summaryrefslogtreecommitdiff
path: root/drivers/clk/clk_k210.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/clk/clk_k210.c')
-rw-r--r--drivers/clk/clk_k210.c1344
1 files changed, 1344 insertions, 0 deletions
diff --git a/drivers/clk/clk_k210.c b/drivers/clk/clk_k210.c
new file mode 100644
index 0000000000..1961efaa5e
--- /dev/null
+++ b/drivers/clk/clk_k210.c
@@ -0,0 +1,1344 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com>
+ */
+#define LOG_CATEGORY UCLASS_CLK
+
+#include <common.h>
+#include <clk.h>
+#include <clk-uclass.h>
+#include <div64.h>
+#include <dm.h>
+#include <log.h>
+#include <mapmem.h>
+#include <serial.h>
+#include <dt-bindings/clock/k210-sysctl.h>
+#include <dt-bindings/mfd/k210-sysctl.h>
+#include <k210/pll.h>
+#include <linux/bitfield.h>
+
+DECLARE_GLOBAL_DATA_PTR;
+
+/**
+ * struct k210_clk_priv - K210 clock driver private data
+ * @base: The base address of the sysctl device
+ * @in0: The "in0" external oscillator
+ */
+struct k210_clk_priv {
+ void __iomem *base;
+ struct clk in0;
+};
+
+/*
+ * All parameters for different sub-clocks are collected into parameter arrays.
+ * These parameters are then initialized by the clock which uses them during
+ * probe. To save space, ids are automatically generated for each sub-clock by
+ * using an enum. Instead of storing a parameter struct for each clock, even for
+ * those clocks which don't use a particular type of sub-clock, we can just
+ * store the parameters for the clocks which need them.
+ *
+ * So why do it like this? Arranging all the sub-clocks together makes it very
+ * easy to find bugs in the code.
+ */
+
+/**
+ * enum k210_clk_div_type - The type of divider
+ * @K210_DIV_ONE: freq = parent / (reg + 1)
+ * @K210_DIV_EVEN: freq = parent / 2 / (reg + 1)
+ * @K210_DIV_POWER: freq = parent / (2 << reg)
+ * @K210_DIV_FIXED: freq = parent / factor
+ */
+enum k210_clk_div_type {
+ K210_DIV_ONE,
+ K210_DIV_EVEN,
+ K210_DIV_POWER,
+ K210_DIV_FIXED,
+};
+
+/**
+ * struct k210_div_params - Parameters for dividing clocks
+ * @type: An &enum k210_clk_div_type specifying the dividing formula
+ * @off: The offset of the divider from the sysctl base address
+ * @shift: The offset of the LSB of the divider
+ * @width: The number of bits in the divider
+ * @div: The fixed divisor for this divider
+ */
+struct k210_div_params {
+ u8 type;
+ union {
+ struct {
+ u8 off;
+ u8 shift;
+ u8 width;
+ };
+ u8 div;
+ };
+};
+
+#define DIV_LIST \
+ DIV(K210_CLK_ACLK, K210_SYSCTL_SEL0, 1, 2, K210_DIV_POWER) \
+ DIV(K210_CLK_APB0, K210_SYSCTL_SEL0, 3, 3, K210_DIV_ONE) \
+ DIV(K210_CLK_APB1, K210_SYSCTL_SEL0, 6, 3, K210_DIV_ONE) \
+ DIV(K210_CLK_APB2, K210_SYSCTL_SEL0, 9, 3, K210_DIV_ONE) \
+ DIV(K210_CLK_SRAM0, K210_SYSCTL_THR0, 0, 4, K210_DIV_ONE) \
+ DIV(K210_CLK_SRAM1, K210_SYSCTL_THR0, 4, 4, K210_DIV_ONE) \
+ DIV(K210_CLK_AI, K210_SYSCTL_THR0, 8, 4, K210_DIV_ONE) \
+ DIV(K210_CLK_DVP, K210_SYSCTL_THR0, 12, 4, K210_DIV_ONE) \
+ DIV(K210_CLK_ROM, K210_SYSCTL_THR0, 16, 4, K210_DIV_ONE) \
+ DIV(K210_CLK_SPI0, K210_SYSCTL_THR1, 0, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_SPI1, K210_SYSCTL_THR1, 8, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_SPI2, K210_SYSCTL_THR1, 16, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_SPI3, K210_SYSCTL_THR1, 24, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_TIMER0, K210_SYSCTL_THR2, 0, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_TIMER1, K210_SYSCTL_THR2, 8, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_TIMER2, K210_SYSCTL_THR2, 16, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2S0, K210_SYSCTL_THR3, 0, 16, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2S1, K210_SYSCTL_THR3, 16, 16, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2S2, K210_SYSCTL_THR4, 0, 16, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2S0_M, K210_SYSCTL_THR4, 16, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2S1_M, K210_SYSCTL_THR4, 24, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2S2_M, K210_SYSCTL_THR4, 0, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2C0, K210_SYSCTL_THR5, 8, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2C1, K210_SYSCTL_THR5, 16, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_I2C2, K210_SYSCTL_THR5, 24, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_WDT0, K210_SYSCTL_THR6, 0, 8, K210_DIV_EVEN) \
+ DIV(K210_CLK_WDT1, K210_SYSCTL_THR6, 8, 8, K210_DIV_EVEN) \
+ DIV_FIXED(K210_CLK_CLINT, 50) \
+
+#define _DIVIFY(id) K210_CLK_DIV_##id
+#define DIVIFY(id) _DIVIFY(id)
+
+enum k210_div_id {
+#define DIV(id, ...) DIVIFY(id),
+#define DIV_FIXED DIV
+ DIV_LIST
+#undef DIV
+#undef DIV_FIXED
+ K210_CLK_DIV_NONE,
+};
+
+static const struct k210_div_params k210_divs[] = {
+#define DIV(id, _off, _shift, _width, _type) \
+ [DIVIFY(id)] = { \
+ .type = (_type), \
+ .off = (_off), \
+ .shift = (_shift), \
+ .width = (_width), \
+ },
+#define DIV_FIXED(id, _div) \
+ [DIVIFY(id)] = { \
+ .type = K210_DIV_FIXED, \
+ .div = (_div) \
+ },
+ DIV_LIST
+#undef DIV
+#undef DIV_FIXED
+};
+
+#undef DIV
+#undef DIV_LIST
+
+/**
+ * struct k210_gate_params - Parameters for gated clocks
+ * @off: The offset of the gate from the sysctl base address
+ * @bit_idx: The index of the bit within the register
+ */
+struct k210_gate_params {
+ u8 off;
+ u8 bit_idx;
+};
+
+#define GATE_LIST \
+ GATE(K210_CLK_CPU, K210_SYSCTL_EN_CENT, 0) \
+ GATE(K210_CLK_SRAM0, K210_SYSCTL_EN_CENT, 1) \
+ GATE(K210_CLK_SRAM1, K210_SYSCTL_EN_CENT, 2) \
+ GATE(K210_CLK_APB0, K210_SYSCTL_EN_CENT, 3) \
+ GATE(K210_CLK_APB1, K210_SYSCTL_EN_CENT, 4) \
+ GATE(K210_CLK_APB2, K210_SYSCTL_EN_CENT, 5) \
+ GATE(K210_CLK_ROM, K210_SYSCTL_EN_PERI, 0) \
+ GATE(K210_CLK_DMA, K210_SYSCTL_EN_PERI, 1) \
+ GATE(K210_CLK_AI, K210_SYSCTL_EN_PERI, 2) \
+ GATE(K210_CLK_DVP, K210_SYSCTL_EN_PERI, 3) \
+ GATE(K210_CLK_FFT, K210_SYSCTL_EN_PERI, 4) \
+ GATE(K210_CLK_GPIO, K210_SYSCTL_EN_PERI, 5) \
+ GATE(K210_CLK_SPI0, K210_SYSCTL_EN_PERI, 6) \
+ GATE(K210_CLK_SPI1, K210_SYSCTL_EN_PERI, 7) \
+ GATE(K210_CLK_SPI2, K210_SYSCTL_EN_PERI, 8) \
+ GATE(K210_CLK_SPI3, K210_SYSCTL_EN_PERI, 9) \
+ GATE(K210_CLK_I2S0, K210_SYSCTL_EN_PERI, 10) \
+ GATE(K210_CLK_I2S1, K210_SYSCTL_EN_PERI, 11) \
+ GATE(K210_CLK_I2S2, K210_SYSCTL_EN_PERI, 12) \
+ GATE(K210_CLK_I2C0, K210_SYSCTL_EN_PERI, 13) \
+ GATE(K210_CLK_I2C1, K210_SYSCTL_EN_PERI, 14) \
+ GATE(K210_CLK_I2C2, K210_SYSCTL_EN_PERI, 15) \
+ GATE(K210_CLK_UART1, K210_SYSCTL_EN_PERI, 16) \
+ GATE(K210_CLK_UART2, K210_SYSCTL_EN_PERI, 17) \
+ GATE(K210_CLK_UART3, K210_SYSCTL_EN_PERI, 18) \
+ GATE(K210_CLK_AES, K210_SYSCTL_EN_PERI, 19) \
+ GATE(K210_CLK_FPIOA, K210_SYSCTL_EN_PERI, 20) \
+ GATE(K210_CLK_TIMER0, K210_SYSCTL_EN_PERI, 21) \
+ GATE(K210_CLK_TIMER1, K210_SYSCTL_EN_PERI, 22) \
+ GATE(K210_CLK_TIMER2, K210_SYSCTL_EN_PERI, 23) \
+ GATE(K210_CLK_WDT0, K210_SYSCTL_EN_PERI, 24) \
+ GATE(K210_CLK_WDT1, K210_SYSCTL_EN_PERI, 25) \
+ GATE(K210_CLK_SHA, K210_SYSCTL_EN_PERI, 26) \
+ GATE(K210_CLK_OTP, K210_SYSCTL_EN_PERI, 27) \
+ GATE(K210_CLK_RTC, K210_SYSCTL_EN_PERI, 29)
+
+#define _GATEIFY(id) K210_CLK_GATE_##id
+#define GATEIFY(id) _GATEIFY(id)
+
+enum k210_gate_id {
+#define GATE(id, ...) GATEIFY(id),
+ GATE_LIST
+#undef GATE
+ K210_CLK_GATE_NONE,
+};
+
+static const struct k210_gate_params k210_gates[] = {
+#define GATE(id, _off, _idx) \
+ [GATEIFY(id)] = { \
+ .off = (_off), \
+ .bit_idx = (_idx), \
+ },
+ GATE_LIST
+#undef GATE
+};
+
+#undef GATE_LIST
+
+/* The most parents is PLL2 */
+#define K210_CLK_MAX_PARENTS 3
+
+/**
+ * struct k210_mux_params - Parameters for muxed clocks
+ * @parents: A list of parent clock ids
+ * @num_parents: The number of parent clocks
+ * @off: The offset of the mux from the base sysctl address
+ * @shift: The offset of the LSB of the mux selector
+ * @width: The number of bits in the mux selector
+ */
+struct k210_mux_params {
+ u8 parents[K210_CLK_MAX_PARENTS];
+ u8 num_parents;
+ u8 off;
+ u8 shift;
+ u8 width;
+};
+
+#define MUX(id, reg, shift, width) \
+ MUX_PARENTS(id, reg, shift, width, K210_CLK_IN0, K210_CLK_PLL0)
+#define MUX_LIST \
+ MUX_PARENTS(K210_CLK_PLL2, K210_SYSCTL_PLL2, 26, 2, \
+ K210_CLK_IN0, K210_CLK_PLL0, K210_CLK_PLL1) \
+ MUX(K210_CLK_ACLK, K210_SYSCTL_SEL0, 0, 1) \
+ MUX(K210_CLK_SPI3, K210_SYSCTL_SEL0, 12, 1) \
+ MUX(K210_CLK_TIMER0, K210_SYSCTL_SEL0, 13, 1) \
+ MUX(K210_CLK_TIMER1, K210_SYSCTL_SEL0, 14, 1) \
+ MUX(K210_CLK_TIMER2, K210_SYSCTL_SEL0, 15, 1)
+
+#define _MUXIFY(id) K210_CLK_MUX_##id
+#define MUXIFY(id) _MUXIFY(id)
+
+enum k210_mux_id {
+#define MUX_PARENTS(id, ...) MUXIFY(id),
+ MUX_LIST
+#undef MUX_PARENTS
+ K210_CLK_MUX_NONE,
+};
+
+static const struct k210_mux_params k210_muxes[] = {
+#define MUX_PARENTS(id, _off, _shift, _width, ...) \
+ [MUXIFY(id)] = { \
+ .parents = { __VA_ARGS__ }, \
+ .num_parents = __count_args(__VA_ARGS__), \
+ .off = (_off), \
+ .shift = (_shift), \
+ .width = (_width), \
+ },
+ MUX_LIST
+#undef MUX_PARENTS
+};
+
+#undef MUX
+#undef MUX_LIST
+
+/**
+ * struct k210_pll_params - K210 PLL parameters
+ * @off: The offset of the PLL from the base sysctl address
+ * @shift: The offset of the LSB of the lock status
+ * @width: The number of bits in the lock status
+ */
+struct k210_pll_params {
+ u8 off;
+ u8 shift;
+ u8 width;
+};
+
+static const struct k210_pll_params k210_plls[] = {
+#define PLL(_off, _shift, _width) { \
+ .off = (_off), \
+ .shift = (_shift), \
+ .width = (_width), \
+}
+ [0] = PLL(K210_SYSCTL_PLL0, 0, 2),
+ [1] = PLL(K210_SYSCTL_PLL1, 8, 1),
+ [2] = PLL(K210_SYSCTL_PLL2, 16, 1),
+#undef PLL
+};
+
+/**
+ * enum k210_clk_flags - The type of a K210 clock
+ * @K210_CLKF_MUX: This clock has a mux and not a static parent
+ * @K210_CLKF_PLL: This clock is a PLL
+ */
+enum k210_clk_flags {
+ K210_CLKF_MUX = BIT(0),
+ K210_CLKF_PLL = BIT(1),
+};
+
+/**
+ * struct k210_clk_params - The parameters defining a K210 clock
+ * @name: The name of the clock
+ * @flags: A set of &enum k210_clk_flags defining which fields are valid
+ * @mux: An &enum k210_mux_id of this clock's mux
+ * @parent: The clock id of this clock's parent
+ * @pll: The id of the PLL (if this clock is a PLL)
+ * @div: An &enum k210_div_id of this clock's divider
+ * @gate: An &enum k210_gate_id of this clock's gate
+ */
+struct k210_clk_params {
+#if CONFIG_IS_ENABLED(CMD_CLK)
+ const char *name;
+#endif
+ u8 flags;
+ union {
+ u8 parent;
+ u8 mux;
+ };
+ union {
+ u8 pll;
+ struct {
+ u8 div;
+ u8 gate;
+ };
+ };
+};
+
+static const struct k210_clk_params k210_clks[] = {
+#if CONFIG_IS_ENABLED(CMD_CLK)
+#define NAME(_name) .name = (_name),
+#else
+#define NAME(name)
+#endif
+#define CLK(id, _name, _parent, _div, _gate) \
+ [id] = { \
+ NAME(_name) \
+ .parent = (_parent), \
+ .div = (_div), \
+ .gate = (_gate), \
+ }
+#define CLK_MUX(id, _name, _mux, _div, _gate) \
+ [id] = { \
+ NAME(_name) \
+ .flags = K210_CLKF_MUX, \
+ .mux = (_mux), \
+ .div = (_div), \
+ .gate = (_gate), \
+ }
+#define CLK_PLL(id, _pll, _parent) \
+ [id] = { \
+ NAME("pll" #_pll) \
+ .flags = K210_CLKF_PLL, \
+ .parent = (_parent), \
+ .pll = (_pll), \
+ }
+#define CLK_FULL(id, name) \
+ CLK_MUX(id, name, MUXIFY(id), DIVIFY(id), GATEIFY(id))
+#define CLK_NOMUX(id, name, parent) \
+ CLK(id, name, parent, DIVIFY(id), GATEIFY(id))
+#define CLK_DIV(id, name, parent) \
+ CLK(id, name, parent, DIVIFY(id), K210_CLK_GATE_NONE)
+#define CLK_GATE(id, name, parent) \
+ CLK(id, name, parent, K210_CLK_DIV_NONE, GATEIFY(id))
+ CLK_PLL(K210_CLK_PLL0, 0, K210_CLK_IN0),
+ CLK_PLL(K210_CLK_PLL1, 1, K210_CLK_IN0),
+ [K210_CLK_PLL2] = {
+ NAME("pll2")
+ .flags = K210_CLKF_MUX | K210_CLKF_PLL,
+ .mux = MUXIFY(K210_CLK_PLL2),
+ .pll = 2,
+ },
+ CLK_MUX(K210_CLK_ACLK, "aclk", MUXIFY(K210_CLK_ACLK),
+ DIVIFY(K210_CLK_ACLK), K210_CLK_GATE_NONE),
+ CLK_FULL(K210_CLK_SPI3, "spi3"),
+ CLK_FULL(K210_CLK_TIMER0, "timer0"),
+ CLK_FULL(K210_CLK_TIMER1, "timer1"),
+ CLK_FULL(K210_CLK_TIMER2, "timer2"),
+ CLK_NOMUX(K210_CLK_SRAM0, "sram0", K210_CLK_ACLK),
+ CLK_NOMUX(K210_CLK_SRAM1, "sram1", K210_CLK_ACLK),
+ CLK_NOMUX(K210_CLK_ROM, "rom", K210_CLK_ACLK),
+ CLK_NOMUX(K210_CLK_DVP, "dvp", K210_CLK_ACLK),
+ CLK_NOMUX(K210_CLK_APB0, "apb0", K210_CLK_ACLK),
+ CLK_NOMUX(K210_CLK_APB1, "apb1", K210_CLK_ACLK),
+ CLK_NOMUX(K210_CLK_APB2, "apb2", K210_CLK_ACLK),
+ CLK_NOMUX(K210_CLK_AI, "ai", K210_CLK_PLL1),
+ CLK_NOMUX(K210_CLK_I2S0, "i2s0", K210_CLK_PLL2),
+ CLK_NOMUX(K210_CLK_I2S1, "i2s1", K210_CLK_PLL2),
+ CLK_NOMUX(K210_CLK_I2S2, "i2s2", K210_CLK_PLL2),
+ CLK_NOMUX(K210_CLK_WDT0, "wdt0", K210_CLK_IN0),
+ CLK_NOMUX(K210_CLK_WDT1, "wdt1", K210_CLK_IN0),
+ CLK_NOMUX(K210_CLK_SPI0, "spi0", K210_CLK_PLL0),
+ CLK_NOMUX(K210_CLK_SPI1, "spi1", K210_CLK_PLL0),
+ CLK_NOMUX(K210_CLK_SPI2, "spi2", K210_CLK_PLL0),
+ CLK_NOMUX(K210_CLK_I2C0, "i2c0", K210_CLK_PLL0),
+ CLK_NOMUX(K210_CLK_I2C1, "i2c1", K210_CLK_PLL0),
+ CLK_NOMUX(K210_CLK_I2C2, "i2c2", K210_CLK_PLL0),
+ CLK_DIV(K210_CLK_I2S0_M, "i2s0_m", K210_CLK_PLL2),
+ CLK_DIV(K210_CLK_I2S1_M, "i2s1_m", K210_CLK_PLL2),
+ CLK_DIV(K210_CLK_I2S2_M, "i2s2_m", K210_CLK_PLL2),
+ CLK_DIV(K210_CLK_CLINT, "clint", K210_CLK_ACLK),
+ CLK_GATE(K210_CLK_CPU, "cpu", K210_CLK_ACLK),
+ CLK_GATE(K210_CLK_DMA, "dma", K210_CLK_ACLK),
+ CLK_GATE(K210_CLK_FFT, "fft", K210_CLK_ACLK),
+ CLK_GATE(K210_CLK_GPIO, "gpio", K210_CLK_APB0),
+ CLK_GATE(K210_CLK_UART1, "uart1", K210_CLK_APB0),
+ CLK_GATE(K210_CLK_UART2, "uart2", K210_CLK_APB0),
+ CLK_GATE(K210_CLK_UART3, "uart3", K210_CLK_APB0),
+ CLK_GATE(K210_CLK_FPIOA, "fpioa", K210_CLK_APB0),
+ CLK_GATE(K210_CLK_SHA, "sha", K210_CLK_APB0),
+ CLK_GATE(K210_CLK_AES, "aes", K210_CLK_APB1),
+ CLK_GATE(K210_CLK_OTP, "otp", K210_CLK_APB1),
+ CLK_GATE(K210_CLK_RTC, "rtc", K210_CLK_IN0),
+#undef NAME
+#undef CLK_PLL
+#undef CLK
+#undef CLK_FULL
+#undef CLK_NOMUX
+#undef CLK_DIV
+#undef CLK_GATE
+#undef CLK_LIST
+};
+
+#define K210_PLL_CLKR GENMASK(3, 0)
+#define K210_PLL_CLKF GENMASK(9, 4)
+#define K210_PLL_CLKOD GENMASK(13, 10) /* Output Divider */
+#define K210_PLL_BWADJ GENMASK(19, 14) /* BandWidth Adjust */
+#define K210_PLL_RESET BIT(20)
+#define K210_PLL_PWRD BIT(21) /* PoWeReD */
+#define K210_PLL_INTFB BIT(22) /* Internal FeedBack */
+#define K210_PLL_BYPASS BIT(23)
+#define K210_PLL_TEST BIT(24)
+#define K210_PLL_EN BIT(25)
+#define K210_PLL_TEST_EN BIT(26)
+
+#define K210_PLL_LOCK 0
+#define K210_PLL_CLEAR_SLIP 2
+#define K210_PLL_TEST_OUT 3
+
+#ifdef CONFIG_CLK_K210_SET_RATE
+static int k210_pll_enable(struct k210_clk_priv *priv, int id);
+static int k210_pll_disable(struct k210_clk_priv *priv, int id);
+static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id, ulong rate_in);
+
+/*
+ * The PLL included with the Kendryte K210 appears to be a True Circuits, Inc.
+ * General-Purpose PLL. The logical layout of the PLL with internal feedback is
+ * approximately the following:
+ *
+ * +---------------+
+ * |reference clock|
+ * +---------------+
+ * |
+ * v
+ * +--+
+ * |/r|
+ * +--+
+ * |
+ * v
+ * +-------------+
+ * |divided clock|
+ * +-------------+
+ * |
+ * v
+ * +--------------+
+ * |phase detector|<---+
+ * +--------------+ |
+ * | |
+ * v +--------------+
+ * +---+ |feedback clock|
+ * |VCO| +--------------+
+ * +---+ ^
+ * | +--+ |
+ * +--->|/f|---+
+ * | +--+
+ * v
+ * +---+
+ * |/od|
+ * +---+
+ * |
+ * v
+ * +------+
+ * |output|
+ * +------+
+ *
+ * The k210 PLLs have three factors: r, f, and od. Because of the feedback mode,
+ * the effect of the division by f is to multiply the input frequency. The
+ * equation for the output rate is
+ * rate = (rate_in * f) / (r * od).
+ * Moving knowns to one side of the equation, we get
+ * rate / rate_in = f / (r * od)
+ * Rearranging slightly,
+ * abs_error = abs((rate / rate_in) - (f / (r * od))).
+ * To get relative, error, we divide by the expected ratio
+ * error = abs((rate / rate_in) - (f / (r * od))) / (rate / rate_in).
+ * Simplifying,
+ * error = abs(1 - f / (r * od)) / (rate / rate_in)
+ * error = abs(1 - (f * rate_in) / (r * od * rate))
+ * Using the constants ratio = rate / rate_in and inv_ratio = rate_in / rate,
+ * error = abs((f * inv_ratio) / (r * od) - 1)
+ * This is the error used in evaluating parameters.
+ *
+ * r and od are four bits each, while f is six bits. Because r and od are
+ * multiplied together, instead of the full 256 values possible if both bits
+ * were used fully, there are only 97 distinct products. Combined with f, there
+ * are 6208 theoretical settings for the PLL. However, most of these settings
+ * can be ruled out immediately because they do not have the correct ratio.
+ *
+ * In addition to the constraint of approximating the desired ratio, parameters
+ * must also keep internal pll frequencies within acceptable ranges. The divided
+ * clock's minimum and maximum frequencies have a ratio of around 128. This
+ * leaves fairly substantial room to work with, especially since the only
+ * affected parameter is r. The VCO's minimum and maximum frequency have a ratio
+ * of 5, which is considerably more restrictive.
+ *
+ * The r and od factors are stored in a table. This is to make it easy to find
+ * the next-largest product. Some products have multiple factorizations, but
+ * only when one factor has at least a 2.5x ratio to the factors of the other
+ * factorization. This is because any smaller ratio would not make a difference
+ * when ensuring the VCO's frequency is within spec.
+ *
+ * Throughout the calculation function, fixed point arithmetic is used. Because
+ * the range of rate and rate_in may be up to 1.75 GHz, or around 2^30, 64-bit
+ * 32.32 fixed-point numbers are used to represent ratios. In general, to
+ * implement division, the numerator is first multiplied by 2^32. This gives a
+ * result where the whole number part is in the upper 32 bits, and the fraction
+ * is in the lower 32 bits.
+ *
+ * In general, rounding is done to the closest integer. This helps find the best
+ * approximation for the ratio. Rounding in one direction (e.g down) could cause
+ * the function to miss a better ratio with one of the parameters increased by
+ * one.
+ */
+
+/*
+ * The factors table was generated with the following python code:
+ *
+ * def p(x, y):
+ * return (1.0*x/y > 2.5) or (1.0*y/x > 2.5)
+ *
+ * factors = {}
+ * for i in range(1, 17):
+ * for j in range(1, 17):
+ * fs = factors.get(i*j) or []
+ * if fs == [] or all([
+ * (p(i, x) and p(i, y)) or (p(j, x) and p(j, y))
+ * for (x, y) in fs]):
+ * fs.append((i, j))
+ * factors[i*j] = fs
+ *
+ * for k, l in sorted(factors.items()):
+ * for v in l:
+ * print("PACK(%s, %s)," % v)
+ */
+#define PACK(r, od) (((((r) - 1) & 0xF) << 4) | (((od) - 1) & 0xF))
+#define UNPACK_R(val) ((((val) >> 4) & 0xF) + 1)
+#define UNPACK_OD(val) (((val) & 0xF) + 1)
+static const u8 factors[] = {
+ PACK(1, 1),
+ PACK(1, 2),
+ PACK(1, 3),
+ PACK(1, 4),
+ PACK(1, 5),
+ PACK(1, 6),
+ PACK(1, 7),
+ PACK(1, 8),
+ PACK(1, 9),
+ PACK(3, 3),
+ PACK(1, 10),
+ PACK(1, 11),
+ PACK(1, 12),
+ PACK(3, 4),
+ PACK(1, 13),
+ PACK(1, 14),
+ PACK(1, 15),
+ PACK(3, 5),
+ PACK(1, 16),
+ PACK(4, 4),
+ PACK(2, 9),
+ PACK(2, 10),
+ PACK(3, 7),
+ PACK(2, 11),
+ PACK(2, 12),
+ PACK(5, 5),
+ PACK(2, 13),
+ PACK(3, 9),
+ PACK(2, 14),
+ PACK(2, 15),
+ PACK(2, 16),
+ PACK(3, 11),
+ PACK(5, 7),
+ PACK(3, 12),
+ PACK(3, 13),
+ PACK(4, 10),
+ PACK(3, 14),
+ PACK(4, 11),
+ PACK(3, 15),
+ PACK(3, 16),
+ PACK(7, 7),
+ PACK(5, 10),
+ PACK(4, 13),
+ PACK(6, 9),
+ PACK(5, 11),
+ PACK(4, 14),
+ PACK(4, 15),
+ PACK(7, 9),
+ PACK(4, 16),
+ PACK(5, 13),
+ PACK(6, 11),
+ PACK(5, 14),
+ PACK(6, 12),
+ PACK(5, 15),
+ PACK(7, 11),
+ PACK(6, 13),
+ PACK(5, 16),
+ PACK(9, 9),
+ PACK(6, 14),
+ PACK(8, 11),
+ PACK(6, 15),
+ PACK(7, 13),
+ PACK(6, 16),
+ PACK(7, 14),
+ PACK(9, 11),
+ PACK(10, 10),
+ PACK(8, 13),
+ PACK(7, 15),
+ PACK(9, 12),
+ PACK(10, 11),
+ PACK(7, 16),
+ PACK(9, 13),
+ PACK(8, 15),
+ PACK(11, 11),
+ PACK(9, 14),
+ PACK(8, 16),
+ PACK(10, 13),
+ PACK(11, 12),
+ PACK(9, 15),
+ PACK(10, 14),
+ PACK(11, 13),
+ PACK(9, 16),
+ PACK(10, 15),
+ PACK(11, 14),
+ PACK(12, 13),
+ PACK(10, 16),
+ PACK(11, 15),
+ PACK(12, 14),
+ PACK(13, 13),
+ PACK(11, 16),
+ PACK(12, 15),
+ PACK(13, 14),
+ PACK(12, 16),
+ PACK(13, 15),
+ PACK(14, 14),
+ PACK(13, 16),
+ PACK(14, 15),
+ PACK(14, 16),
+ PACK(15, 15),
+ PACK(15, 16),
+ PACK(16, 16),
+};
+
+TEST_STATIC int k210_pll_calc_config(u32 rate, u32 rate_in,
+ struct k210_pll_config *best)
+{
+ int i;
+ s64 error, best_error;
+ u64 ratio, inv_ratio; /* fixed point 32.32 ratio of the rates */
+ u64 max_r;
+ u64 r, f, od;
+
+ /*
+ * Can't go over 1.75 GHz or under 21.25 MHz due to limitations on the
+ * VCO frequency. These are not the same limits as below because od can
+ * reduce the output frequency by 16.
+ */
+ if (rate > 1750000000 || rate < 21250000)
+ return -EINVAL;
+
+ /* Similar restrictions on the input rate */
+ if (rate_in > 1750000000 || rate_in < 13300000)
+ return -EINVAL;
+
+ ratio = DIV_ROUND_CLOSEST_ULL((u64)rate << 32, rate_in);
+ inv_ratio = DIV_ROUND_CLOSEST_ULL((u64)rate_in << 32, rate);
+ /* Can't increase by more than 64 or reduce by more than 256 */
+ if (rate > rate_in && ratio > (64ULL << 32))
+ return -EINVAL;
+ else if (rate <= rate_in && inv_ratio > (256ULL << 32))
+ return -EINVAL;
+
+ /*
+ * The divided clock (rate_in / r) must stay between 1.75 GHz and 13.3
+ * MHz. There is no minimum, since the only way to get a higher input
+ * clock than 26 MHz is to use a clock generated by a PLL. Because PLLs
+ * cannot output frequencies greater than 1.75 GHz, the minimum would
+ * never be greater than one.
+ */
+ max_r = DIV_ROUND_DOWN_ULL(rate_in, 13300000);
+
+ /* Variables get immediately incremented, so start at -1th iteration */
+ i = -1;
+ f = 0;
+ r = 0;
+ od = 0;
+ best_error = S64_MAX;
+ error = best_error;
+ /* do-while here so we always try at least one ratio */
+ do {
+ /*
+ * Whether we swapped r and od while enforcing frequency limits
+ */
+ bool swapped = false;
+ /*
+ * Whether the intermediate frequencies are out-of-spec
+ */
+ bool out_of_spec;
+ u64 last_od = od;
+ u64 last_r = r;
+
+ /*
+ * Try the next largest value for f (or r and od) and
+ * recalculate the other parameters based on that
+ */
+ if (rate > rate_in) {
+ /*
+ * Skip factors of the same product if we already tried
+ * out that product
+ */
+ do {
+ i++;
+ r = UNPACK_R(factors[i]);
+ od = UNPACK_OD(factors[i]);
+ } while (i + 1 < ARRAY_SIZE(factors) &&
+ r * od == last_r * last_od);
+
+ /* Round close */
+ f = (r * od * ratio + BIT(31)) >> 32;
+ if (f > 64)
+ f = 64;
+ } else {
+ u64 tmp = ++f * inv_ratio;
+ bool round_up = !!(tmp & BIT(31));
+ u32 goal = (tmp >> 32) + round_up;
+ u32 err, last_err;
+
+ /* Get the next r/od pair in factors */
+ while (r * od < goal && i + 1 < ARRAY_SIZE(factors)) {
+ i++;
+ r = UNPACK_R(factors[i]);
+ od = UNPACK_OD(factors[i]);
+ }
+
+ /*
+ * This is a case of double rounding. If we rounded up
+ * above, we need to round down (in cases of ties) here.
+ * This prevents off-by-one errors resulting from
+ * choosing X+2 over X when X.Y rounds up to X+1 and
+ * there is no r * od = X+1. For the converse, when X.Y
+ * is rounded down to X, we should choose X+1 over X-1.
+ */
+ err = abs(r * od - goal);
+ last_err = abs(last_r * last_od - goal);
+ if (last_err < err || (round_up && last_err == err)) {
+ i--;
+ r = last_r;
+ od = last_od;
+ }
+ }
+
+ /*
+ * Enforce limits on internal clock frequencies. If we
+ * aren't in spec, try swapping r and od. If everything is
+ * in-spec, calculate the relative error.
+ */
+again:
+ out_of_spec = false;
+ if (r > max_r) {
+ out_of_spec = true;
+ } else {
+ /*
+ * There is no way to only divide once; we need
+ * to examine the frequency with and without the
+ * effect of od.
+ */
+ u64 vco = DIV_ROUND_CLOSEST_ULL(rate_in * f, r);
+
+ if (vco > 1750000000 || vco < 340000000)
+ out_of_spec = true;
+ }
+
+ if (out_of_spec) {
+ u64 new_r, new_od;
+
+ if (!swapped) {
+ u64 tmp = r;
+
+ r = od;
+ od = tmp;
+ swapped = true;
+ goto again;
+ }
+
+ /*
+ * Try looking ahead to see if there are additional
+ * factors for the same product.
+ */
+ if (i + 1 < ARRAY_SIZE(factors)) {
+ i++;
+ new_r = UNPACK_R(factors[i]);
+ new_od = UNPACK_OD(factors[i]);
+ if (r * od == new_r * new_od) {
+ r = new_r;
+ od = new_od;
+ swapped = false;
+ goto again;
+ }
+ i--;
+ }
+
+ /*
+ * Try looking back to see if there is a worse ratio
+ * that we could try anyway
+ */
+ while (i > 0) {
+ i--;
+ new_r = UNPACK_R(factors[i]);
+ new_od = UNPACK_OD(factors[i]);
+ /*
+ * Don't loop over factors for the same product
+ * to avoid getting stuck because of the above
+ * clause
+ */
+ if (r * od != new_r * new_od) {
+ if (new_r * new_od > last_r * last_od) {
+ r = new_r;
+ od = new_od;
+ swapped = false;
+ goto again;
+ }
+ break;
+ }
+ }
+
+ /* We ran out of things to try */
+ continue;
+ }
+
+ error = DIV_ROUND_CLOSEST_ULL(f * inv_ratio, r * od);
+ /* The lower 16 bits are spurious */
+ error = abs((error - BIT(32))) >> 16;
+
+ if (error < best_error) {
+ best->r = r;
+ best->f = f;
+ best->od = od;
+ best_error = error;
+ }
+ } while (f < 64 && i + 1 < ARRAY_SIZE(factors) && error != 0);
+
+ log_debug("best error %lld\n", best_error);
+ if (best_error == S64_MAX)
+ return -EINVAL;
+
+ return 0;
+}
+
+static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate,
+ ulong rate_in)
+{
+ int err;
+ const struct k210_pll_params *pll = &k210_plls[id];
+ struct k210_pll_config config = {};
+ u32 reg;
+ ulong calc_rate;
+
+ err = k210_pll_calc_config(rate, rate_in, &config);
+ if (err)
+ return err;
+ log_debug("Got r=%u f=%u od=%u\n", config.r, config.f, config.od);
+
+ /* Don't bother setting the rate if we're already at that rate */
+ calc_rate = DIV_ROUND_DOWN_ULL(((u64)rate_in) * config.f,
+ config.r * config.od);
+ if (calc_rate == k210_pll_get_rate(priv, id, rate))
+ return calc_rate;
+
+ k210_pll_disable(priv, id);
+
+ reg = readl(priv->base + pll->off);
+ reg &= ~K210_PLL_CLKR
+ & ~K210_PLL_CLKF
+ & ~K210_PLL_CLKOD
+ & ~K210_PLL_BWADJ;
+ reg |= FIELD_PREP(K210_PLL_CLKR, config.r - 1)
+ | FIELD_PREP(K210_PLL_CLKF, config.f - 1)
+ | FIELD_PREP(K210_PLL_CLKOD, config.od - 1)
+ | FIELD_PREP(K210_PLL_BWADJ, config.f - 1);
+ writel(reg, priv->base + pll->off);
+
+ k210_pll_enable(priv, id);
+
+ serial_setbrg();
+ return k210_pll_get_rate(priv, id, rate);
+}
+#else
+static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate,
+ ulong rate_in)
+{
+ return -ENOSYS;
+}
+#endif /* CONFIG_CLK_K210_SET_RATE */
+
+static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id,
+ ulong rate_in)
+{
+ u64 r, f, od;
+ u32 reg = readl(priv->base + k210_plls[id].off);
+
+ if (reg & K210_PLL_BYPASS)
+ return rate_in;
+
+ if (!(reg & K210_PLL_PWRD))
+ return 0;
+
+ r = FIELD_GET(K210_PLL_CLKR, reg) + 1;
+ f = FIELD_GET(K210_PLL_CLKF, reg) + 1;
+ od = FIELD_GET(K210_PLL_CLKOD, reg) + 1;
+
+ return DIV_ROUND_DOWN_ULL(((u64)rate_in) * f, r * od);
+}
+
+/*
+ * Wait for the PLL to be locked. If the PLL is not locked, try clearing the
+ * slip before retrying
+ */
+static void k210_pll_waitfor_lock(struct k210_clk_priv *priv, int id)
+{
+ const struct k210_pll_params *pll = &k210_plls[id];
+ u32 mask = (BIT(pll->width) - 1) << pll->shift;
+
+ while (true) {
+ u32 reg = readl(priv->base + K210_SYSCTL_PLL_LOCK);
+
+ if ((reg & mask) == mask)
+ break;
+
+ reg |= BIT(pll->shift + K210_PLL_CLEAR_SLIP);
+ writel(reg, priv->base + K210_SYSCTL_PLL_LOCK);
+ }
+}
+
+static bool k210_pll_enabled(u32 reg)
+{
+ return (reg & K210_PLL_PWRD) && (reg & K210_PLL_EN) &&
+ !(reg & K210_PLL_RESET);
+}
+
+/* Adapted from sysctl_pll_enable */
+static int k210_pll_enable(struct k210_clk_priv *priv, int id)
+{
+ const struct k210_pll_params *pll = &k210_plls[id];
+ u32 reg = readl(priv->base + pll->off);
+
+ if (k210_pll_enabled(reg))
+ return 0;
+
+ reg |= K210_PLL_PWRD;
+ writel(reg, priv->base + pll->off);
+
+ /* Ensure reset is low before asserting it */
+ reg &= ~K210_PLL_RESET;
+ writel(reg, priv->base + pll->off);
+ reg |= K210_PLL_RESET;
+ writel(reg, priv->base + pll->off);
+ nop();
+ nop();
+ reg &= ~K210_PLL_RESET;
+ writel(reg, priv->base + pll->off);
+
+ k210_pll_waitfor_lock(priv, id);
+
+ reg &= ~K210_PLL_BYPASS;
+ reg |= K210_PLL_EN;
+ writel(reg, priv->base + pll->off);
+
+ return 0;
+}
+
+static int k210_pll_disable(struct k210_clk_priv *priv, int id)
+{
+ const struct k210_pll_params *pll = &k210_plls[id];
+ u32 reg = readl(priv->base + pll->off);
+
+ /*
+ * Bypassing before powering off is important so child clocks don't stop
+ * working. This is especially important for pll0, the indirect parent
+ * of the cpu clock.
+ */
+ reg |= K210_PLL_BYPASS;
+ writel(reg, priv->base + pll->off);
+
+ reg &= ~K210_PLL_PWRD;
+ reg &= ~K210_PLL_EN;
+ writel(reg, priv->base + pll->off);
+ return 0;
+}
+
+static u32 k210_clk_readl(struct k210_clk_priv *priv, u8 off, u8 shift,
+ u8 width)
+{
+ u32 reg = readl(priv->base + off);
+
+ return (reg >> shift) & (BIT(width) - 1);
+}
+
+static void k210_clk_writel(struct k210_clk_priv *priv, u8 off, u8 shift,
+ u8 width, u32 val)
+{
+ u32 reg = readl(priv->base + off);
+ u32 mask = (BIT(width) - 1) << shift;
+
+ reg &= ~mask;
+ reg |= mask & (val << shift);
+ writel(reg, priv->base + off);
+}
+
+static int k210_clk_get_parent(struct k210_clk_priv *priv, int id)
+{
+ u32 sel;
+ const struct k210_mux_params *mux;
+
+ if (!(k210_clks[id].flags & K210_CLKF_MUX))
+ return k210_clks[id].parent;
+ mux = &k210_muxes[k210_clks[id].mux];
+
+ sel = k210_clk_readl(priv, mux->off, mux->shift, mux->width);
+ assert(sel < mux->num_parents);
+ return mux->parents[sel];
+}
+
+static ulong do_k210_clk_get_rate(struct k210_clk_priv *priv, int id)
+{
+ int parent;
+ u32 val;
+ ulong parent_rate;
+ const struct k210_div_params *div;
+
+ if (id == K210_CLK_IN0)
+ return clk_get_rate(&priv->in0);
+
+ parent = k210_clk_get_parent(priv, id);
+ parent_rate = do_k210_clk_get_rate(priv, parent);
+ if (IS_ERR_VALUE(parent_rate))
+ return parent_rate;
+
+ if (k210_clks[id].flags & K210_CLKF_PLL)
+ return k210_pll_get_rate(priv, k210_clks[id].pll, parent_rate);
+
+ if (k210_clks[id].div == K210_CLK_DIV_NONE)
+ return parent_rate;
+ div = &k210_divs[k210_clks[id].div];
+
+ if (div->type == K210_DIV_FIXED)
+ return parent_rate / div->div;
+
+ val = k210_clk_readl(priv, div->off, div->shift, div->width);
+ switch (div->type) {
+ case K210_DIV_ONE:
+ return parent_rate / (val + 1);
+ case K210_DIV_EVEN:
+ return parent_rate / 2 / (val + 1);
+ case K210_DIV_POWER:
+ /* This is ACLK, which has no divider on IN0 */
+ if (parent == K210_CLK_IN0)
+ return parent_rate;
+ return parent_rate / (2 << val);
+ default:
+ assert(false);
+ return -EINVAL;
+ };
+}
+
+static ulong k210_clk_get_rate(struct clk *clk)
+{
+ return do_k210_clk_get_rate(dev_get_priv(clk->dev), clk->id);
+}
+
+static int do_k210_clk_set_parent(struct k210_clk_priv *priv, int id, int new)
+{
+ int i;
+ const struct k210_mux_params *mux;
+
+ if (!(k210_clks[id].flags & K210_CLKF_MUX))
+ return -ENOSYS;
+ mux = &k210_muxes[k210_clks[id].mux];
+
+ for (i = 0; i < mux->num_parents; i++) {
+ if (mux->parents[i] == new) {
+ k210_clk_writel(priv, mux->off, mux->shift, mux->width,
+ i);
+ return 0;
+ }
+ }
+ return -EINVAL;
+}
+
+static int k210_clk_set_parent(struct clk *clk, struct clk *parent)
+{
+ return do_k210_clk_set_parent(dev_get_priv(clk->dev), clk->id,
+ parent->id);
+}
+
+static ulong k210_clk_set_rate(struct clk *clk, unsigned long rate)
+{
+ int parent, ret, err;
+ ulong rate_in, val;
+ const struct k210_div_params *div;
+ struct k210_clk_priv *priv = dev_get_priv(clk->dev);
+
+ if (clk->id == K210_CLK_IN0)
+ return clk_set_rate(&priv->in0, rate);
+
+ parent = k210_clk_get_parent(priv, clk->id);
+ rate_in = do_k210_clk_get_rate(priv, parent);
+ if (IS_ERR_VALUE(rate_in))
+ return rate_in;
+
+ log_debug("id=%ld rate=%lu rate_in=%lu\n", clk->id, rate, rate_in);
+
+ if (clk->id == K210_CLK_PLL0) {
+ /* Bypass ACLK so the CPU keeps going */
+ ret = do_k210_clk_set_parent(priv, K210_CLK_ACLK, K210_CLK_IN0);
+ if (ret)
+ return ret;
+ } else if (clk->id == K210_CLK_PLL1 && gd->flags & GD_FLG_RELOC) {
+ /*
+ * We can't bypass the AI clock like we can ACLK, and after
+ * relocation we are using the AI ram.
+ */
+ return -EPERM;
+ }
+
+ if (k210_clks[clk->id].flags & K210_CLKF_PLL) {
+ ret = k210_pll_set_rate(priv, k210_clks[clk->id].pll, rate,
+ rate_in);
+ if (!IS_ERR_VALUE(ret) && clk->id == K210_CLK_PLL0) {
+ /*
+ * This may have the side effect of reparenting ACLK,
+ * but I don't really want to keep track of what the old
+ * parent was.
+ */
+ err = do_k210_clk_set_parent(priv, K210_CLK_ACLK,
+ K210_CLK_PLL0);
+ if (err)
+ return err;
+ }
+ return ret;
+ }
+
+ if (k210_clks[clk->id].div == K210_CLK_DIV_NONE)
+ return -ENOSYS;
+ div = &k210_divs[k210_clks[clk->id].div];
+
+ switch (div->type) {
+ case K210_DIV_ONE:
+ val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate);
+ val = val ? val - 1 : 0;
+ break;
+ case K210_DIV_EVEN:
+ val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, 2 * rate);
+ break;
+ case K210_DIV_POWER:
+ /* This is ACLK, which has no divider on IN0 */
+ if (parent == K210_CLK_IN0)
+ return -ENOSYS;
+
+ val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate);
+ val = __ffs(val);
+ break;
+ default:
+ assert(false);
+ return -EINVAL;
+ };
+
+ val = val ? val - 1 : 0;
+ k210_clk_writel(priv, div->off, div->shift, div->width, val);
+ return do_k210_clk_get_rate(priv, clk->id);
+}
+
+static int k210_clk_endisable(struct k210_clk_priv *priv, int id, bool enable)
+{
+ int parent = k210_clk_get_parent(priv, id);
+ const struct k210_gate_params *gate;
+
+ if (id == K210_CLK_IN0) {
+ if (enable)
+ return clk_enable(&priv->in0);
+ else
+ return clk_disable(&priv->in0);
+ }
+
+ /* Only recursively enable clocks since we don't track refcounts */
+ if (enable) {
+ int ret = k210_clk_endisable(priv, parent, true);
+
+ if (ret && ret != -ENOSYS)
+ return ret;
+ }
+
+ if (k210_clks[id].flags & K210_CLKF_PLL) {
+ if (enable)
+ return k210_pll_enable(priv, k210_clks[id].pll);
+ else
+ return k210_pll_disable(priv, k210_clks[id].pll);
+ }
+
+ if (k210_clks[id].gate == K210_CLK_GATE_NONE)
+ return -ENOSYS;
+ gate = &k210_gates[k210_clks[id].gate];
+
+ k210_clk_writel(priv, gate->off, gate->bit_idx, 1, enable);
+ return 0;
+}
+
+static int k210_clk_enable(struct clk *clk)
+{
+ return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, true);
+}
+
+static int k210_clk_disable(struct clk *clk)
+{
+ return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, false);
+}
+
+static int k210_clk_request(struct clk *clk)
+{
+ if (clk->id >= ARRAY_SIZE(k210_clks))
+ return -EINVAL;
+ return 0;
+}
+
+static const struct clk_ops k210_clk_ops = {
+ .request = k210_clk_request,
+ .set_rate = k210_clk_set_rate,
+ .get_rate = k210_clk_get_rate,
+ .set_parent = k210_clk_set_parent,
+ .enable = k210_clk_enable,
+ .disable = k210_clk_disable,
+};
+
+static int k210_clk_probe(struct udevice *dev)
+{
+ int ret;
+ struct k210_clk_priv *priv = dev_get_priv(dev);
+
+ priv->base = dev_read_addr_ptr(dev_get_parent(dev));
+ if (!priv->base)
+ return -EINVAL;
+
+ ret = clk_get_by_index(dev, 0, &priv->in0);
+ if (ret)
+ return ret;
+
+ /*
+ * Force setting defaults, even before relocation. This is so we can
+ * set the clock rate for PLL1 before we relocate into aisram.
+ */
+ if (!(gd->flags & GD_FLG_RELOC))
+ clk_set_defaults(dev, CLK_DEFAULTS_POST_FORCE);
+
+ return 0;
+}
+
+static const struct udevice_id k210_clk_ids[] = {
+ { .compatible = "canaan,k210-clk" },
+ { },
+};
+
+U_BOOT_DRIVER(k210_clk) = {
+ .name = "k210_clk",
+ .id = UCLASS_CLK,
+ .of_match = k210_clk_ids,
+ .ops = &k210_clk_ops,
+ .probe = k210_clk_probe,
+ .priv_auto = sizeof(struct k210_clk_priv),
+};
+
+#if CONFIG_IS_ENABLED(CMD_CLK)
+static char show_enabled(struct k210_clk_priv *priv, int id)
+{
+ bool enabled;
+
+ if (k210_clks[id].flags & K210_CLKF_PLL) {
+ const struct k210_pll_params *pll =
+ &k210_plls[k210_clks[id].pll];
+
+ enabled = k210_pll_enabled(readl(priv->base + pll->off));
+ } else if (k210_clks[id].gate == K210_CLK_GATE_NONE) {
+ return '-';
+ } else {
+ const struct k210_gate_params *gate =
+ &k210_gates[k210_clks[id].gate];
+
+ enabled = k210_clk_readl(priv, gate->off, gate->bit_idx, 1);
+ }
+
+ return enabled ? 'y' : 'n';
+}
+
+static void show_clks(struct k210_clk_priv *priv, int id, int depth)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(k210_clks); i++) {
+ if (k210_clk_get_parent(priv, i) != id)
+ continue;
+
+ printf(" %-9lu %-7c %*s%s\n", do_k210_clk_get_rate(priv, i),
+ show_enabled(priv, i), depth * 4, "",
+ k210_clks[i].name);
+
+ show_clks(priv, i, depth + 1);
+ }
+}
+
+int soc_clk_dump(void)
+{
+ int ret;
+ struct udevice *dev;
+ struct k210_clk_priv *priv;
+
+ ret = uclass_get_device_by_driver(UCLASS_CLK, DM_DRIVER_GET(k210_clk),
+ &dev);
+ if (ret)
+ return ret;
+ priv = dev_get_priv(dev);
+
+ puts(" Rate Enabled Name\n");
+ puts("------------------------\n");
+ printf(" %-9lu %-7c %*s%s\n", clk_get_rate(&priv->in0), 'y', 0, "",
+ priv->in0.dev->name);
+ show_clks(priv, K210_CLK_IN0, 1);
+ return 0;
+}
+#endif