64 chunk_len;
	u32 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	u64 profile = btrfs_chunk_type(leaf, chunk) &
		      BTRFS_BLOCK_GROUP_PROFILE_MASK;

	chunk_len = btrfs_chunk_length(leaf, chunk);

	switch (profile) {
	case 0: /* Single profile */
	case BTRFS_BLOCK_GROUP_RAID1:
	case BTRFS_BLOCK_GROUP_RAID1C3:
	case BTRFS_BLOCK_GROUP_RAID1C4:
	case BTRFS_BLOCK_GROUP_DUP:
		stripe_len = chunk_len;
		break;
	case BTRFS_BLOCK_GROUP_RAID0:
		stripe_len = chunk_len / num_stripes;
		break;
	case BTRFS_BLOCK_GROUP_RAID5:
		stripe_len = chunk_len / (num_stripes - 1);
		break;
	case BTRFS_BLOCK_GROUP_RAID6:
		stripe_len = chunk_len / (num_stripes - 2);
		break;
	case BTRFS_BLOCK_GROUP_RAID10:
		stripe_len = chunk_len / (num_stripes /
				btrfs_chunk_sub_stripes(leaf, chunk));
		break;
	default:
		/* Invalid chunk profile found */
		BUG_ON(1);
	}
	return stripe_len;
}

int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
{
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
	struct cache_extent *ce;
	struct map_lookup *map;
	int ret;

	ce = search_cache_extent(&map_tree->cache_tree, logical);
	if (!ce) {
		fprintf(stderr, "No mapping for %llu-%llu\n",
			(unsigned long long)logical,
			(unsigned long long)logical+len);
		return 1;
	}
	if (ce->start > logical || ce->start + ce->size < logical) {
		fprintf(stderr, "Invalid mapping for %llu-%llu, got "
			"%llu-%llu\n", (unsigned long long)logical,
			(unsigned long long)logical+len,
			(unsigned long long)ce->start,
			(unsigned long long)ce->start + ce->size);
		return 1;
	}
	map = container_of(ce, struct map_lookup, ce);

	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
			 BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))
		ret = map->num_stripes;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
		ret = 2;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
		ret = 3;
	else
		ret = 1;
	return ret;
}

int btrfs_next_bg(struct btrfs_fs_info *fs_info, u64 *logical,
		  u64 *size, u64 type)
{
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
	struct cache_extent *ce;
	struct map_lookup *map;
	u64 cur = *logical;

	ce = search_cache_extent(&map_tree->cache_tree, cur);

	while (ce) {
		/*
		 * only jump to next bg if our cur is not 0
		 * As the initial logical for btrfs_next_bg() is 0, and
		 * if we jump to next bg, we skipped a valid bg.
		 */
		if (cur) {
			ce = next_cache_extent(ce);
			if (!ce)
				return -ENOENT;
		}

		cur = ce->start;
		map = container_of(ce, struct map_lookup, ce);
		if (map->type & type) {
			*logical = ce->start;
			*size = ce->size;
			return 0;
		}
		if (!cur)
			ce = next_cache_extent(ce);
	}

	return -ENOENT;
}

static inline int parity_smaller(u64 a, u64 b)
{
	return a > b;
}

/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
{
	struct btrfs_bio_stripe s;
	int i;
	u64 l;
	int again = 1;

	while (again) {
		again = 0;
		for (i = 0; i < bbio->num_stripes - 1; i++) {
			if (parity_smaller(raid_map[i], raid_map[i+1])) {
				s = bbio->stripes[i];
				l = raid_map[i];
				bbio->stripes[i] = bbio->stripes[i+1];
				raid_map[i] = raid_map[i+1];
				bbio->stripes[i+1] = s;
				raid_map[i+1] = l;
				again = 1;
			}
		}
	}
}

int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
		      u64 logical, u64 *length, u64 *type,
		      struct btrfs_multi_bio **multi_ret, int mirror_num,
		      u64 **raid_map_ret)
{
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
	struct cache_extent *ce;
	struct map_lookup *map;
	u64 orig_len = *length;
	u64 offset;
	u64 stripe_offset;
	u64 *raid_map = NULL;
	int stripe_nr;
	int stripes_allocated = 8;
	int stripes_required = 1;
	int stripe_index;
	int i;
	struct btrfs_multi_bio *multi = NULL;

	if (multi_ret && rw == READ) {
		stripes_allocated = 1;
	}
again:
	ce = search_cache_extent(&map_tree->cache_tree, logical);
	if (!ce) {
		kfree(multi);
		*length = (u64)-1;
		return -ENOENT;
	}
	if (ce->start > logical) {
		kfree(multi);
		*length = ce->start - logical;
		return -ENOENT;
	}

	if (multi_ret) {
		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
				GFP_NOFS);
		if (!multi)
			return -ENOMEM;
	}
	map = container_of(ce, struct map_lookup, ce);
	offset = logical - ce->start;

	if (rw == WRITE) {
		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
				 BTRFS_BLOCK_GROUP_RAID1C3 |
				 BTRFS_BLOCK_GROUP_RAID1C4 |
				 BTRFS_BLOCK_GROUP_DUP)) {
			stripes_required = map->num_stripes;
		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
			stripes_required = map->sub_stripes;
		}
	}
	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
	    && multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
		    /* RAID[56] write or recovery. Return all stripes */
		    stripes_required = map->num_stripes;

		    /* Only allocate the map if we've already got a large enough multi_ret */
		    if (stripes_allocated >= stripes_required) {
			    raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
			    if (!raid_map) {
				    kfree(multi);
				    return -ENOMEM;
			    }
		    }
	}

	/* if our multi bio struct is too small, back off and try again */
	if (multi_ret && stripes_allocated < stripes_required) {
		stripes_allocated = stripes_required;
		kfree(multi);
		multi = NULL;
		goto again;
	}
	stripe_nr = offset;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	stripe_nr = stripe_nr / map->stripe_len;

	stripe_offset = stripe_nr * (u64)map->stripe_len;
	BUG_ON(offset < stripe_offset);

	/* stripe_offset is the offset of this block in its stripe*/
	stripe_offset = offset - stripe_offset;

	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
			 BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4 |
			 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
			 BTRFS_BLOCK_GROUP_RAID10 |
			 BTRFS_BLOCK_GROUP_DUP)) {
		/* we limit the length of each bio to what fits in a stripe */
		*length = min_t(u64, ce->size - offset,
			      map->stripe_len - stripe_offset);
	} else {
		*length = ce->size - offset;
	}
	*length = min_t(u64, *length, orig_len);

	if (!multi_ret)
		goto out;

	multi->num_stripes = 1;
	stripe_index = 0;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
			 BTRFS_BLOCK_GROUP_RAID1C3 |
			 BTRFS_BLOCK_GROUP_RAID1C4)) {
		if (rw == WRITE)
			multi->num_stripes = map->num_stripes;
		else if (mirror_num)
			stripe_index = mirror_num - 1;
		else
			stripe_index = stripe_nr % map->num_stripes;
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;

		stripe_index = stripe_nr % factor;
		stripe_index *= map->sub_stripes;

		if (rw == WRITE)
			multi->num_stripes = map->sub_stripes;
		else if (mirror_num)
			stripe_index += mirror_num - 1;

		stripe_nr = stripe_nr / factor;
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		if (rw == WRITE)
			multi->num_stripes = map->num_stripes;
		else if (mirror_num)
			stripe_index = mirror_num - 1;
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {

		if (raid_map) {
			int rot;
			u64 tmp;
			u64 raid56_full_stripe_start;
			u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;

			/*
			 * align the start of our data stripe in the logical
			 * address space
			 */
			raid56_full_stripe_start = offset / full_stripe_len;
			raid56_full_stripe_start *= full_stripe_len;

			/* get the data stripe number */
			stripe_nr = raid56_full_stripe_start / map->stripe_len;
			stripe_nr = stripe_nr / nr_data_stripes(map);

			/* Work out the disk rotation on this stripe-set */
			rot = stripe_nr % map->num_stripes;

			/* Fill in the logical address of each stripe */
			tmp = (u64)stripe_nr * nr_data_stripes(map);

			for (i = 0; i < nr_data_stripes(map); i++)
				raid_map[(i+rot) % map->num_stripes] =
					ce->start + (tmp + i) * map->stripe_len;

			raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
			if (map->type & BTRFS_BLOCK_GROUP_RAID6)
				raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;

			*length = map->stripe_len;
			stripe_index = 0;
			stripe_offset = 0;
			multi->num_stripes = map->num_stripes;
		} else {
			stripe_index = stripe_nr % nr_data_stripes(map);
			stripe_nr = stripe_nr / nr_data_stripes(map);

			/*
			 * Mirror #0 or #1 means the original data block.
			 * Mirror #2 is RAID5 parity block.
			 * Mirror #3 is RAID6 Q block.
			 */
			if (mirror_num > 1)
				stripe_index = nr_data_stripes(map) + mirror_num - 2;

			/* We distribute the parity blocks across stripes */
			stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
		}
	} else {
		/*
		 * after this do_div call, stripe_nr is the number of stripes
		 * on this device we have to walk to find the data, and
		 * stripe_index is the number of our device in the stripe array
		 */
		stripe_index = stripe_nr % map->num_stripes;
		stripe_nr = stripe_nr / map->num_stripes;
	}
	BUG_ON(stripe_index >= map->num_stripes);

	for (i = 0; i < multi->num_stripes; i++) {
		multi->stripes[i].physical =
			map->stripes[stripe_index].physical + stripe_offset +
			stripe_nr * map->stripe_len;
		multi->stripes[i].dev = map->stripes[stripe_index].dev;
		stripe_index++;
	}
	*multi_ret = multi;

	if (type)
		*type = map->type;

	if (raid_map) {
		sort_parity_stripes(multi, raid_map);
		*raid_map_ret = raid_map;
	}
out:
	return 0;
}

int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
		    u64 logical, u64 *length,
		    struct btrfs_multi_bio **multi_ret, int mirror_num,
		    u64 **raid_map_ret)
{
	return __btrfs_map_block(fs_info, rw, logical, length, NULL,
				 multi_ret, mirror_num, raid_map_ret);
}